~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/powerpc/kernel/eeh.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-or-later
  2 /*
  3  * Copyright IBM Corporation 2001, 2005, 2006
  4  * Copyright Dave Engebretsen & Todd Inglett 2001
  5  * Copyright Linas Vepstas 2005, 2006
  6  * Copyright 2001-2012 IBM Corporation.
  7  *
  8  * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
  9  */
 10 
 11 #include <linux/delay.h>
 12 #include <linux/sched.h>
 13 #include <linux/init.h>
 14 #include <linux/list.h>
 15 #include <linux/pci.h>
 16 #include <linux/iommu.h>
 17 #include <linux/proc_fs.h>
 18 #include <linux/rbtree.h>
 19 #include <linux/reboot.h>
 20 #include <linux/seq_file.h>
 21 #include <linux/spinlock.h>
 22 #include <linux/export.h>
 23 #include <linux/of.h>
 24 #include <linux/debugfs.h>
 25 
 26 #include <linux/atomic.h>
 27 #include <asm/eeh.h>
 28 #include <asm/eeh_event.h>
 29 #include <asm/io.h>
 30 #include <asm/iommu.h>
 31 #include <asm/machdep.h>
 32 #include <asm/ppc-pci.h>
 33 #include <asm/rtas.h>
 34 #include <asm/pte-walk.h>
 35 
 36 
 37 /** Overview:
 38  *  EEH, or "Enhanced Error Handling" is a PCI bridge technology for
 39  *  dealing with PCI bus errors that can't be dealt with within the
 40  *  usual PCI framework, except by check-stopping the CPU.  Systems
 41  *  that are designed for high-availability/reliability cannot afford
 42  *  to crash due to a "mere" PCI error, thus the need for EEH.
 43  *  An EEH-capable bridge operates by converting a detected error
 44  *  into a "slot freeze", taking the PCI adapter off-line, making
 45  *  the slot behave, from the OS'es point of view, as if the slot
 46  *  were "empty": all reads return 0xff's and all writes are silently
 47  *  ignored.  EEH slot isolation events can be triggered by parity
 48  *  errors on the address or data busses (e.g. during posted writes),
 49  *  which in turn might be caused by low voltage on the bus, dust,
 50  *  vibration, humidity, radioactivity or plain-old failed hardware.
 51  *
 52  *  Note, however, that one of the leading causes of EEH slot
 53  *  freeze events are buggy device drivers, buggy device microcode,
 54  *  or buggy device hardware.  This is because any attempt by the
 55  *  device to bus-master data to a memory address that is not
 56  *  assigned to the device will trigger a slot freeze.   (The idea
 57  *  is to prevent devices-gone-wild from corrupting system memory).
 58  *  Buggy hardware/drivers will have a miserable time co-existing
 59  *  with EEH.
 60  *
 61  *  Ideally, a PCI device driver, when suspecting that an isolation
 62  *  event has occurred (e.g. by reading 0xff's), will then ask EEH
 63  *  whether this is the case, and then take appropriate steps to
 64  *  reset the PCI slot, the PCI device, and then resume operations.
 65  *  However, until that day,  the checking is done here, with the
 66  *  eeh_check_failure() routine embedded in the MMIO macros.  If
 67  *  the slot is found to be isolated, an "EEH Event" is synthesized
 68  *  and sent out for processing.
 69  */
 70 
 71 /* If a device driver keeps reading an MMIO register in an interrupt
 72  * handler after a slot isolation event, it might be broken.
 73  * This sets the threshold for how many read attempts we allow
 74  * before printing an error message.
 75  */
 76 #define EEH_MAX_FAILS   2100000
 77 
 78 /* Time to wait for a PCI slot to report status, in milliseconds */
 79 #define PCI_BUS_RESET_WAIT_MSEC (5*60*1000)
 80 
 81 /*
 82  * EEH probe mode support, which is part of the flags,
 83  * is to support multiple platforms for EEH. Some platforms
 84  * like pSeries do PCI emunation based on device tree.
 85  * However, other platforms like powernv probe PCI devices
 86  * from hardware. The flag is used to distinguish that.
 87  * In addition, struct eeh_ops::probe would be invoked for
 88  * particular OF node or PCI device so that the corresponding
 89  * PE would be created there.
 90  */
 91 int eeh_subsystem_flags;
 92 EXPORT_SYMBOL(eeh_subsystem_flags);
 93 
 94 /*
 95  * EEH allowed maximal frozen times. If one particular PE's
 96  * frozen count in last hour exceeds this limit, the PE will
 97  * be forced to be offline permanently.
 98  */
 99 u32 eeh_max_freezes = 5;
100 
101 /*
102  * Controls whether a recovery event should be scheduled when an
103  * isolated device is discovered. This is only really useful for
104  * debugging problems with the EEH core.
105  */
106 bool eeh_debugfs_no_recover;
107 
108 /* Platform dependent EEH operations */
109 struct eeh_ops *eeh_ops = NULL;
110 
111 /* Lock to avoid races due to multiple reports of an error */
112 DEFINE_RAW_SPINLOCK(confirm_error_lock);
113 EXPORT_SYMBOL_GPL(confirm_error_lock);
114 
115 /* Lock to protect passed flags */
116 static DEFINE_MUTEX(eeh_dev_mutex);
117 
118 /* Buffer for reporting pci register dumps. Its here in BSS, and
119  * not dynamically alloced, so that it ends up in RMO where RTAS
120  * can access it.
121  */
122 #define EEH_PCI_REGS_LOG_LEN 8192
123 static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
124 
125 /*
126  * The struct is used to maintain the EEH global statistic
127  * information. Besides, the EEH global statistics will be
128  * exported to user space through procfs
129  */
130 struct eeh_stats {
131         u64 no_device;          /* PCI device not found         */
132         u64 no_dn;              /* OF node not found            */
133         u64 no_cfg_addr;        /* Config address not found     */
134         u64 ignored_check;      /* EEH check skipped            */
135         u64 total_mmio_ffs;     /* Total EEH checks             */
136         u64 false_positives;    /* Unnecessary EEH checks       */
137         u64 slot_resets;        /* PE reset                     */
138 };
139 
140 static struct eeh_stats eeh_stats;
141 
142 static int __init eeh_setup(char *str)
143 {
144         if (!strcmp(str, "off"))
145                 eeh_add_flag(EEH_FORCE_DISABLED);
146         else if (!strcmp(str, "early_log"))
147                 eeh_add_flag(EEH_EARLY_DUMP_LOG);
148 
149         return 1;
150 }
151 __setup("eeh=", eeh_setup);
152 
153 void eeh_show_enabled(void)
154 {
155         if (eeh_has_flag(EEH_FORCE_DISABLED))
156                 pr_info("EEH: Recovery disabled by kernel parameter.\n");
157         else if (eeh_has_flag(EEH_ENABLED))
158                 pr_info("EEH: Capable adapter found: recovery enabled.\n");
159         else
160                 pr_info("EEH: No capable adapters found: recovery disabled.\n");
161 }
162 
163 /*
164  * This routine captures assorted PCI configuration space data
165  * for the indicated PCI device, and puts them into a buffer
166  * for RTAS error logging.
