~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/powerpc/kernel/security.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0+
  2 //
  3 // Security related flags and so on.
  4 //
  5 // Copyright 2018, Michael Ellerman, IBM Corporation.
  6 
  7 #include <linux/cpu.h>
  8 #include <linux/kernel.h>
  9 #include <linux/device.h>
 10 #include <linux/memblock.h>
 11 #include <linux/nospec.h>
 12 #include <linux/prctl.h>
 13 #include <linux/seq_buf.h>
 14 #include <linux/debugfs.h>
 15 
 16 #include <asm/asm-prototypes.h>
 17 #include <asm/code-patching.h>
 18 #include <asm/security_features.h>
 19 #include <asm/sections.h>
 20 #include <asm/setup.h>
 21 #include <asm/inst.h>
 22 
 23 #include "setup.h"
 24 
 25 u64 powerpc_security_features __read_mostly = SEC_FTR_DEFAULT;
 26 
 27 enum branch_cache_flush_type {
 28         BRANCH_CACHE_FLUSH_NONE = 0x1,
 29         BRANCH_CACHE_FLUSH_SW   = 0x2,
 30         BRANCH_CACHE_FLUSH_HW   = 0x4,
 31 };
 32 static enum branch_cache_flush_type count_cache_flush_type = BRANCH_CACHE_FLUSH_NONE;
 33 static enum branch_cache_flush_type link_stack_flush_type = BRANCH_CACHE_FLUSH_NONE;
 34 
 35 bool barrier_nospec_enabled;
 36 static bool no_nospec;
 37 static bool btb_flush_enabled;
 38 #if defined(CONFIG_PPC_E500) || defined(CONFIG_PPC_BOOK3S_64)
 39 static bool no_spectrev2;
 40 #endif
 41 
 42 static void enable_barrier_nospec(bool enable)
 43 {
 44         barrier_nospec_enabled = enable;
 45         do_barrier_nospec_fixups(enable);
 46 }
 47 
 48 void __init setup_barrier_nospec(void)
 49 {
 50         bool enable;
 51 
 52         /*
 53          * It would make sense to check SEC_FTR_SPEC_BAR_ORI31 below as well.
 54          * But there's a good reason not to. The two flags we check below are
 55          * both are enabled by default in the kernel, so if the hcall is not
 56          * functional they will be enabled.
 57          * On a system where the host firmware has been updated (so the ori
 58          * functions as a barrier), but on which the hypervisor (KVM/Qemu) has
 59          * not been updated, we would like to enable the barrier. Dropping the
 60          * check for SEC_FTR_SPEC_BAR_ORI31 achieves that. The only downside is
 61          * we potentially enable the barrier on systems where the host firmware
 62          * is not updated, but that's harmless as it's a no-op.
 63          */
 64         enable = security_ftr_enabled(SEC_FTR_FAVOUR_SECURITY) &&
 65                  security_ftr_enabled(SEC_FTR_BNDS_CHK_SPEC_BAR);
 66 
 67         if (!no_nospec && !cpu_mitigations_off())
 68                 enable_barrier_nospec(enable);
 69 }
 70 
 71 static int __init handle_nospectre_v1(char *p)
 72 {
 73         no_nospec = true;
 74 
 75         return 0;
 76 }
 77 early_param("nospectre_v1", handle_nospectre_v1);
 78 
 79 #ifdef CONFIG_DEBUG_FS
 80 static int barrier_nospec_set(void *data, u64 val)
 81 {
 82         switch (val) {
 83         case 0:
 84         case 1:
 85                 break;
 86         default:
 87                 return -EINVAL;
 88         }
 89 
 90         if (!!val == !!barrier_nospec_enabled)
 91                 return 0;
 92 
 93         enable_barrier_nospec(!!val);
 94 
 95         return 0;
 96 }
 97 
 98 static int barrier_nospec_get(void *data, u64 *val)
 99 {
100         *val = barrier_nospec_enabled ? 1 : 0;
101         return 0;
102 }
103 
104 DEFINE_DEBUGFS_ATTRIBUTE(fops_barrier_nospec, barrier_nospec_get,
105                          barrier_nospec_set, "%llu\n");
106 
107 static __init int barrier_nospec_debugfs_init(void)
108 {
109         debugfs_create_file_unsafe("barrier_nospec", 0600,
110                                    arch_debugfs_dir, NULL,
111                                    &fops_barrier_nospec);
112         return 0;
113 }
114 device_initcall(barrier_nospec_debugfs_init);
115 
116 static __init int security_feature_debugfs_init(void)
117 {
118         debugfs_create_x64("security_features", 0400, arch_debugfs_dir,
119                            &powerpc_security_features);
120         return 0;
121 }
122 device_initcall(security_feature_debugfs_init);
123 #endif /* CONFIG_DEBUG_FS */
124 
125 #if defined(CONFIG_PPC_E500) || defined(CONFIG_PPC_BOOK3S_64)
126 static int __init handle_nospectre_v2(char *p)
