~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/powerpc/kernel/process.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-or-later
  2 /*
  3  *  Derived from "arch/i386/kernel/process.c"
  4  *    Copyright (C) 1995  Linus Torvalds
  5  *
  6  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
  7  *  Paul Mackerras (paulus@cs.anu.edu.au)
  8  *
  9  *  PowerPC version
 10  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
 11  */
 12 
 13 #include <linux/errno.h>
 14 #include <linux/sched.h>
 15 #include <linux/sched/debug.h>
 16 #include <linux/sched/task.h>
 17 #include <linux/sched/task_stack.h>
 18 #include <linux/kernel.h>
 19 #include <linux/mm.h>
 20 #include <linux/smp.h>
 21 #include <linux/stddef.h>
 22 #include <linux/unistd.h>
 23 #include <linux/ptrace.h>
 24 #include <linux/slab.h>
 25 #include <linux/user.h>
 26 #include <linux/elf.h>
 27 #include <linux/prctl.h>
 28 #include <linux/init_task.h>
 29 #include <linux/export.h>
 30 #include <linux/kallsyms.h>
 31 #include <linux/mqueue.h>
 32 #include <linux/hardirq.h>
 33 #include <linux/utsname.h>
 34 #include <linux/ftrace.h>
 35 #include <linux/kernel_stat.h>
 36 #include <linux/personality.h>
 37 #include <linux/hw_breakpoint.h>
 38 #include <linux/uaccess.h>
 39 #include <linux/pkeys.h>
 40 #include <linux/seq_buf.h>
 41 
 42 #include <asm/interrupt.h>
 43 #include <asm/io.h>
 44 #include <asm/processor.h>
 45 #include <asm/mmu.h>
 46 #include <asm/machdep.h>
 47 #include <asm/time.h>
 48 #include <asm/runlatch.h>
 49 #include <asm/syscalls.h>
 50 #include <asm/switch_to.h>
 51 #include <asm/tm.h>
 52 #include <asm/debug.h>
 53 #ifdef CONFIG_PPC64
 54 #include <asm/firmware.h>
 55 #include <asm/hw_irq.h>
 56 #endif
 57 #include <asm/code-patching.h>
 58 #include <asm/exec.h>
 59 #include <asm/livepatch.h>
 60 #include <asm/cpu_has_feature.h>
 61 #include <asm/asm-prototypes.h>
 62 #include <asm/stacktrace.h>
 63 #include <asm/hw_breakpoint.h>
 64 
 65 #include <linux/kprobes.h>
 66 #include <linux/kdebug.h>
 67 
 68 /* Transactional Memory debug */
 69 #ifdef TM_DEBUG_SW
 70 #define TM_DEBUG(x...) printk(KERN_INFO x)
 71 #else
 72 #define TM_DEBUG(x...) do { } while(0)
 73 #endif
 74 
 75 extern unsigned long _get_SP(void);
 76 
 77 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 78 /*
 79  * Are we running in "Suspend disabled" mode? If so we have to block any
 80  * sigreturn that would get us into suspended state, and we also warn in some
 81  * other paths that we should never reach with suspend disabled.
 82  */
 83 bool tm_suspend_disabled __ro_after_init = false;
 84 
 85 static void check_if_tm_restore_required(struct task_struct *tsk)
 86 {
 87         /*
 88          * If we are saving the current thread's registers, and the
 89          * thread is in a transactional state, set the TIF_RESTORE_TM
 90          * bit so that we know to restore the registers before
 91          * returning to userspace.
 92          */
 93         if (tsk == current && tsk->thread.regs &&
 94             MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
 95             !test_thread_flag(TIF_RESTORE_TM)) {
 96                 regs_set_return_msr(&tsk->thread.ckpt_regs,
 97                                                 tsk->thread.regs->msr);
 98                 set_thread_flag(TIF_RESTORE_TM);
 99         }
100 }
101 
102 #else
103 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
104 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
105 
106 bool strict_msr_control;
107 EXPORT_SYMBOL(strict_msr_control);
108 
109 static int __init enable_strict_msr_control(char *str)
110 {
111         strict_msr_control = true;
112         pr_info("Enabling strict facility control\n");
113 
114         return 0;
115 }
116 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
117 
118 /* notrace because it's called by restore_math */
119 unsigned long notrace msr_check_and_set(unsigned long bits)
120 {
121         unsigned long oldmsr = mfmsr();
122         unsigned long newmsr;
123 
124         newmsr = oldmsr | bits;
125 
126         if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
127                 newmsr |= MSR_VSX;
128 
129         if (oldmsr != newmsr)
130                 newmsr = mtmsr_isync_irqsafe(newmsr);
131 
132         return newmsr;
133 }
134 EXPORT_SYMBOL_GPL(msr_check_and_set);
135 
136 /* notrace because it's called by restore_math */
137 void notrace __msr_check_and_clear(unsigned long bits)
138 {
139         unsigned long oldmsr = mfmsr();
140         unsigned long newmsr;
141 
142         newmsr = oldmsr & ~bits;
143 
144         if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
145                 newmsr &= ~MSR_VSX;
146 
147         if (oldmsr != newmsr)
148                 mtmsr_isync_irqsafe(newmsr);
149 }
150 EXPORT_SYMBOL(__msr_check_and_clear);
151 
152 #ifdef CONFIG_PPC_FPU
153 static void __giveup_fpu(struct task_struct *tsk)
154 {
155         unsigned long msr;
156 
157         save_fpu(tsk);
158         msr = tsk->thread.regs->msr;
159         msr &= ~(MSR_FP|MSR_FE0|MSR_FE1);
160         if (cpu_has_feature(CPU_FTR_VSX))
161                 msr &= ~MSR_VSX;
162         regs_set_return_msr(tsk->thread.regs, msr);
163 }
164 
165 void giveup_fpu(struct task_struct *tsk)
166 {
167         check_if_tm_restore_required(tsk);
168 
169         msr_check_and_set(MSR_FP);
170         __giveup_fpu(tsk);
171         msr_check_and_clear(MSR_FP);
172 }
173 EXPORT_SYMBOL(giveup_fpu);
174 
175 /*
176  * Make sure the floating-point register state in the
177  * the thread_struct is up to date for task tsk.
178  */
179 void flush_fp_to_thread(struct task_struct *tsk)
180 {
181         if (tsk->thread.regs) {
182                 /*
183                  * We need to disable preemption here because if we didn't,
184                  * another process could get scheduled after the regs->msr
185                  * test but before we have finished saving the FP registers
186                  * to the thread_struct.  That process could take over the
187                  * FPU, and then when we get scheduled again we would store
188                  * bogus values for the remaining FP registers.
189                  */
190                 preempt_disable();
191                 if (tsk->thread.regs->msr & MSR_FP) {
192                         /*
193                          * This should only ever be called for current or
194                          * for a stopped child process.  Since we save away
195                          * the FP register state on context switch,
196                          * there is something wrong if a stopped child appears
197                          * to still have its FP state in the CPU registers.
198                          */
199                         BUG_ON(tsk != current);
200                         giveup_fpu(tsk);
201                 }
202                 preempt_enable();
203         }
204 }
205 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
206 
207 void enable_kernel_fp(void)
208 {
209         unsigned long cpumsr;
210 
211         WARN_ON(preemptible());
212 
213         cpumsr = msr_check_and_set(MSR_FP);
214 
215         if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
216                 check_if_tm_restore_required(current);
217                 /*
218                  * If a thread has already been reclaimed then the
219                  * checkpointed registers are on the CPU but have definitely
220                  * been saved by the reclaim code. Don't need to and *cannot*
221                  * giveup as this would save  to the 'live' structure not the
222                  * checkpointed structure.
223                  */
224                 if (!MSR_TM_ACTIVE(cpumsr) &&
225                      MSR_TM_ACTIVE(current->thread.regs->msr))
226                         return;
227                 __giveup_fpu(current);
228         }
229 }
230 EXPORT_SYMBOL(enable_kernel_fp);
231 #else
232 static inline void __giveup_fpu(struct task_struct *tsk) { }
233 #endif /* CONFIG_PPC_FPU */
234 
235 #ifdef CONFIG_ALTIVEC
236 static void __giveup_altivec(struct task_struct *tsk)
237 {
238         unsigned long msr;
239 
240         save_altivec(tsk);
241         msr = tsk->thread.regs->msr;
242         msr &= ~MSR_VEC;
243         if (cpu_has_feature(CPU_FTR_VSX))
244                 msr &= ~MSR_VSX;
245         regs_set_return_msr(tsk->thread.regs, msr);
246 }
247 
248 void giveup_altivec(struct task_struct *tsk)
249 {
250         check_if_tm_restore_required(tsk);
251 
252         msr_check_and_set(MSR_VEC);
253         __giveup_altivec(tsk);
254         msr_check_and_clear(MSR_VEC);
255 }
256 EXPORT_SYMBOL(giveup_altivec);
257 
258 void enable_kernel_altivec(void)
259 {
260         unsigned long cpumsr;
261 
262         WARN_ON(preemptible());
263 
264         cpumsr = msr_check_and_set(MSR_VEC);
265 
266         if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
267                 check_if_tm_restore_required(current);
268                 /*
269                  * If a thread has already been reclaimed then the
270                  * checkpointed registers are on the CPU but have definitely
271                  * been saved by the reclaim code. Don't need to and *cannot*
272                  * giveup as this would save  to the 'live' structure not the
273                  * checkpointed structure.
274                  */
275                 if (!MSR_TM_ACTIVE(cpumsr) &&
276                      MSR_TM_ACTIVE(current->thread.regs->msr))
277                         return;
278                 __giveup_altivec(current);
279         }
280 }
281 EXPORT_SYMBOL(enable_kernel_altivec);
282 
283 /*
284  * Make sure the VMX/Altivec register state in the
285  * the thread_struct is up to date for task tsk.