167  */
168 static size_t eeh_dump_dev_log(struct eeh_dev *edev, char *buf, size_t len)
169 {
170         u32 cfg;
171         int cap, i;
172         int n = 0, l = 0;
173         char buffer[128];
174 
175         n += scnprintf(buf+n, len-n, "%04x:%02x:%02x.%01x\n",
176                         edev->pe->phb->global_number, edev->bdfn >> 8,
177                         PCI_SLOT(edev->bdfn), PCI_FUNC(edev->bdfn));
178         pr_warn("EEH: of node=%04x:%02x:%02x.%01x\n",
179                 edev->pe->phb->global_number, edev->bdfn >> 8,
180                 PCI_SLOT(edev->bdfn), PCI_FUNC(edev->bdfn));
181 
182         eeh_ops->read_config(edev, PCI_VENDOR_ID, 4, &cfg);
183         n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
184         pr_warn("EEH: PCI device/vendor: %08x\n", cfg);
185 
186         eeh_ops->read_config(edev, PCI_COMMAND, 4, &cfg);
187         n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
188         pr_warn("EEH: PCI cmd/status register: %08x\n", cfg);
189 
190         /* Gather bridge-specific registers */
191         if (edev->mode & EEH_DEV_BRIDGE) {
192                 eeh_ops->read_config(edev, PCI_SEC_STATUS, 2, &cfg);
193                 n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
194                 pr_warn("EEH: Bridge secondary status: %04x\n", cfg);
195 
196                 eeh_ops->read_config(edev, PCI_BRIDGE_CONTROL, 2, &cfg);
197                 n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
198                 pr_warn("EEH: Bridge control: %04x\n", cfg);
199         }
200 
201         /* Dump out the PCI-X command and status regs */
202         cap = edev->pcix_cap;
203         if (cap) {
204                 eeh_ops->read_config(edev, cap, 4, &cfg);
205                 n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
206                 pr_warn("EEH: PCI-X cmd: %08x\n", cfg);
207 
208                 eeh_ops->read_config(edev, cap+4, 4, &cfg);
209                 n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
210                 pr_warn("EEH: PCI-X status: %08x\n", cfg);
211         }
212 
213         /* If PCI-E capable, dump PCI-E cap 10 */
214         cap = edev->pcie_cap;
215         if (cap) {
216                 n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
217                 pr_warn("EEH: PCI-E capabilities and status follow:\n");
218 
219                 for (i=0; i<=8; i++) {
220                         eeh_ops->read_config(edev, cap+4*i, 4, &cfg);
221                         n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
222 
223                         if ((i % 4) == 0) {
224                                 if (i != 0)
225                                         pr_warn("%s\n", buffer);
226 
227                                 l = scnprintf(buffer, sizeof(buffer),
228                                               "EEH: PCI-E %02x: %08x ",
229                                               4*i, cfg);
230                         } else {
231                                 l += scnprintf(buffer+l, sizeof(buffer)-l,
232                                                "%08x ", cfg);
233                         }
234 
235                 }
236 
237                 pr_warn("%s\n", buffer);
238         }
239 
240         /* If AER capable, dump it */
241         cap = edev->aer_cap;
242         if (cap) {
243                 n += scnprintf(buf+n, len-n, "pci-e AER:\n");
244                 pr_warn("EEH: PCI-E AER capability register set follows:\n");
245 
246                 for (i=0; i<=13; i++) {
247                         eeh_ops->read_config(edev, cap+4*i, 4, &cfg);
248                         n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
249 
250                         if ((i % 4) == 0) {
251                                 if (i != 0)
252                                         pr_warn("%s\n", buffer);
253 
254                                 l = scnprintf(buffer, sizeof(buffer),
255                                               "EEH: PCI-E AER %02x: %08x ",
256                                               4*i, cfg);
257                         } else {
258                                 l += scnprintf(buffer+l, sizeof(buffer)-l,
259                                                "%08x ", cfg);
260                         }
261                 }
262 
263                 pr_warn("%s\n", buffer);
264         }
265 
266         return n;
267 }
268 
269 static void *eeh_dump_pe_log(struct eeh_pe *pe, void *flag)
270 {
271         struct eeh_dev *edev, *tmp;
272         size_t *plen = flag;
273 
274         eeh_pe_for_each_dev(pe, edev, tmp)
275                 *plen += eeh_dump_dev_log(edev, pci_regs_buf + *plen,
276                                           EEH_PCI_REGS_LOG_LEN - *plen);
277 
278         return NULL;
279 }
280 
281 /**
282  * eeh_slot_error_detail - Generate combined log including driver log and error log
283  * @pe: EEH PE
284  * @severity: temporary or permanent error log
285  *
286  * This routine should be called to generate the combined log, which
287  * is comprised of driver log and error log. The driver log is figured
288  * out from the config space of the corresponding PCI device, while
289  * the error log is fetched through platform dependent function call.
290  */
291 void eeh_slot_error_detail(struct eeh_pe *pe, int severity)
292 {
293         size_t loglen = 0;
294 
295         /*
296          * When the PHB is fenced or dead, it's pointless to collect
297          * the data from PCI config space because it should return
298          * 0xFF's. For ER, we still retrieve the data from the PCI
299          * config space.
300          *
301          * For pHyp, we have to enable IO for log retrieval. Otherwise,
302          * 0xFF's is always returned from PCI config space.
303          *
304          * When the @severity is EEH_LOG_PERM, the PE is going to be
305          * removed. Prior to that, the drivers for devices included in
306          * the PE will be closed. The drivers rely on working IO path
307          * to bring the devices to quiet state. Otherwise, PCI traffic
308          * from those devices after they are removed is like to cause
309          * another unexpected EEH error.
310          */
311         if (!(pe->type & EEH_PE_PHB)) {
312                 if (eeh_has_flag(EEH_ENABLE_IO_FOR_LOG) ||
313                     severity == EEH_LOG_PERM)
314                         eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
315 
316                 /*
317                  * The config space of some PCI devices can't be accessed
318                  * when their PEs are in frozen state. Otherwise, fenced
319                  * PHB might be seen. Those PEs are identified with flag
320                  * EEH_PE_CFG_RESTRICTED, indicating EEH_PE_CFG_BLOCKED
321                  * is set automatically when the PE is put to EEH_PE_ISOLATED.
322                  *
323                  * Restoring BARs possibly triggers PCI config access in
324                  * (OPAL) firmware and then causes fenced PHB. If the
325                  * PCI config is blocked with flag EEH_PE_CFG_BLOCKED, it's
326                  * pointless to restore BARs and dump config space.
327                  */
328                 eeh_ops->configure_bridge(pe);
329                 if (!(pe->state & EEH_PE_CFG_BLOCKED)) {
330                         eeh_pe_restore_bars(pe);
331 
332                         pci_regs_buf[0] = 0;
333                         eeh_pe_traverse(pe, eeh_dump_pe_log, &loglen);
334                 }
335         }
336 
337         eeh_ops->get_log(pe, severity, pci_regs_buf, loglen);
338 }
339 
340 /**
341  * eeh_token_to_phys - Convert EEH address token to phys address
342  * @token: I/O token, should be address in the form 0xA....
343  *
344  * This routine should be called to convert virtual I/O address
345  * to physical one.
346  */
347 static inline unsigned long eeh_token_to_phys(unsigned long token)
348 {
349         return ppc_find_vmap_phys(token);
350 }
351 
352 /*
353  * On PowerNV platform, we might already have fenced PHB there.
354  * For that case, it's meaningless to recover frozen PE. Intead,
355  * We have to handle fenced PHB firstly.
356  */
357 static int eeh_phb_check_failure(struct eeh_pe *pe)
358 {
359         struct eeh_pe *phb_pe;
360         unsigned long flags;
361         int ret;
362 
363         if (!eeh_has_flag(EEH_PROBE_MODE_DEV))
364                 return -EPERM;
365 
366         /* Find the PHB PE */
367         phb_pe = eeh_phb_pe_get(pe->phb);
368         if (!phb_pe) {
369                 pr_warn("%s Can't find PE for PHB#%x\n",
370                         __func__, pe->phb->global_number);
371                 return -EEXIST;
372         }
373 
374         /* If the PHB has been in problematic state */
375         eeh_serialize_lock(&flags);
376         if (phb_pe->state & EEH_PE_ISOLATED) {
377                 ret = 0;
378                 goto out;
379         }
380 
381         /* Check PHB state */
382         ret = eeh_ops->get_state(phb_pe, NULL);
383         if ((ret < 0) ||
384             (ret == EEH_STATE_NOT_SUPPORT) || eeh_state_active(ret)) {
385                 ret = 0;
386                 goto out;
387         }
388 
389         /* Isolate the PHB and send event */
390         eeh_pe_mark_isolated(phb_pe);
391         eeh_serialize_unlock(flags);
392 
393         pr_debug("EEH: PHB#%x failure detected, location: %s\n",
394                 phb_pe->phb->global_number, eeh_pe_loc_get(phb_pe));
395         eeh_send_failure_event(phb_pe);
396         return 1;
397 out:
398         eeh_serialize_unlock(flags);
399         return ret;
400 }
401 
402 static inline const char *eeh_driver_name(struct pci_dev *pdev)
403 {
404         if (pdev)
405                 return dev_driver_string(&pdev->dev);
406 
407         return "<null>";
408 }
409 
410 /**
411  * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze
412  * @edev: eeh device
413  *
414  * Check for an EEH failure for the given device node.  Call this
415  * routine if the result of a read was all 0xff's and you want to
416  * find out if this is due to an EEH slot freeze.  This routine
417  * will query firmware for the EEH status.
418  *
419  * Returns 0 if there has not been an EEH error; otherwise returns
420  * a non-zero value and queues up a slot isolation event notification.
421  *
422  * It is safe to call this routine in an interrupt context.
423  */
424 int eeh_dev_check_failure(struct eeh_dev *edev)
425 {
426         int ret;
427         unsigned long flags;
428         struct device_node *dn;
429         struct pci_dev *dev;
430         struct eeh_pe *pe, *parent_pe;
431         int rc = 0;
432         const char *location = NULL;
433 
434         eeh_stats.total_mmio_ffs++;
435 
436         if (!eeh_enabled())
437                 return 0;
438 
439         if (!edev) {
440                 eeh_stats.no_dn++;
441                 return 0;
442         }
443         dev = eeh_dev_to_pci_dev(edev);
444         pe = eeh_dev_to_pe(edev);
445 
446         /* Access to IO BARs might get this far and still not want checking. */
447         if (!pe) {
448                 eeh_stats.ignored_check++;
449                 eeh_edev_dbg(edev, "Ignored check\n");
450                 return 0;
451         }
452 
453         /*
454          * On PowerNV platform, we might already have fenced PHB
455          * there and we need take care of that firstly.