127 {
128         no_spectrev2 = true;
129 
130         return 0;
131 }
132 early_param("nospectre_v2", handle_nospectre_v2);
133 #endif /* CONFIG_PPC_E500 || CONFIG_PPC_BOOK3S_64 */
134 
135 #ifdef CONFIG_PPC_E500
136 void __init setup_spectre_v2(void)
137 {
138         if (no_spectrev2 || cpu_mitigations_off())
139                 do_btb_flush_fixups();
140         else
141                 btb_flush_enabled = true;
142 }
143 #endif /* CONFIG_PPC_E500 */
144 
145 #ifdef CONFIG_PPC_BOOK3S_64
146 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf)
147 {
148         bool thread_priv;
149 
150         thread_priv = security_ftr_enabled(SEC_FTR_L1D_THREAD_PRIV);
151 
152         if (rfi_flush) {
153                 struct seq_buf s;
154                 seq_buf_init(&s, buf, PAGE_SIZE - 1);
155 
156                 seq_buf_printf(&s, "Mitigation: RFI Flush");
157                 if (thread_priv)
158                         seq_buf_printf(&s, ", L1D private per thread");
159 
160                 seq_buf_printf(&s, "\n");
161 
162                 return s.len;
163         }
164 
165         if (thread_priv)
166                 return sprintf(buf, "Vulnerable: L1D private per thread\n");
167 
168         if (!security_ftr_enabled(SEC_FTR_L1D_FLUSH_HV) &&
169             !security_ftr_enabled(SEC_FTR_L1D_FLUSH_PR))
170                 return sprintf(buf, "Not affected\n");
171 
172         return sprintf(buf, "Vulnerable\n");
173 }
174 
175 ssize_t cpu_show_l1tf(struct device *dev, struct device_attribute *attr, char *buf)
176 {
177         return cpu_show_meltdown(dev, attr, buf);
178 }
179 #endif
180 
181 ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr, char *buf)
182 {
183         struct seq_buf s;
184 
185         seq_buf_init(&s, buf, PAGE_SIZE - 1);
186 
187         if (security_ftr_enabled(SEC_FTR_BNDS_CHK_SPEC_BAR)) {
188                 if (barrier_nospec_enabled)
189                         seq_buf_printf(&s, "Mitigation: __user pointer sanitization");
190                 else
191                         seq_buf_printf(&s, "Vulnerable");
192 
193                 if (security_ftr_enabled(SEC_FTR_SPEC_BAR_ORI31))
194                         seq_buf_printf(&s, ", ori31 speculation barrier enabled");
195 
196                 seq_buf_printf(&s, "\n");
197         } else
198                 seq_buf_printf(&s, "Not affected\n");
199 
200         return s.len;
201 }
202 
203 ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr, char *buf)
204 {
205         struct seq_buf s;
206         bool bcs, ccd;
207 
208         seq_buf_init(&s, buf, PAGE_SIZE - 1);
209 
210         bcs = security_ftr_enabled(SEC_FTR_BCCTRL_SERIALISED);
211         ccd = security_ftr_enabled(SEC_FTR_COUNT_CACHE_DISABLED);
212 
213         if (bcs || ccd) {
214                 seq_buf_printf(&s, "Mitigation: ");
215 
216                 if (bcs)
217                         seq_buf_printf(&s, "Indirect branch serialisation (kernel only)");
218 
219                 if (bcs && ccd)
220                         seq_buf_printf(&s, ", ");
221 
222                 if (ccd)
223                         seq_buf_printf(&s, "Indirect branch cache disabled");
224 
225         } else if (count_cache_flush_type != BRANCH_CACHE_FLUSH_NONE) {
226                 seq_buf_printf(&s, "Mitigation: Software count cache flush");
227 
228                 if (count_cache_flush_type == BRANCH_CACHE_FLUSH_HW)
229                         seq_buf_printf(&s, " (hardware accelerated)");
230 
231         } else if (btb_flush_enabled) {
232                 seq_buf_printf(&s, "Mitigation: Branch predictor state flush");
233         } else {
234                 seq_buf_printf(&s, "Vulnerable");
235         }
236 
237         if (bcs || ccd || count_cache_flush_type != BRANCH_CACHE_FLUSH_NONE) {
238                 if (link_stack_flush_type != BRANCH_CACHE_FLUSH_NONE)
239                         seq_buf_printf(&s, ", Software link stack flush");
240                 if (link_stack_flush_type == BRANCH_CACHE_FLUSH_HW)
241                         seq_buf_printf(&s, " (hardware accelerated)");
242         }
243 
244         seq_buf_printf(&s, "\n");
245 
246         return s.len;
247 }
248 
249 #ifdef CONFIG_PPC_BOOK3S_64
250 /*
251  * Store-forwarding barrier support.