286  */
287 void flush_altivec_to_thread(struct task_struct *tsk)
288 {
289         if (tsk->thread.regs) {
290                 preempt_disable();
291                 if (tsk->thread.regs->msr & MSR_VEC) {
292                         BUG_ON(tsk != current);
293                         giveup_altivec(tsk);
294                 }
295                 preempt_enable();
296         }
297 }
298 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
299 #endif /* CONFIG_ALTIVEC */
300 
301 #ifdef CONFIG_VSX
302 static void __giveup_vsx(struct task_struct *tsk)
303 {
304         unsigned long msr = tsk->thread.regs->msr;
305 
306         /*
307          * We should never be setting MSR_VSX without also setting
308          * MSR_FP and MSR_VEC
309          */
310         WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
311 
312         /* __giveup_fpu will clear MSR_VSX */
313         if (msr & MSR_FP)
314                 __giveup_fpu(tsk);
315         if (msr & MSR_VEC)
316                 __giveup_altivec(tsk);
317 }
318 
319 static void giveup_vsx(struct task_struct *tsk)
320 {
321         check_if_tm_restore_required(tsk);
322 
323         msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
324         __giveup_vsx(tsk);
325         msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
326 }
327 
328 void enable_kernel_vsx(void)
329 {
330         unsigned long cpumsr;
331 
332         WARN_ON(preemptible());
333 
334         cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
335 
336         if (current->thread.regs &&
337             (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
338                 check_if_tm_restore_required(current);
339                 /*
340                  * If a thread has already been reclaimed then the
341                  * checkpointed registers are on the CPU but have definitely
342                  * been saved by the reclaim code. Don't need to and *cannot*
343                  * giveup as this would save  to the 'live' structure not the
344                  * checkpointed structure.
345                  */
346                 if (!MSR_TM_ACTIVE(cpumsr) &&
347                      MSR_TM_ACTIVE(current->thread.regs->msr))
348                         return;
349                 __giveup_vsx(current);
350         }
351 }
352 EXPORT_SYMBOL(enable_kernel_vsx);
353 
354 void flush_vsx_to_thread(struct task_struct *tsk)
355 {
356         if (tsk->thread.regs) {
357                 preempt_disable();
358                 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
359                         BUG_ON(tsk != current);
360                         giveup_vsx(tsk);
361                 }
362                 preempt_enable();
363         }
364 }
365 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
366 #endif /* CONFIG_VSX */
367 
368 #ifdef CONFIG_SPE
369 void giveup_spe(struct task_struct *tsk)
370 {
371         check_if_tm_restore_required(tsk);
372 
373         msr_check_and_set(MSR_SPE);
374         __giveup_spe(tsk);
375         msr_check_and_clear(MSR_SPE);
376 }
377 EXPORT_SYMBOL(giveup_spe);
378 
379 void enable_kernel_spe(void)
380 {
381         WARN_ON(preemptible());
382 
383         msr_check_and_set(MSR_SPE);
384 
385         if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
386                 check_if_tm_restore_required(current);
387                 __giveup_spe(current);
388         }
389 }
390 EXPORT_SYMBOL(enable_kernel_spe);
391 
392 void flush_spe_to_thread(struct task_struct *tsk)
393 {
394         if (tsk->thread.regs) {
395                 preempt_disable();
396                 if (tsk->thread.regs->msr & MSR_SPE) {
397                         BUG_ON(tsk != current);
398                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
399                         giveup_spe(tsk);
400                 }
401                 preempt_enable();
402         }
403 }
404 #endif /* CONFIG_SPE */
405 
406 static unsigned long msr_all_available;
407 
408 static int __init init_msr_all_available(void)
409 {
410         if (IS_ENABLED(CONFIG_PPC_FPU))
411                 msr_all_available |= MSR_FP;
412         if (cpu_has_feature(CPU_FTR_ALTIVEC))
413                 msr_all_available |= MSR_VEC;
414         if (cpu_has_feature(CPU_FTR_VSX))
415                 msr_all_available |= MSR_VSX;
416         if (cpu_has_feature(CPU_FTR_SPE))
417                 msr_all_available |= MSR_SPE;
418 
419         return 0;
420 }
421 early_initcall(init_msr_all_available);
422 
423 void giveup_all(struct task_struct *tsk)
424 {
425         unsigned long usermsr;
426 
427         if (!tsk->thread.regs)
428                 return;
429 
430         check_if_tm_restore_required(tsk);
431 
432         usermsr = tsk->thread.regs->msr;
433 
434         if ((usermsr & msr_all_available) == 0)
435                 return;
436 
437         msr_check_and_set(msr_all_available);
438 
439         WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
440 
441         if (usermsr & MSR_FP)
442                 __giveup_fpu(tsk);
443         if (usermsr & MSR_VEC)
444                 __giveup_altivec(tsk);
445         if (usermsr & MSR_SPE)
446                 __giveup_spe(tsk);
447 
448         msr_check_and_clear(msr_all_available);
449 }
450 EXPORT_SYMBOL(giveup_all);
451 
452 #ifdef CONFIG_PPC_BOOK3S_64
453 #ifdef CONFIG_PPC_FPU
454 static bool should_restore_fp(void)
455 {
456         if (current->thread.load_fp) {
457                 current->thread.load_fp++;
458                 return true;
459         }
460         return false;
461 }
462 
463 static void do_restore_fp(void)
464 {
465         load_fp_state(&current->thread.fp_state);
466 }
467 #else
468 static bool should_restore_fp(void) { return false; }
469 static void do_restore_fp(void) { }
470 #endif /* CONFIG_PPC_FPU */
471 
472 #ifdef CONFIG_ALTIVEC
473 static bool should_restore_altivec(void)
474 {
475         if (cpu_has_feature(CPU_FTR_ALTIVEC) && (current->thread.load_vec)) {
476                 current->thread.load_vec++;
477                 return true;
478         }
479         return false;
480 }
481 
482 static void do_restore_altivec(void)
483 {
484         load_vr_state(&current->thread.vr_state);
485         current->thread.used_vr = 1;
486 }
487 #else
488 static bool should_restore_altivec(void) { return false; }
489 static void do_restore_altivec(void) { }
490 #endif /* CONFIG_ALTIVEC */
491 
492 static bool should_restore_vsx(void)
493 {
494         if (cpu_has_feature(CPU_FTR_VSX))
495                 return true;
496         return false;
497 }
498 #ifdef CONFIG_VSX
499 static void do_restore_vsx(void)
500 {
501         current->thread.used_vsr = 1;
502 }
503 #else
504 static void do_restore_vsx(void) { }
505 #endif /* CONFIG_VSX */
506 
507 /*
508  * The exception exit path calls restore_math() with interrupts hard disabled
509  * but the soft irq state not "reconciled". ftrace code that calls
510  * local_irq_save/restore causes warnings.
511  *
512  * Rather than complicate the exit path, just don't trace restore_math. This
513  * could be done by having ftrace entry code check for this un-reconciled
514  * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and
515  * temporarily fix it up for the duration of the ftrace call.
516  */
517 void notrace restore_math(struct pt_regs *regs)
518 {
519         unsigned long msr;
520         unsigned long new_msr = 0;
521 
522         msr = regs->msr;
523 
524         /*
525          * new_msr tracks the facilities that are to be restored. Only reload
526          * if the bit is not set in the user MSR (if it is set, the registers
527          * are live for the user thread).
528          */
529         if ((!(msr & MSR_FP)) && should_restore_fp())
530                 new_msr |= MSR_FP;
531 
532         if ((!(msr & MSR_VEC)) && should_restore_altivec())
533                 new_msr |= MSR_VEC;
534 
535         if ((!(msr & MSR_VSX)) && should_restore_vsx()) {
536                 if (((msr | new_msr) & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC))
537                         new_msr |= MSR_VSX;
538         }
539 
540         if (new_msr) {
541                 unsigned long fpexc_mode = 0;
542 
543                 msr_check_and_set(new_msr);
544 
545                 if (new_msr & MSR_FP) {
546                         do_restore_fp();
547 
548                         // This also covers VSX, because VSX implies FP
549                         fpexc_mode = current->thread.fpexc_mode;
550                 }
551 
552                 if (new_msr & MSR_VEC)
553                         do_restore_altivec();
554 
555                 if (new_msr & MSR_VSX)
556                         do_restore_vsx();
557 
558                 msr_check_and_clear(new_msr);
559 
560                 regs_set_return_msr(regs, regs->msr | new_msr | fpexc_mode);
561         }
562 }
563 #endif /* CONFIG_PPC_BOOK3S_64 */
564 
565 static void save_all(struct task_struct *tsk)
566 {
567         unsigned long usermsr;
568 
569         if (!tsk->thread.regs)
570                 return;
571 
572         usermsr = tsk->thread.regs->msr;
573 
574         if ((usermsr & msr_all_available) == 0)
575                 return;
576 
577         msr_check_and_set(msr_all_available);
578 
579         WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
580 
581         if (usermsr & MSR_FP)
582                 save_fpu(tsk);
583 
584         if (usermsr & MSR_VEC)
585                 save_altivec(tsk);
586 
587         if (usermsr & MSR_SPE)
588                 __giveup_spe(tsk);
589 
590         msr_check_and_clear(msr_all_available);
591 }
592 
593 void flush_all_to_thread(struct task_struct *tsk)
594 {
595         if (tsk->thread.regs) {
596                 preempt_disable();
597                 BUG_ON(tsk != current);
598 #ifdef CONFIG_SPE
599                 if (tsk->thread.regs->msr & MSR_SPE)
600                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
601 #endif
602                 save_all(tsk);
603 
604                 preempt_enable();
605         }
606 }
607 EXPORT_SYMBOL(flush_all_to_thread);
608 
609 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
610 void do_send_trap(struct pt_regs *regs, unsigned long address,
611                   unsigned long error_code, int breakpt)
612 {
613         current->thread.trap_nr = TRAP_HWBKPT;
614         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
615                         11, SIGSEGV) == NOTIFY_STOP)
616                 return;
617 
618         /* Deliver the signal to userspace */
619         force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
620                                     (void __user *)address);
621 }
622 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
623 
624 static void do_break_handler(struct pt_regs *regs)
625 {
626         struct arch_hw_breakpoint null_brk = {0};
627         struct arch_hw_breakpoint *info;
628         ppc_inst_t instr = ppc_inst(0);
629         int type = 0;
630         int size = 0;
631         unsigned long ea;
632         int i;
633 
634         /*
635          * If underneath hw supports only one watchpoint, we know it
636          * caused exception. 8xx also falls into this category.
