1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * PCI address cache; allows the lookup of PCI devices based on I/O address 4 * 5 * Copyright IBM Corporation 2004 6 * Copyright Linas Vepstas <linas@austin.ibm.com> 2004 7 */ 8 9 #include <linux/list.h> 10 #include <linux/pci.h> 11 #include <linux/rbtree.h> 12 #include <linux/slab.h> 13 #include <linux/spinlock.h> 14 #include <linux/atomic.h> 15 #include <linux/debugfs.h> 16 #include <asm/pci-bridge.h> 17 #include <asm/ppc-pci.h> 18 19 20 /** 21 * DOC: Overview 22 * 23 * The pci address cache subsystem. This subsystem places 24 * PCI device address resources into a red-black tree, sorted 25 * according to the address range, so that given only an i/o 26 * address, the corresponding PCI device can be **quickly** 27 * found. It is safe to perform an address lookup in an interrupt 28 * context; this ability is an important feature. 29 * 30 * Currently, the only customer of this code is the EEH subsystem; 31 * thus, this code has been somewhat tailored to suit EEH better. 32 * In particular, the cache does *not* hold the addresses of devices 33 * for which EEH is not enabled. 34 * 35 * (Implementation Note: The RB tree seems to be better/faster 36 * than any hash algo I could think of for this problem, even 37 * with the penalty of slow pointer chases for d-cache misses). 38 */ 39 40 struct pci_io_addr_range { 41 struct rb_node rb_node; 42 resource_size_t addr_lo; 43 resource_size_t addr_hi; 44 struct eeh_dev *edev; 45 struct pci_dev *pcidev; 46 unsigned long flags; 47 }; 48 49 static struct pci_io_addr_cache { 50 struct rb_root rb_root; 51 spinlock_t piar_lock; 52 } pci_io_addr_cache_root; 53 54 static inline struct eeh_dev *__eeh_addr_cache_get_device(unsigned long addr) 55 { 56 struct rb_node *n = pci_io_addr_cache_root.rb_root.rb_node; 57 58 while (n) { 59 struct pci_io_addr_range *piar; 60 piar = rb_entry(n, struct pci_io_addr_range, rb_node); 61 62 if (addr < piar->addr_lo) 63 n = n->rb_left; 64 else if (addr > piar->addr_hi) 65 n = n->rb_right; 66 else 67 return piar->edev; 68 } 69 70 return NULL; 71 } 72 73 /** 74 * eeh_addr_cache_get_dev - Get device, given only address 75 * @addr: mmio (PIO) phys address or i/o port number 76 * 77 * Given an mmio phys address, or a port number, find a pci device 78 * that implements this address. I/O port numbers are assumed to be offset 79 * from zero (that is, they do *not* have pci_io_addr added in). 80 * It is safe to call this function within an interrupt. 81 */ 82 struct eeh_dev *eeh_addr_cache_get_dev(unsigned long addr) 83 { 84 struct eeh_dev *edev; 85 unsigned long flags; 86 87 spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags); 88 edev = __eeh_addr_cache_get_device(addr); 89 spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags); 90 return edev; 91 } 92 93 #ifdef DEBUG 94 /* 95 * Handy-dandy debug print routine, does nothing more 96 * than print out the contents of our addr cache. 97 */ 98 static void eeh_addr_cache_print(struct pci_io_addr_cache *cache) 99 { 100 struct rb_node *n; 101 int cnt = 0; 102 103 n = rb_first(&cache->rb_root); 104 while (n) { 105 struct pci_io_addr_range *piar; 106 piar = rb_entry(n, struct pci_io_addr_range, rb_node); 107 pr_info("PCI: %s addr range %d [%pap-%pap]: %s\n", 108 (piar->flags & IORESOURCE_IO) ? "i/o" : "mem", cnt, 109 &piar->addr_lo, &piar->addr_hi, pci_name(piar->pcidev)); 110 cnt++; 111 n = rb_next(n); 112 } 113 } 114 #endif 115 116 /* Insert address range into the rb tree. */ 117 static struct pci_io_addr_range * 118 eeh_addr_cache_insert(struct pci_dev *dev, resource_size_t alo, 119 resource_size_t ahi, unsigned long flags) 120 { 121 struct rb_node **p = &pci_io_addr_cache_root.rb_root.rb_node; 122 struct rb_node *parent = NULL; 123 struct pci_io_addr_range *piar; 124 125 /* Walk tree, find a place to insert into tree */ 126 while (*p) { 127 parent = *p; 128 piar = rb_entry(parent, struct pci_io_addr_range, rb_node); 129 if (ahi < piar->addr_lo) { 130 p = &parent->rb_left; 131 } else if (alo > piar->addr_hi) { 132 p = &parent->rb_right; 133 } else { 134 if (dev != piar->pcidev || 135 alo != piar->addr_lo || ahi != piar->addr_hi) { 136 pr_warn("PIAR: overlapping address range\n"); 137 } 138 return piar; 139 } 140 } 141 piar = kzalloc(sizeof(struct pci_io_addr_range), GFP_ATOMIC); 142 if (!piar) 143 return NULL; 144 145 piar->addr_lo = alo; 146 piar->addr_hi = ahi; 147 piar->edev = pci_dev_to_eeh_dev(dev); 148 piar->pcidev = dev; 149 piar->flags = flags; 150 151 eeh_edev_dbg(piar->edev, "PIAR: insert range=[%pap:%pap]\n", 152 &alo, &ahi); 153 154 rb_link_node(&piar->rb_node, parent, p); 155 rb_insert_color(&piar->rb_node, &pci_io_addr_cache_root.rb_root); 156 157 return piar; 158 } 159 160 static void __eeh_addr_cache_insert_dev(struct pci_dev *dev) 161 { 162 struct eeh_dev *edev; 163 int i; 164 165 edev = pci_dev_to_eeh_dev(dev); 166 if (!edev) { 167 pr_warn("PCI: no EEH dev found for %s\n", 168 pci_name(dev)); 169 return; 170 } 171 172 /* Skip any devices for which EEH is not enabled. */ 173 if (!edev->pe) { 174 dev_dbg(&dev->dev, "EEH: Skip building address cache\n"); 175 return; 176 } 177 178 /* 179 * Walk resources on this device, poke the first 7 (6 normal BAR and 1 180 * ROM BAR) into the tree. 181 */ 182 for (i = 0; i <= PCI_ROM_RESOURCE; i++) { 183 resource_size_t start = pci_resource_start(dev,i); 184 resource_size_t end = pci_resource_end(dev,i); 185 unsigned long flags = pci_resource_flags(dev,i); 186 187 /* We are interested only bus addresses, not dma or other stuff */ 188 if (0 == (flags & (IORESOURCE_IO | IORESOURCE_MEM))) 189 continue; 190 if (start == 0 || ~start == 0 || end == 0 || ~end == 0) 191 continue; 192 eeh_addr_cache_insert(dev, start, end, flags); 193 } 194 } 195 196 /** 197 * eeh_addr_cache_insert_dev - Add a device to the address cache 198 * @dev: PCI device whose I/O addresses we are interested in. 199 * 200 * In order to support the fast lookup of devices based on addresses, 201 * we maintain a cache of devices that can be quickly searched. 202 * This routine adds a device to that cache. 203 */ 204 void eeh_addr_cache_insert_dev(struct pci_dev *dev) 205 { 206 unsigned long flags; 207 208 spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags); 209 __eeh_addr_cache_insert_dev(dev); 210 spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags); 211 } 212 213 static inline void __eeh_addr_cache_rmv_dev(struct pci_dev *dev) 214 { 215 struct rb_node *n; 216 217 restart: 218 n = rb_first(&pci_io_addr_cache_root.rb_root); 219 while (n) { 220 struct pci_io_addr_range *piar; 221 piar = rb_entry(n, struct pci_io_addr_range, rb_node); 222 223 if (piar->pcidev == dev) { 224 eeh_edev_dbg(piar->edev, "PIAR: remove range=[%pap:%pap]\n", 225 &piar->addr_lo, &piar->addr_hi); 226 rb_erase(n, &pci_io_addr_cache_root.rb_root); 227 kfree(piar); 228 goto restart; 229 } 230 n = rb_next(n); 231 } 232 } 233 234 /** 235 * eeh_addr_cache_rmv_dev - remove pci device from addr cache 236 * @dev: device to remove 237 * 238 * Remove a device from the addr-cache tree. 239 * This is potentially expensive, since it will walk 240 * the tree multiple times (once per resource). 241 * But so what; device removal doesn't need to be that fast. 242 */ 243 void eeh_addr_cache_rmv_dev(struct pci_dev *dev) 244 { 245 unsigned long flags; 246 247 spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags); 248 __eeh_addr_cache_rmv_dev(dev); 249 spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags); 250 } 251 252 /** 253 * eeh_addr_cache_init - Initialize a cache of I/O addresses 254 * 255 * Initialize a cache of pci i/o addresses. This cache will be used to 256 * find the pci device that corresponds to a given address. 257 */ 258 void eeh_addr_cache_init(void) 259 { 260 spin_lock_init(&pci_io_addr_cache_root.piar_lock); 261 } 262 263 static int eeh_addr_cache_show(struct seq_file *s, void *v) 264 { 265 struct pci_io_addr_range *piar; 266 struct rb_node *n; 267 unsigned long flags; 268 269 spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags); 270 for (n = rb_first(&pci_io_addr_cache_root.rb_root); n; n = rb_next(n)) { 271 piar = rb_entry(n, struct pci_io_addr_range, rb_node); 272 273 seq_printf(s, "%s addr range [%pap-%pap]: %s\n", 274 (piar->flags & IORESOURCE_IO) ? "i/o" : "mem", 275 &piar->addr_lo, &piar->addr_hi, pci_name(piar->pcidev)); 276 } 277 spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags); 278 279 return 0; 280 } 281 DEFINE_SHOW_ATTRIBUTE(eeh_addr_cache); 282 283 void __init eeh_cache_debugfs_init(void) 284 { 285 debugfs_create_file_unsafe("eeh_address_cache", 0400, 286 arch_debugfs_dir, NULL, 287 &eeh_addr_cache_fops); 288 } 289
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.