456          */
457         ret = eeh_phb_check_failure(pe);
458         if (ret > 0)
459                 return ret;
460 
461         /*
462          * If the PE isn't owned by us, we shouldn't check the
463          * state. Instead, let the owner handle it if the PE has
464          * been frozen.
465          */
466         if (eeh_pe_passed(pe))
467                 return 0;
468 
469         /* If we already have a pending isolation event for this
470          * slot, we know it's bad already, we don't need to check.
471          * Do this checking under a lock; as multiple PCI devices
472          * in one slot might report errors simultaneously, and we
473          * only want one error recovery routine running.
474          */
475         eeh_serialize_lock(&flags);
476         rc = 1;
477         if (pe->state & EEH_PE_ISOLATED) {
478                 pe->check_count++;
479                 if (pe->check_count == EEH_MAX_FAILS) {
480                         dn = pci_device_to_OF_node(dev);
481                         if (dn)
482                                 location = of_get_property(dn, "ibm,loc-code",
483                                                 NULL);
484                         eeh_edev_err(edev, "%d reads ignored for recovering device at location=%s driver=%s\n",
485                                 pe->check_count,
486                                 location ? location : "unknown",
487                                 eeh_driver_name(dev));
488                         eeh_edev_err(edev, "Might be infinite loop in %s driver\n",
489                                 eeh_driver_name(dev));
490                         dump_stack();
491                 }
492                 goto dn_unlock;
493         }
494 
495         /*
496          * Now test for an EEH failure.  This is VERY expensive.
497          * Note that the eeh_config_addr may be a parent device
498          * in the case of a device behind a bridge, or it may be
499          * function zero of a multi-function device.
500          * In any case they must share a common PHB.
501          */
502         ret = eeh_ops->get_state(pe, NULL);
503 
504         /* Note that config-io to empty slots may fail;
505          * they are empty when they don't have children.
506          * We will punt with the following conditions: Failure to get
507          * PE's state, EEH not support and Permanently unavailable
508          * state, PE is in good state.
509          *
510          * On the pSeries, after reaching the threshold, get_state might
511          * return EEH_STATE_NOT_SUPPORT. However, it's possible that the
512          * device state remains uncleared if the device is not marked
513          * pci_channel_io_perm_failure. Therefore, consider logging the
514          * event to let device removal happen.
515          *
516          */
517         if ((ret < 0) ||
518             (ret == EEH_STATE_NOT_SUPPORT &&
519              dev->error_state == pci_channel_io_perm_failure) ||
520             eeh_state_active(ret)) {
521                 eeh_stats.false_positives++;
522                 pe->false_positives++;
523                 rc = 0;
524                 goto dn_unlock;
525         }
526 
527         /*
528          * It should be corner case that the parent PE has been
529          * put into frozen state as well. We should take care
530          * that at first.
531          */
532         parent_pe = pe->parent;
533         while (parent_pe) {
534                 /* Hit the ceiling ? */
535                 if (parent_pe->type & EEH_PE_PHB)
536                         break;
537 
538                 /* Frozen parent PE ? */
539                 ret = eeh_ops->get_state(parent_pe, NULL);
540                 if (ret > 0 && !eeh_state_active(ret)) {
541                         pe = parent_pe;
542                         pr_err("EEH: Failure of PHB#%x-PE#%x will be handled at parent PHB#%x-PE#%x.\n",
543                                pe->phb->global_number, pe->addr,
544                                pe->phb->global_number, parent_pe->addr);
545                 }
546 
547                 /* Next parent level */
548                 parent_pe = parent_pe->parent;
549         }
550 
551         eeh_stats.slot_resets++;
552 
553         /* Avoid repeated reports of this failure, including problems
554          * with other functions on this device, and functions under
555          * bridges.
556          */
557         eeh_pe_mark_isolated(pe);
558         eeh_serialize_unlock(flags);
559 
560         /* Most EEH events are due to device driver bugs.  Having
561          * a stack trace will help the device-driver authors figure
562          * out what happened.  So print that out.
563          */
564         pr_debug("EEH: %s: Frozen PHB#%x-PE#%x detected\n",
565                 __func__, pe->phb->global_number, pe->addr);
566         eeh_send_failure_event(pe);
567 
568         return 1;
569 
570 dn_unlock:
571         eeh_serialize_unlock(flags);
572         return rc;
573 }
574 
575 EXPORT_SYMBOL_GPL(eeh_dev_check_failure);
576 
577 /**
578  * eeh_check_failure - Check if all 1's data is due to EEH slot freeze
579  * @token: I/O address
580  *
581  * Check for an EEH failure at the given I/O address. Call this
582  * routine if the result of a read was all 0xff's and you want to
583  * find out if this is due to an EEH slot freeze event. This routine
584  * will query firmware for the EEH status.
585  *
586  * Note this routine is safe to call in an interrupt context.
587  */
588 int eeh_check_failure(const volatile void __iomem *token)
589 {
590         unsigned long addr;
591         struct eeh_dev *edev;
592 
593         /* Finding the phys addr + pci device; this is pretty quick. */
594         addr = eeh_token_to_phys((unsigned long __force) token);
595         edev = eeh_addr_cache_get_dev(addr);
596         if (!edev) {
597                 eeh_stats.no_device++;
598                 return 0;
599         }
600 
601         return eeh_dev_check_failure(edev);
602 }
603 EXPORT_SYMBOL(eeh_check_failure);
604 
605 
606 /**
607  * eeh_pci_enable - Enable MMIO or DMA transfers for this slot
608  * @pe: EEH PE
609  * @function: EEH option
610  *
611  * This routine should be called to reenable frozen MMIO or DMA
612  * so that it would work correctly again. It's useful while doing
613  * recovery or log collection on the indicated device.
614  */
615 int eeh_pci_enable(struct eeh_pe *pe, int function)
616 {
617         int active_flag, rc;
618 
619         /*
620          * pHyp doesn't allow to enable IO or DMA on unfrozen PE.
621          * Also, it's pointless to enable them on unfrozen PE. So
622          * we have to check before enabling IO or DMA.
623          */
624         switch (function) {
625         case EEH_OPT_THAW_MMIO:
626                 active_flag = EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED;
627                 break;
628         case EEH_OPT_THAW_DMA:
629                 active_flag = EEH_STATE_DMA_ACTIVE;
630                 break;
631         case EEH_OPT_DISABLE:
632         case EEH_OPT_ENABLE:
633         case EEH_OPT_FREEZE_PE:
634                 active_flag = 0;
635                 break;
636         default:
637                 pr_warn("%s: Invalid function %d\n",
638                         __func__, function);
639                 return -EINVAL;
640         }
641 
642         /*
643          * Check if IO or DMA has been enabled before
644          * enabling them.
645          */
646         if (active_flag) {
647                 rc = eeh_ops->get_state(pe, NULL);
648                 if (rc < 0)
649                         return rc;
650 
651                 /* Needn't enable it at all */
652                 if (rc == EEH_STATE_NOT_SUPPORT)
653                         return 0;
654 
655                 /* It's already enabled */
656                 if (rc & active_flag)
657                         return 0;
658         }
659 
660 
661         /* Issue the request */
662         rc = eeh_ops->set_option(pe, function);
663         if (rc)
664                 pr_warn("%s: Unexpected state change %d on "
665                         "PHB#%x-PE#%x, err=%d\n",
666                         __func__, function, pe->phb->global_number,
667                         pe->addr, rc);
668 
669         /* Check if the request is finished successfully */
670         if (active_flag) {
671                 rc = eeh_wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
672                 if (rc < 0)
673                         return rc;
674 
675                 if (rc & active_flag)
676                         return 0;
677 
678                 return -EIO;
679         }
680 
681         return rc;
682 }
683 
684 static void eeh_disable_and_save_dev_state(struct eeh_dev *edev,
685                                             void *userdata)
686 {
687         struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
688         struct pci_dev *dev = userdata;
689 
690         /*
691          * The caller should have disabled and saved the
692          * state for the specified device
693          */
694         if (!pdev || pdev == dev)
695                 return;
696 
697         /* Ensure we have D0 power state */
698         pci_set_power_state(pdev, PCI_D0);
699 
700         /* Save device state */
701         pci_save_state(pdev);
702 
703         /*
704          * Disable device to avoid any DMA traffic and
705          * interrupt from the device
706          */
707         pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
708 }
709 
710 static void eeh_restore_dev_state(struct eeh_dev *edev, void *userdata)
711 {
712         struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
713         struct pci_dev *dev = userdata;
714 
715         if (!pdev)
716                 return;
717 
718         /* Apply customization from firmware */
719         if (eeh_ops->restore_config)
720                 eeh_ops->restore_config(edev);
721 
722         /* The caller should restore state for the specified device */
723         if (pdev != dev)
724                 pci_restore_state(pdev);
725 }
726 
727 /**
728  * pcibios_set_pcie_reset_state - Set PCI-E reset state
729  * @dev: pci device struct
730  * @state: reset state to enter
731  *
732  * Return value:
733  *      0 if success
734  */
735 int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
736 {
737         struct eeh_dev *edev = pci_dev_to_eeh_dev(dev);
738         struct eeh_pe *pe = eeh_dev_to_pe(edev);
739 
740         if (!pe) {
741                 pr_err("%s: No PE found on PCI device %s\n",
742                         __func__, pci_name(dev));
743                 return -EINVAL;
744         }
745 
746         switch (state) {
747         case pcie_deassert_reset:
748                 eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
749                 eeh_unfreeze_pe(pe);
750                 if (!(pe->type & EEH_PE_VF))
751                         eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
752                 eeh_pe_dev_traverse(pe, eeh_restore_dev_state, dev);
753                 eeh_pe_state_clear(pe, EEH_PE_ISOLATED, true);
754                 break;
755         case pcie_hot_reset:
756                 eeh_pe_mark_isolated(pe);
757                 eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
758                 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
759                 eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
760                 if (!(pe->type & EEH_PE_VF))
761                         eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
762                 eeh_ops->reset(pe, EEH_RESET_HOT);
763                 break;
764         case pcie_warm_reset:
765                 eeh_pe_mark_isolated(pe);
766                 eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
767                 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
768                 eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
769                 if (!(pe->type & EEH_PE_VF))
770                         eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
771                 eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
772                 break;
773         default:
774                 eeh_pe_state_clear(pe, EEH_PE_ISOLATED | EEH_PE_CFG_BLOCKED, true);
775                 return -EINVAL;
776         }
777 
778         return 0;
779 }
780 
781 /**
782  * eeh_set_dev_freset - Check the required reset for the indicated device
783  * @edev: EEH device
784  * @flag: return value
785  *
786  * Each device might have its preferred reset type: fundamental or
787  * hot reset. The routine is used to collected the information for
788  * the indicated device and its children so that the bunch of the
789  * devices could be reset properly.