252  */
253 
254 static enum stf_barrier_type stf_enabled_flush_types;
255 static bool no_stf_barrier;
256 static bool stf_barrier;
257 
258 static int __init handle_no_stf_barrier(char *p)
259 {
260         pr_info("stf-barrier: disabled on command line.");
261         no_stf_barrier = true;
262         return 0;
263 }
264 
265 early_param("no_stf_barrier", handle_no_stf_barrier);
266 
267 enum stf_barrier_type stf_barrier_type_get(void)
268 {
269         return stf_enabled_flush_types;
270 }
271 
272 /* This is the generic flag used by other architectures */
273 static int __init handle_ssbd(char *p)
274 {
275         if (!p || strncmp(p, "auto", 5) == 0 || strncmp(p, "on", 2) == 0 ) {
276                 /* Until firmware tells us, we have the barrier with auto */
277                 return 0;
278         } else if (strncmp(p, "off", 3) == 0) {
279                 handle_no_stf_barrier(NULL);
280                 return 0;
281         } else
282                 return 1;
283 
284         return 0;
285 }
286 early_param("spec_store_bypass_disable", handle_ssbd);
287 
288 /* This is the generic flag used by other architectures */
289 static int __init handle_no_ssbd(char *p)
290 {
291         handle_no_stf_barrier(NULL);
292         return 0;
293 }
294 early_param("nospec_store_bypass_disable", handle_no_ssbd);
295 
296 static void stf_barrier_enable(bool enable)
297 {
298         if (enable)
299                 do_stf_barrier_fixups(stf_enabled_flush_types);
300         else
301                 do_stf_barrier_fixups(STF_BARRIER_NONE);
302 
303         stf_barrier = enable;
304 }
305 
306 void setup_stf_barrier(void)
307 {
308         enum stf_barrier_type type;
309         bool enable;
310 
311         /* Default to fallback in case fw-features are not available */
312         if (cpu_has_feature(CPU_FTR_ARCH_300))
313                 type = STF_BARRIER_EIEIO;
314         else if (cpu_has_feature(CPU_FTR_ARCH_207S))
315                 type = STF_BARRIER_SYNC_ORI;
316         else if (cpu_has_feature(CPU_FTR_ARCH_206))
317                 type = STF_BARRIER_FALLBACK;
318         else
319                 type = STF_BARRIER_NONE;
320 
321         enable = security_ftr_enabled(SEC_FTR_FAVOUR_SECURITY) &&
322                  security_ftr_enabled(SEC_FTR_STF_BARRIER);
323 
324         if (type == STF_BARRIER_FALLBACK) {
325                 pr_info("stf-barrier: fallback barrier available\n");
326         } else if (type == STF_BARRIER_SYNC_ORI) {
327                 pr_info("stf-barrier: hwsync barrier available\n");
328         } else if (type == STF_BARRIER_EIEIO) {
329                 pr_info("stf-barrier: eieio barrier available\n");
330         }
331 
332         stf_enabled_flush_types = type;
333 
334         if (!no_stf_barrier && !cpu_mitigations_off())
335                 stf_barrier_enable(enable);
336 }
337 
338 ssize_t cpu_show_spec_store_bypass(struct device *dev, struct device_attribute *attr, char *buf)
339 {
340         if (stf_barrier && stf_enabled_flush_types != STF_BARRIER_NONE) {
341                 const char *type;
342                 switch (stf_enabled_flush_types) {
343                 case STF_BARRIER_EIEIO:
344                         type = "eieio";
345                         break;
346                 case STF_BARRIER_SYNC_ORI:
347                         type = "hwsync";
348                         break;
349                 case STF_BARRIER_FALLBACK:
350                         type = "fallback";
351                         break;
352                 default:
353                         type = "unknown";
354                 }
355                 return sprintf(buf, "Mitigation: Kernel entry/exit barrier (%s)\n", type);
356         }
357 
358         if (!security_ftr_enabled(SEC_FTR_L1D_FLUSH_HV) &&
359             !security_ftr_enabled(SEC_FTR_L1D_FLUSH_PR))
360                 return sprintf(buf, "Not affected\n");
361 