637          */
638         if (nr_wp_slots() == 1) {
639                 __set_breakpoint(0, &null_brk);
640                 current->thread.hw_brk[0] = null_brk;
641                 current->thread.hw_brk[0].flags |= HW_BRK_FLAG_DISABLED;
642                 return;
643         }
644 
645         /* Otherwise find out which DAWR caused exception and disable it. */
646         wp_get_instr_detail(regs, &instr, &type, &size, &ea);
647 
648         for (i = 0; i < nr_wp_slots(); i++) {
649                 info = &current->thread.hw_brk[i];
650                 if (!info->address)
651                         continue;
652 
653                 if (wp_check_constraints(regs, instr, ea, type, size, info)) {
654                         __set_breakpoint(i, &null_brk);
655                         current->thread.hw_brk[i] = null_brk;
656                         current->thread.hw_brk[i].flags |= HW_BRK_FLAG_DISABLED;
657                 }
658         }
659 }
660 
661 DEFINE_INTERRUPT_HANDLER(do_break)
662 {
663         current->thread.trap_nr = TRAP_HWBKPT;
664         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, regs->dsisr,
665                         11, SIGSEGV) == NOTIFY_STOP)
666                 return;
667 
668         if (debugger_break_match(regs))
669                 return;
670 
671         /*
672          * We reach here only when watchpoint exception is generated by ptrace
673          * event (or hw is buggy!). Now if CONFIG_HAVE_HW_BREAKPOINT is set,
674          * watchpoint is already handled by hw_breakpoint_handler() so we don't
675          * have to do anything. But when CONFIG_HAVE_HW_BREAKPOINT is not set,
676          * we need to manually handle the watchpoint here.
677          */
678         if (!IS_ENABLED(CONFIG_HAVE_HW_BREAKPOINT))
679                 do_break_handler(regs);
680 
681         /* Deliver the signal to userspace */
682         force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)regs->dar);
683 }
684 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
685 
686 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk[HBP_NUM_MAX]);
687 
688 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
689 /*
690  * Set the debug registers back to their default "safe" values.
691  */
692 static void set_debug_reg_defaults(struct thread_struct *thread)
693 {
694         thread->debug.iac1 = thread->debug.iac2 = 0;
695 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
696         thread->debug.iac3 = thread->debug.iac4 = 0;
697 #endif
698         thread->debug.dac1 = thread->debug.dac2 = 0;
699 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
700         thread->debug.dvc1 = thread->debug.dvc2 = 0;
701 #endif
702         thread->debug.dbcr0 = 0;
703 #ifdef CONFIG_BOOKE
704         /*
705          * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
706          */
707         thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
708                         DBCR1_IAC3US | DBCR1_IAC4US;
709         /*
710          * Force Data Address Compare User/Supervisor bits to be User-only
711          * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
712          */
713         thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
714 #else
715         thread->debug.dbcr1 = 0;
716 #endif
717 }
718 
719 static void prime_debug_regs(struct debug_reg *debug)
720 {
721         /*
722          * We could have inherited MSR_DE from userspace, since
723          * it doesn't get cleared on exception entry.  Make sure
724          * MSR_DE is clear before we enable any debug events.
725          */
726         mtmsr(mfmsr() & ~MSR_DE);
727 
728         mtspr(SPRN_IAC1, debug->iac1);
729         mtspr(SPRN_IAC2, debug->iac2);
730 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
731         mtspr(SPRN_IAC3, debug->iac3);
732         mtspr(SPRN_IAC4, debug->iac4);
733 #endif
734         mtspr(SPRN_DAC1, debug->dac1);
735         mtspr(SPRN_DAC2, debug->dac2);
736 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
737         mtspr(SPRN_DVC1, debug->dvc1);
738         mtspr(SPRN_DVC2, debug->dvc2);
739 #endif
740         mtspr(SPRN_DBCR0, debug->dbcr0);
741         mtspr(SPRN_DBCR1, debug->dbcr1);
742 #ifdef CONFIG_BOOKE
743         mtspr(SPRN_DBCR2, debug->dbcr2);
744 #endif
745 }
746 /*
747  * Unless neither the old or new thread are making use of the
748  * debug registers, set the debug registers from the values
749  * stored in the new thread.
750  */
751 void switch_booke_debug_regs(struct debug_reg *new_debug)
752 {
753         if ((current->thread.debug.dbcr0 & DBCR0_IDM)
754                 || (new_debug->dbcr0 & DBCR0_IDM))
755                         prime_debug_regs(new_debug);
756 }
757 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
758 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
759 #ifndef CONFIG_HAVE_HW_BREAKPOINT
760 static void set_breakpoint(int i, struct arch_hw_breakpoint *brk)
761 {
762         preempt_disable();
763         __set_breakpoint(i, brk);
764         preempt_enable();
765 }
766 
767 static void set_debug_reg_defaults(struct thread_struct *thread)
768 {
769         int i;
770         struct arch_hw_breakpoint null_brk = {0};
771 
772         for (i = 0; i < nr_wp_slots(); i++) {
773                 thread->hw_brk[i] = null_brk;
774                 if (ppc_breakpoint_available())
775                         set_breakpoint(i, &thread->hw_brk[i]);
776         }
777 }
778 
779 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
780                                 struct arch_hw_breakpoint *b)
781 {
782         if (a->address != b->address)
783                 return false;
784         if (a->type != b->type)
785                 return false;
786         if (a->len != b->len)
787                 return false;
788         /* no need to check hw_len. it's calculated from address and len */
789         return true;
790 }
791 
792 static void switch_hw_breakpoint(struct task_struct *new)
793 {
794         int i;
795 
796         for (i = 0; i < nr_wp_slots(); i++) {
797                 if (likely(hw_brk_match(this_cpu_ptr(&current_brk[i]),
798                                         &new->thread.hw_brk[i])))
799                         continue;
800 
801                 __set_breakpoint(i, &new->thread.hw_brk[i]);
802         }
803 }
804 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
805 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
806 
807 static inline int set_dabr(struct arch_hw_breakpoint *brk)
808 {
809         unsigned long dabr, dabrx;
810 
811         dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
812         dabrx = ((brk->type >> 3) & 0x7);
813 
814         if (ppc_md.set_dabr)
815                 return ppc_md.set_dabr(dabr, dabrx);
816 
817         if (IS_ENABLED(CONFIG_PPC_ADV_DEBUG_REGS)) {
818                 mtspr(SPRN_DAC1, dabr);
819                 if (IS_ENABLED(CONFIG_PPC_47x))
820                         isync();
821                 return 0;
822         } else if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
823                 mtspr(SPRN_DABR, dabr);
824                 if (cpu_has_feature(CPU_FTR_DABRX))
825                         mtspr(SPRN_DABRX, dabrx);
826                 return 0;
827         } else {
828                 return -EINVAL;
829         }
830 }
831 
832 static inline int set_breakpoint_8xx(struct arch_hw_breakpoint *brk)
833 {
834         unsigned long lctrl1 = LCTRL1_CTE_GT | LCTRL1_CTF_LT | LCTRL1_CRWE_RW |
835                                LCTRL1_CRWF_RW;
836         unsigned long lctrl2 = LCTRL2_LW0EN | LCTRL2_LW0LADC | LCTRL2_SLW0EN;
837         unsigned long start_addr = ALIGN_DOWN(brk->address, HW_BREAKPOINT_SIZE);
838         unsigned long end_addr = ALIGN(brk->address + brk->len, HW_BREAKPOINT_SIZE);
839 
840         if (start_addr == 0)
841                 lctrl2 |= LCTRL2_LW0LA_F;
842         else if (end_addr == 0)
843                 lctrl2 |= LCTRL2_LW0LA_E;
844         else
845                 lctrl2 |= LCTRL2_LW0LA_EandF;
846 
847         mtspr(SPRN_LCTRL2, 0);
848 
849         if ((brk->type & HW_BRK_TYPE_RDWR) == 0)
850                 return 0;
851 
852         if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
853                 lctrl1 |= LCTRL1_CRWE_RO | LCTRL1_CRWF_RO;
854         if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
855                 lctrl1 |= LCTRL1_CRWE_WO | LCTRL1_CRWF_WO;
856 
857         mtspr(SPRN_CMPE, start_addr - 1);
858         mtspr(SPRN_CMPF, end_addr);
859         mtspr(SPRN_LCTRL1, lctrl1);
860         mtspr(SPRN_LCTRL2, lctrl2);
861 
862         return 0;
863 }
864 
865 static void set_hw_breakpoint(int nr, struct arch_hw_breakpoint *brk)
866 {
867         if (dawr_enabled())
868                 // Power8 or later
869                 set_dawr(nr, brk);
870         else if (IS_ENABLED(CONFIG_PPC_8xx))
871                 set_breakpoint_8xx(brk);
872         else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
873                 // Power7 or earlier
874                 set_dabr(brk);
875         else
876                 // Shouldn't happen due to higher level checks
877                 WARN_ON_ONCE(1);
878 }
879 
880 void __set_breakpoint(int nr, struct arch_hw_breakpoint *brk)
881 {
882         memcpy(this_cpu_ptr(&current_brk[nr]), brk, sizeof(*brk));
883         set_hw_breakpoint(nr, brk);
884 }
885 
886 /* Check if we have DAWR or DABR hardware */
887 bool ppc_breakpoint_available(void)
888 {
889         if (dawr_enabled())
890                 return true; /* POWER8 DAWR or POWER9 forced DAWR */
891         if (cpu_has_feature(CPU_FTR_ARCH_207S))
892                 return false; /* POWER9 with DAWR disabled */
893         /* DABR: Everything but POWER8 and POWER9 */
894         return true;
895 }
896 EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
897 
898 /* Disable the breakpoint in hardware without touching current_brk[] */
899 void suspend_breakpoints(void)
900 {
901         struct arch_hw_breakpoint brk = {0};
902         int i;
903 
904         if (!ppc_breakpoint_available())
905                 return;
906 
907         for (i = 0; i < nr_wp_slots(); i++)
908                 set_hw_breakpoint(i, &brk);
909 }
910 
911 /*
912  * Re-enable breakpoints suspended by suspend_breakpoints() in hardware
913  * from current_brk[]
914  */
915 void restore_breakpoints(void)
916 {
917         int i;
918 
919         if (!ppc_breakpoint_available())
920                 return;
921 
922         for (i = 0; i < nr_wp_slots(); i++)
923                 set_hw_breakpoint(i, this_cpu_ptr(&current_brk[i]));
924 }
925 
926 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
927 
928 static inline bool tm_enabled(struct task_struct *tsk)
929 {
930         return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
931 }
932 
933 static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
934 {
935         /*
936          * Use the current MSR TM suspended bit to track if we have
937          * checkpointed state outstanding.
938          * On signal delivery, we'd normally reclaim the checkpointed
939          * state to obtain stack pointer (see:get_tm_stackpointer()).
940          * This will then directly return to userspace without going
941          * through __switch_to(). However, if the stack frame is bad,
942          * we need to exit this thread which calls __switch_to() which
943          * will again attempt to reclaim the already saved tm state.
944          * Hence we need to check that we've not already reclaimed
945          * this state.
946          * We do this using the current MSR, rather tracking it in
947          * some specific thread_struct bit, as it has the additional
948          * benefit of checking for a potential TM bad thing exception.