790  */
791 static void eeh_set_dev_freset(struct eeh_dev *edev, void *flag)
792 {
793         struct pci_dev *dev;
794         unsigned int *freset = (unsigned int *)flag;
795 
796         dev = eeh_dev_to_pci_dev(edev);
797         if (dev)
798                 *freset |= dev->needs_freset;
799 }
800 
801 static void eeh_pe_refreeze_passed(struct eeh_pe *root)
802 {
803         struct eeh_pe *pe;
804         int state;
805 
806         eeh_for_each_pe(root, pe) {
807                 if (eeh_pe_passed(pe)) {
808                         state = eeh_ops->get_state(pe, NULL);
809                         if (state &
810                            (EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED)) {
811                                 pr_info("EEH: Passed-through PE PHB#%x-PE#%x was thawed by reset, re-freezing for safety.\n",
812                                         pe->phb->global_number, pe->addr);
813                                 eeh_pe_set_option(pe, EEH_OPT_FREEZE_PE);
814                         }
815                 }
816         }
817 }
818 
819 /**
820  * eeh_pe_reset_full - Complete a full reset process on the indicated PE
821  * @pe: EEH PE
822  * @include_passed: include passed-through devices?
823  *
824  * This function executes a full reset procedure on a PE, including setting
825  * the appropriate flags, performing a fundamental or hot reset, and then
826  * deactivating the reset status.  It is designed to be used within the EEH
827  * subsystem, as opposed to eeh_pe_reset which is exported to drivers and
828  * only performs a single operation at a time.
829  *
830  * This function will attempt to reset a PE three times before failing.
831  */
832 int eeh_pe_reset_full(struct eeh_pe *pe, bool include_passed)
833 {
834         int reset_state = (EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
835         int type = EEH_RESET_HOT;
836         unsigned int freset = 0;
837         int i, state = 0, ret;
838 
839         /*
840          * Determine the type of reset to perform - hot or fundamental.
841          * Hot reset is the default operation, unless any device under the
842          * PE requires a fundamental reset.
843          */
844         eeh_pe_dev_traverse(pe, eeh_set_dev_freset, &freset);
845 
846         if (freset)
847                 type = EEH_RESET_FUNDAMENTAL;
848 
849         /* Mark the PE as in reset state and block config space accesses */
850         eeh_pe_state_mark(pe, reset_state);
851 
852         /* Make three attempts at resetting the bus */
853         for (i = 0; i < 3; i++) {
854                 ret = eeh_pe_reset(pe, type, include_passed);
855                 if (!ret)
856                         ret = eeh_pe_reset(pe, EEH_RESET_DEACTIVATE,
857                                            include_passed);
858                 if (ret) {
859                         ret = -EIO;
860                         pr_warn("EEH: Failure %d resetting PHB#%x-PE#%x (attempt %d)\n\n",
861                                 state, pe->phb->global_number, pe->addr, i + 1);
862                         continue;
863                 }
864                 if (i)
865                         pr_warn("EEH: PHB#%x-PE#%x: Successful reset (attempt %d)\n",
866                                 pe->phb->global_number, pe->addr, i + 1);
867 
868                 /* Wait until the PE is in a functioning state */
869                 state = eeh_wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
870                 if (state < 0) {
871                         pr_warn("EEH: Unrecoverable slot failure on PHB#%x-PE#%x",
872                                 pe->phb->global_number, pe->addr);
873                         ret = -ENOTRECOVERABLE;
874                         break;
875                 }
876                 if (eeh_state_active(state))
877                         break;
878                 else
879                         pr_warn("EEH: PHB#%x-PE#%x: Slot inactive after reset: 0x%x (attempt %d)\n",
880                                 pe->phb->global_number, pe->addr, state, i + 1);
881         }
882 
883         /* Resetting the PE may have unfrozen child PEs. If those PEs have been
884          * (potentially) passed through to a guest, re-freeze them:
885          */
886         if (!include_passed)
887                 eeh_pe_refreeze_passed(pe);
888 
889         eeh_pe_state_clear(pe, reset_state, true);
890         return ret;
891 }
892 
893 /**
894  * eeh_save_bars - Save device bars
895  * @edev: PCI device associated EEH device
896  *
897  * Save the values of the device bars. Unlike the restore
898  * routine, this routine is *not* recursive. This is because
899  * PCI devices are added individually; but, for the restore,
900  * an entire slot is reset at a time.
901  */
902 void eeh_save_bars(struct eeh_dev *edev)
903 {
904         int i;
905 
906         if (!edev)
907                 return;
908 
909         for (i = 0; i < 16; i++)
910                 eeh_ops->read_config(edev, i * 4, 4, &edev->config_space[i]);
911 
912         /*
913          * For PCI bridges including root port, we need enable bus
914          * master explicitly. Otherwise, it can't fetch IODA table
915          * entries correctly. So we cache the bit in advance so that
916          * we can restore it after reset, either PHB range or PE range.
917          */
918         if (edev->mode & EEH_DEV_BRIDGE)
919                 edev->config_space[1] |= PCI_COMMAND_MASTER;
920 }
921 
922 static int eeh_reboot_notifier(struct notifier_block *nb,
923                                unsigned long action, void *unused)
924 {
925         eeh_clear_flag(EEH_ENABLED);
926         return NOTIFY_DONE;
927 }
928 
929 static struct notifier_block eeh_reboot_nb = {
930         .notifier_call = eeh_reboot_notifier,
931 };
932 
933 static int eeh_device_notifier(struct notifier_block *nb,
934                                unsigned long action, void *data)
935 {
936         struct device *dev = data;
937 
938         switch (action) {
939         /*
940          * Note: It's not possible to perform EEH device addition (i.e.
941          * {pseries,pnv}_pcibios_bus_add_device()) here because it depends on
942          * the device's resources, which have not yet been set up.
943          */
944         case BUS_NOTIFY_DEL_DEVICE:
945                 eeh_remove_device(to_pci_dev(dev));
946                 break;
947         default:
948                 break;
949         }
950         return NOTIFY_DONE;
951 }
952 
953 static struct notifier_block eeh_device_nb = {
954         .notifier_call = eeh_device_notifier,
955 };
956 
957 /**
958  * eeh_init - System wide EEH initialization
959  * @ops: struct to trace EEH operation callback functions
960  *
961  * It's the platform's job to call this from an arch_initcall().