362         return sprintf(buf, "Vulnerable\n");
363 }
364 
365 static int ssb_prctl_get(struct task_struct *task)
366 {
367         /*
368          * The STF_BARRIER feature is on by default, so if it's off that means
369          * firmware has explicitly said the CPU is not vulnerable via either
370          * the hypercall or device tree.
371          */
372         if (!security_ftr_enabled(SEC_FTR_STF_BARRIER))
373                 return PR_SPEC_NOT_AFFECTED;
374 
375         /*
376          * If the system's CPU has no known barrier (see setup_stf_barrier())
377          * then assume that the CPU is not vulnerable.
378          */
379         if (stf_enabled_flush_types == STF_BARRIER_NONE)
380                 return PR_SPEC_NOT_AFFECTED;
381 
382         /*
383          * Otherwise the CPU is vulnerable. The barrier is not a global or
384          * per-process mitigation, so the only value that can be reported here
385          * is PR_SPEC_ENABLE, which appears as "vulnerable" in /proc.
386          */
387         return PR_SPEC_ENABLE;
388 }
389 
390 int arch_prctl_spec_ctrl_get(struct task_struct *task, unsigned long which)
391 {
392         switch (which) {
393         case PR_SPEC_STORE_BYPASS:
394                 return ssb_prctl_get(task);
395         default:
396                 return -ENODEV;
397         }
398 }
399 
400 #ifdef CONFIG_DEBUG_FS
401 static int stf_barrier_set(void *data, u64 val)
402 {
403         bool enable;
404 
405         if (val == 1)
406                 enable = true;
407         else if (val == 0)
408                 enable = false;
409         else
410                 return -EINVAL;
411 
412         /* Only do anything if we're changing state */
413         if (enable != stf_barrier)
414                 stf_barrier_enable(enable);
415 
416         return 0;
417 }
418 
419 static int stf_barrier_get(void *data, u64 *val)
420 {
421         *val = stf_barrier ? 1 : 0;
422         return 0;
423 }
424 
425 DEFINE_DEBUGFS_ATTRIBUTE(fops_stf_barrier, stf_barrier_get, stf_barrier_set,
426                          "%llu\n");
427 
428 static __init int stf_barrier_debugfs_init(void)
429 {
430         debugfs_create_file_unsafe("stf_barrier", 0600, arch_debugfs_dir,
431                                    NULL, &fops_stf_barrier);
432         return 0;
433 }
434 device_initcall(stf_barrier_debugfs_init);
435 #endif /* CONFIG_DEBUG_FS */
436 
437 static void update_branch_cache_flush(void)
438 {
439         u32 *site, __maybe_unused *site2;
440 
441 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
442         site = &patch__call_kvm_flush_link_stack;
443         site2 = &patch__call_kvm_flush_link_stack_p9;
444         // This controls the branch from guest_exit_cont to kvm_flush_link_stack
445         if (link_stack_flush_type == BRANCH_CACHE_FLUSH_NONE) {
446                 patch_instruction_site(site, ppc_inst(PPC_RAW_NOP()));
447                 patch_instruction_site(site2, ppc_inst(PPC_RAW_NOP()));
448         } else {
449                 // Could use HW flush, but that could also flush count cache
450                 patch_branch_site(site, (u64)&kvm_flush_link_stack, BRANCH_SET_LINK);
451                 patch_branch_site(site2, (u64)&kvm_flush_link_stack, BRANCH_SET_LINK);
452         }
453 #endif
454 
455         // Patch out the bcctr first, then nop the rest
456         site = &patch__call_flush_branch_caches3;
457         patch_instruction_site(site, ppc_inst(PPC_RAW_NOP()));
458         site = &patch__call_flush_branch_caches2;
459         patch_instruction_site(site, ppc_inst(PPC_RAW_NOP()));
460         site = &patch__call_flush_branch_caches1;
461         patch_instruction_site(site, ppc_inst(PPC_RAW_NOP()));
462 
463         // This controls the branch from _switch to flush_branch_caches
464         if (count_cache_flush_type == BRANCH_CACHE_FLUSH_NONE &&
465             link_stack_flush_type == BRANCH_CACHE_FLUSH_NONE) {
