1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Derived from "arch/i386/kernel/process.c" 4 * Copyright (C) 1995 Linus Torvalds 5 * 6 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and 7 * Paul Mackerras (paulus@cs.anu.edu.au) 8 * 9 * PowerPC version 10 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 11 */ 12 13 #include <linux/errno.h> 14 #include <linux/sched.h> 15 #include <linux/sched/debug.h> 16 #include <linux/sched/task.h> 17 #include <linux/sched/task_stack.h> 18 #include <linux/kernel.h> 19 #include <linux/mm.h> 20 #include <linux/smp.h> 21 #include <linux/stddef.h> 22 #include <linux/unistd.h> 23 #include <linux/ptrace.h> 24 #include <linux/slab.h> 25 #include <linux/user.h> 26 #include <linux/elf.h> 27 #include <linux/prctl.h> 28 #include <linux/init_task.h> 29 #include <linux/export.h> 30 #include <linux/kallsyms.h> 31 #include <linux/mqueue.h> 32 #include <linux/hardirq.h> 33 #include <linux/utsname.h> 34 #include <linux/ftrace.h> 35 #include <linux/kernel_stat.h> 36 #include <linux/personality.h> 37 #include <linux/hw_breakpoint.h> 38 #include <linux/uaccess.h> 39 #include <linux/pkeys.h> 40 #include <linux/seq_buf.h> 41 42 #include <asm/interrupt.h> 43 #include <asm/io.h> 44 #include <asm/processor.h> 45 #include <asm/mmu.h> 46 #include <asm/machdep.h> 47 #include <asm/time.h> 48 #include <asm/runlatch.h> 49 #include <asm/syscalls.h> 50 #include <asm/switch_to.h> 51 #include <asm/tm.h> 52 #include <asm/debug.h> 53 #ifdef CONFIG_PPC64 54 #include <asm/firmware.h> 55 #include <asm/hw_irq.h> 56 #endif 57 #include <asm/code-patching.h> 58 #include <asm/exec.h> 59 #include <asm/livepatch.h> 60 #include <asm/cpu_has_feature.h> 61 #include <asm/asm-prototypes.h> 62 #include <asm/stacktrace.h> 63 #include <asm/hw_breakpoint.h> 64 65 #include <linux/kprobes.h> 66 #include <linux/kdebug.h> 67 68 /* Transactional Memory debug */ 69 #ifdef TM_DEBUG_SW 70 #define TM_DEBUG(x...) printk(KERN_INFO x) 71 #else 72 #define TM_DEBUG(x...) do { } while(0) 73 #endif 74 75 extern unsigned long _get_SP(void); 76 77 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 78 /* 79 * Are we running in "Suspend disabled" mode? If so we have to block any 80 * sigreturn that would get us into suspended state, and we also warn in some 81 * other paths that we should never reach with suspend disabled. 82 */ 83 bool tm_suspend_disabled __ro_after_init = false; 84 85 static void check_if_tm_restore_required(struct task_struct *tsk) 86 { 87 /* 88 * If we are saving the current thread's registers, and the 89 * thread is in a transactional state, set the TIF_RESTORE_TM 90 * bit so that we know to restore the registers before 91 * returning to userspace. 92 */ 93 if (tsk == current && tsk->thread.regs && 94 MSR_TM_ACTIVE(tsk->thread.regs->msr) && 95 !test_thread_flag(TIF_RESTORE_TM)) { 96 regs_set_return_msr(&tsk->thread.ckpt_regs, 97 tsk->thread.regs->msr); 98 set_thread_flag(TIF_RESTORE_TM); 99 } 100 } 101 102 #else 103 static inline void check_if_tm_restore_required(struct task_struct *tsk) { } 104 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 105 106 bool strict_msr_control; 107 EXPORT_SYMBOL(strict_msr_control); 108 109 static int __init enable_strict_msr_control(char *str) 110 { 111 strict_msr_control = true; 112 pr_info("Enabling strict facility control\n"); 113 114 return 0; 115 } 116 early_param("ppc_strict_facility_enable", enable_strict_msr_control); 117 118 /* notrace because it's called by restore_math */ 119 unsigned long notrace msr_check_and_set(unsigned long bits) 120 { 121 unsigned long oldmsr = mfmsr(); 122 unsigned long newmsr; 123 124 newmsr = oldmsr | bits; 125 126 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 127 newmsr |= MSR_VSX; 128 129 if (oldmsr != newmsr) 130 newmsr = mtmsr_isync_irqsafe(newmsr); 131 132 return newmsr; 133 } 134 EXPORT_SYMBOL_GPL(msr_check_and_set); 135 136 /* notrace because it's called by restore_math */ 137 void notrace __msr_check_and_clear(unsigned long bits) 138 { 139 unsigned long oldmsr = mfmsr(); 140 unsigned long newmsr; 141 142 newmsr = oldmsr & ~bits; 143 144 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 145 newmsr &= ~MSR_VSX; 146 147 if (oldmsr != newmsr) 148 mtmsr_isync_irqsafe(newmsr); 149 } 150 EXPORT_SYMBOL(__msr_check_and_clear); 151 152 #ifdef CONFIG_PPC_FPU 153 static void __giveup_fpu(struct task_struct *tsk) 154 { 155 unsigned long msr; 156 157 save_fpu(tsk); 158 msr = tsk->thread.regs->msr; 159 msr &= ~(MSR_FP|MSR_FE0|MSR_FE1); 160 if (cpu_has_feature(CPU_FTR_VSX)) 161 msr &= ~MSR_VSX; 162 regs_set_return_msr(tsk->thread.regs, msr); 163 } 164 165 void giveup_fpu(struct task_struct *tsk) 166 { 167 check_if_tm_restore_required(tsk); 168 169 msr_check_and_set(MSR_FP); 170 __giveup_fpu(tsk); 171 msr_check_and_clear(MSR_FP); 172 } 173 EXPORT_SYMBOL(giveup_fpu); 174 175 /* 176 * Make sure the floating-point register state in the 177 * the thread_struct is up to date for task tsk. 178 */ 179 void flush_fp_to_thread(struct task_struct *tsk) 180 { 181 if (tsk->thread.regs) { 182 /* 183 * We need to disable preemption here because if we didn't, 184 * another process could get scheduled after the regs->msr 185 * test but before we have finished saving the FP registers 186 * to the thread_struct. That process could take over the 187 * FPU, and then when we get scheduled again we would store 188 * bogus values for the remaining FP registers. 189 */ 190 preempt_disable(); 191 if (tsk->thread.regs->msr & MSR_FP) { 192 /* 193 * This should only ever be called for current or 194 * for a stopped child process. Since we save away 195 * the FP register state on context switch, 196 * there is something wrong if a stopped child appears 197 * to still have its FP state in the CPU registers. 198 */ 199 BUG_ON(tsk != current); 200 giveup_fpu(tsk); 201 } 202 preempt_enable(); 203 } 204 } 205 EXPORT_SYMBOL_GPL(flush_fp_to_thread); 206 207 void enable_kernel_fp(void) 208 { 209 unsigned long cpumsr; 210 211 WARN_ON(preemptible()); 212 213 cpumsr = msr_check_and_set(MSR_FP); 214 215 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) { 216 check_if_tm_restore_required(current); 217 /* 218 * If a thread has already been reclaimed then the 219 * checkpointed registers are on the CPU but have definitely 220 * been saved by the reclaim code. Don't need to and *cannot* 221 * giveup as this would save to the 'live' structure not the 222 * checkpointed structure. 223 */ 224 if (!MSR_TM_ACTIVE(cpumsr) && 225 MSR_TM_ACTIVE(current->thread.regs->msr)) 226 return; 227 __giveup_fpu(current); 228 } 229 } 230 EXPORT_SYMBOL(enable_kernel_fp); 231 #else 232 static inline void __giveup_fpu(struct task_struct *tsk) { } 233 #endif /* CONFIG_PPC_FPU */ 234 235 #ifdef CONFIG_ALTIVEC 236 static void __giveup_altivec(struct task_struct *tsk) 237 { 238 unsigned long msr; 239 240 save_altivec(tsk); 241 msr = tsk->thread.regs->msr; 242 msr &= ~MSR_VEC; 243 if (cpu_has_feature(CPU_FTR_VSX)) 244 msr &= ~MSR_VSX; 245 regs_set_return_msr(tsk->thread.regs, msr); 246 } 247 248 void giveup_altivec(struct task_struct *tsk) 249 { 250 check_if_tm_restore_required(tsk); 251 252 msr_check_and_set(MSR_VEC); 253 __giveup_altivec(tsk); 254 msr_check_and_clear(MSR_VEC); 255 } 256 EXPORT_SYMBOL(giveup_altivec); 257 258 void enable_kernel_altivec(void) 259 { 260 unsigned long cpumsr; 261 262 WARN_ON(preemptible()); 263 264 cpumsr = msr_check_and_set(MSR_VEC); 265 266 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) { 267 check_if_tm_restore_required(current); 268 /* 269 * If a thread has already been reclaimed then the 270 * checkpointed registers are on the CPU but have definitely 271 * been saved by the reclaim code. Don't need to and *cannot* 272 * giveup as this would save to the 'live' structure not the 273 * checkpointed structure. 274 */ 275 if (!MSR_TM_ACTIVE(cpumsr) && 276 MSR_TM_ACTIVE(current->thread.regs->msr)) 277 return; 278 __giveup_altivec(current); 279 } 280 } 281 EXPORT_SYMBOL(enable_kernel_altivec); 282 283 /* 284 * Make sure the VMX/Altivec register state in the 285 * the thread_struct is up to date for task tsk. 286 */ 287 void flush_altivec_to_thread(struct task_struct *tsk) 288 { 289 if (tsk->thread.regs) { 290 preempt_disable(); 291 if (tsk->thread.regs->msr & MSR_VEC) { 292 BUG_ON(tsk != current); 293 giveup_altivec(tsk); 294 } 295 preempt_enable(); 296 } 297 } 298 EXPORT_SYMBOL_GPL(flush_altivec_to_thread); 299 #endif /* CONFIG_ALTIVEC */ 300 301 #ifdef CONFIG_VSX 302 static void __giveup_vsx(struct task_struct *tsk) 303 { 304 unsigned long msr = tsk->thread.regs->msr; 305 306 /* 307 * We should never be setting MSR_VSX without also setting 308 * MSR_FP and MSR_VEC 309 */ 310 WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC))); 311 312 /* __giveup_fpu will clear MSR_VSX */ 313 if (msr & MSR_FP) 314 __giveup_fpu(tsk); 315 if (msr & MSR_VEC) 316 __giveup_altivec(tsk); 317 } 318 319 static void giveup_vsx(struct task_struct *tsk) 320 { 321 check_if_tm_restore_required(tsk); 322 323 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 324 __giveup_vsx(tsk); 325 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX); 326 } 327 328 void enable_kernel_vsx(void) 329 { 330 unsigned long cpumsr; 331 332 WARN_ON(preemptible()); 333 334 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 335 336 if (current->thread.regs && 337 (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) { 338 check_if_tm_restore_required(current); 339 /* 340 * If a thread has already been reclaimed then the 341 * checkpointed registers are on the CPU but have definitely 342 * been saved by the reclaim code. Don't need to and *cannot* 343 * giveup as this would save to the 'live' structure not the 344 * checkpointed structure. 