962  */
963 int eeh_init(struct eeh_ops *ops)
964 {
965         struct pci_controller *hose, *tmp;
966         int ret = 0;
967 
968         /* the platform should only initialise EEH once */
969         if (WARN_ON(eeh_ops))
970                 return -EEXIST;
971         if (WARN_ON(!ops))
972                 return -ENOENT;
973         eeh_ops = ops;
974 
975         /* Register reboot notifier */
976         ret = register_reboot_notifier(&eeh_reboot_nb);
977         if (ret) {
978                 pr_warn("%s: Failed to register reboot notifier (%d)\n",
979                         __func__, ret);
980                 return ret;
981         }
982 
983         ret = bus_register_notifier(&pci_bus_type, &eeh_device_nb);
984         if (ret) {
985                 pr_warn("%s: Failed to register bus notifier (%d)\n",
986                         __func__, ret);
987                 return ret;
988         }
989 
990         /* Initialize PHB PEs */
991         list_for_each_entry_safe(hose, tmp, &hose_list, list_node)
992                 eeh_phb_pe_create(hose);
993 
994         eeh_addr_cache_init();
995 
996         /* Initialize EEH event */
997         return eeh_event_init();
998 }
999 
1000 /**
1001  * eeh_probe_device() - Perform EEH initialization for the indicated pci device
1002  * @dev: pci device for which to set up EEH
1003  *
1004  * This routine must be used to complete EEH initialization for PCI
1005  * devices that were added after system boot (e.g. hotplug, dlpar).
1006  */
1007 void eeh_probe_device(struct pci_dev *dev)
1008 {
1009         struct eeh_dev *edev;
1010 
1011         pr_debug("EEH: Adding device %s\n", pci_name(dev));
1012 
1013         /*
1014          * pci_dev_to_eeh_dev() can only work if eeh_probe_dev() was
1015          * already called for this device.
1016          */
1017         if (WARN_ON_ONCE(pci_dev_to_eeh_dev(dev))) {
1018                 pci_dbg(dev, "Already bound to an eeh_dev!\n");
1019                 return;
1020         }
1021 
1022         edev = eeh_ops->probe(dev);
1023         if (!edev) {
1024                 pr_debug("EEH: Adding device failed\n");
1025                 return;
1026         }
1027 
1028         /*
1029          * FIXME: We rely on pcibios_release_device() to remove the
1030          * existing EEH state. The release function is only called if
1031          * the pci_dev's refcount drops to zero so if something is
1032          * keeping a ref to a device (e.g. a filesystem) we need to
1033          * remove the old EEH state.
1034          *
1035          * FIXME: HEY MA, LOOK AT ME, NO LOCKING!
1036          */
1037         if (edev->pdev && edev->pdev != dev) {
1038                 eeh_pe_tree_remove(edev);
1039                 eeh_addr_cache_rmv_dev(edev->pdev);
1040                 eeh_sysfs_remove_device(edev->pdev);
1041 
1042                 /*
1043                  * We definitely should have the PCI device removed
1044                  * though it wasn't correctly. So we needn't call
1045                  * into error handler afterwards.
1046                  */
1047                 edev->mode |= EEH_DEV_NO_HANDLER;
1048         }
1049 
1050         /* bind the pdev and the edev together */
1051         edev->pdev = dev;
1052         dev->dev.archdata.edev = edev;
1053         eeh_addr_cache_insert_dev(dev);
1054         eeh_sysfs_add_device(dev);
1055 }
1056 
1057 /**
1058  * eeh_remove_device - Undo EEH setup for the indicated pci device
1059  * @dev: pci device to be removed
1060  *
1061  * This routine should be called when a device is removed from
1062  * a running system (e.g. by hotplug or dlpar).  It unregisters
1063  * the PCI device from the EEH subsystem.  I/O errors affecting
1064  * this device will no longer be detected after this call; thus,
1065  * i/o errors affecting this slot may leave this device unusable.
1066  */
1067 void eeh_remove_device(struct pci_dev *dev)
1068 {
1069         struct eeh_dev *edev;
1070 
1071         if (!dev || !eeh_enabled())
1072                 return;
1073         edev = pci_dev_to_eeh_dev(dev);
1074 
1075         /* Unregister the device with the EEH/PCI address search system */
1076         dev_dbg(&dev->dev, "EEH: Removing device\n");
1077 
1078         if (!edev || !edev->pdev || !edev->pe) {
1079                 dev_dbg(&dev->dev, "EEH: Device not referenced!\n");
1080                 return;
1081         }
1082 
1083         /*
1084          * During the hotplug for EEH error recovery, we need the EEH
1085          * device attached to the parent PE in order for BAR restore
1086          * a bit later. So we keep it for BAR restore and remove it
1087          * from the parent PE during the BAR resotre.
1088          */
1089         edev->pdev = NULL;
1090 
1091         /*
1092          * eeh_sysfs_remove_device() uses pci_dev_to_eeh_dev() so we need to
1093          * remove the sysfs files before clearing dev.archdata.edev
1094          */
1095         if (edev->mode & EEH_DEV_SYSFS)
1096                 eeh_sysfs_remove_device(dev);
1097 
1098         /*
1099          * We're removing from the PCI subsystem, that means
1100          * the PCI device driver can't support EEH or not
1101          * well. So we rely on hotplug completely to do recovery
1102          * for the specific PCI device.
1103          */
1104         edev->mode |= EEH_DEV_NO_HANDLER;
1105 
1106         eeh_addr_cache_rmv_dev(dev);
1107 
1108         /*
1109          * The flag "in_error" is used to trace EEH devices for VFs
1110          * in error state or not. It's set in eeh_report_error(). If
1111          * it's not set, eeh_report_{reset,resume}() won't be called
1112          * for the VF EEH device.
1113          */
1114         edev->in_error = false;
1115         dev->dev.archdata.edev = NULL;
1116         if (!(edev->pe->state & EEH_PE_KEEP))
1117                 eeh_pe_tree_remove(edev);
1118         else
1119                 edev->mode |= EEH_DEV_DISCONNECTED;
1120 }
1121 
1122 int eeh_unfreeze_pe(struct eeh_pe *pe)
1123 {
1124         int ret;
1125 
1126         ret = eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
1127         if (ret) {
1128                 pr_warn("%s: Failure %d enabling IO on PHB#%x-PE#%x\n",
1129                         __func__, ret, pe->phb->global_number, pe->addr);
1130                 return ret;
1131         }
1132 
1133         ret = eeh_pci_enable(pe, EEH_OPT_THAW_DMA);
1134         if (ret) {
1135                 pr_warn("%s: Failure %d enabling DMA on PHB#%x-PE#%x\n",
1136                         __func__, ret, pe->phb->global_number, pe->addr);
1137                 return ret;
1138         }
1139 
1140         return ret;
1141 }
1142 
1143 
1144 static struct pci_device_id eeh_reset_ids[] = {
1145         { PCI_DEVICE(0x19a2, 0x0710) }, /* Emulex, BE     */
1146         { PCI_DEVICE(0x10df, 0xe220) }, /* Emulex, Lancer */
1147         { PCI_DEVICE(0x14e4, 0x1657) }, /* Broadcom BCM5719 */
1148         { 0 }
1149 };
1150 
1151 static int eeh_pe_change_owner(struct eeh_pe *pe)
1152 {
1153         struct eeh_dev *edev, *tmp;
1154         struct pci_dev *pdev;
1155         struct pci_device_id *id;
1156         int ret;
1157 
1158         /* Check PE state */
1159         ret = eeh_ops->get_state(pe, NULL);
1160         if (ret < 0 || ret == EEH_STATE_NOT_SUPPORT)
1161                 return 0;
1162 
1163         /* Unfrozen PE, nothing to do */
1164         if (eeh_state_active(ret))
1165                 return 0;
1166 
1167         /* Frozen PE, check if it needs PE level reset */
1168         eeh_pe_for_each_dev(pe, edev, tmp) {
1169                 pdev = eeh_dev_to_pci_dev(edev);
1170                 if (!pdev)
1171                         continue;
1172 
1173                 for (id = &eeh_reset_ids[0]; id->vendor != 0; id++) {
1174                         if (id->vendor != PCI_ANY_ID &&
1175                             id->vendor != pdev->vendor)
1176                                 continue;
1177                         if (id->device != PCI_ANY_ID &&
1178                             id->device != pdev->device)
1179                                 continue;
1180                         if (id->subvendor != PCI_ANY_ID &&
1181                             id->subvendor != pdev->subsystem_vendor)
1182                                 continue;
1183                         if (id->subdevice != PCI_ANY_ID &&
1184                             id->subdevice != pdev->subsystem_device)
1185                                 continue;
1186 
1187                         return eeh_pe_reset_and_recover(pe);
1188                 }
1189         }
1190 
1191         ret = eeh_unfreeze_pe(pe);
1192         if (!ret)
1193                 eeh_pe_state_clear(pe, EEH_PE_ISOLATED, true);
1194         return ret;
1195 }
1196 
1197 /**
1198  * eeh_dev_open - Increase count of pass through devices for PE
1199  * @pdev: PCI device
1200  *
1201  * Increase count of passed through devices for the indicated
1202  * PE. In the result, the EEH errors detected on the PE won't be
1203  * reported. The PE owner will be responsible for detection
1204  * and recovery.