466                 // Nothing to be done
467 
468         } else if (count_cache_flush_type == BRANCH_CACHE_FLUSH_HW &&
469                    link_stack_flush_type == BRANCH_CACHE_FLUSH_HW) {
470                 // Patch in the bcctr last
471                 site = &patch__call_flush_branch_caches1;
472                 patch_instruction_site(site, ppc_inst(0x39207fff)); // li r9,0x7fff
473                 site = &patch__call_flush_branch_caches2;
474                 patch_instruction_site(site, ppc_inst(0x7d2903a6)); // mtctr r9
475                 site = &patch__call_flush_branch_caches3;
476                 patch_instruction_site(site, ppc_inst(PPC_INST_BCCTR_FLUSH));
477 
478         } else {
479                 patch_branch_site(site, (u64)&flush_branch_caches, BRANCH_SET_LINK);
480 
481                 // If we just need to flush the link stack, early return
482                 if (count_cache_flush_type == BRANCH_CACHE_FLUSH_NONE) {
483                         patch_instruction_site(&patch__flush_link_stack_return,
484                                                ppc_inst(PPC_RAW_BLR()));
485 
486                 // If we have flush instruction, early return
487                 } else if (count_cache_flush_type == BRANCH_CACHE_FLUSH_HW) {
488                         patch_instruction_site(&patch__flush_count_cache_return,
489                                                ppc_inst(PPC_RAW_BLR()));
490                 }
491         }
492 }
493 
494 static void toggle_branch_cache_flush(bool enable)
495 {
496         if (!enable || !security_ftr_enabled(SEC_FTR_FLUSH_COUNT_CACHE)) {
497                 if (count_cache_flush_type != BRANCH_CACHE_FLUSH_NONE)
498                         count_cache_flush_type = BRANCH_CACHE_FLUSH_NONE;
499 
500                 pr_info("count-cache-flush: flush disabled.\n");
501         } else {
502                 if (security_ftr_enabled(SEC_FTR_BCCTR_FLUSH_ASSIST)) {
503                         count_cache_flush_type = BRANCH_CACHE_FLUSH_HW;
504                         pr_info("count-cache-flush: hardware flush enabled.\n");
505                 } else {
506                         count_cache_flush_type = BRANCH_CACHE_FLUSH_SW;
507                         pr_info("count-cache-flush: software flush enabled.\n");
508                 }
509         }
510 
511         if (!enable || !security_ftr_enabled(SEC_FTR_FLUSH_LINK_STACK)) {
512                 if (link_stack_flush_type != BRANCH_CACHE_FLUSH_NONE)
513                         link_stack_flush_type = BRANCH_CACHE_FLUSH_NONE;
514 
515                 pr_info("link-stack-flush: flush disabled.\n");
516         } else {
517                 if (security_ftr_enabled(SEC_FTR_BCCTR_LINK_FLUSH_ASSIST)) {
518                         link_stack_flush_type = BRANCH_CACHE_FLUSH_HW;
519                         pr_info("link-stack-flush: hardware flush enabled.\n");
520                 } else {
521                         link_stack_flush_type = BRANCH_CACHE_FLUSH_SW;
522                         pr_info("link-stack-flush: software flush enabled.\n");
523                 }
524         }
525 
526         update_branch_cache_flush();
527 }
528 
529 void setup_count_cache_flush(void)
530 {
531         bool enable = true;
532 
533         if (no_spectrev2 || cpu_mitigations_off()) {
534                 if (security_ftr_enabled(SEC_FTR_BCCTRL_SERIALISED) ||
535                     security_ftr_enabled(SEC_FTR_COUNT_CACHE_DISABLED))
536                         pr_warn("Spectre v2 mitigations not fully under software control, can't disable\n");
537 
538                 enable = false;
539         }
540 
541         /*
542          * There's no firmware feature flag/hypervisor bit to tell us we need to
543          * flush the link stack on context switch. So we set it here if we see
544          * either of the Spectre v2 mitigations that aim to protect userspace.