949          */
950         if (!MSR_TM_SUSPENDED(mfmsr()))
951                 return;
952 
953         giveup_all(container_of(thr, struct task_struct, thread));
954 
955         tm_reclaim(thr, cause);
956 
957         /*
958          * If we are in a transaction and FP is off then we can't have
959          * used FP inside that transaction. Hence the checkpointed
960          * state is the same as the live state. We need to copy the
961          * live state to the checkpointed state so that when the
962          * transaction is restored, the checkpointed state is correct
963          * and the aborted transaction sees the correct state. We use
964          * ckpt_regs.msr here as that's what tm_reclaim will use to
965          * determine if it's going to write the checkpointed state or
966          * not. So either this will write the checkpointed registers,
967          * or reclaim will. Similarly for VMX.
968          */
969         if ((thr->ckpt_regs.msr & MSR_FP) == 0)
970                 memcpy(&thr->ckfp_state, &thr->fp_state,
971                        sizeof(struct thread_fp_state));
972         if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
973                 memcpy(&thr->ckvr_state, &thr->vr_state,
974                        sizeof(struct thread_vr_state));
975 }
976 
977 void tm_reclaim_current(uint8_t cause)
978 {
979         tm_enable();
980         tm_reclaim_thread(&current->thread, cause);
981 }
982 
983 static inline void tm_reclaim_task(struct task_struct *tsk)
984 {
985         /* We have to work out if we're switching from/to a task that's in the
986          * middle of a transaction.
987          *
988          * In switching we need to maintain a 2nd register state as
989          * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
990          * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
991          * ckvr_state
992          *
993          * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
994          */
995         struct thread_struct *thr = &tsk->thread;
996 
997         if (!thr->regs)
998                 return;
999 
1000         if (!MSR_TM_ACTIVE(thr->regs->msr))
1001                 goto out_and_saveregs;
1002 
1003         WARN_ON(tm_suspend_disabled);
1004 
1005         TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
1006                  "ccr=%lx, msr=%lx, trap=%lx)\n",
1007                  tsk->pid, thr->regs->nip,
1008                  thr->regs->ccr, thr->regs->msr,
1009                  thr->regs->trap);
1010 
1011         tm_reclaim_thread(thr, TM_CAUSE_RESCHED);
1012 
1013         TM_DEBUG("--- tm_reclaim on pid %d complete\n",
1014                  tsk->pid);
1015 
1016 out_and_saveregs:
1017         /* Always save the regs here, even if a transaction's not active.
1018          * This context-switches a thread's TM info SPRs.  We do it here to
1019          * be consistent with the restore path (in recheckpoint) which
1020          * cannot happen later in _switch().
1021          */
1022         tm_save_sprs(thr);
1023 }
1024 
1025 extern void __tm_recheckpoint(struct thread_struct *thread);
1026 
1027 void tm_recheckpoint(struct thread_struct *thread)
1028 {
1029         unsigned long flags;
1030 
1031         if (!(thread->regs->msr & MSR_TM))
1032                 return;
1033 
1034         /* We really can't be interrupted here as the TEXASR registers can't
1035          * change and later in the trecheckpoint code, we have a userspace R1.
1036          * So let's hard disable over this region.
1037          */
1038         local_irq_save(flags);
1039         hard_irq_disable();
1040 
1041         /* The TM SPRs are restored here, so that TEXASR.FS can be set
1042          * before the trecheckpoint and no explosion occurs.
1043          */
1044         tm_restore_sprs(thread);
1045 
1046         __tm_recheckpoint(thread);
1047 
1048         local_irq_restore(flags);
1049 }
1050 
1051 static inline void tm_recheckpoint_new_task(struct task_struct *new)
1052 {
1053         if (!cpu_has_feature(CPU_FTR_TM))
1054                 return;
1055 
1056         /* Recheckpoint the registers of the thread we're about to switch to.
1057          *
1058          * If the task was using FP, we non-lazily reload both the original and
1059          * the speculative FP register states.  This is because the kernel
1060          * doesn't see if/when a TM rollback occurs, so if we take an FP
1061          * unavailable later, we are unable to determine which set of FP regs
1062          * need to be restored.
1063          */
1064         if (!tm_enabled(new))
1065                 return;
1066 
1067         if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
1068                 tm_restore_sprs(&new->thread);
1069                 return;
1070         }
1071         /* Recheckpoint to restore original checkpointed register state. */
1072         TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
1073                  new->pid, new->thread.regs->msr);
1074 
1075         tm_recheckpoint(&new->thread);
1076 
1077         /*
1078          * The checkpointed state has been restored but the live state has
1079          * not, ensure all the math functionality is turned off to trigger
1080          * restore_math() to reload.
1081          */
1082         new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1083 
1084         TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1085                  "(kernel msr 0x%lx)\n",
1086                  new->pid, mfmsr());
1087 }
1088 
1089 static inline void __switch_to_tm(struct task_struct *prev,
1090                 struct task_struct *new)
1091 {
1092         if (cpu_has_feature(CPU_FTR_TM)) {
1093                 if (tm_enabled(prev) || tm_enabled(new))
1094                         tm_enable();
1095 
1096                 if (tm_enabled(prev)) {
1097                         prev->thread.load_tm++;
1098                         tm_reclaim_task(prev);
1099                         if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1100                                 prev->thread.regs->msr &= ~MSR_TM;
1101                 }
1102 
1103                 tm_recheckpoint_new_task(new);
1104         }
1105 }
1106 
1107 /*
1108  * This is called if we are on the way out to userspace and the
1109  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
1110  * FP and/or vector state and does so if necessary.
1111  * If userspace is inside a transaction (whether active or
1112  * suspended) and FP/VMX/VSX instructions have ever been enabled
1113  * inside that transaction, then we have to keep them enabled
1114  * and keep the FP/VMX/VSX state loaded while ever the transaction
1115  * continues.  The reason is that if we didn't, and subsequently
1116  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1117  * we don't know whether it's the same transaction, and thus we
1118  * don't know which of the checkpointed state and the transactional
1119  * state to use.
1120  */
1121 void restore_tm_state(struct pt_regs *regs)
1122 {
1123         unsigned long msr_diff;
1124 
1125         /*
1126          * This is the only moment we should clear TIF_RESTORE_TM as
1127          * it is here that ckpt_regs.msr and pt_regs.msr become the same
1128          * again, anything else could lead to an incorrect ckpt_msr being
1129          * saved and therefore incorrect signal contexts.
1130          */
1131         clear_thread_flag(TIF_RESTORE_TM);
1132         if (!MSR_TM_ACTIVE(regs->msr))
1133                 return;
1134 
1135         msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1136         msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1137 
1138         /* Ensure that restore_math() will restore */
1139         if (msr_diff & MSR_FP)
1140                 current->thread.load_fp = 1;
1141 #ifdef CONFIG_ALTIVEC
1142         if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1143                 current->thread.load_vec = 1;
1144 #endif
1145         restore_math(regs);
1146 
1147         regs_set_return_msr(regs, regs->msr | msr_diff);
1148 }
1149 
1150 #else /* !CONFIG_PPC_TRANSACTIONAL_MEM */
1151 #define tm_recheckpoint_new_task(new)
1152 #define __switch_to_tm(prev, new)
1153 void tm_reclaim_current(uint8_t cause) {}
1154 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1155 
1156 static inline void save_sprs(struct thread_struct *t)
1157 {
1158 #ifdef CONFIG_ALTIVEC
1159         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1160                 t->vrsave = mfspr(SPRN_VRSAVE);
1161 #endif
1162 #ifdef CONFIG_SPE
1163         if (cpu_has_feature(CPU_FTR_SPE))
1164                 t->spefscr = mfspr(SPRN_SPEFSCR);
1165 #endif
1166 #ifdef CONFIG_PPC_BOOK3S_64
1167         if (cpu_has_feature(CPU_FTR_DSCR))
1168                 t->dscr = mfspr(SPRN_DSCR);
1169 
1170         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1171                 t->bescr = mfspr(SPRN_BESCR);
1172                 t->ebbhr = mfspr(SPRN_EBBHR);
1173                 t->ebbrr = mfspr(SPRN_EBBRR);
1174 
1175                 t->fscr = mfspr(SPRN_FSCR);
1176 
1177                 /*
1178                  * Note that the TAR is not available for use in the kernel.
1179                  * (To provide this, the TAR should be backed up/restored on
1180                  * exception entry/exit instead, and be in pt_regs.  FIXME,
1181                  * this should be in pt_regs anyway (for debug).)