1205  */
1206 int eeh_dev_open(struct pci_dev *pdev)
1207 {
1208         struct eeh_dev *edev;
1209         int ret = -ENODEV;
1210 
1211         mutex_lock(&eeh_dev_mutex);
1212 
1213         /* No PCI device ? */
1214         if (!pdev)
1215                 goto out;
1216 
1217         /* No EEH device or PE ? */
1218         edev = pci_dev_to_eeh_dev(pdev);
1219         if (!edev || !edev->pe)
1220                 goto out;
1221 
1222         /*
1223          * The PE might have been put into frozen state, but we
1224          * didn't detect that yet. The passed through PCI devices
1225          * in frozen PE won't work properly. Clear the frozen state
1226          * in advance.
1227          */
1228         ret = eeh_pe_change_owner(edev->pe);
1229         if (ret)
1230                 goto out;
1231 
1232         /* Increase PE's pass through count */
1233         atomic_inc(&edev->pe->pass_dev_cnt);
1234         mutex_unlock(&eeh_dev_mutex);
1235 
1236         return 0;
1237 out:
1238         mutex_unlock(&eeh_dev_mutex);
1239         return ret;
1240 }
1241 EXPORT_SYMBOL_GPL(eeh_dev_open);
1242 
1243 /**
1244  * eeh_dev_release - Decrease count of pass through devices for PE
1245  * @pdev: PCI device
1246  *
1247  * Decrease count of pass through devices for the indicated PE. If
1248  * there is no passed through device in PE, the EEH errors detected
1249  * on the PE will be reported and handled as usual.
1250  */
1251 void eeh_dev_release(struct pci_dev *pdev)
1252 {
1253         struct eeh_dev *edev;
1254 
1255         mutex_lock(&eeh_dev_mutex);
1256 
1257         /* No PCI device ? */
1258         if (!pdev)
1259                 goto out;
1260 
1261         /* No EEH device ? */
1262         edev = pci_dev_to_eeh_dev(pdev);
1263         if (!edev || !edev->pe || !eeh_pe_passed(edev->pe))
1264                 goto out;
1265 
1266         /* Decrease PE's pass through count */
1267         WARN_ON(atomic_dec_if_positive(&edev->pe->pass_dev_cnt) < 0);
1268         eeh_pe_change_owner(edev->pe);
1269 out:
1270         mutex_unlock(&eeh_dev_mutex);
1271 }
1272 EXPORT_SYMBOL(eeh_dev_release);
1273 
1274 #ifdef CONFIG_IOMMU_API
1275 
1276 /**
1277  * eeh_iommu_group_to_pe - Convert IOMMU group to EEH PE
1278  * @group: IOMMU group
1279  *
1280  * The routine is called to convert IOMMU group to EEH PE.
1281  */
1282 struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group)
1283 {
1284         struct pci_dev *pdev = NULL;
1285         struct eeh_dev *edev;
1286         int ret;
1287 
1288         /* No IOMMU group ? */
1289         if (!group)
1290                 return NULL;
1291 
1292         ret = iommu_group_for_each_dev(group, &pdev, dev_has_iommu_table);
1293         if (!ret || !pdev)
1294                 return NULL;
1295 
1296         /* No EEH device or PE ? */
1297         edev = pci_dev_to_eeh_dev(pdev);
1298         if (!edev || !edev->pe)
1299                 return NULL;
1300 
1301         return edev->pe;
1302 }
1303 EXPORT_SYMBOL_GPL(eeh_iommu_group_to_pe);
1304 
1305 #endif /* CONFIG_IOMMU_API */
1306 
1307 /**
1308  * eeh_pe_set_option - Set options for the indicated PE
1309  * @pe: EEH PE
1310  * @option: requested option
1311  *
1312  * The routine is called to enable or disable EEH functionality
1313  * on the indicated PE, to enable IO or DMA for the frozen PE.
1314  */
1315 int eeh_pe_set_option(struct eeh_pe *pe, int option)
1316 {
1317         int ret = 0;
1318 
1319         /* Invalid PE ? */
1320         if (!pe)
1321                 return -ENODEV;
1322 
1323         /*
1324          * EEH functionality could possibly be disabled, just
1325          * return error for the case. And the EEH functionality
1326          * isn't expected to be disabled on one specific PE.
1327          */
1328         switch (option) {
1329         case EEH_OPT_ENABLE:
1330                 if (eeh_enabled()) {
1331                         ret = eeh_pe_change_owner(pe);
1332                         break;
1333                 }
1334                 ret = -EIO;
1335                 break;
1336         case EEH_OPT_DISABLE:
1337                 break;
1338         case EEH_OPT_THAW_MMIO:
1339         case EEH_OPT_THAW_DMA:
1340         case EEH_OPT_FREEZE_PE:
1341                 if (!eeh_ops || !eeh_ops->set_option) {
1342                         ret = -ENOENT;
1343                         break;
1344                 }
1345 
1346                 ret = eeh_pci_enable(pe, option);
1347                 break;
1348         default:
1349                 pr_debug("%s: Option %d out of range (%d, %d)\n",
1350                         __func__, option, EEH_OPT_DISABLE, EEH_OPT_THAW_DMA);
1351                 ret = -EINVAL;
1352         }
1353 
1354         return ret;
1355 }
1356 EXPORT_SYMBOL_GPL(eeh_pe_set_option);
1357 
1358 /**
1359  * eeh_pe_get_state - Retrieve PE's state
1360  * @pe: EEH PE
1361  *
1362  * Retrieve the PE's state, which includes 3 aspects: enabled
1363  * DMA, enabled IO and asserted reset.
1364  */
1365 int eeh_pe_get_state(struct eeh_pe *pe)
1366 {
1367         int result, ret = 0;
1368         bool rst_active, dma_en, mmio_en;
1369 
1370         /* Existing PE ? */
1371         if (!pe)
1372                 return -ENODEV;
1373 
1374         if (!eeh_ops || !eeh_ops->get_state)
1375                 return -ENOENT;
1376 
1377         /*
1378          * If the parent PE is owned by the host kernel and is undergoing
1379          * error recovery, we should return the PE state as temporarily
1380          * unavailable so that the error recovery on the guest is suspended
1381          * until the recovery completes on the host.
1382          */
1383         if (pe->parent &&
1384             !(pe->state & EEH_PE_REMOVED) &&
1385             (pe->parent->state & (EEH_PE_ISOLATED | EEH_PE_RECOVERING)))
1386                 return EEH_PE_STATE_UNAVAIL;
1387 
1388         result = eeh_ops->get_state(pe, NULL);
1389         rst_active = !!(result & EEH_STATE_RESET_ACTIVE);
1390         dma_en = !!(result & EEH_STATE_DMA_ENABLED);
1391         mmio_en = !!(result & EEH_STATE_MMIO_ENABLED);
1392 
1393         if (rst_active)
1394                 ret = EEH_PE_STATE_RESET;
1395         else if (dma_en && mmio_en)
1396                 ret = EEH_PE_STATE_NORMAL;
1397         else if (!dma_en && !mmio_en)
1398                 ret = EEH_PE_STATE_STOPPED_IO_DMA;
1399         else if (!dma_en && mmio_en)
1400                 ret = EEH_PE_STATE_STOPPED_DMA;
1401         else
1402                 ret = EEH_PE_STATE_UNAVAIL;
1403 
1404         return ret;
1405 }
1406 EXPORT_SYMBOL_GPL(eeh_pe_get_state);
1407 
1408 static int eeh_pe_reenable_devices(struct eeh_pe *pe, bool include_passed)
1409 {
1410         struct eeh_dev *edev, *tmp;
1411         struct pci_dev *pdev;
1412         int ret = 0;
1413 
1414         eeh_pe_restore_bars(pe);
1415 
1416         /*
1417          * Reenable PCI devices as the devices passed
1418          * through are always enabled before the reset.
1419          */
1420         eeh_pe_for_each_dev(pe, edev, tmp) {
1421                 pdev = eeh_dev_to_pci_dev(edev);
1422                 if (!pdev)
1423                         continue;
1424 
1425                 ret = pci_reenable_device(pdev);
1426                 if (ret) {
1427                         pr_warn("%s: Failure %d reenabling %s\n",
1428                                 __func__, ret, pci_name(pdev));
1429                         return ret;
1430                 }
1431         }
1432 
1433         /* The PE is still in frozen state */
1434         if (include_passed || !eeh_pe_passed(pe)) {
1435                 ret = eeh_unfreeze_pe(pe);
1436         } else
1437                 pr_info("EEH: Note: Leaving passthrough PHB#%x-PE#%x frozen.\n",
1438                         pe->phb->global_number, pe->addr);
1439         if (!ret)
1440                 eeh_pe_state_clear(pe, EEH_PE_ISOLATED, include_passed);
1441         return ret;
1442 }
1443 
1444 
1445 /**
1446  * eeh_pe_reset - Issue PE reset according to specified type
1447  * @pe: EEH PE
1448  * @option: reset type
1449  * @include_passed: include passed-through devices?
1450  *
1451  * The routine is called to reset the specified PE with the
1452  * indicated type, either fundamental reset or hot reset.
1453  * PE reset is the most important part for error recovery.