545          */
546         if (security_ftr_enabled(SEC_FTR_COUNT_CACHE_DISABLED) ||
547             security_ftr_enabled(SEC_FTR_FLUSH_COUNT_CACHE))
548                 security_ftr_set(SEC_FTR_FLUSH_LINK_STACK);
549 
550         toggle_branch_cache_flush(enable);
551 }
552 
553 static enum l1d_flush_type enabled_flush_types;
554 static void *l1d_flush_fallback_area;
555 static bool no_rfi_flush;
556 static bool no_entry_flush;
557 static bool no_uaccess_flush;
558 bool rfi_flush;
559 static bool entry_flush;
560 static bool uaccess_flush;
561 DEFINE_STATIC_KEY_FALSE(uaccess_flush_key);
562 EXPORT_SYMBOL(uaccess_flush_key);
563 
564 static int __init handle_no_rfi_flush(char *p)
565 {
566         pr_info("rfi-flush: disabled on command line.");
567         no_rfi_flush = true;
568         return 0;
569 }
570 early_param("no_rfi_flush", handle_no_rfi_flush);
571 
572 static int __init handle_no_entry_flush(char *p)
573 {
574         pr_info("entry-flush: disabled on command line.");
575         no_entry_flush = true;
576         return 0;
577 }
578 early_param("no_entry_flush", handle_no_entry_flush);
579 
580 static int __init handle_no_uaccess_flush(char *p)
581 {
582         pr_info("uaccess-flush: disabled on command line.");
583         no_uaccess_flush = true;
584         return 0;
585 }
586 early_param("no_uaccess_flush", handle_no_uaccess_flush);
587 
588 /*
589  * The RFI flush is not KPTI, but because users will see doco that says to use
590  * nopti we hijack that option here to also disable the RFI flush.
591  */
592 static int __init handle_no_pti(char *p)
593 {
594         pr_info("rfi-flush: disabling due to 'nopti' on command line.\n");
595         handle_no_rfi_flush(NULL);
596         return 0;
597 }
598 early_param("nopti", handle_no_pti);
599 
600 static void do_nothing(void *unused)
601 {
602         /*
603          * We don't need to do the flush explicitly, just enter+exit kernel is
604          * sufficient, the RFI exit handlers will do the right thing.
605          */
606 }
607 
608 void rfi_flush_enable(bool enable)
609 {
610         if (enable) {
611                 do_rfi_flush_fixups(enabled_flush_types);
612                 on_each_cpu(do_nothing, NULL, 1);
613         } else
614                 do_rfi_flush_fixups(L1D_FLUSH_NONE);
615 
616         rfi_flush = enable;
617 }
618 
619 static void entry_flush_enable(bool enable)
620 {
621         if (enable) {
622                 do_entry_flush_fixups(enabled_flush_types);
623                 on_each_cpu(do_nothing, NULL, 1);
624         } else {
625                 do_entry_flush_fixups(L1D_FLUSH_NONE);
626         }
627 
628         entry_flush = enable;
629 }
630 
631 static void uaccess_flush_enable(bool enable)
632 {
633         if (enable) {
634                 do_uaccess_flush_fixups(enabled_flush_types);
635                 static_branch_enable(&uaccess_flush_key);
636                 on_each_cpu(do_nothing, NULL, 1);
637         } else {
638                 static_branch_disable(&uaccess_flush_key);
639                 do_uaccess_flush_fixups(L1D_FLUSH_NONE);
640         }
641 
642         uaccess_flush = enable;
643 }
644 
645 static void __ref init_fallback_flush(void)
646 {
647         u64 l1d_size, limit;
648         int cpu;
649 
650         /* Only allocate the fallback flush area once (at boot time). */
651         if (l1d_flush_fallback_area)
652                 return;
653 
654         l1d_size = ppc64_caches.l1d.size;
655 
656         /*
657          * If there is no d-cache-size property in the device tree, l1d_size
658          * could be zero. That leads to the loop in the asm wrapping around to
659          * 2^64-1, and then walking off the end of the fallback area and
660          * eventually causing a page fault which is fatal. Just default to
661          * something vaguely sane.