345 */ 346 if (!MSR_TM_ACTIVE(cpumsr) && 347 MSR_TM_ACTIVE(current->thread.regs->msr)) 348 return; 349 __giveup_vsx(current); 350 } 351 } 352 EXPORT_SYMBOL(enable_kernel_vsx); 353 354 void flush_vsx_to_thread(struct task_struct *tsk) 355 { 356 if (tsk->thread.regs) { 357 preempt_disable(); 358 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) { 359 BUG_ON(tsk != current); 360 giveup_vsx(tsk); 361 } 362 preempt_enable(); 363 } 364 } 365 EXPORT_SYMBOL_GPL(flush_vsx_to_thread); 366 #endif /* CONFIG_VSX */ 367 368 #ifdef CONFIG_SPE 369 void giveup_spe(struct task_struct *tsk) 370 { 371 check_if_tm_restore_required(tsk); 372 373 msr_check_and_set(MSR_SPE); 374 __giveup_spe(tsk); 375 msr_check_and_clear(MSR_SPE); 376 } 377 EXPORT_SYMBOL(giveup_spe); 378 379 void enable_kernel_spe(void) 380 { 381 WARN_ON(preemptible()); 382 383 msr_check_and_set(MSR_SPE); 384 385 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) { 386 check_if_tm_restore_required(current); 387 __giveup_spe(current); 388 } 389 } 390 EXPORT_SYMBOL(enable_kernel_spe); 391 392 void flush_spe_to_thread(struct task_struct *tsk) 393 { 394 if (tsk->thread.regs) { 395 preempt_disable(); 396 if (tsk->thread.regs->msr & MSR_SPE) { 397 BUG_ON(tsk != current); 398 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 399 giveup_spe(tsk); 400 } 401 preempt_enable(); 402 } 403 } 404 #endif /* CONFIG_SPE */ 405 406 static unsigned long msr_all_available; 407 408 static int __init init_msr_all_available(void) 409 { 410 if (IS_ENABLED(CONFIG_PPC_FPU)) 411 msr_all_available |= MSR_FP; 412 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 413 msr_all_available |= MSR_VEC; 414 if (cpu_has_feature(CPU_FTR_VSX)) 415 msr_all_available |= MSR_VSX; 416 if (cpu_has_feature(CPU_FTR_SPE)) 417 msr_all_available |= MSR_SPE; 418 419 return 0; 420 } 421 early_initcall(init_msr_all_available); 422 423 void giveup_all(struct task_struct *tsk) 424 { 425 unsigned long usermsr; 426 427 if (!tsk->thread.regs) 428 return; 429 430 check_if_tm_restore_required(tsk); 431 432 usermsr = tsk->thread.regs->msr; 433 434 if ((usermsr & msr_all_available) == 0) 435 return; 436 437 msr_check_and_set(msr_all_available); 438 439 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC))); 440 441 if (usermsr & MSR_FP) 442 __giveup_fpu(tsk); 443 if (usermsr & MSR_VEC) 444 __giveup_altivec(tsk); 445 if (usermsr & MSR_SPE) 446 __giveup_spe(tsk); 447 448 msr_check_and_clear(msr_all_available); 449 } 450 EXPORT_SYMBOL(giveup_all); 451 452 #ifdef CONFIG_PPC_BOOK3S_64 453 #ifdef CONFIG_PPC_FPU 454 static bool should_restore_fp(void) 455 { 456 if (current->thread.load_fp) { 457 current->thread.load_fp++; 458 return true; 459 } 460 return false; 461 } 462 463 static void do_restore_fp(void) 464 { 465 load_fp_state(¤t->thread.fp_state); 466 } 467 #else 468 static bool should_restore_fp(void) { return false; } 469 static void do_restore_fp(void) { } 470 #endif /* CONFIG_PPC_FPU */ 471 472 #ifdef CONFIG_ALTIVEC 473 static bool should_restore_altivec(void) 474 { 475 if (cpu_has_feature(CPU_FTR_ALTIVEC) && (current->thread.load_vec)) { 476 current->thread.load_vec++; 477 return true; 478 } 479 return false; 480 } 481 482 static void do_restore_altivec(void) 483 { 484 load_vr_state(¤t->thread.vr_state); 485 current->thread.used_vr = 1; 486 } 487 #else 488 static bool should_restore_altivec(void) { return false; } 489 static void do_restore_altivec(void) { } 490 #endif /* CONFIG_ALTIVEC */ 491 492 static bool should_restore_vsx(void) 493 { 494 if (cpu_has_feature(CPU_FTR_VSX)) 495 return true; 496 return false; 497 } 498 #ifdef CONFIG_VSX 499 static void do_restore_vsx(void) 500 { 501 current->thread.used_vsr = 1; 502 } 503 #else 504 static void do_restore_vsx(void) { } 505 #endif /* CONFIG_VSX */ 506 507 /* 508 * The exception exit path calls restore_math() with interrupts hard disabled 509 * but the soft irq state not "reconciled". ftrace code that calls 510 * local_irq_save/restore causes warnings. 511 * 512 * Rather than complicate the exit path, just don't trace restore_math. This 513 * could be done by having ftrace entry code check for this un-reconciled 514 * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and 515 * temporarily fix it up for the duration of the ftrace call. 516 */ 517 void notrace restore_math(struct pt_regs *regs) 518 { 519 unsigned long msr; 520 unsigned long new_msr = 0; 521 522 msr = regs->msr; 523 524 /* 525 * new_msr tracks the facilities that are to be restored. Only reload 526 * if the bit is not set in the user MSR (if it is set, the registers 527 * are live for the user thread). 528 */ 529 if ((!(msr & MSR_FP)) && should_restore_fp()) 530 new_msr |= MSR_FP; 531 532 if ((!(msr & MSR_VEC)) && should_restore_altivec()) 533 new_msr |= MSR_VEC; 534 535 if ((!(msr & MSR_VSX)) && should_restore_vsx()) { 536 if (((msr | new_msr) & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC)) 537 new_msr |= MSR_VSX; 538 } 539 540 if (new_msr) { 541 unsigned long fpexc_mode = 0; 542 543 msr_check_and_set(new_msr); 544 545 if (new_msr & MSR_FP) { 546 do_restore_fp(); 547 548 // This also covers VSX, because VSX implies FP 549 fpexc_mode = current->thread.fpexc_mode; 550 } 551 552 if (new_msr & MSR_VEC) 553 do_restore_altivec(); 554 555 if (new_msr & MSR_VSX) 556 do_restore_vsx(); 557 558 msr_check_and_clear(new_msr); 559 560 regs_set_return_msr(regs, regs->msr | new_msr | fpexc_mode); 561 } 562 } 563 #endif /* CONFIG_PPC_BOOK3S_64 */ 564 565 static void save_all(struct task_struct *tsk) 566 { 567 unsigned long usermsr; 568 569 if (!tsk->thread.regs) 570 return; 571 572 usermsr = tsk->thread.regs->msr; 573 574 if ((usermsr & msr_all_available) == 0) 575 return; 576 577 msr_check_and_set(msr_all_available); 578 579 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC))); 580 581 if (usermsr & MSR_FP) 582 save_fpu(tsk); 583 584 if (usermsr & MSR_VEC) 585 save_altivec(tsk); 586 587 if (usermsr & MSR_SPE) 588 __giveup_spe(tsk); 589 590 msr_check_and_clear(msr_all_available); 591 } 592 593 void flush_all_to_thread(struct task_struct *tsk) 594 { 595 if (tsk->thread.regs) { 596 preempt_disable(); 597 BUG_ON(tsk != current); 598 #ifdef CONFIG_SPE 599 if (tsk->thread.regs->msr & MSR_SPE) 600 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 601 #endif 602 save_all(tsk); 603 604 preempt_enable(); 605 } 606 } 607 EXPORT_SYMBOL(flush_all_to_thread); 608 609 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 610 void do_send_trap(struct pt_regs *regs, unsigned long address, 611 unsigned long error_code, int breakpt) 612 { 613 current->thread.trap_nr = TRAP_HWBKPT; 614 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 615 11, SIGSEGV) == NOTIFY_STOP) 616 return; 617 618 /* Deliver the signal to userspace */ 619 force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */ 620 (void __user *)address); 621 } 622 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 623 624 static void do_break_handler(struct pt_regs *regs) 625 { 626 struct arch_hw_breakpoint null_brk = {0}; 627 struct arch_hw_breakpoint *info; 628 ppc_inst_t instr = ppc_inst(0); 629 int type = 0; 630 int size = 0; 631 unsigned long ea; 632 int i; 633 634 /* 635 * If underneath hw supports only one watchpoint, we know it 636 * caused exception. 8xx also falls into this category. 