1454  */
1455 int eeh_pe_reset(struct eeh_pe *pe, int option, bool include_passed)
1456 {
1457         int ret = 0;
1458 
1459         /* Invalid PE ? */
1460         if (!pe)
1461                 return -ENODEV;
1462 
1463         if (!eeh_ops || !eeh_ops->set_option || !eeh_ops->reset)
1464                 return -ENOENT;
1465 
1466         switch (option) {
1467         case EEH_RESET_DEACTIVATE:
1468                 ret = eeh_ops->reset(pe, option);
1469                 eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, include_passed);
1470                 if (ret)
1471                         break;
1472 
1473                 ret = eeh_pe_reenable_devices(pe, include_passed);
1474                 break;
1475         case EEH_RESET_HOT:
1476         case EEH_RESET_FUNDAMENTAL:
1477                 /*
1478                  * Proactively freeze the PE to drop all MMIO access
1479                  * during reset, which should be banned as it's always
1480                  * cause recursive EEH error.
1481                  */
1482                 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
1483 
1484                 eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
1485                 ret = eeh_ops->reset(pe, option);
1486                 break;
1487         default:
1488                 pr_debug("%s: Unsupported option %d\n",
1489                         __func__, option);
1490                 ret = -EINVAL;
1491         }
1492 
1493         return ret;
1494 }
1495 EXPORT_SYMBOL_GPL(eeh_pe_reset);
1496 
1497 /**
1498  * eeh_pe_configure - Configure PCI bridges after PE reset
1499  * @pe: EEH PE
1500  *
1501  * The routine is called to restore the PCI config space for
1502  * those PCI devices, especially PCI bridges affected by PE
1503  * reset issued previously.
1504  */
1505 int eeh_pe_configure(struct eeh_pe *pe)
1506 {
1507         int ret = 0;
1508 
1509         /* Invalid PE ? */
1510         if (!pe)
1511                 return -ENODEV;
1512 
1513         return ret;
1514 }
1515 EXPORT_SYMBOL_GPL(eeh_pe_configure);
1516 
1517 /**
1518  * eeh_pe_inject_err - Injecting the specified PCI error to the indicated PE
1519  * @pe: the indicated PE
1520  * @type: error type
1521  * @func: error function
1522  * @addr: address
1523  * @mask: address mask
1524  *
1525  * The routine is called to inject the specified PCI error, which
1526  * is determined by @type and @func, to the indicated PE for
1527  * testing purpose.
1528  */
1529 int eeh_pe_inject_err(struct eeh_pe *pe, int type, int func,
1530                       unsigned long addr, unsigned long mask)
1531 {
1532         /* Invalid PE ? */
1533         if (!pe)
1534                 return -ENODEV;
1535 
1536         /* Unsupported operation ? */
1537         if (!eeh_ops || !eeh_ops->err_inject)
1538                 return -ENOENT;
1539 
1540         /* Check on PCI error type */
1541         if (type != EEH_ERR_TYPE_32 && type != EEH_ERR_TYPE_64)
1542                 return -EINVAL;
1543 
1544         /* Check on PCI error function */
1545         if (func < EEH_ERR_FUNC_MIN || func > EEH_ERR_FUNC_MAX)
1546                 return -EINVAL;
1547 
1548         return eeh_ops->err_inject(pe, type, func, addr, mask);
1549 }
1550 EXPORT_SYMBOL_GPL(eeh_pe_inject_err);
1551 
1552 #ifdef CONFIG_PROC_FS
1553 static int proc_eeh_show(struct seq_file *m, void *v)
1554 {
1555         if (!eeh_enabled()) {
1556                 seq_printf(m, "EEH Subsystem is globally disabled\n");
1557                 seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs);
1558         } else {
1559                 seq_printf(m, "EEH Subsystem is enabled\n");
1560                 seq_printf(m,
1561                                 "no device=%llu\n"
1562                                 "no device node=%llu\n"
1563                                 "no config address=%llu\n"
1564                                 "check not wanted=%llu\n"
1565                                 "eeh_total_mmio_ffs=%llu\n"
1566                                 "eeh_false_positives=%llu\n"
1567                                 "eeh_slot_resets=%llu\n",
1568                                 eeh_stats.no_device,
1569                                 eeh_stats.no_dn,
1570                                 eeh_stats.no_cfg_addr,
1571                                 eeh_stats.ignored_check,
1572                                 eeh_stats.total_mmio_ffs,
1573                                 eeh_stats.false_positives,
1574                                 eeh_stats.slot_resets);
1575         }
1576 
1577         return 0;
1578 }
1579 #endif /* CONFIG_PROC_FS */
1580 
1581 #ifdef CONFIG_DEBUG_FS
1582 
1583 
1584 static struct pci_dev *eeh_debug_lookup_pdev(struct file *filp,
1585                                              const char __user *user_buf,
1586                                              size_t count, loff_t *ppos)
1587 {
1588         uint32_t domain, bus, dev, fn;
1589         struct pci_dev *pdev;
1590         char buf[20];
1591         int ret;
1592 
1593         memset(buf, 0, sizeof(buf));
1594         ret = simple_write_to_buffer(buf, sizeof(buf)-1, ppos, user_buf, count);
1595         if (!ret)
1596                 return ERR_PTR(-EFAULT);
1597 
1598         ret = sscanf(buf, "%x:%x:%x.%x", &domain, &bus, &dev, &fn);
1599         if (ret != 4) {
1600                 pr_err("%s: expected 4 args, got %d\n", __func__, ret);
1601                 return ERR_PTR(-EINVAL);
1602         }
1603 
1604         pdev = pci_get_domain_bus_and_slot(domain, bus, (dev << 3) | fn);
1605         if (!pdev)
1606                 return ERR_PTR(-ENODEV);
1607 
1608         return pdev;
1609 }
1610 
1611 static int eeh_enable_dbgfs_set(void *data, u64 val)
1612 {
1613         if (val)
1614                 eeh_clear_flag(EEH_FORCE_DISABLED);
1615         else
1616                 eeh_add_flag(EEH_FORCE_DISABLED);
1617 
1618         return 0;
1619 }
1620 
1621 static int eeh_enable_dbgfs_get(void *data, u64 *val)
1622 {
1623         if (eeh_enabled())
1624                 *val = 0x1ul;
1625         else
1626                 *val = 0x0ul;
1627         return 0;
1628 }
1629 
1630 DEFINE_DEBUGFS_ATTRIBUTE(eeh_enable_dbgfs_ops, eeh_enable_dbgfs_get,
1631                          eeh_enable_dbgfs_set, "0x%llx\n");
1632 
1633 static ssize_t eeh_force_recover_write(struct file *filp,
1634                                 const char __user *user_buf,
1635                                 size_t count, loff_t *ppos)
1636 {
1637         struct pci_controller *hose;
1638         uint32_t phbid, pe_no;
1639         struct eeh_pe *pe;
1640         char buf[20];
1641         int ret;
1642 
1643         ret = simple_write_to_buffer(buf, sizeof(buf), ppos, user_buf, count);
1644         if (!ret)
1645                 return -EFAULT;
1646 
1647         /*
1648          * When PE is NULL the event is a "special" event. Rather than
1649          * recovering a specific PE it forces the EEH core to scan for failed
1650          * PHBs and recovers each. This needs to be done before any device
1651          * recoveries can occur.