1182                  */
1183                 t->tar = mfspr(SPRN_TAR);
1184         }
1185 
1186         if (cpu_has_feature(CPU_FTR_DEXCR_NPHIE))
1187                 t->hashkeyr = mfspr(SPRN_HASHKEYR);
1188 
1189         if (cpu_has_feature(CPU_FTR_ARCH_31))
1190                 t->dexcr = mfspr(SPRN_DEXCR);
1191 #endif
1192 }
1193 
1194 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1195 void kvmppc_save_user_regs(void)
1196 {
1197         unsigned long usermsr;
1198 
1199         if (!current->thread.regs)
1200                 return;
1201 
1202         usermsr = current->thread.regs->msr;
1203 
1204         /* Caller has enabled FP/VEC/VSX/TM in MSR */
1205         if (usermsr & MSR_FP)
1206                 __giveup_fpu(current);
1207         if (usermsr & MSR_VEC)
1208                 __giveup_altivec(current);
1209 
1210 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1211         if (usermsr & MSR_TM) {
1212                 current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
1213                 current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
1214                 current->thread.tm_texasr = mfspr(SPRN_TEXASR);
1215                 current->thread.regs->msr &= ~MSR_TM;
1216         }
1217 #endif
1218 }
1219 EXPORT_SYMBOL_GPL(kvmppc_save_user_regs);
1220 
1221 void kvmppc_save_current_sprs(void)
1222 {
1223         save_sprs(&current->thread);
1224 }
1225 EXPORT_SYMBOL_GPL(kvmppc_save_current_sprs);
1226 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1227 
1228 static inline void restore_sprs(struct thread_struct *old_thread,
1229                                 struct thread_struct *new_thread)
1230 {
1231 #ifdef CONFIG_ALTIVEC
1232         if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1233             old_thread->vrsave != new_thread->vrsave)
1234                 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1235 #endif
1236 #ifdef CONFIG_SPE
1237         if (cpu_has_feature(CPU_FTR_SPE) &&
1238             old_thread->spefscr != new_thread->spefscr)
1239                 mtspr(SPRN_SPEFSCR, new_thread->spefscr);
1240 #endif
1241 #ifdef CONFIG_PPC_BOOK3S_64
1242         if (cpu_has_feature(CPU_FTR_DSCR)) {
1243                 u64 dscr = get_paca()->dscr_default;
1244                 if (new_thread->dscr_inherit)
1245                         dscr = new_thread->dscr;
1246 
1247                 if (old_thread->dscr != dscr)
1248                         mtspr(SPRN_DSCR, dscr);
1249         }
1250 
1251         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1252                 if (old_thread->bescr != new_thread->bescr)
1253                         mtspr(SPRN_BESCR, new_thread->bescr);
1254                 if (old_thread->ebbhr != new_thread->ebbhr)
1255                         mtspr(SPRN_EBBHR, new_thread->ebbhr);
1256                 if (old_thread->ebbrr != new_thread->ebbrr)
1257                         mtspr(SPRN_EBBRR, new_thread->ebbrr);
1258 
1259                 if (old_thread->fscr != new_thread->fscr)
1260                         mtspr(SPRN_FSCR, new_thread->fscr);
1261 
1262                 if (old_thread->tar != new_thread->tar)
1263                         mtspr(SPRN_TAR, new_thread->tar);
1264         }
1265 
1266         if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
1267             old_thread->tidr != new_thread->tidr)
1268                 mtspr(SPRN_TIDR, new_thread->tidr);
1269 
1270         if (cpu_has_feature(CPU_FTR_DEXCR_NPHIE) &&
1271             old_thread->hashkeyr != new_thread->hashkeyr)
1272                 mtspr(SPRN_HASHKEYR, new_thread->hashkeyr);
1273 
1274         if (cpu_has_feature(CPU_FTR_ARCH_31) &&
1275             old_thread->dexcr != new_thread->dexcr)
1276                 mtspr(SPRN_DEXCR, new_thread->dexcr);
1277 #endif
1278 
1279 }
1280 
1281 struct task_struct *__switch_to(struct task_struct *prev,
1282         struct task_struct *new)
1283 {
1284         struct thread_struct *new_thread, *old_thread;
1285         struct task_struct *last;
1286 #ifdef CONFIG_PPC_64S_HASH_MMU
1287         struct ppc64_tlb_batch *batch;
1288 #endif
1289 
1290         new_thread = &new->thread;
1291         old_thread = &current->thread;
1292 
1293         WARN_ON(!irqs_disabled());
1294 
1295 #ifdef CONFIG_PPC_64S_HASH_MMU
1296         batch = this_cpu_ptr(&ppc64_tlb_batch);
1297         if (batch->active) {
1298                 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1299                 if (batch->index)
1300                         __flush_tlb_pending(batch);
1301                 batch->active = 0;
1302         }
1303 
1304         /*
1305          * On POWER9 the copy-paste buffer can only paste into
1306          * foreign real addresses, so unprivileged processes can not
1307          * see the data or use it in any way unless they have
1308          * foreign real mappings. If the new process has the foreign
1309          * real address mappings, we must issue a cp_abort to clear
1310          * any state and prevent snooping, corruption or a covert
1311          * channel. ISA v3.1 supports paste into local memory.
1312          */
1313         if (new->mm && (cpu_has_feature(CPU_FTR_ARCH_31) ||
1314                         atomic_read(&new->mm->context.vas_windows)))
1315                 asm volatile(PPC_CP_ABORT);
1316 #endif /* CONFIG_PPC_BOOK3S_64 */
1317 
1318 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1319         switch_booke_debug_regs(&new->thread.debug);
1320 #else
1321 /*
1322  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1323  * schedule DABR
1324  */
1325 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1326         switch_hw_breakpoint(new);
1327 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1328 #endif
1329 
1330         /*
1331          * We need to save SPRs before treclaim/trecheckpoint as these will
1332          * change a number of them.
1333          */
1334         save_sprs(&prev->thread);
1335 
1336         /* Save FPU, Altivec, VSX and SPE state */
1337         giveup_all(prev);
1338 
1339         __switch_to_tm(prev, new);
1340 
1341         if (!radix_enabled()) {
1342                 /*
1343                  * We can't take a PMU exception inside _switch() since there
1344                  * is a window where the kernel stack SLB and the kernel stack
1345                  * are out of sync. Hard disable here.
1346                  */
1347                 hard_irq_disable();
1348         }
1349 
1350         /*
1351          * Call restore_sprs() and set_return_regs_changed() before calling
1352          * _switch(). If we move it after _switch() then we miss out on calling
1353          * it for new tasks. The reason for this is we manually create a stack
1354          * frame for new tasks that directly returns through ret_from_fork() or
1355          * ret_from_kernel_thread(). See copy_thread() for details.
1356          */
1357         restore_sprs(old_thread, new_thread);
1358 
1359         set_return_regs_changed(); /* _switch changes stack (and regs) */
1360 
1361         if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64))
1362                 kuap_assert_locked();
1363 
1364         last = _switch(old_thread, new_thread);
1365 
1366         /*
1367          * Nothing after _switch will be run for newly created tasks,
1368          * because they switch directly to ret_from_fork/ret_from_kernel_thread
1369          * etc. Code added here should have a comment explaining why that is
1370          * okay.
1371          */
1372 
1373 #ifdef CONFIG_PPC_BOOK3S_64
1374 #ifdef CONFIG_PPC_64S_HASH_MMU
1375         /*
1376          * This applies to a process that was context switched while inside
1377          * arch_enter_lazy_mmu_mode(), to re-activate the batch that was
1378          * deactivated above, before _switch(). This will never be the case
1379          * for new tasks.
1380          */
1381         if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1382                 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1383                 batch = this_cpu_ptr(&ppc64_tlb_batch);
1384                 batch->active = 1;
1385         }
1386 #endif
1387 
1388         /*
1389          * Math facilities are masked out of the child MSR in copy_thread.
1390          * A new task does not need to restore_math because it will
1391          * demand fault them.
1392          */
1393         if (current->thread.regs)
1394                 restore_math(current->thread.regs);
1395 #endif /* CONFIG_PPC_BOOK3S_64 */
1396 
1397         return last;
1398 }
1399 
1400 #define NR_INSN_TO_PRINT        16
1401 
1402 static void show_instructions(struct pt_regs *regs)
1403 {
1404         int i;
1405         unsigned long nip = regs->nip;
1406         unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1407 
1408         printk("Code: ");
1409 
1410         /*
1411          * If we were executing with the MMU off for instructions, adjust pc
1412          * rather than printing XXXXXXXX.
1413          */
1414         if (!IS_ENABLED(CONFIG_BOOKE) && !(regs->msr & MSR_IR)) {
1415                 pc = (unsigned long)phys_to_virt(pc);
1416                 nip = (unsigned long)phys_to_virt(regs->nip);
1417         }
1418 
1419         for (i = 0; i < NR_INSN_TO_PRINT; i++) {
1420                 int instr;
1421 
1422                 if (get_kernel_nofault(instr, (const void *)pc)) {
1423                         pr_cont("XXXXXXXX ");
1424                 } else {
1425                         if (nip == pc)
1426                                 pr_cont("<%08x> ", instr);
1427                         else
1428                                 pr_cont("%08x ", instr);
1429                 }
1430 
1431                 pc += sizeof(int);
1432         }
1433 
1434         pr_cont("\n");
1435 }
1436 
1437 void show_user_instructions(struct pt_regs *regs)
1438 {
1439         unsigned long pc;
1440         int n = NR_INSN_TO_PRINT;
1441         struct seq_buf s;
1442         char buf[96]; /* enough for 8 times 9 + 2 chars */
1443 
1444         pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1445 
1446         seq_buf_init(&s, buf, sizeof(buf));
1447 
1448         while (n) {
1449                 int i;
1450 
1451                 seq_buf_clear(&s);
1452 
1453                 for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) {
1454                         int instr;
1455 
1456                         if (copy_from_user_nofault(&instr, (void __user *)pc,
1457                                         sizeof(instr))) {
1458                                 seq_buf_printf(&s, "XXXXXXXX ");
1459                                 continue;
1460                         }
1461                         seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr);
1462                 }
1463 
1464                 if (!seq_buf_has_overflowed(&s))
1465                         pr_info("%s[%d]: code: %s\n", current->comm,
1466                                 current->pid, s.buffer);
1467         }
1468 }
1469 
1470 struct regbit {
1471         unsigned long bit;
1472         const char *name;
1473 };
1474 
1475 static struct regbit msr_bits[] = {
1476 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1477         {MSR_SF,        "SF"},
1478         {MSR_HV,        "HV"},
1479 #endif
1480         {MSR_VEC,       "VEC"},
1481         {MSR_VSX,       "VSX"},
1482 #ifdef CONFIG_BOOKE
1483         {MSR_CE,        "CE"},
1484 #endif
1485         {MSR_EE,        "EE"},
1486         {MSR_PR,        "PR"},
1487         {MSR_FP,        "FP"},
1488         {MSR_ME,        "ME"},
1489 #ifdef CONFIG_BOOKE
1490         {MSR_DE,        "DE"},
1491 #else
1492         {MSR_SE,        "SE"},
1493         {MSR_BE,        "BE"},
1494 #endif
1495         {MSR_IR,        "IR"},
1496         {MSR_DR,        "DR"},
1497         {MSR_PMM,       "PMM"},
1498 #ifndef CONFIG_BOOKE
1499         {MSR_RI,        "RI"},
1500         {MSR_LE,        "LE"},
1501 #endif
1502         {0,             NULL}
1503 };
1504 
1505 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1506 {
1507         const char *s = "";
1508 
1509         for (; bits->bit; ++bits)
1510                 if (val & bits->bit) {
1511                         pr_cont("%s%s", s, bits->name);
1512                         s = sep;
1513                 }
1514 }
1515 
1516 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1517 static struct regbit msr_tm_bits[] = {
1518         {MSR_TS_T,      "T"},
1519         {MSR_TS_S,      "S"},
1520         {MSR_TM,        "E"},
1521         {0,             NULL}
1522 };
1523 
1524 static void print_tm_bits(unsigned long val)
1525 {
1526 /*
1527  * This only prints something if at least one of the TM bit is set.