637 */ 638 if (nr_wp_slots() == 1) { 639 __set_breakpoint(0, &null_brk); 640 current->thread.hw_brk[0] = null_brk; 641 current->thread.hw_brk[0].flags |= HW_BRK_FLAG_DISABLED; 642 return; 643 } 644 645 /* Otherwise find out which DAWR caused exception and disable it. */ 646 wp_get_instr_detail(regs, &instr, &type, &size, &ea); 647 648 for (i = 0; i < nr_wp_slots(); i++) { 649 info = ¤t->thread.hw_brk[i]; 650 if (!info->address) 651 continue; 652 653 if (wp_check_constraints(regs, instr, ea, type, size, info)) { 654 __set_breakpoint(i, &null_brk); 655 current->thread.hw_brk[i] = null_brk; 656 current->thread.hw_brk[i].flags |= HW_BRK_FLAG_DISABLED; 657 } 658 } 659 } 660 661 DEFINE_INTERRUPT_HANDLER(do_break) 662 { 663 current->thread.trap_nr = TRAP_HWBKPT; 664 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, regs->dsisr, 665 11, SIGSEGV) == NOTIFY_STOP) 666 return; 667 668 if (debugger_break_match(regs)) 669 return; 670 671 /* 672 * We reach here only when watchpoint exception is generated by ptrace 673 * event (or hw is buggy!). Now if CONFIG_HAVE_HW_BREAKPOINT is set, 674 * watchpoint is already handled by hw_breakpoint_handler() so we don't 675 * have to do anything. But when CONFIG_HAVE_HW_BREAKPOINT is not set, 676 * we need to manually handle the watchpoint here. 677 */ 678 if (!IS_ENABLED(CONFIG_HAVE_HW_BREAKPOINT)) 679 do_break_handler(regs); 680 681 /* Deliver the signal to userspace */ 682 force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)regs->dar); 683 } 684 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 685 686 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk[HBP_NUM_MAX]); 687 688 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 689 /* 690 * Set the debug registers back to their default "safe" values. 691 */ 692 static void set_debug_reg_defaults(struct thread_struct *thread) 693 { 694 thread->debug.iac1 = thread->debug.iac2 = 0; 695 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 696 thread->debug.iac3 = thread->debug.iac4 = 0; 697 #endif 698 thread->debug.dac1 = thread->debug.dac2 = 0; 699 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 700 thread->debug.dvc1 = thread->debug.dvc2 = 0; 701 #endif 702 thread->debug.dbcr0 = 0; 703 #ifdef CONFIG_BOOKE 704 /* 705 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1) 706 */ 707 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | 708 DBCR1_IAC3US | DBCR1_IAC4US; 709 /* 710 * Force Data Address Compare User/Supervisor bits to be User-only 711 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0. 712 */ 713 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US; 714 #else 715 thread->debug.dbcr1 = 0; 716 #endif 717 } 718 719 static void prime_debug_regs(struct debug_reg *debug) 720 { 721 /* 722 * We could have inherited MSR_DE from userspace, since 723 * it doesn't get cleared on exception entry. Make sure 724 * MSR_DE is clear before we enable any debug events. 725 */ 726 mtmsr(mfmsr() & ~MSR_DE); 727 728 mtspr(SPRN_IAC1, debug->iac1); 729 mtspr(SPRN_IAC2, debug->iac2); 730 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 731 mtspr(SPRN_IAC3, debug->iac3); 732 mtspr(SPRN_IAC4, debug->iac4); 733 #endif 734 mtspr(SPRN_DAC1, debug->dac1); 735 mtspr(SPRN_DAC2, debug->dac2); 736 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 737 mtspr(SPRN_DVC1, debug->dvc1); 738 mtspr(SPRN_DVC2, debug->dvc2); 739 #endif 740 mtspr(SPRN_DBCR0, debug->dbcr0); 741 mtspr(SPRN_DBCR1, debug->dbcr1); 742 #ifdef CONFIG_BOOKE 743 mtspr(SPRN_DBCR2, debug->dbcr2); 744 #endif 745 } 746 /* 747 * Unless neither the old or new thread are making use of the 748 * debug registers, set the debug registers from the values 749 * stored in the new thread. 750 */ 751 void switch_booke_debug_regs(struct debug_reg *new_debug) 752 { 753 if ((current->thread.debug.dbcr0 & DBCR0_IDM) 754 || (new_debug->dbcr0 & DBCR0_IDM)) 755 prime_debug_regs(new_debug); 756 } 757 EXPORT_SYMBOL_GPL(switch_booke_debug_regs); 758 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 759 #ifndef CONFIG_HAVE_HW_BREAKPOINT 760 static void set_breakpoint(int i, struct arch_hw_breakpoint *brk) 761 { 762 preempt_disable(); 763 __set_breakpoint(i, brk); 764 preempt_enable(); 765 } 766 767 static void set_debug_reg_defaults(struct thread_struct *thread) 768 { 769 int i; 770 struct arch_hw_breakpoint null_brk = {0}; 771 772 for (i = 0; i < nr_wp_slots(); i++) { 773 thread->hw_brk[i] = null_brk; 774 if (ppc_breakpoint_available()) 775 set_breakpoint(i, &thread->hw_brk[i]); 776 } 777 } 778 779 static inline bool hw_brk_match(struct arch_hw_breakpoint *a, 780 struct arch_hw_breakpoint *b) 781 { 782 if (a->address != b->address) 783 return false; 784 if (a->type != b->type) 785 return false; 786 if (a->len != b->len) 787 return false; 788 /* no need to check hw_len. it's calculated from address and len */ 789 return true; 790 } 791 792 static void switch_hw_breakpoint(struct task_struct *new) 793 { 794 int i; 795 796 for (i = 0; i < nr_wp_slots(); i++) { 797 if (likely(hw_brk_match(this_cpu_ptr(¤t_brk[i]), 798 &new->thread.hw_brk[i]))) 799 continue; 800 801 __set_breakpoint(i, &new->thread.hw_brk[i]); 802 } 803 } 804 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */ 805 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 806 807 static inline int set_dabr(struct arch_hw_breakpoint *brk) 808 { 809 unsigned long dabr, dabrx; 810 811 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR); 812 dabrx = ((brk->type >> 3) & 0x7); 813 814 if (ppc_md.set_dabr) 815 return ppc_md.set_dabr(dabr, dabrx); 816 817 if (IS_ENABLED(CONFIG_PPC_ADV_DEBUG_REGS)) { 818 mtspr(SPRN_DAC1, dabr); 819 if (IS_ENABLED(CONFIG_PPC_47x)) 820 isync(); 821 return 0; 822 } else if (IS_ENABLED(CONFIG_PPC_BOOK3S)) { 823 mtspr(SPRN_DABR, dabr); 824 if (cpu_has_feature(CPU_FTR_DABRX)) 825 mtspr(SPRN_DABRX, dabrx); 826 return 0; 827 } else { 828 return -EINVAL; 829 } 830 } 831 832 static inline int set_breakpoint_8xx(struct arch_hw_breakpoint *brk) 833 { 834 unsigned long lctrl1 = LCTRL1_CTE_GT | LCTRL1_CTF_LT | LCTRL1_CRWE_RW | 835 LCTRL1_CRWF_RW; 836 unsigned long lctrl2 = LCTRL2_LW0EN | LCTRL2_LW0LADC | LCTRL2_SLW0EN; 837 unsigned long start_addr = ALIGN_DOWN(brk->address, HW_BREAKPOINT_SIZE); 838 unsigned long end_addr = ALIGN(brk->address + brk->len, HW_BREAKPOINT_SIZE); 839 840 if (start_addr == 0) 841 lctrl2 |= LCTRL2_LW0LA_F; 842 else if (end_addr == 0) 843 lctrl2 |= LCTRL2_LW0LA_E; 844 else 845 lctrl2 |= LCTRL2_LW0LA_EandF; 846 847 mtspr(SPRN_LCTRL2, 0); 848 849 if ((brk->type & HW_BRK_TYPE_RDWR) == 0) 850 return 0; 851 852 if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ) 853 lctrl1 |= LCTRL1_CRWE_RO | LCTRL1_CRWF_RO; 854 if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE) 855 lctrl1 |= LCTRL1_CRWE_WO | LCTRL1_CRWF_WO; 856 857 mtspr(SPRN_CMPE, start_addr - 1); 858 mtspr(SPRN_CMPF, end_addr); 859 mtspr(SPRN_LCTRL1, lctrl1); 860 mtspr(SPRN_LCTRL2, lctrl2); 861 862 return 0; 863 } 864 865 static void set_hw_breakpoint(int nr, struct arch_hw_breakpoint *brk) 866 { 867 if (dawr_enabled()) 868 // Power8 or later 869 set_dawr(nr, brk); 870 else if (IS_ENABLED(CONFIG_PPC_8xx)) 871 set_breakpoint_8xx(brk); 872 else if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 873 // Power7 or earlier 874 set_dabr(brk); 875 else 876 // Shouldn't happen due to higher level checks 877 WARN_ON_ONCE(1); 878 } 879 880 void __set_breakpoint(int nr, struct arch_hw_breakpoint *brk) 881 { 882 memcpy(this_cpu_ptr(¤t_brk[nr]), brk, sizeof(*brk)); 883 set_hw_breakpoint(nr, brk); 884 } 885 886 /* Check if we have DAWR or DABR hardware */ 887 bool ppc_breakpoint_available(void) 888 { 889 if (dawr_enabled()) 890 return true; /* POWER8 DAWR or POWER9 forced DAWR */ 891 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 892 return false; /* POWER9 with DAWR disabled */ 893 /* DABR: Everything but POWER8 and POWER9 */ 894 return true; 895 } 896 EXPORT_SYMBOL_GPL(ppc_breakpoint_available); 897 898 /* Disable the breakpoint in hardware without touching current_brk[] */ 899 void suspend_breakpoints(void) 900 { 901 struct arch_hw_breakpoint brk = {0}; 902 int i; 903 904 if (!ppc_breakpoint_available()) 905 return; 906 907 for (i = 0; i < nr_wp_slots(); i++) 908 set_hw_breakpoint(i, &brk); 909 } 910 911 /* 912 * Re-enable breakpoints suspended by suspend_breakpoints() in hardware 913 * from current_brk[] 914 */ 915 void restore_breakpoints(void) 916 { 917 int i; 918 919 if (!ppc_breakpoint_available()) 920 return; 921 922 for (i = 0; i < nr_wp_slots(); i++) 923 set_hw_breakpoint(i, this_cpu_ptr(¤t_brk[i])); 924 } 925 926 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 927 928 static inline bool tm_enabled(struct task_struct *tsk) 929 { 930 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM); 931 } 932 933 static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause) 934 { 935 /* 936 * Use the current MSR TM suspended bit to track if we have 937 * checkpointed state outstanding. 938 * On signal delivery, we'd normally reclaim the checkpointed 939 * state to obtain stack pointer (see:get_tm_stackpointer()). 940 * This will then directly return to userspace without going 941 * through __switch_to(). However, if the stack frame is bad, 942 * we need to exit this thread which calls __switch_to() which 943 * will again attempt to reclaim the already saved tm state. 944 * Hence we need to check that we've not already reclaimed 945 * this state. 946 * We do this using the current MSR, rather tracking it in 947 * some specific thread_struct bit, as it has the additional 948 * benefit of checking for a potential TM bad thing exception. 