1652          */
1653         if (!strncmp(buf, "hwcheck", 7)) {
1654                 __eeh_send_failure_event(NULL);
1655                 return count;
1656         }
1657 
1658         ret = sscanf(buf, "%x:%x", &phbid, &pe_no);
1659         if (ret != 2)
1660                 return -EINVAL;
1661 
1662         hose = pci_find_controller_for_domain(phbid);
1663         if (!hose)
1664                 return -ENODEV;
1665 
1666         /* Retrieve PE */
1667         pe = eeh_pe_get(hose, pe_no);
1668         if (!pe)
1669                 return -ENODEV;
1670 
1671         /*
1672          * We don't do any state checking here since the detection
1673          * process is async to the recovery process. The recovery
1674          * thread *should* not break even if we schedule a recovery
1675          * from an odd state (e.g. PE removed, or recovery of a
1676          * non-isolated PE)
1677          */
1678         __eeh_send_failure_event(pe);
1679 
1680         return ret < 0 ? ret : count;
1681 }
1682 
1683 static const struct file_operations eeh_force_recover_fops = {
1684         .open   = simple_open,
1685         .llseek = no_llseek,
1686         .write  = eeh_force_recover_write,
1687 };
1688 
1689 static ssize_t eeh_debugfs_dev_usage(struct file *filp,
1690                                 char __user *user_buf,
1691                                 size_t count, loff_t *ppos)
1692 {
1693         static const char usage[] = "input format: <domain>:<bus>:<dev>.<fn>\n";
1694 
1695         return simple_read_from_buffer(user_buf, count, ppos,
1696                                        usage, sizeof(usage) - 1);
1697 }
1698 
1699 static ssize_t eeh_dev_check_write(struct file *filp,
1700                                 const char __user *user_buf,
1701                                 size_t count, loff_t *ppos)
1702 {
1703         struct pci_dev *pdev;
1704         struct eeh_dev *edev;
1705         int ret;
1706 
1707         pdev = eeh_debug_lookup_pdev(filp, user_buf, count, ppos);
1708         if (IS_ERR(pdev))
1709                 return PTR_ERR(pdev);
1710 
1711         edev = pci_dev_to_eeh_dev(pdev);
1712         if (!edev) {
1713                 pci_err(pdev, "No eeh_dev for this device!\n");
1714                 pci_dev_put(pdev);
1715                 return -ENODEV;
1716         }
1717 
1718         ret = eeh_dev_check_failure(edev);
1719         pci_info(pdev, "eeh_dev_check_failure(%s) = %d\n",
1720                         pci_name(pdev), ret);
1721 
1722         pci_dev_put(pdev);
1723 
1724         return count;
1725 }
1726 
1727 static const struct file_operations eeh_dev_check_fops = {
1728         .open   = simple_open,
1729         .llseek = no_llseek,
1730         .write  = eeh_dev_check_write,
1731         .read   = eeh_debugfs_dev_usage,
1732 };
1733 
1734 static int eeh_debugfs_break_device(struct pci_dev *pdev)
1735 {
1736         struct resource *bar = NULL;
1737         void __iomem *mapped;
1738         u16 old, bit;
1739         int i, pos;
1740 
1741         /* Do we have an MMIO BAR to disable? */
1742         for (i = 0; i <= PCI_STD_RESOURCE_END; i++) {
1743                 struct resource *r = &pdev->resource[i];
1744 
1745                 if (!r->flags || !r->start)
1746                         continue;
1747                 if (r->flags & IORESOURCE_IO)
1748                         continue;
1749                 if (r->flags & IORESOURCE_UNSET)
1750                         continue;
1751 
1752                 bar = r;
1753                 break;
1754         }
1755 
1756         if (!bar) {
1757                 pci_err(pdev, "Unable to find Memory BAR to cause EEH with\n");
1758                 return -ENXIO;
1759         }
1760 
1761         pci_err(pdev, "Going to break: %pR\n", bar);
1762 
1763         if (pdev->is_virtfn) {
1764 #ifndef CONFIG_PCI_IOV
1765                 return -ENXIO;
1766 #else
1767                 /*
1768                  * VFs don't have a per-function COMMAND register, so the best
1769                  * we can do is clear the Memory Space Enable bit in the PF's
1770                  * SRIOV control reg.
1771                  *
1772                  * Unfortunately, this requires that we have a PF (i.e doesn't
1773                  * work for a passed-through VF) and it has the potential side
1774                  * effect of also causing an EEH on every other VF under the
1775                  * PF. Oh well.
1776                  */
1777                 pdev = pdev->physfn;
1778                 if (!pdev)
1779                         return -ENXIO; /* passed through VFs have no PF */
1780 
1781                 pos  = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
1782                 pos += PCI_SRIOV_CTRL;
1783                 bit  = PCI_SRIOV_CTRL_MSE;
1784 #endif /* !CONFIG_PCI_IOV */
1785         } else {
1786                 bit = PCI_COMMAND_MEMORY;
1787                 pos = PCI_COMMAND;
1788         }
1789 
1790         /*
1791          * Process here is:
1792          *
1793          * 1. Disable Memory space.
1794          *
1795          * 2. Perform an MMIO to the device. This should result in an error
1796          *    (CA  / UR) being raised by the device which results in an EEH
1797          *    PE freeze. Using the in_8() accessor skips the eeh detection hook
1798          *    so the freeze hook so the EEH Detection machinery won't be
1799          *    triggered here. This is to match the usual behaviour of EEH
1800          *    where the HW will asynchronously freeze a PE and it's up to
1801          *    the kernel to notice and deal with it.
1802          *
1803          * 3. Turn Memory space back on. This is more important for VFs
1804          *    since recovery will probably fail if we don't. For normal
1805          *    the COMMAND register is reset as a part of re-initialising
1806          *    the device.
1807          *
1808          * Breaking stuff is the point so who cares if it's racy ;)
1809          */
1810         pci_read_config_word(pdev, pos, &old);
1811 
1812         mapped = ioremap(bar->start, PAGE_SIZE);
1813         if (!mapped) {
1814                 pci_err(pdev, "Unable to map MMIO BAR %pR\n", bar);
1815                 return -ENXIO;
1816         }
1817 
1818         pci_write_config_word(pdev, pos, old & ~bit);
1819         in_8(mapped);
1820         pci_write_config_word(pdev, pos, old);
1821 
1822         iounmap(mapped);
1823 
1824         return 0;
1825 }
1826 
1827 static ssize_t eeh_dev_break_write(struct file *filp,
1828                                 const char __user *user_buf,
1829                                 size_t count, loff_t *ppos)
1830 {
1831         struct pci_dev *pdev;
1832         int ret;
1833 
1834         pdev = eeh_debug_lookup_pdev(filp, user_buf, count, ppos);
1835         if (IS_ERR(pdev))
1836                 return PTR_ERR(pdev);
1837 
1838         ret = eeh_debugfs_break_device(pdev);
1839         pci_dev_put(pdev);
1840 
1841         if (ret < 0)
1842                 return ret;
1843 
1844         return count;
1845 }
1846 
1847 static const struct file_operations eeh_dev_break_fops = {
1848         .open   = simple_open,
1849         .llseek = no_llseek,
1850         .write  = eeh_dev_break_write,
1851         .read   = eeh_debugfs_dev_usage,
1852 };
1853 
1854 static ssize_t eeh_dev_can_recover(struct file *filp,
1855                                    const char __user *user_buf,
1856                                    size_t count, loff_t *ppos)
1857 {
1858         struct pci_driver *drv;
1859         struct pci_dev *pdev;
1860         size_t ret;
1861 
1862         pdev = eeh_debug_lookup_pdev(filp, user_buf, count, ppos);
1863         if (IS_ERR(pdev))
1864                 return PTR_ERR(pdev);
1865 
1866         /*
1867          * In order for error recovery to work the driver needs to implement
1868          * .error_detected(), so it can quiesce IO to the device, and
1869          * .slot_reset() so it can re-initialise the device after a reset.
1870          *
1871          * Ideally they'd implement .resume() too, but some drivers which
1872          * we need to support (notably IPR) don't so I guess we can tolerate
1873          * that.
1874          *
1875          * .mmio_enabled() is mostly there as a work-around for devices which
1876          * take forever to re-init after a hot reset. Implementing that is
1877          * strictly optional.
1878          */
1879         drv = pci_dev_driver(pdev);
1880         if (drv &&
1881             drv->err_handler &&
1882             drv->err_handler->error_detected &&
1883             drv->err_handler->slot_reset) {
1884                 ret = count;
1885         } else {
1886                 ret = -EOPNOTSUPP;
1887         }
1888 
1889         pci_dev_put(pdev);
1890 
1891         return ret;
1892 }
1893 
1894 static const struct file_operations eeh_dev_can_recover_fops = {
1895         .open   = simple_open,
1896         .llseek = no_llseek,
1897         .write  = eeh_dev_can_recover,
1898         .read   = eeh_debugfs_dev_usage,
1899 };
1900 
1901 #endif
1902 
1903 static int __init eeh_init_proc(void)
1904 {
1905         if (machine_is(pseries) || machine_is(powernv)) {
1906                 proc_create_single("powerpc/eeh", 0, NULL, proc_eeh_show);
1907 #ifdef CONFIG_DEBUG_FS
1908                 debugfs_create_file_unsafe("eeh_enable", 0600,
1909                                            arch_debugfs_dir, NULL,
1910                                            &eeh_enable_dbgfs_ops);
1911                 debugfs_create_u32("eeh_max_freezes", 0600,
1912                                 arch_debugfs_dir, &eeh_max_freezes);
1913                 debugfs_create_bool("eeh_disable_recovery", 0600,
1914                                 arch_debugfs_dir,
1915                                 &eeh_debugfs_no_recover);
1916                 debugfs_create_file_unsafe("eeh_dev_check", 0600,
1917                                 arch_debugfs_dir, NULL,
1918                                 &eeh_dev_check_fops);
1919                 debugfs_create_file_unsafe("eeh_dev_break", 0600,
1920                                 arch_debugfs_dir, NULL,
1921                                 &eeh_dev_break_fops);
1922                 debugfs_create_file_unsafe("eeh_force_recover", 0600,
1923                                 arch_debugfs_dir, NULL,
1924                                 &eeh_force_recover_fops);
1925                 debugfs_create_file_unsafe("eeh_dev_can_recover", 0600,
1926                                 arch_debugfs_dir, NULL,
1927                                 &eeh_dev_can_recover_fops);
1928                 eeh_cache_debugfs_init();
1929 #endif
1930         }
1931 
1932         return 0;
1933 }
1934 __initcall(eeh_init_proc);
1935 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php