1528  * Inside the TM[], the output means:
1529  *   E: Enabled         (bit 32)
1530  *   S: Suspended       (bit 33)
1531  *   T: Transactional   (bit 34)
1532  */
1533         if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1534                 pr_cont(",TM[");
1535                 print_bits(val, msr_tm_bits, "");
1536                 pr_cont("]");
1537         }
1538 }
1539 #else
1540 static void print_tm_bits(unsigned long val) {}
1541 #endif
1542 
1543 static void print_msr_bits(unsigned long val)
1544 {
1545         pr_cont("<");
1546         print_bits(val, msr_bits, ",");
1547         print_tm_bits(val);
1548         pr_cont(">");
1549 }
1550 
1551 #ifdef CONFIG_PPC64
1552 #define REG             "%016lx"
1553 #define REGS_PER_LINE   4
1554 #else
1555 #define REG             "%08lx"
1556 #define REGS_PER_LINE   8
1557 #endif
1558 
1559 static void __show_regs(struct pt_regs *regs)
1560 {
1561         int i, trap;
1562 
1563         printk("NIP:  "REG" LR: "REG" CTR: "REG"\n",
1564                regs->nip, regs->link, regs->ctr);
1565         printk("REGS: %px TRAP: %04lx   %s  (%s)\n",
1566                regs, regs->trap, print_tainted(), init_utsname()->release);
1567         printk("MSR:  "REG" ", regs->msr);
1568         print_msr_bits(regs->msr);
1569         pr_cont("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1570         trap = TRAP(regs);
1571         if (!trap_is_syscall(regs) && cpu_has_feature(CPU_FTR_CFAR))
1572                 pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1573         if (trap == INTERRUPT_MACHINE_CHECK ||
1574             trap == INTERRUPT_DATA_STORAGE ||
1575             trap == INTERRUPT_ALIGNMENT) {
1576                 if (IS_ENABLED(CONFIG_BOOKE))
1577                         pr_cont("DEAR: "REG" ESR: "REG" ", regs->dear, regs->esr);
1578                 else
1579                         pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1580         }
1581 
1582 #ifdef CONFIG_PPC64
1583         pr_cont("IRQMASK: %lx ", regs->softe);
1584 #endif
1585 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1586         if (MSR_TM_ACTIVE(regs->msr))
1587                 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1588 #endif
1589 
1590         for (i = 0;  i < 32;  i++) {
1591                 if ((i % REGS_PER_LINE) == 0)
1592                         pr_cont("\nGPR%02d: ", i);
1593                 pr_cont(REG " ", regs->gpr[i]);
1594         }
1595         pr_cont("\n");
1596         /*
1597          * Lookup NIP late so we have the best change of getting the
1598          * above info out without failing
1599          */
1600         if (IS_ENABLED(CONFIG_KALLSYMS)) {
1601                 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1602                 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1603         }
1604 }
1605 
1606 void show_regs(struct pt_regs *regs)
1607 {
1608         show_regs_print_info(KERN_DEFAULT);
1609         __show_regs(regs);
1610         show_stack(current, (unsigned long *) regs->gpr[1], KERN_DEFAULT);
1611         if (!user_mode(regs))
1612                 show_instructions(regs);
1613 }
1614 
1615 void flush_thread(void)
1616 {
1617 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1618         flush_ptrace_hw_breakpoint(current);
1619 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1620         set_debug_reg_defaults(&current->thread);
1621 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1622 }
1623 
1624 void arch_setup_new_exec(void)
1625 {
1626 
1627 #ifdef CONFIG_PPC_BOOK3S_64
1628         if (!radix_enabled())
1629                 hash__setup_new_exec();
1630 #endif
1631         /*
1632          * If we exec out of a kernel thread then thread.regs will not be
1633          * set.  Do it now.
1634          */
1635         if (!current->thread.regs) {
1636                 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1637                 current->thread.regs = regs - 1;
1638         }
1639 
1640 #ifdef CONFIG_PPC_MEM_KEYS
1641         current->thread.regs->amr  = default_amr;
1642         current->thread.regs->iamr  = default_iamr;
1643 #endif
1644 
1645 #ifdef CONFIG_PPC_BOOK3S_64
1646         if (cpu_has_feature(CPU_FTR_ARCH_31)) {
1647                 current->thread.dexcr = current->thread.dexcr_onexec;
1648                 mtspr(SPRN_DEXCR, current->thread.dexcr);
1649         }
1650 #endif /* CONFIG_PPC_BOOK3S_64 */
1651 }
1652 
1653 #ifdef CONFIG_PPC64
1654 /*
1655  * Assign a TIDR (thread ID) for task @t and set it in the thread
1656  * structure. For now, we only support setting TIDR for 'current' task.
1657  *
1658  * Since the TID value is a truncated form of it PID, it is possible
1659  * (but unlikely) for 2 threads to have the same TID. In the unlikely event
1660  * that 2 threads share the same TID and are waiting, one of the following
1661  * cases will happen:
1662  *
1663  * 1. The correct thread is running, the wrong thread is not
1664  * In this situation, the correct thread is woken and proceeds to pass its
1665  * condition check.
1666  *
1667  * 2. Neither threads are running
1668  * In this situation, neither thread will be woken. When scheduled, the waiting
1669  * threads will execute either a wait, which will return immediately, followed
1670  * by a condition check, which will pass for the correct thread and fail
1671  * for the wrong thread, or they will execute the condition check immediately.
1672  *
1673  * 3. The wrong thread is running, the correct thread is not
1674  * The wrong thread will be woken, but will fail its condition check and
1675  * re-execute wait. The correct thread, when scheduled, will execute either
1676  * its condition check (which will pass), or wait, which returns immediately
1677  * when called the first time after the thread is scheduled, followed by its
1678  * condition check (which will pass).
1679  *
1680  * 4. Both threads are running
1681  * Both threads will be woken. The wrong thread will fail its condition check
1682  * and execute another wait, while the correct thread will pass its condition
1683  * check.
1684  *
1685  * @t: the task to set the thread ID for
1686  */
1687 int set_thread_tidr(struct task_struct *t)
1688 {
1689         if (!cpu_has_feature(CPU_FTR_P9_TIDR))
1690                 return -EINVAL;
1691 
1692         if (t != current)
1693                 return -EINVAL;
1694 
1695         if (t->thread.tidr)
1696                 return 0;
1697 
1698         t->thread.tidr = (u16)task_pid_nr(t);
1699         mtspr(SPRN_TIDR, t->thread.tidr);
1700 
1701         return 0;
1702 }
1703 EXPORT_SYMBOL_GPL(set_thread_tidr);
1704 
1705 #endif /* CONFIG_PPC64 */
1706 
1707 /*
1708  * this gets called so that we can store coprocessor state into memory and
1709  * copy the current task into the new thread.
1710  */
1711 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1712 {
1713         flush_all_to_thread(src);
1714         /*
1715          * Flush TM state out so we can copy it.  __switch_to_tm() does this
1716          * flush but it removes the checkpointed state from the current CPU and
1717          * transitions the CPU out of TM mode.  Hence we need to call
1718          * tm_recheckpoint_new_task() (on the same task) to restore the
1719          * checkpointed state back and the TM mode.
1720          *
1721          * Can't pass dst because it isn't ready. Doesn't matter, passing
1722          * dst is only important for __switch_to()
1723          */
1724         __switch_to_tm(src, src);
1725 
1726         *dst = *src;
1727 
1728         clear_task_ebb(dst);
1729 
1730         return 0;
1731 }
1732 
1733 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1734 {
1735 #ifdef CONFIG_PPC_64S_HASH_MMU
1736         unsigned long sp_vsid;
1737         unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1738 
1739         if (radix_enabled())
1740                 return;
1741 
1742         if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1743                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1744                         << SLB_VSID_SHIFT_1T;
1745         else
1746                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1747                         << SLB_VSID_SHIFT;
1748         sp_vsid |= SLB_VSID_KERNEL | llp;
1749         p->thread.ksp_vsid = sp_vsid;
1750 #endif
1751 }
1752 
1753 /*
1754  * Copy a thread..
1755  */
1756 
1757 /*
1758  * Copy architecture-specific thread state
1759  */
1760 int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
1761 {
1762         struct pt_regs *kregs; /* Switch frame regs */
1763         extern void ret_from_fork(void);
1764         extern void ret_from_fork_scv(void);
1765         extern void ret_from_kernel_user_thread(void);
1766         extern void start_kernel_thread(void);
1767         void (*f)(void);
1768         unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1769 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1770         int i;
1771 #endif
1772 
1773         klp_init_thread_info(p);
1774 
1775         if (unlikely(p->flags & PF_KTHREAD)) {
1776                 /* kernel thread */
1777 
1778                 /* Create initial minimum stack frame. */
1779                 sp -= STACK_FRAME_MIN_SIZE;
1780                 ((unsigned long *)sp)[0] = 0;
1781 
1782                 f = start_kernel_thread;
1783                 p->thread.regs = NULL;  /* no user register state */
1784                 clear_tsk_compat_task(p);
1785         } else {
1786                 /* user thread */
1787                 struct pt_regs *childregs;
1788 
1789                 /* Create initial user return stack frame. */
1790                 sp -= STACK_USER_INT_FRAME_SIZE;
1791                 *(unsigned long *)(sp + STACK_INT_FRAME_MARKER) = STACK_FRAME_REGS_MARKER;
1792 
1793                 childregs = (struct pt_regs *)(sp + STACK_INT_FRAME_REGS);
1794 
1795                 if (unlikely(args->fn)) {
1796                         /*
1797                          * A user space thread, but it first runs a kernel
1798                          * thread, and then returns as though it had called
1799                          * execve rather than fork, so user regs will be
1800                          * filled in (e.g., by kernel_execve()).
1801                          */
1802                         ((unsigned long *)sp)[0] = 0;
1803                         memset(childregs, 0, sizeof(struct pt_regs));
1804 #ifdef CONFIG_PPC64
1805                         childregs->softe = IRQS_ENABLED;
1806 #endif
1807                         f = ret_from_kernel_user_thread;
1808                 } else {
1809                         struct pt_regs *regs = current_pt_regs();
1810                         unsigned long clone_flags = args->flags;
1811                         unsigned long usp = args->stack;
1812 
1813                         /* Copy registers */
1814                         *childregs = *regs;
1815                         if (usp)
1816                                 childregs->gpr[1] = usp;
1817                         ((unsigned long *)sp)[0] = childregs->gpr[1];
1818 #ifdef CONFIG_PPC_IRQ_SOFT_MASK_DEBUG
1819                         WARN_ON_ONCE(childregs->softe != IRQS_ENABLED);
1820 #endif
1821                         if (clone_flags & CLONE_SETTLS) {
1822                                 unsigned long tls = args->tls;
1823 
1824                                 if (!is_32bit_task())
1825                                         childregs->gpr[13] = tls;
1826                                 else
1827                                         childregs->gpr[2] = tls;
1828                         }
1829 
1830                         if (trap_is_scv(regs))
1831                                 f = ret_from_fork_scv;
1832                         else
1833                                 f = ret_from_fork;
1834                 }
1835 
1836                 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1837                 p->thread.regs = childregs;
1838         }
1839 
1840         /*
1841          * The way this works is that at some point in the future
1842          * some task will call _switch to switch to the new task.