949 */ 950 if (!MSR_TM_SUSPENDED(mfmsr())) 951 return; 952 953 giveup_all(container_of(thr, struct task_struct, thread)); 954 955 tm_reclaim(thr, cause); 956 957 /* 958 * If we are in a transaction and FP is off then we can't have 959 * used FP inside that transaction. Hence the checkpointed 960 * state is the same as the live state. We need to copy the 961 * live state to the checkpointed state so that when the 962 * transaction is restored, the checkpointed state is correct 963 * and the aborted transaction sees the correct state. We use 964 * ckpt_regs.msr here as that's what tm_reclaim will use to 965 * determine if it's going to write the checkpointed state or 966 * not. So either this will write the checkpointed registers, 967 * or reclaim will. Similarly for VMX. 968 */ 969 if ((thr->ckpt_regs.msr & MSR_FP) == 0) 970 memcpy(&thr->ckfp_state, &thr->fp_state, 971 sizeof(struct thread_fp_state)); 972 if ((thr->ckpt_regs.msr & MSR_VEC) == 0) 973 memcpy(&thr->ckvr_state, &thr->vr_state, 974 sizeof(struct thread_vr_state)); 975 } 976 977 void tm_reclaim_current(uint8_t cause) 978 { 979 tm_enable(); 980 tm_reclaim_thread(¤t->thread, cause); 981 } 982 983 static inline void tm_reclaim_task(struct task_struct *tsk) 984 { 985 /* We have to work out if we're switching from/to a task that's in the 986 * middle of a transaction. 987 * 988 * In switching we need to maintain a 2nd register state as 989 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the 990 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and 991 * ckvr_state 992 * 993 * We also context switch (save) TFHAR/TEXASR/TFIAR in here. 994 */ 995 struct thread_struct *thr = &tsk->thread; 996 997 if (!thr->regs) 998 return; 999 1000 if (!MSR_TM_ACTIVE(thr->regs->msr)) 1001 goto out_and_saveregs; 1002 1003 WARN_ON(tm_suspend_disabled); 1004 1005 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, " 1006 "ccr=%lx, msr=%lx, trap=%lx)\n", 1007 tsk->pid, thr->regs->nip, 1008 thr->regs->ccr, thr->regs->msr, 1009 thr->regs->trap); 1010 1011 tm_reclaim_thread(thr, TM_CAUSE_RESCHED); 1012 1013 TM_DEBUG("--- tm_reclaim on pid %d complete\n", 1014 tsk->pid); 1015 1016 out_and_saveregs: 1017 /* Always save the regs here, even if a transaction's not active. 1018 * This context-switches a thread's TM info SPRs. We do it here to 1019 * be consistent with the restore path (in recheckpoint) which 1020 * cannot happen later in _switch(). 1021 */ 1022 tm_save_sprs(thr); 1023 } 1024 1025 extern void __tm_recheckpoint(struct thread_struct *thread); 1026 1027 void tm_recheckpoint(struct thread_struct *thread) 1028 { 1029 unsigned long flags; 1030 1031 if (!(thread->regs->msr & MSR_TM)) 1032 return; 1033 1034 /* We really can't be interrupted here as the TEXASR registers can't 1035 * change and later in the trecheckpoint code, we have a userspace R1. 1036 * So let's hard disable over this region. 1037 */ 1038 local_irq_save(flags); 1039 hard_irq_disable(); 1040 1041 /* The TM SPRs are restored here, so that TEXASR.FS can be set 1042 * before the trecheckpoint and no explosion occurs. 1043 */ 1044 tm_restore_sprs(thread); 1045 1046 __tm_recheckpoint(thread); 1047 1048 local_irq_restore(flags); 1049 } 1050 1051 static inline void tm_recheckpoint_new_task(struct task_struct *new) 1052 { 1053 if (!cpu_has_feature(CPU_FTR_TM)) 1054 return; 1055 1056 /* Recheckpoint the registers of the thread we're about to switch to. 1057 * 1058 * If the task was using FP, we non-lazily reload both the original and 1059 * the speculative FP register states. This is because the kernel 1060 * doesn't see if/when a TM rollback occurs, so if we take an FP 1061 * unavailable later, we are unable to determine which set of FP regs 1062 * need to be restored. 1063 */ 1064 if (!tm_enabled(new)) 1065 return; 1066 1067 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){ 1068 tm_restore_sprs(&new->thread); 1069 return; 1070 } 1071 /* Recheckpoint to restore original checkpointed register state. */ 1072 TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n", 1073 new->pid, new->thread.regs->msr); 1074 1075 tm_recheckpoint(&new->thread); 1076 1077 /* 1078 * The checkpointed state has been restored but the live state has 1079 * not, ensure all the math functionality is turned off to trigger 1080 * restore_math() to reload. 1081 */ 1082 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX); 1083 1084 TM_DEBUG("*** tm_recheckpoint of pid %d complete " 1085 "(kernel msr 0x%lx)\n", 1086 new->pid, mfmsr()); 1087 } 1088 1089 static inline void __switch_to_tm(struct task_struct *prev, 1090 struct task_struct *new) 1091 { 1092 if (cpu_has_feature(CPU_FTR_TM)) { 1093 if (tm_enabled(prev) || tm_enabled(new)) 1094 tm_enable(); 1095 1096 if (tm_enabled(prev)) { 1097 prev->thread.load_tm++; 1098 tm_reclaim_task(prev); 1099 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0) 1100 prev->thread.regs->msr &= ~MSR_TM; 1101 } 1102 1103 tm_recheckpoint_new_task(new); 1104 } 1105 } 1106 1107 /* 1108 * This is called if we are on the way out to userspace and the 1109 * TIF_RESTORE_TM flag is set. It checks if we need to reload 1110 * FP and/or vector state and does so if necessary. 1111 * If userspace is inside a transaction (whether active or 1112 * suspended) and FP/VMX/VSX instructions have ever been enabled 1113 * inside that transaction, then we have to keep them enabled 1114 * and keep the FP/VMX/VSX state loaded while ever the transaction 1115 * continues. The reason is that if we didn't, and subsequently 1116 * got a FP/VMX/VSX unavailable interrupt inside a transaction, 1117 * we don't know whether it's the same transaction, and thus we 1118 * don't know which of the checkpointed state and the transactional 1119 * state to use. 1120 */ 1121 void restore_tm_state(struct pt_regs *regs) 1122 { 1123 unsigned long msr_diff; 1124 1125 /* 1126 * This is the only moment we should clear TIF_RESTORE_TM as 1127 * it is here that ckpt_regs.msr and pt_regs.msr become the same 1128 * again, anything else could lead to an incorrect ckpt_msr being 1129 * saved and therefore incorrect signal contexts. 1130 */ 1131 clear_thread_flag(TIF_RESTORE_TM); 1132 if (!MSR_TM_ACTIVE(regs->msr)) 1133 return; 1134 1135 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr; 1136 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX; 1137 1138 /* Ensure that restore_math() will restore */ 1139 if (msr_diff & MSR_FP) 1140 current->thread.load_fp = 1; 1141 #ifdef CONFIG_ALTIVEC 1142 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC) 1143 current->thread.load_vec = 1; 1144 #endif 1145 restore_math(regs); 1146 1147 regs_set_return_msr(regs, regs->msr | msr_diff); 1148 } 1149 1150 #else /* !CONFIG_PPC_TRANSACTIONAL_MEM */ 1151 #define tm_recheckpoint_new_task(new) 1152 #define __switch_to_tm(prev, new) 1153 void tm_reclaim_current(uint8_t cause) {} 1154 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1155 1156 static inline void save_sprs(struct thread_struct *t) 1157 { 1158 #ifdef CONFIG_ALTIVEC 1159 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1160 t->vrsave = mfspr(SPRN_VRSAVE); 1161 #endif 1162 #ifdef CONFIG_SPE 1163 if (cpu_has_feature(CPU_FTR_SPE)) 1164 t->spefscr = mfspr(SPRN_SPEFSCR); 1165 #endif 1166 #ifdef CONFIG_PPC_BOOK3S_64 1167 if (cpu_has_feature(CPU_FTR_DSCR)) 1168 t->dscr = mfspr(SPRN_DSCR); 1169 1170 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1171 t->bescr = mfspr(SPRN_BESCR); 1172 t->ebbhr = mfspr(SPRN_EBBHR); 1173 t->ebbrr = mfspr(SPRN_EBBRR); 1174 1175 t->fscr = mfspr(SPRN_FSCR); 1176 1177 /* 1178 * Note that the TAR is not available for use in the kernel. 1179 * (To provide this, the TAR should be backed up/restored on 1180 * exception entry/exit instead, and be in pt_regs. FIXME, 1181 * this should be in pt_regs anyway (for debug).) 