1843          * That will pop off the stack frame created below and start
1844          * the new task running at ret_from_fork.  The new task will
1845          * do some house keeping and then return from the fork or clone
1846          * system call, using the stack frame created above.
1847          */
1848         ((unsigned long *)sp)[STACK_FRAME_LR_SAVE] = (unsigned long)f;
1849         sp -= STACK_SWITCH_FRAME_SIZE;
1850         ((unsigned long *)sp)[0] = sp + STACK_SWITCH_FRAME_SIZE;
1851         kregs = (struct pt_regs *)(sp + STACK_SWITCH_FRAME_REGS);
1852         kregs->nip = ppc_function_entry(f);
1853         if (unlikely(args->fn)) {
1854                 /*
1855                  * Put kthread fn, arg parameters in non-volatile GPRs in the
1856                  * switch frame so they are loaded by _switch before it returns
1857                  * to ret_from_kernel_thread.
1858                  */
1859                 kregs->gpr[14] = ppc_function_entry((void *)args->fn);
1860                 kregs->gpr[15] = (unsigned long)args->fn_arg;
1861         }
1862         p->thread.ksp = sp;
1863 
1864 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1865         for (i = 0; i < nr_wp_slots(); i++)
1866                 p->thread.ptrace_bps[i] = NULL;
1867 #endif
1868 
1869 #ifdef CONFIG_PPC_FPU_REGS
1870         p->thread.fp_save_area = NULL;
1871 #endif
1872 #ifdef CONFIG_ALTIVEC
1873         p->thread.vr_save_area = NULL;
1874 #endif
1875 #if defined(CONFIG_PPC_BOOK3S_32) && defined(CONFIG_PPC_KUAP)
1876         p->thread.kuap = KUAP_NONE;
1877 #endif
1878 #if defined(CONFIG_BOOKE) && defined(CONFIG_PPC_KUAP)
1879         p->thread.pid = MMU_NO_CONTEXT;
1880 #endif
1881 
1882         setup_ksp_vsid(p, sp);
1883 
1884 #ifdef CONFIG_PPC64 
1885         if (cpu_has_feature(CPU_FTR_DSCR)) {
1886                 p->thread.dscr_inherit = current->thread.dscr_inherit;
1887                 p->thread.dscr = mfspr(SPRN_DSCR);
1888         }
1889 
1890         p->thread.tidr = 0;
1891 #endif
1892 #ifdef CONFIG_PPC_BOOK3S_64
1893         if (cpu_has_feature(CPU_FTR_DEXCR_NPHIE))
1894                 p->thread.hashkeyr = current->thread.hashkeyr;
1895 
1896         if (cpu_has_feature(CPU_FTR_ARCH_31))
1897                 p->thread.dexcr = mfspr(SPRN_DEXCR);
1898 #endif
1899         return 0;
1900 }
1901 
1902 void preload_new_slb_context(unsigned long start, unsigned long sp);
1903 
1904 /*
1905  * Set up a thread for executing a new program
1906  */
1907 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1908 {
1909 #ifdef CONFIG_PPC64
1910         unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1911 
1912         if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled())
1913                 preload_new_slb_context(start, sp);
1914 #endif
1915 
1916 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1917         /*
1918          * Clear any transactional state, we're exec()ing. The cause is
1919          * not important as there will never be a recheckpoint so it's not
1920          * user visible.
1921          */
1922         if (MSR_TM_SUSPENDED(mfmsr()))
1923                 tm_reclaim_current(0);
1924 #endif
1925 
1926         memset(&regs->gpr[1], 0, sizeof(regs->gpr) - sizeof(regs->gpr[0]));
1927         regs->ctr = 0;
1928         regs->link = 0;
1929         regs->xer = 0;
1930         regs->ccr = 0;
1931         regs->gpr[1] = sp;
1932 
1933 #ifdef CONFIG_PPC32
1934         regs->mq = 0;
1935         regs->nip = start;
1936         regs->msr = MSR_USER;
1937 #else
1938         if (!is_32bit_task()) {
1939                 unsigned long entry;
1940 
1941                 if (is_elf2_task()) {
1942                         /* Look ma, no function descriptors! */
1943                         entry = start;
1944 
1945                         /*
1946                          * Ulrich says:
1947                          *   The latest iteration of the ABI requires that when
1948                          *   calling a function (at its global entry point),
1949                          *   the caller must ensure r12 holds the entry point
1950                          *   address (so that the function can quickly
1951                          *   establish addressability).
1952                          */
1953                         regs->gpr[12] = start;
1954                         /* Make sure that's restored on entry to userspace. */
1955                         set_thread_flag(TIF_RESTOREALL);
1956                 } else {
1957                         unsigned long toc;
1958 
1959                         /* start is a relocated pointer to the function
1960                          * descriptor for the elf _start routine.  The first
1961                          * entry in the function descriptor is the entry
1962                          * address of _start and the second entry is the TOC
1963                          * value we need to use.
1964                          */
1965                         __get_user(entry, (unsigned long __user *)start);
1966                         __get_user(toc, (unsigned long __user *)start+1);
1967 
1968                         /* Check whether the e_entry function descriptor entries
1969                          * need to be relocated before we can use them.
1970                          */
1971                         if (load_addr != 0) {
1972                                 entry += load_addr;
1973                                 toc   += load_addr;
1974                         }
1975                         regs->gpr[2] = toc;
1976                 }
1977                 regs_set_return_ip(regs, entry);
1978                 regs_set_return_msr(regs, MSR_USER64);
1979         } else {
1980                 regs->gpr[2] = 0;
1981                 regs_set_return_ip(regs, start);
1982                 regs_set_return_msr(regs, MSR_USER32);
1983         }
1984 
1985 #endif
1986 #ifdef CONFIG_VSX
1987         current->thread.used_vsr = 0;
1988 #endif
1989         current->thread.load_slb = 0;
1990         current->thread.load_fp = 0;
1991 #ifdef CONFIG_PPC_FPU_REGS
1992         memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1993         current->thread.fp_save_area = NULL;
1994 #endif
1995 #ifdef CONFIG_ALTIVEC
1996         memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1997         current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1998         current->thread.vr_save_area = NULL;
1999         current->thread.vrsave = 0;
2000         current->thread.used_vr = 0;
2001         current->thread.load_vec = 0;
2002 #endif /* CONFIG_ALTIVEC */
2003 #ifdef CONFIG_SPE
2004         memset(current->thread.evr, 0, sizeof(current->thread.evr));
2005         current->thread.acc = 0;
2006         current->thread.spefscr = 0;
2007         current->thread.used_spe = 0;
2008 #endif /* CONFIG_SPE */
2009 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2010         current->thread.tm_tfhar = 0;
2011         current->thread.tm_texasr = 0;
2012         current->thread.tm_tfiar = 0;
2013         current->thread.load_tm = 0;
2014 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
2015 #ifdef CONFIG_PPC_BOOK3S_64
2016         if (cpu_has_feature(CPU_FTR_DEXCR_NPHIE)) {
2017                 current->thread.hashkeyr = get_random_long();
2018                 mtspr(SPRN_HASHKEYR, current->thread.hashkeyr);
2019         }
2020 #endif /* CONFIG_PPC_BOOK3S_64 */
2021 }
2022 EXPORT_SYMBOL(start_thread);
2023 
2024 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
2025                 | PR_FP_EXC_RES | PR_FP_EXC_INV)
2026 
2027 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
2028 {
2029         struct pt_regs *regs = tsk->thread.regs;
2030 
2031         /* This is a bit hairy.  If we are an SPE enabled  processor
2032          * (have embedded fp) we store the IEEE exception enable flags in
2033          * fpexc_mode.  fpexc_mode is also used for setting FP exception
2034          * mode (asyn, precise, disabled) for 'Classic' FP. */
2035         if (val & PR_FP_EXC_SW_ENABLE) {
2036                 if (cpu_has_feature(CPU_FTR_SPE)) {
2037                         /*
2038                          * When the sticky exception bits are set
2039                          * directly by userspace, it must call prctl
2040                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
2041                          * in the existing prctl settings) or
2042                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
2043                          * the bits being set).  <fenv.h> functions
2044                          * saving and restoring the whole
2045                          * floating-point environment need to do so
2046                          * anyway to restore the prctl settings from
2047                          * the saved environment.
2048                          */
2049 #ifdef CONFIG_SPE
2050                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
2051                         tsk->thread.fpexc_mode = val &
2052                                 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
2053 #endif
2054                         return 0;
2055                 } else {
2056                         return -EINVAL;
2057                 }
2058         }
2059 
2060         /* on a CONFIG_SPE this does not hurt us.  The bits that
2061          * __pack_fe01 use do not overlap with bits used for
2062          * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
2063          * on CONFIG_SPE implementations are reserved so writing to
2064          * them does not change anything */
2065         if (val > PR_FP_EXC_PRECISE)
2066                 return -EINVAL;
2067         tsk->thread.fpexc_mode = __pack_fe01(val);
2068         if (regs != NULL && (regs->msr & MSR_FP) != 0) {
2069                 regs_set_return_msr(regs, (regs->msr & ~(MSR_FE0|MSR_FE1))
2070                                                 | tsk->thread.fpexc_mode);
2071         }
2072         return 0;
2073 }
2074 
2075 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
2076 {
2077         unsigned int val = 0;
2078 
2079         if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) {
2080                 if (cpu_has_feature(CPU_FTR_SPE)) {
2081                         /*
2082                          * When the sticky exception bits are set
2083                          * directly by userspace, it must call prctl
2084                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
2085                          * in the existing prctl settings) or
2086                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
2087                          * the bits being set).  <fenv.h> functions
2088                          * saving and restoring the whole
2089                          * floating-point environment need to do so
2090                          * anyway to restore the prctl settings from
2091                          * the saved environment.