1182 */ 1183 t->tar = mfspr(SPRN_TAR); 1184 } 1185 1186 if (cpu_has_feature(CPU_FTR_DEXCR_NPHIE)) 1187 t->hashkeyr = mfspr(SPRN_HASHKEYR); 1188 1189 if (cpu_has_feature(CPU_FTR_ARCH_31)) 1190 t->dexcr = mfspr(SPRN_DEXCR); 1191 #endif 1192 } 1193 1194 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 1195 void kvmppc_save_user_regs(void) 1196 { 1197 unsigned long usermsr; 1198 1199 if (!current->thread.regs) 1200 return; 1201 1202 usermsr = current->thread.regs->msr; 1203 1204 /* Caller has enabled FP/VEC/VSX/TM in MSR */ 1205 if (usermsr & MSR_FP) 1206 __giveup_fpu(current); 1207 if (usermsr & MSR_VEC) 1208 __giveup_altivec(current); 1209 1210 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1211 if (usermsr & MSR_TM) { 1212 current->thread.tm_tfhar = mfspr(SPRN_TFHAR); 1213 current->thread.tm_tfiar = mfspr(SPRN_TFIAR); 1214 current->thread.tm_texasr = mfspr(SPRN_TEXASR); 1215 current->thread.regs->msr &= ~MSR_TM; 1216 } 1217 #endif 1218 } 1219 EXPORT_SYMBOL_GPL(kvmppc_save_user_regs); 1220 1221 void kvmppc_save_current_sprs(void) 1222 { 1223 save_sprs(¤t->thread); 1224 } 1225 EXPORT_SYMBOL_GPL(kvmppc_save_current_sprs); 1226 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */ 1227 1228 static inline void restore_sprs(struct thread_struct *old_thread, 1229 struct thread_struct *new_thread) 1230 { 1231 #ifdef CONFIG_ALTIVEC 1232 if (cpu_has_feature(CPU_FTR_ALTIVEC) && 1233 old_thread->vrsave != new_thread->vrsave) 1234 mtspr(SPRN_VRSAVE, new_thread->vrsave); 1235 #endif 1236 #ifdef CONFIG_SPE 1237 if (cpu_has_feature(CPU_FTR_SPE) && 1238 old_thread->spefscr != new_thread->spefscr) 1239 mtspr(SPRN_SPEFSCR, new_thread->spefscr); 1240 #endif 1241 #ifdef CONFIG_PPC_BOOK3S_64 1242 if (cpu_has_feature(CPU_FTR_DSCR)) { 1243 u64 dscr = get_paca()->dscr_default; 1244 if (new_thread->dscr_inherit) 1245 dscr = new_thread->dscr; 1246 1247 if (old_thread->dscr != dscr) 1248 mtspr(SPRN_DSCR, dscr); 1249 } 1250 1251 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1252 if (old_thread->bescr != new_thread->bescr) 1253 mtspr(SPRN_BESCR, new_thread->bescr); 1254 if (old_thread->ebbhr != new_thread->ebbhr) 1255 mtspr(SPRN_EBBHR, new_thread->ebbhr); 1256 if (old_thread->ebbrr != new_thread->ebbrr) 1257 mtspr(SPRN_EBBRR, new_thread->ebbrr); 1258 1259 if (old_thread->fscr != new_thread->fscr) 1260 mtspr(SPRN_FSCR, new_thread->fscr); 1261 1262 if (old_thread->tar != new_thread->tar) 1263 mtspr(SPRN_TAR, new_thread->tar); 1264 } 1265 1266 if (cpu_has_feature(CPU_FTR_P9_TIDR) && 1267 old_thread->tidr != new_thread->tidr) 1268 mtspr(SPRN_TIDR, new_thread->tidr); 1269 1270 if (cpu_has_feature(CPU_FTR_DEXCR_NPHIE) && 1271 old_thread->hashkeyr != new_thread->hashkeyr) 1272 mtspr(SPRN_HASHKEYR, new_thread->hashkeyr); 1273 1274 if (cpu_has_feature(CPU_FTR_ARCH_31) && 1275 old_thread->dexcr != new_thread->dexcr) 1276 mtspr(SPRN_DEXCR, new_thread->dexcr); 1277 #endif 1278 1279 } 1280 1281 struct task_struct *__switch_to(struct task_struct *prev, 1282 struct task_struct *new) 1283 { 1284 struct thread_struct *new_thread, *old_thread; 1285 struct task_struct *last; 1286 #ifdef CONFIG_PPC_64S_HASH_MMU 1287 struct ppc64_tlb_batch *batch; 1288 #endif 1289 1290 new_thread = &new->thread; 1291 old_thread = ¤t->thread; 1292 1293 WARN_ON(!irqs_disabled()); 1294 1295 #ifdef CONFIG_PPC_64S_HASH_MMU 1296 batch = this_cpu_ptr(&ppc64_tlb_batch); 1297 if (batch->active) { 1298 current_thread_info()->local_flags |= _TLF_LAZY_MMU; 1299 if (batch->index) 1300 __flush_tlb_pending(batch); 1301 batch->active = 0; 1302 } 1303 1304 /* 1305 * On POWER9 the copy-paste buffer can only paste into 1306 * foreign real addresses, so unprivileged processes can not 1307 * see the data or use it in any way unless they have 1308 * foreign real mappings. If the new process has the foreign 1309 * real address mappings, we must issue a cp_abort to clear 1310 * any state and prevent snooping, corruption or a covert 1311 * channel. ISA v3.1 supports paste into local memory. 1312 */ 1313 if (new->mm && (cpu_has_feature(CPU_FTR_ARCH_31) || 1314 atomic_read(&new->mm->context.vas_windows))) 1315 asm volatile(PPC_CP_ABORT); 1316 #endif /* CONFIG_PPC_BOOK3S_64 */ 1317 1318 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1319 switch_booke_debug_regs(&new->thread.debug); 1320 #else 1321 /* 1322 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would 1323 * schedule DABR 1324 */ 1325 #ifndef CONFIG_HAVE_HW_BREAKPOINT 1326 switch_hw_breakpoint(new); 1327 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1328 #endif 1329 1330 /* 1331 * We need to save SPRs before treclaim/trecheckpoint as these will 1332 * change a number of them. 1333 */ 1334 save_sprs(&prev->thread); 1335 1336 /* Save FPU, Altivec, VSX and SPE state */ 1337 giveup_all(prev); 1338 1339 __switch_to_tm(prev, new); 1340 1341 if (!radix_enabled()) { 1342 /* 1343 * We can't take a PMU exception inside _switch() since there 1344 * is a window where the kernel stack SLB and the kernel stack 1345 * are out of sync. Hard disable here. 1346 */ 1347 hard_irq_disable(); 1348 } 1349 1350 /* 1351 * Call restore_sprs() and set_return_regs_changed() before calling 1352 * _switch(). If we move it after _switch() then we miss out on calling 1353 * it for new tasks. The reason for this is we manually create a stack 1354 * frame for new tasks that directly returns through ret_from_fork() or 1355 * ret_from_kernel_thread(). See copy_thread() for details. 1356 */ 1357 restore_sprs(old_thread, new_thread); 1358 1359 set_return_regs_changed(); /* _switch changes stack (and regs) */ 1360 1361 if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64)) 1362 kuap_assert_locked(); 1363 1364 last = _switch(old_thread, new_thread); 1365 1366 /* 1367 * Nothing after _switch will be run for newly created tasks, 1368 * because they switch directly to ret_from_fork/ret_from_kernel_thread 1369 * etc. Code added here should have a comment explaining why that is 1370 * okay. 1371 */ 1372 1373 #ifdef CONFIG_PPC_BOOK3S_64 1374 #ifdef CONFIG_PPC_64S_HASH_MMU 1375 /* 1376 * This applies to a process that was context switched while inside 1377 * arch_enter_lazy_mmu_mode(), to re-activate the batch that was 1378 * deactivated above, before _switch(). This will never be the case 1379 * for new tasks. 1380 */ 1381 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) { 1382 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU; 1383 batch = this_cpu_ptr(&ppc64_tlb_batch); 1384 batch->active = 1; 1385 } 1386 #endif 1387 1388 /* 1389 * Math facilities are masked out of the child MSR in copy_thread. 1390 * A new task does not need to restore_math because it will 1391 * demand fault them. 1392 */ 1393 if (current->thread.regs) 1394 restore_math(current->thread.regs); 1395 #endif /* CONFIG_PPC_BOOK3S_64 */ 1396 1397 return last; 1398 } 1399 1400 #define NR_INSN_TO_PRINT 16 1401 1402 static void show_instructions(struct pt_regs *regs) 1403 { 1404 int i; 1405 unsigned long nip = regs->nip; 1406 unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int)); 1407 1408 printk("Code: "); 1409 1410 /* 1411 * If we were executing with the MMU off for instructions, adjust pc 1412 * rather than printing XXXXXXXX. 1413 */ 1414 if (!IS_ENABLED(CONFIG_BOOKE) && !(regs->msr & MSR_IR)) { 1415 pc = (unsigned long)phys_to_virt(pc); 1416 nip = (unsigned long)phys_to_virt(regs->nip); 1417 } 1418 1419 for (i = 0; i < NR_INSN_TO_PRINT; i++) { 1420 int instr; 1421 1422 if (get_kernel_nofault(instr, (const void *)pc)) { 1423 pr_cont("XXXXXXXX "); 1424 } else { 1425 if (nip == pc) 1426 pr_cont("<%08x> ", instr); 1427 else 1428 pr_cont("%08x ", instr); 1429 } 1430 1431 pc += sizeof(int); 1432 } 1433 1434 pr_cont("\n"); 1435 } 1436 1437 void show_user_instructions(struct pt_regs *regs) 1438 { 1439 unsigned long pc; 1440 int n = NR_INSN_TO_PRINT; 1441 struct seq_buf s; 1442 char buf[96]; /* enough for 8 times 9 + 2 chars */ 1443 1444 pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int)); 1445 1446 seq_buf_init(&s, buf, sizeof(buf)); 1447 1448 while (n) { 1449 int i; 1450 1451 seq_buf_clear(&s); 1452 1453 for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) { 1454 int instr; 1455 1456 if (copy_from_user_nofault(&instr, (void __user *)pc, 1457 sizeof(instr))) { 1458 seq_buf_printf(&s, "XXXXXXXX "); 1459 continue; 1460 } 1461 seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr); 1462 } 1463 1464 if (!seq_buf_has_overflowed(&s)) 1465 pr_info("%s[%d]: code: %s\n", current->comm, 1466 current->pid, s.buffer); 1467 } 1468 } 1469 1470 struct regbit { 1471 unsigned long bit; 1472 const char *name; 1473 }; 1474 1475 static struct regbit msr_bits[] = { 1476 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE) 1477 {MSR_SF, "SF"}, 1478 {MSR_HV, "HV"}, 1479 #endif 1480 {MSR_VEC, "VEC"}, 1481 {MSR_VSX, "VSX"}, 1482 #ifdef CONFIG_BOOKE 1483 {MSR_CE, "CE"}, 1484 #endif 1485 {MSR_EE, "EE"}, 1486 {MSR_PR, "PR"}, 1487 {MSR_FP, "FP"}, 1488 {MSR_ME, "ME"}, 1489 #ifdef CONFIG_BOOKE 1490 {MSR_DE, "DE"}, 1491 #else 1492 {MSR_SE, "SE"}, 1493 {MSR_BE, "BE"}, 1494 #endif 1495 {MSR_IR, "IR"}, 1496 {MSR_DR, "DR"}, 1497 {MSR_PMM, "PMM"}, 1498 #ifndef CONFIG_BOOKE 1499 {MSR_RI, "RI"}, 1500 {MSR_LE, "LE"}, 1501 #endif 1502 {0, NULL} 1503 }; 1504 1505 static void print_bits(unsigned long val, struct regbit *bits, const char *sep) 1506 { 1507 const char *s = ""; 1508 1509 for (; bits->bit; ++bits) 1510 if (val & bits->bit) { 1511 pr_cont("%s%s", s, bits->name); 1512 s = sep; 1513 } 1514 } 1515 1516 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1517 static struct regbit msr_tm_bits[] = { 1518 {MSR_TS_T, "T"}, 1519 {MSR_TS_S, "S"}, 1520 {MSR_TM, "E"}, 1521 {0, NULL} 1522 }; 1523 1524 static void print_tm_bits(unsigned long val) 1525 { 1526 /* 1527 * This only prints something if at least one of the TM bit is set. 1528 * Inside the TM[], the output means: 1529 * E: Enabled (bit 32) 1530 * S: Suspended (bit 33) 1531 * T: Transactional (bit 34) 1532 */ 1533 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) { 1534 pr_cont(",TM["); 1535 print_bits(val, msr_tm_bits, ""); 1536 pr_cont("]"); 1537 } 1538 } 1539 #else 1540 static void print_tm_bits(unsigned long val) {} 1541 #endif 1542 1543 static void print_msr_bits(unsigned long val) 1544 { 1545 pr_cont("<"); 1546 print_bits(val, msr_bits, ","); 1547 print_tm_bits(val); 1548 pr_cont(">"); 1549 } 1550 1551 #ifdef CONFIG_PPC64 1552 #define REG "%016lx" 1553 #define REGS_PER_LINE 4 1554 #else 1555 #define REG "%08lx" 1556 #define REGS_PER_LINE 8 1557 #endif 1558 1559 static void __show_regs(struct pt_regs *regs) 1560 { 1561 int i, trap; 1562 1563 printk("NIP: "REG" LR: "REG" CTR: "REG"\n", 1564 regs->nip, regs->link, regs->ctr); 1565 printk("REGS: %px TRAP: %04lx %s (%s)\n", 1566 regs, regs->trap, print_tainted(), init_utsname()->release); 1567 printk("MSR: "REG" ", regs->msr); 1568 print_msr_bits(regs->msr); 1569 pr_cont(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer); 1570 trap = TRAP(regs); 1571 if (!trap_is_syscall(regs) && cpu_has_feature(CPU_FTR_CFAR)) 1572 pr_cont("CFAR: "REG" ", regs->orig_gpr3); 1573 if (trap == INTERRUPT_MACHINE_CHECK || 1574 trap == INTERRUPT_DATA_STORAGE || 1575 trap == INTERRUPT_ALIGNMENT) { 1576 if (IS_ENABLED(CONFIG_BOOKE)) 1577 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dear, regs->esr); 1578 else 1579 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr); 1580 } 1581 1582 #ifdef CONFIG_PPC64 1583 pr_cont("IRQMASK: %lx ", regs->softe); 1584 #endif 1585 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1586 if (MSR_TM_ACTIVE(regs->msr)) 1587 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch); 1588 #endif 1589 1590 for (i = 0; i < 32; i++) { 1591 if ((i % REGS_PER_LINE) == 0) 1592 pr_cont("\nGPR%02d: ", i); 1593 pr_cont(REG " ", regs->gpr[i]); 1594 } 1595 pr_cont("\n"); 1596 /* 1597 * Lookup NIP late so we have the best change of getting the 1598 * above info out without failing 1599 */ 1600 if (IS_ENABLED(CONFIG_KALLSYMS)) { 1601 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip); 1602 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link); 1603 } 1604 } 1605 1606 void show_regs(struct pt_regs *regs) 1607 { 1608 show_regs_print_info(KERN_DEFAULT); 1609 __show_regs(regs); 1610 show_stack(current, (unsigned long *) regs->gpr[1], KERN_DEFAULT); 1611 if (!user_mode(regs)) 1612 show_instructions(regs); 1613 } 1614 1615 void flush_thread(void) 1616 { 1617 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1618 flush_ptrace_hw_breakpoint(current); 1619 #else /* CONFIG_HAVE_HW_BREAKPOINT */ 1620 set_debug_reg_defaults(¤t->thread); 1621 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1622 } 1623 1624 void arch_setup_new_exec(void) 1625 { 1626 1627 #ifdef CONFIG_PPC_BOOK3S_64 1628 if (!radix_enabled()) 1629 hash__setup_new_exec(); 1630 #endif 1631 /* 1632 * If we exec out of a kernel thread then thread.regs will not be 1633 * set. Do it now. 1634 */ 1635 if (!current->thread.regs) { 1636 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE; 1637 current->thread.regs = regs - 1; 1638 } 1639 1640 #ifdef CONFIG_PPC_MEM_KEYS 1641 current->thread.regs->amr = default_amr; 1642 current->thread.regs->iamr = default_iamr; 1643 #endif 1644 1645 #ifdef CONFIG_PPC_BOOK3S_64 1646 if (cpu_has_feature(CPU_FTR_ARCH_31)) { 1647 current->thread.dexcr = current->thread.dexcr_onexec; 1648 mtspr(SPRN_DEXCR, current->thread.dexcr); 1649 } 1650 #endif /* CONFIG_PPC_BOOK3S_64 */ 1651 } 1652 1653 #ifdef CONFIG_PPC64 1654 /* 1655 * Assign a TIDR (thread ID) for task @t and set it in the thread 1656 * structure. For now, we only support setting TIDR for 'current' task. 1657 * 1658 * Since the TID value is a truncated form of it PID, it is possible 1659 * (but unlikely) for 2 threads to have the same TID. In the unlikely event 1660 * that 2 threads share the same TID and are waiting, one of the following 1661 * cases will happen: 1662 * 1663 * 1. The correct thread is running, the wrong thread is not 1664 * In this situation, the correct thread is woken and proceeds to pass its 1665 * condition check. 1666 * 1667 * 2. Neither threads are running 1668 * In this situation, neither thread will be woken. When scheduled, the waiting 1669 * threads will execute either a wait, which will return immediately, followed 1670 * by a condition check, which will pass for the correct thread and fail 1671 * for the wrong thread, or they will execute the condition check immediately. 1672 * 1673 * 3. The wrong thread is running, the correct thread is not 1674 * The wrong thread will be woken, but will fail its condition check and 1675 * re-execute wait. The correct thread, when scheduled, will execute either 1676 * its condition check (which will pass), or wait, which returns immediately 1677 * when called the first time after the thread is scheduled, followed by its 1678 * condition check (which will pass). 1679 * 1680 * 4. Both threads are running 1681 * Both threads will be woken. The wrong thread will fail its condition check 1682 * and execute another wait, while the correct thread will pass its condition 1683 * check. 1684 * 1685 * @t: the task to set the thread ID for 1686 */ 1687 int set_thread_tidr(struct task_struct *t) 1688 { 1689 if (!cpu_has_feature(CPU_FTR_P9_TIDR)) 1690 return -EINVAL; 1691 1692 if (t != current) 1693 return -EINVAL; 1694 1695 if (t->thread.tidr) 1696 return 0; 1697 1698 t->thread.tidr = (u16)task_pid_nr(t); 1699 mtspr(SPRN_TIDR, t->thread.tidr); 1700 1701 return 0; 1702 } 1703 EXPORT_SYMBOL_GPL(set_thread_tidr); 1704 1705 #endif /* CONFIG_PPC64 */ 1706 1707 /* 1708 * this gets called so that we can store coprocessor state into memory and 1709 * copy the current task into the new thread. 1710 */ 1711 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 1712 { 1713 flush_all_to_thread(src); 1714 /* 1715 * Flush TM state out so we can copy it. __switch_to_tm() does this 1716 * flush but it removes the checkpointed state from the current CPU and 1717 * transitions the CPU out of TM mode. Hence we need to call 1718 * tm_recheckpoint_new_task() (on the same task) to restore the 1719 * checkpointed state back and the TM mode. 1720 * 1721 * Can't pass dst because it isn't ready. Doesn't matter, passing 1722 * dst is only important for __switch_to() 1723 */ 1724 __switch_to_tm(src, src); 1725 1726 *dst = *src; 1727 1728 clear_task_ebb(dst); 1729 1730 return 0; 1731 } 1732 1733 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp) 1734 { 1735 #ifdef CONFIG_PPC_64S_HASH_MMU 1736 unsigned long sp_vsid; 1737 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp; 1738 1739 if (radix_enabled()) 1740 return; 1741 1742 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 1743 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T) 1744 << SLB_VSID_SHIFT_1T; 1745 else 1746 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M) 1747 << SLB_VSID_SHIFT; 1748 sp_vsid |= SLB_VSID_KERNEL | llp; 1749 p->thread.ksp_vsid = sp_vsid; 1750 #endif 1751 } 1752 1753 /* 1754 * Copy a thread.. 1755 */ 1756 1757 /* 1758 * Copy architecture-specific thread state 1759 */ 1760 int copy_thread(struct task_struct *p, const struct kernel_clone_args *args) 1761 { 1762 struct pt_regs *kregs; /* Switch frame regs */ 1763 extern void ret_from_fork(void); 1764 extern void ret_from_fork_scv(void); 1765 extern void ret_from_kernel_user_thread(void); 1766 extern void start_kernel_thread(void); 1767 void (*f)(void); 1768 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE; 1769 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1770 int i; 1771 #endif 1772 1773 klp_init_thread_info(p); 1774 1775 if (unlikely(p->flags & PF_KTHREAD)) { 1776 /* kernel thread */ 1777 1778 /* Create initial minimum stack frame. */ 1779 sp -= STACK_FRAME_MIN_SIZE; 1780 ((unsigned long *)sp)[0] = 0; 1781 1782 f = start_kernel_thread; 1783 p->thread.regs = NULL; /* no user register state */ 1784 clear_tsk_compat_task(p); 1785 } else { 1786 /* user thread */ 1787 struct pt_regs *childregs; 1788 1789 /* Create initial user return stack frame. */ 1790 sp -= STACK_USER_INT_FRAME_SIZE; 1791 *(unsigned long *)(sp + STACK_INT_FRAME_MARKER) = STACK_FRAME_REGS_MARKER; 1792 1793 childregs = (struct pt_regs *)(sp + STACK_INT_FRAME_REGS); 1794 1795 if (unlikely(args->fn)) { 1796 /* 1797 * A user space thread, but it first runs a kernel 1798 * thread, and then returns as though it had called 1799 * execve rather than fork, so user regs will be 1800 * filled in (e.g., by kernel_execve()). 