2092                          */
2093 #ifdef CONFIG_SPE
2094                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
2095                         val = tsk->thread.fpexc_mode;
2096 #endif
2097                 } else
2098                         return -EINVAL;
2099         } else {
2100                 val = __unpack_fe01(tsk->thread.fpexc_mode);
2101         }
2102         return put_user(val, (unsigned int __user *) adr);
2103 }
2104 
2105 int set_endian(struct task_struct *tsk, unsigned int val)
2106 {
2107         struct pt_regs *regs = tsk->thread.regs;
2108 
2109         if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
2110             (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
2111                 return -EINVAL;
2112 
2113         if (regs == NULL)
2114                 return -EINVAL;
2115 
2116         if (val == PR_ENDIAN_BIG)
2117                 regs_set_return_msr(regs, regs->msr & ~MSR_LE);
2118         else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
2119                 regs_set_return_msr(regs, regs->msr | MSR_LE);
2120         else
2121                 return -EINVAL;
2122 
2123         return 0;
2124 }
2125 
2126 int get_endian(struct task_struct *tsk, unsigned long adr)
2127 {
2128         struct pt_regs *regs = tsk->thread.regs;
2129         unsigned int val;
2130 
2131         if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
2132             !cpu_has_feature(CPU_FTR_REAL_LE))
2133                 return -EINVAL;
2134 
2135         if (regs == NULL)
2136                 return -EINVAL;
2137 
2138         if (regs->msr & MSR_LE) {
2139                 if (cpu_has_feature(CPU_FTR_REAL_LE))
2140                         val = PR_ENDIAN_LITTLE;
2141                 else
2142                         val = PR_ENDIAN_PPC_LITTLE;
2143         } else
2144                 val = PR_ENDIAN_BIG;
2145 
2146         return put_user(val, (unsigned int __user *)adr);
2147 }
2148 
2149 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
2150 {
2151         tsk->thread.align_ctl = val;
2152         return 0;
2153 }
2154 
2155 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
2156 {
2157         return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
2158 }
2159 
2160 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
2161                                   unsigned long nbytes)
2162 {
2163         unsigned long stack_page;
2164         unsigned long cpu = task_cpu(p);
2165 
2166         if (!hardirq_ctx[cpu] || !softirq_ctx[cpu])
2167                 return 0;
2168 
2169         stack_page = (unsigned long)hardirq_ctx[cpu];
2170         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2171                 return 1;
2172 
2173         stack_page = (unsigned long)softirq_ctx[cpu];
2174         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2175                 return 1;
2176 
2177         return 0;
2178 }
2179 
2180 static inline int valid_emergency_stack(unsigned long sp, struct task_struct *p,
2181                                         unsigned long nbytes)
2182 {
2183 #ifdef CONFIG_PPC64
2184         unsigned long stack_page;
2185         unsigned long cpu = task_cpu(p);
2186 
2187         if (!paca_ptrs)
2188                 return 0;
2189 
2190         if (!paca_ptrs[cpu]->emergency_sp)
2191                 return 0;
2192 
2193 # ifdef CONFIG_PPC_BOOK3S_64
2194         if (!paca_ptrs[cpu]->nmi_emergency_sp || !paca_ptrs[cpu]->mc_emergency_sp)
2195                 return 0;
2196 #endif
2197 
2198         stack_page = (unsigned long)paca_ptrs[cpu]->emergency_sp - THREAD_SIZE;
2199         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2200                 return 1;
2201 
2202 # ifdef CONFIG_PPC_BOOK3S_64
2203         stack_page = (unsigned long)paca_ptrs[cpu]->nmi_emergency_sp - THREAD_SIZE;
2204         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2205                 return 1;
2206 
2207         stack_page = (unsigned long)paca_ptrs[cpu]->mc_emergency_sp - THREAD_SIZE;
2208         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2209                 return 1;
2210 # endif
2211 #endif
2212 
2213         return 0;
2214 }
2215 
2216 /*
2217  * validate the stack frame of a particular minimum size, used for when we are
2218  * looking at a certain object in the stack beyond the minimum.
2219  */
2220 int validate_sp_size(unsigned long sp, struct task_struct *p,
2221                      unsigned long nbytes)
2222 {
2223         unsigned long stack_page = (unsigned long)task_stack_page(p);
2224 
2225         if (sp < THREAD_SIZE)
2226                 return 0;
2227 
2228         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2229                 return 1;
2230 
2231         if (valid_irq_stack(sp, p, nbytes))
2232                 return 1;
2233 
2234         return valid_emergency_stack(sp, p, nbytes);
2235 }
2236 
2237 int validate_sp(unsigned long sp, struct task_struct *p)
2238 {
2239         return validate_sp_size(sp, p, STACK_FRAME_MIN_SIZE);
2240 }
2241 
2242 static unsigned long ___get_wchan(struct task_struct *p)
2243 {
2244         unsigned long ip, sp;
2245         int count = 0;
2246 
2247         sp = p->thread.ksp;
2248         if (!validate_sp(sp, p))
2249                 return 0;
2250 
2251         do {
2252                 sp = READ_ONCE_NOCHECK(*(unsigned long *)sp);
2253                 if (!validate_sp(sp, p) || task_is_running(p))
2254                         return 0;
2255                 if (count > 0) {
2256                         ip = READ_ONCE_NOCHECK(((unsigned long *)sp)[STACK_FRAME_LR_SAVE]);
2257                         if (!in_sched_functions(ip))
2258                                 return ip;
2259                 }
2260         } while (count++ < 16);
2261         return 0;
2262 }
2263 
2264 unsigned long __get_wchan(struct task_struct *p)
2265 {
2266         unsigned long ret;
2267 
2268         if (!try_get_task_stack(p))
2269                 return 0;
2270 
2271         ret = ___get_wchan(p);
2272 
2273         put_task_stack(p);
2274 
2275         return ret;
2276 }
2277 
2278 static bool empty_user_regs(struct pt_regs *regs, struct task_struct *tsk)
2279 {
2280         unsigned long stack_page;
2281 
2282         // A non-empty pt_regs should never have a zero MSR or TRAP value.
2283         if (regs->msr || regs->trap)
2284                 return false;
2285 
2286         // Check it sits at the very base of the stack
2287         stack_page = (unsigned long)task_stack_page(tsk);
2288         if ((unsigned long)(regs + 1) != stack_page + THREAD_SIZE)
2289                 return false;
2290 
2291         return true;
2292 }
2293 
2294 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2295 
2296 void __no_sanitize_address show_stack(struct task_struct *tsk,
2297                                       unsigned long *stack,
2298                                       const char *loglvl)
2299 {
2300         unsigned long sp, ip, lr, newsp;
2301         int count = 0;
2302         int firstframe = 1;
2303         unsigned long ret_addr;
2304         int ftrace_idx = 0;
2305 
2306         if (tsk == NULL)
2307                 tsk = current;
2308 
2309         if (!try_get_task_stack(tsk))
2310                 return;
2311 
2312         sp = (unsigned long) stack;
2313         if (sp == 0) {
2314                 if (tsk == current)
2315                         sp = current_stack_frame();
2316                 else
2317                         sp = tsk->thread.ksp;
2318         }
2319 
2320         lr = 0;
2321         printk("%sCall Trace:\n", loglvl);
2322         do {
2323                 if (!validate_sp(sp, tsk))
2324                         break;
2325 
2326                 stack = (unsigned long *) sp;
2327                 newsp = stack[0];
2328                 ip = stack[STACK_FRAME_LR_SAVE];
2329                 if (!firstframe || ip != lr) {
2330                         printk("%s["REG"] ["REG"] %pS",
2331                                 loglvl, sp, ip, (void *)ip);
2332                         ret_addr = ftrace_graph_ret_addr(current,
2333                                                 &ftrace_idx, ip, stack);
2334                         if (ret_addr != ip)
2335                                 pr_cont(" (%pS)", (void *)ret_addr);
2336                         if (firstframe)
2337                                 pr_cont(" (unreliable)");
2338                         pr_cont("\n");
2339                 }
2340                 firstframe = 0;
2341 
2342                 /*
2343                  * See if this is an exception frame.
2344                  * We look for the "regs" marker in the current frame.
2345                  *
2346                  * STACK_SWITCH_FRAME_SIZE being the smallest frame that
2347                  * could hold a pt_regs, if that does not fit then it can't
2348                  * have regs.
2349                  */
2350                 if (validate_sp_size(sp, tsk, STACK_SWITCH_FRAME_SIZE)
2351                     && stack[STACK_INT_FRAME_MARKER_LONGS] == STACK_FRAME_REGS_MARKER) {
2352                         struct pt_regs *regs = (struct pt_regs *)
2353                                 (sp + STACK_INT_FRAME_REGS);
2354 
2355                         lr = regs->link;
2356                         printk("%s--- interrupt: %lx at %pS\n",
2357                                loglvl, regs->trap, (void *)regs->nip);
2358 
2359                         // Detect the case of an empty pt_regs at the very base
2360                         // of the stack and suppress showing it in full.
2361                         if (!empty_user_regs(regs, tsk)) {
2362                                 __show_regs(regs);
2363                                 printk("%s--- interrupt: %lx\n", loglvl, regs->trap);
2364                         }
2365 
2366                         firstframe = 1;
2367                 }
2368 
2369                 sp = newsp;
2370         } while (count++ < kstack_depth_to_print);
2371 
2372         put_task_stack(tsk);
2373 }
2374 
2375 #ifdef CONFIG_PPC64
2376 /* Called with hard IRQs off */
2377 void notrace __ppc64_runlatch_on(void)
2378 {
2379         struct thread_info *ti = current_thread_info();
2380 
2381         if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2382                 /*
2383                  * Least significant bit (RUN) is the only writable bit of
2384                  * the CTRL register, so we can avoid mfspr. 2.06 is not the
2385                  * earliest ISA where this is the case, but it's convenient.
2386                  */
2387                 mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2388         } else {
2389                 unsigned long ctrl;
2390 
2391                 /*
2392                  * Some architectures (e.g., Cell) have writable fields other
2393                  * than RUN, so do the read-modify-write.
2394                  */
2395                 ctrl = mfspr(SPRN_CTRLF);
2396                 ctrl |= CTRL_RUNLATCH;
2397                 mtspr(SPRN_CTRLT, ctrl);
2398         }
2399 
2400         ti->local_flags |= _TLF_RUNLATCH;
2401 }
2402 
2403 /* Called with hard IRQs off */
2404 void notrace __ppc64_runlatch_off(void)
2405 {
2406         struct thread_info *ti = current_thread_info();
2407 
2408         ti->local_flags &= ~_TLF_RUNLATCH;
2409 
2410         if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2411                 mtspr(SPRN_CTRLT, 0);
2412         } else {
2413                 unsigned long ctrl;
2414 
2415                 ctrl = mfspr(SPRN_CTRLF);
2416                 ctrl &= ~CTRL_RUNLATCH;
2417                 mtspr(SPRN_CTRLT, ctrl);
2418         }
2419 }
2420 #endif /* CONFIG_PPC64 */
2421 
2422 unsigned long arch_align_stack(unsigned long sp)
2423 {
2424         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2425                 sp -= get_random_u32_below(PAGE_SIZE);
2426         return sp & ~0xf;
2427 }
2428 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php