1801 */ 1802 ((unsigned long *)sp)[0] = 0; 1803 memset(childregs, 0, sizeof(struct pt_regs)); 1804 #ifdef CONFIG_PPC64 1805 childregs->softe = IRQS_ENABLED; 1806 #endif 1807 f = ret_from_kernel_user_thread; 1808 } else { 1809 struct pt_regs *regs = current_pt_regs(); 1810 unsigned long clone_flags = args->flags; 1811 unsigned long usp = args->stack; 1812 1813 /* Copy registers */ 1814 *childregs = *regs; 1815 if (usp) 1816 childregs->gpr[1] = usp; 1817 ((unsigned long *)sp)[0] = childregs->gpr[1]; 1818 #ifdef CONFIG_PPC_IRQ_SOFT_MASK_DEBUG 1819 WARN_ON_ONCE(childregs->softe != IRQS_ENABLED); 1820 #endif 1821 if (clone_flags & CLONE_SETTLS) { 1822 unsigned long tls = args->tls; 1823 1824 if (!is_32bit_task()) 1825 childregs->gpr[13] = tls; 1826 else 1827 childregs->gpr[2] = tls; 1828 } 1829 1830 if (trap_is_scv(regs)) 1831 f = ret_from_fork_scv; 1832 else 1833 f = ret_from_fork; 1834 } 1835 1836 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX); 1837 p->thread.regs = childregs; 1838 } 1839 1840 /* 1841 * The way this works is that at some point in the future 1842 * some task will call _switch to switch to the new task. 1843 * That will pop off the stack frame created below and start 1844 * the new task running at ret_from_fork. The new task will 1845 * do some house keeping and then return from the fork or clone 1846 * system call, using the stack frame created above. 1847 */ 1848 ((unsigned long *)sp)[STACK_FRAME_LR_SAVE] = (unsigned long)f; 1849 sp -= STACK_SWITCH_FRAME_SIZE; 1850 ((unsigned long *)sp)[0] = sp + STACK_SWITCH_FRAME_SIZE; 1851 kregs = (struct pt_regs *)(sp + STACK_SWITCH_FRAME_REGS); 1852 kregs->nip = ppc_function_entry(f); 1853 if (unlikely(args->fn)) { 1854 /* 1855 * Put kthread fn, arg parameters in non-volatile GPRs in the 1856 * switch frame so they are loaded by _switch before it returns 1857 * to ret_from_kernel_thread. 1858 */ 1859 kregs->gpr[14] = ppc_function_entry((void *)args->fn); 1860 kregs->gpr[15] = (unsigned long)args->fn_arg; 1861 } 1862 p->thread.ksp = sp; 1863 1864 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1865 for (i = 0; i < nr_wp_slots(); i++) 1866 p->thread.ptrace_bps[i] = NULL; 1867 #endif 1868 1869 #ifdef CONFIG_PPC_FPU_REGS 1870 p->thread.fp_save_area = NULL; 1871 #endif 1872 #ifdef CONFIG_ALTIVEC 1873 p->thread.vr_save_area = NULL; 1874 #endif 1875 #if defined(CONFIG_PPC_BOOK3S_32) && defined(CONFIG_PPC_KUAP) 1876 p->thread.kuap = KUAP_NONE; 1877 #endif 1878 #if defined(CONFIG_BOOKE) && defined(CONFIG_PPC_KUAP) 1879 p->thread.pid = MMU_NO_CONTEXT; 1880 #endif 1881 1882 setup_ksp_vsid(p, sp); 1883 1884 #ifdef CONFIG_PPC64 1885 if (cpu_has_feature(CPU_FTR_DSCR)) { 1886 p->thread.dscr_inherit = current->thread.dscr_inherit; 1887 p->thread.dscr = mfspr(SPRN_DSCR); 1888 } 1889 1890 p->thread.tidr = 0; 1891 #endif 1892 #ifdef CONFIG_PPC_BOOK3S_64 1893 if (cpu_has_feature(CPU_FTR_DEXCR_NPHIE)) 1894 p->thread.hashkeyr = current->thread.hashkeyr; 1895 1896 if (cpu_has_feature(CPU_FTR_ARCH_31)) 1897 p->thread.dexcr = mfspr(SPRN_DEXCR); 1898 #endif 1899 return 0; 1900 } 1901 1902 void preload_new_slb_context(unsigned long start, unsigned long sp); 1903 1904 /* 1905 * Set up a thread for executing a new program 1906 */ 1907 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp) 1908 { 1909 #ifdef CONFIG_PPC64 1910 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */ 1911 1912 if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled()) 1913 preload_new_slb_context(start, sp); 1914 #endif 1915 1916 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1917 /* 1918 * Clear any transactional state, we're exec()ing. The cause is 1919 * not important as there will never be a recheckpoint so it's not 1920 * user visible. 1921 */ 1922 if (MSR_TM_SUSPENDED(mfmsr())) 1923 tm_reclaim_current(0); 1924 #endif 1925 1926 memset(®s->gpr[1], 0, sizeof(regs->gpr) - sizeof(regs->gpr[0])); 1927 regs->ctr = 0; 1928 regs->link = 0; 1929 regs->xer = 0; 1930 regs->ccr = 0; 1931 regs->gpr[1] = sp; 1932 1933 #ifdef CONFIG_PPC32 1934 regs->mq = 0; 1935 regs->nip = start; 1936 regs->msr = MSR_USER; 1937 #else 1938 if (!is_32bit_task()) { 1939 unsigned long entry; 1940 1941 if (is_elf2_task()) { 1942 /* Look ma, no function descriptors! */ 1943 entry = start; 1944 1945 /* 1946 * Ulrich says: 1947 * The latest iteration of the ABI requires that when 1948 * calling a function (at its global entry point), 1949 * the caller must ensure r12 holds the entry point 1950 * address (so that the function can quickly 1951 * establish addressability). 1952 */ 1953 regs->gpr[12] = start; 1954 /* Make sure that's restored on entry to userspace. */ 1955 set_thread_flag(TIF_RESTOREALL); 1956 } else { 1957 unsigned long toc; 1958 1959 /* start is a relocated pointer to the function 1960 * descriptor for the elf _start routine. The first 1961 * entry in the function descriptor is the entry 1962 * address of _start and the second entry is the TOC 1963 * value we need to use. 1964 */ 1965 __get_user(entry, (unsigned long __user *)start); 1966 __get_user(toc, (unsigned long __user *)start+1); 1967 1968 /* Check whether the e_entry function descriptor entries 1969 * need to be relocated before we can use them. 1970 */ 1971 if (load_addr != 0) { 1972 entry += load_addr; 1973 toc += load_addr; 1974 } 1975 regs->gpr[2] = toc; 1976 } 1977 regs_set_return_ip(regs, entry); 1978 regs_set_return_msr(regs, MSR_USER64); 1979 } else { 1980 regs->gpr[2] = 0; 1981 regs_set_return_ip(regs, start); 1982 regs_set_return_msr(regs, MSR_USER32); 1983 } 1984 1985 #endif 1986 #ifdef CONFIG_VSX 1987 current->thread.used_vsr = 0; 1988 #endif 1989 current->thread.load_slb = 0; 1990 current->thread.load_fp = 0; 1991 #ifdef CONFIG_PPC_FPU_REGS 1992 memset(¤t->thread.fp_state, 0, sizeof(current->thread.fp_state)); 1993 current->thread.fp_save_area = NULL; 1994 #endif 1995 #ifdef CONFIG_ALTIVEC 1996 memset(¤t->thread.vr_state, 0, sizeof(current->thread.vr_state)); 1997 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */ 1998 current->thread.vr_save_area = NULL; 1999 current->thread.vrsave = 0; 2000 current->thread.used_vr = 0; 2001 current->thread.load_vec = 0; 2002 #endif /* CONFIG_ALTIVEC */ 2003 #ifdef CONFIG_SPE 2004 memset(current->thread.evr, 0, sizeof(current->thread.evr)); 2005 current->thread.acc = 0; 2006 current->thread.spefscr = 0; 2007 current->thread.used_spe = 0; 2008 #endif /* CONFIG_SPE */ 2009 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 2010 current->thread.tm_tfhar = 0; 2011 current->thread.tm_texasr = 0; 2012 current->thread.tm_tfiar = 0; 2013 current->thread.load_tm = 0; 2014 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 2015 #ifdef CONFIG_PPC_BOOK3S_64 2016 if (cpu_has_feature(CPU_FTR_DEXCR_NPHIE)) { 2017 current->thread.hashkeyr = get_random_long(); 2018 mtspr(SPRN_HASHKEYR, current->thread.hashkeyr); 2019 } 2020 #endif /* CONFIG_PPC_BOOK3S_64 */ 2021 } 2022 EXPORT_SYMBOL(start_thread); 2023 2024 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \ 2025 | PR_FP_EXC_RES | PR_FP_EXC_INV) 2026 2027 int set_fpexc_mode(struct task_struct *tsk, unsigned int val) 2028 { 2029 struct pt_regs *regs = tsk->thread.regs; 2030 2031 /* This is a bit hairy. If we are an SPE enabled processor 2032 * (have embedded fp) we store the IEEE exception enable flags in 2033 * fpexc_mode. fpexc_mode is also used for setting FP exception 2034 * mode (asyn, precise, disabled) for 'Classic' FP. */ 2035 if (val & PR_FP_EXC_SW_ENABLE) { 2036 if (cpu_has_feature(CPU_FTR_SPE)) { 2037 /* 2038 * When the sticky exception bits are set 2039 * directly by userspace, it must call prctl 2040 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 2041 * in the existing prctl settings) or 2042 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 2043 * the bits being set). <fenv.h> functions 2044 * saving and restoring the whole 2045 * floating-point environment need to do so 2046 * anyway to restore the prctl settings from 2047 * the saved environment. 2048 */ 2049 #ifdef CONFIG_SPE 2050 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 2051 tsk->thread.fpexc_mode = val & 2052 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT); 2053 #endif 2054 return 0; 2055 } else { 2056 return -EINVAL; 2057 } 2058 } 2059 2060 /* on a CONFIG_SPE this does not hurt us. The bits that 2061 * __pack_fe01 use do not overlap with bits used for 2062 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits 2063 * on CONFIG_SPE implementations are reserved so writing to 2064 * them does not change anything */ 2065 if (val > PR_FP_EXC_PRECISE) 2066 return -EINVAL; 2067 tsk->thread.fpexc_mode = __pack_fe01(val); 2068 if (regs != NULL && (regs->msr & MSR_FP) != 0) { 2069 regs_set_return_msr(regs, (regs->msr & ~(MSR_FE0|MSR_FE1)) 2070 | tsk->thread.fpexc_mode); 2071 } 2072 return 0; 2073 } 2074 2075 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr) 2076 { 2077 unsigned int val = 0; 2078 2079 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) { 2080 if (cpu_has_feature(CPU_FTR_SPE)) { 2081 /* 2082 * When the sticky exception bits are set 2083 * directly by userspace, it must call prctl 2084 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 2085 * in the existing prctl settings) or 2086 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 2087 * the bits being set). <fenv.h> functions 2088 * saving and restoring the whole 2089 * floating-point environment need to do so 2090 * anyway to restore the prctl settings from 2091 * the saved environment. 2092 */ 2093 #ifdef CONFIG_SPE 2094 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 2095 val = tsk->thread.fpexc_mode; 2096 #endif 2097 } else 2098 return -EINVAL; 2099 } else { 2100 val = __unpack_fe01(tsk->thread.fpexc_mode); 2101 } 2102 return put_user(val, (unsigned int __user *) adr); 2103 } 2104 2105 int set_endian(struct task_struct *tsk, unsigned int val) 2106 { 2107 struct pt_regs *regs = tsk->thread.regs; 2108 2109 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) || 2110 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE))) 2111 return -EINVAL; 2112 2113 if (regs == NULL) 2114 return -EINVAL; 2115 2116 if (val == PR_ENDIAN_BIG) 2117 regs_set_return_msr(regs, regs->msr & ~MSR_LE); 2118 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE) 2119 regs_set_return_msr(regs, regs->msr | MSR_LE); 2120 else 2121 return -EINVAL; 2122 2123 return 0; 2124 } 2125 2126 int get_endian(struct task_struct *tsk, unsigned long adr) 2127 { 2128 struct pt_regs *regs = tsk->thread.regs; 2129 unsigned int val; 2130 2131 if (!cpu_has_feature(CPU_FTR_PPC_LE) && 2132 !cpu_has_feature(CPU_FTR_REAL_LE)) 2133 return -EINVAL; 2134 2135 if (regs == NULL) 2136 return -EINVAL; 2137 2138 if (regs->msr & MSR_LE) { 2139 if (cpu_has_feature(CPU_FTR_REAL_LE)) 2140 val = PR_ENDIAN_LITTLE; 2141 else 2142 val = PR_ENDIAN_PPC_LITTLE; 2143 } else 2144 val = PR_ENDIAN_BIG; 2145 2146 return put_user(val, (unsigned int __user *)adr); 2147 } 2148 2149 int set_unalign_ctl(struct task_struct *tsk, unsigned int val) 2150 { 2151 tsk->thread.align_ctl = val; 2152 return 0; 2153 } 2154 2155 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr) 2156 { 2157 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr); 2158 } 2159 2160 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p, 2161 unsigned long nbytes) 2162 { 2163 unsigned long stack_page; 2164 unsigned long cpu = task_cpu(p); 2165 2166 if (!hardirq_ctx[cpu] || !softirq_ctx[cpu]) 2167 return 0; 2168 2169 stack_page = (unsigned long)hardirq_ctx[cpu]; 2170 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 2171 return 1; 2172 2173 stack_page = (unsigned long)softirq_ctx[cpu]; 2174 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 2175 return 1; 2176 2177 return 0; 2178 } 2179 2180 static inline int valid_emergency_stack(unsigned long sp, struct task_struct *p, 2181 unsigned long nbytes) 2182 { 2183 #ifdef CONFIG_PPC64 2184 unsigned long stack_page; 2185 unsigned long cpu = task_cpu(p); 2186 2187 if (!paca_ptrs) 2188 return 0; 2189 2190 if (!paca_ptrs[cpu]->emergency_sp) 2191 return 0; 2192 2193 # ifdef CONFIG_PPC_BOOK3S_64 2194 if (!paca_ptrs[cpu]->nmi_emergency_sp || !paca_ptrs[cpu]->mc_emergency_sp) 2195 return 0; 2196 #endif 2197 2198 stack_page = (unsigned long)paca_ptrs[cpu]->emergency_sp - THREAD_SIZE; 2199 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 2200 return 1; 2201 2202 # ifdef CONFIG_PPC_BOOK3S_64 2203 stack_page = (unsigned long)paca_ptrs[cpu]->nmi_emergency_sp - THREAD_SIZE; 2204 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 2205 return 1; 2206 2207 stack_page = (unsigned long)paca_ptrs[cpu]->mc_emergency_sp - THREAD_SIZE; 2208 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 2209 return 1; 2210 # endif 2211 #endif 2212 2213 return 0; 2214 } 2215 2216 /* 2217 * validate the stack frame of a particular minimum size, used for when we are 2218 * looking at a certain object in the stack beyond the minimum. 2219 */ 2220 int validate_sp_size(unsigned long sp, struct task_struct *p, 2221 unsigned long nbytes) 2222 { 2223 unsigned long stack_page = (unsigned long)task_stack_page(p); 2224 2225 if (sp < THREAD_SIZE) 2226 return 0; 2227 2228 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 2229 return 1; 2230 2231 if (valid_irq_stack(sp, p, nbytes)) 2232 return 1; 2233 2234 return valid_emergency_stack(sp, p, nbytes); 2235 } 2236 2237 int validate_sp(unsigned long sp, struct task_struct *p) 2238 { 2239 return validate_sp_size(sp, p, STACK_FRAME_MIN_SIZE); 2240 } 2241 2242 static unsigned long ___get_wchan(struct task_struct *p) 2243 { 2244 unsigned long ip, sp; 2245 int count = 0; 2246 2247 sp = p->thread.ksp; 2248 if (!validate_sp(sp, p)) 2249 return 0; 2250 2251 do { 2252 sp = READ_ONCE_NOCHECK(*(unsigned long *)sp); 2253 if (!validate_sp(sp, p) || task_is_running(p)) 2254 return 0; 2255 if (count > 0) { 2256 ip = READ_ONCE_NOCHECK(((unsigned long *)sp)[STACK_FRAME_LR_SAVE]); 2257 if (!in_sched_functions(ip)) 2258 return ip; 2259 } 2260 } while (count++ < 16); 2261 return 0; 2262 } 2263 2264 unsigned long __get_wchan(struct task_struct *p) 2265 { 2266 unsigned long ret; 2267 2268 if (!try_get_task_stack(p)) 2269 return 0; 2270 2271 ret = ___get_wchan(p); 2272 2273 put_task_stack(p); 2274 2275 return ret; 2276 } 2277 2278 static bool empty_user_regs(struct pt_regs *regs, struct task_struct *tsk) 2279 { 2280 unsigned long stack_page; 2281 2282 // A non-empty pt_regs should never have a zero MSR or TRAP value. 2283 if (regs->msr || regs->trap) 2284 return false; 2285 2286 // Check it sits at the very base of the stack 2287 stack_page = (unsigned long)task_stack_page(tsk); 2288 if ((unsigned long)(regs + 1) != stack_page + THREAD_SIZE) 2289 return false; 2290 2291 return true; 2292 } 2293 2294 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH; 2295 2296 void __no_sanitize_address show_stack(struct task_struct *tsk, 2297 unsigned long *stack, 2298 const char *loglvl) 2299 { 2300 unsigned long sp, ip, lr, newsp; 2301 int count = 0; 2302 int firstframe = 1; 2303 unsigned long ret_addr; 2304 int ftrace_idx = 0; 2305 2306 if (tsk == NULL) 2307 tsk = current; 2308 2309 if (!try_get_task_stack(tsk)) 2310 return; 2311 2312 sp = (unsigned long) stack; 2313 if (sp == 0) { 2314 if (tsk == current) 2315 sp = current_stack_frame(); 2316 else 2317 sp = tsk->thread.ksp; 2318 } 2319 2320 lr = 0; 2321 printk("%sCall Trace:\n", loglvl); 2322 do { 2323 if (!validate_sp(sp, tsk)) 2324 break; 2325 2326 stack = (unsigned long *) sp; 2327 newsp = stack[0]; 2328 ip = stack[STACK_FRAME_LR_SAVE]; 2329 if (!firstframe || ip != lr) { 2330 printk("%s["REG"] ["REG"] %pS", 2331 loglvl, sp, ip, (void *)ip); 2332 ret_addr = ftrace_graph_ret_addr(current, 2333 &ftrace_idx, ip, stack); 2334 if (ret_addr != ip) 2335 pr_cont(" (%pS)", (void *)ret_addr); 2336 if (firstframe) 2337 pr_cont(" (unreliable)"); 2338 pr_cont("\n"); 2339 } 2340 firstframe = 0; 2341 2342 /* 2343 * See if this is an exception frame. 2344 * We look for the "regs" marker in the current frame. 2345 * 2346 * STACK_SWITCH_FRAME_SIZE being the smallest frame that 2347 * could hold a pt_regs, if that does not fit then it can't 2348 * have regs. 2349 */ 2350 if (validate_sp_size(sp, tsk, STACK_SWITCH_FRAME_SIZE) 2351 && stack[STACK_INT_FRAME_MARKER_LONGS] == STACK_FRAME_REGS_MARKER) { 2352 struct pt_regs *regs = (struct pt_regs *) 2353 (sp + STACK_INT_FRAME_REGS); 2354 2355 lr = regs->link; 2356 printk("%s--- interrupt: %lx at %pS\n", 2357 loglvl, regs->trap, (void *)regs->nip); 2358 2359 // Detect the case of an empty pt_regs at the very base 2360 // of the stack and suppress showing it in full. 2361 if (!empty_user_regs(regs, tsk)) { 2362 __show_regs(regs); 2363 printk("%s--- interrupt: %lx\n", loglvl, regs->trap); 2364 } 2365 2366 firstframe = 1; 2367 } 2368 2369 sp = newsp; 2370 } while (count++ < kstack_depth_to_print); 2371 2372 put_task_stack(tsk); 2373 } 2374 2375 #ifdef CONFIG_PPC64 2376 /* Called with hard IRQs off */ 2377 void notrace __ppc64_runlatch_on(void) 2378 { 2379 struct thread_info *ti = current_thread_info(); 2380 2381 if (cpu_has_feature(CPU_FTR_ARCH_206)) { 2382 /* 2383 * Least significant bit (RUN) is the only writable bit of 2384 * the CTRL register, so we can avoid mfspr. 2.06 is not the 2385 * earliest ISA where this is the case, but it's convenient. 2386 */ 2387 mtspr(SPRN_CTRLT, CTRL_RUNLATCH); 2388 } else { 2389 unsigned long ctrl; 2390 2391 /* 2392 * Some architectures (e.g., Cell) have writable fields other 2393 * than RUN, so do the read-modify-write. 2394 */ 2395 ctrl = mfspr(SPRN_CTRLF); 2396 ctrl |= CTRL_RUNLATCH; 2397 mtspr(SPRN_CTRLT, ctrl); 2398 } 2399 2400 ti->local_flags |= _TLF_RUNLATCH; 2401 } 2402 2403 /* Called with hard IRQs off */ 2404 void notrace __ppc64_runlatch_off(void) 2405 { 2406 struct thread_info *ti = current_thread_info(); 2407 2408 ti->local_flags &= ~_TLF_RUNLATCH; 2409 2410 if (cpu_has_feature(CPU_FTR_ARCH_206)) { 2411 mtspr(SPRN_CTRLT, 0); 2412 } else { 2413 unsigned long ctrl; 2414 2415 ctrl = mfspr(SPRN_CTRLF); 2416 ctrl &= ~CTRL_RUNLATCH; 2417 mtspr(SPRN_CTRLT, ctrl); 2418 } 2419 } 2420 #endif /* CONFIG_PPC64 */ 2421 2422 unsigned long arch_align_stack(unsigned long sp) 2423 { 2424 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 2425 sp -= get_random_u32_below(PAGE_SIZE); 2426 return sp & ~0xf; 2427 } 2428
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.