662          */
663         if (!l1d_size)
664                 l1d_size = (64 * 1024);
665 
666         limit = min(ppc64_bolted_size(), ppc64_rma_size);
667 
668         /*
669          * Align to L1d size, and size it at 2x L1d size, to catch possible
670          * hardware prefetch runoff. We don't have a recipe for load patterns to
671          * reliably avoid the prefetcher.
672          */
673         l1d_flush_fallback_area = memblock_alloc_try_nid(l1d_size * 2,
674                                                 l1d_size, MEMBLOCK_LOW_LIMIT,
675                                                 limit, NUMA_NO_NODE);
676         if (!l1d_flush_fallback_area)
677                 panic("%s: Failed to allocate %llu bytes align=0x%llx max_addr=%pa\n",
678                       __func__, l1d_size * 2, l1d_size, &limit);
679 
680 
681         for_each_possible_cpu(cpu) {
682                 struct paca_struct *paca = paca_ptrs[cpu];
683                 paca->rfi_flush_fallback_area = l1d_flush_fallback_area;
684                 paca->l1d_flush_size = l1d_size;
685         }
686 }
687 
688 void setup_rfi_flush(enum l1d_flush_type types, bool enable)
689 {
690         if (types & L1D_FLUSH_FALLBACK) {
691                 pr_info("rfi-flush: fallback displacement flush available\n");
692                 init_fallback_flush();
693         }
694 
695         if (types & L1D_FLUSH_ORI)
696                 pr_info("rfi-flush: ori type flush available\n");
697 
698         if (types & L1D_FLUSH_MTTRIG)
699                 pr_info("rfi-flush: mttrig type flush available\n");
700 
701         enabled_flush_types = types;
702 
703         if (!cpu_mitigations_off() && !no_rfi_flush)
704                 rfi_flush_enable(enable);
705 }
706 
707 void setup_entry_flush(bool enable)
708 {
709         if (cpu_mitigations_off())
710                 return;
711 
712         if (!no_entry_flush)
713                 entry_flush_enable(enable);
714 }
715 
716 void setup_uaccess_flush(bool enable)
717 {
718         if (cpu_mitigations_off())
719                 return;
720 
721         if (!no_uaccess_flush)
722                 uaccess_flush_enable(enable);
723 }
724 
725 #ifdef CONFIG_DEBUG_FS
726 static int count_cache_flush_set(void *data, u64 val)
727 {
728         bool enable;
729 
730         if (val == 1)
731                 enable = true;
732         else if (val == 0)
733                 enable = false;
734         else
735                 return -EINVAL;
736 
737         toggle_branch_cache_flush(enable);
738 
739         return 0;
740 }
741 
742 static int count_cache_flush_get(void *data, u64 *val)
743 {
744         if (count_cache_flush_type == BRANCH_CACHE_FLUSH_NONE)
745                 *val = 0;
746         else
747                 *val = 1;
748 
749         return 0;
750 }
751 
752 static int link_stack_flush_get(void *data, u64 *val)
753 {
754         if (link_stack_flush_type == BRANCH_CACHE_FLUSH_NONE)
755                 *val = 0;
756         else
757                 *val = 1;
758 
759         return 0;
760 }
761 
762 DEFINE_DEBUGFS_ATTRIBUTE(fops_count_cache_flush, count_cache_flush_get,
763                          count_cache_flush_set, "%llu\n");
764 DEFINE_DEBUGFS_ATTRIBUTE(fops_link_stack_flush, link_stack_flush_get,
765                          count_cache_flush_set, "%llu\n");
766 
767 static __init int count_cache_flush_debugfs_init(void)
768 {
769         debugfs_create_file_unsafe("count_cache_flush", 0600,
770                                    arch_debugfs_dir, NULL,
771                                    &fops_count_cache_flush);
772         debugfs_create_file_unsafe("link_stack_flush", 0600,
773                                    arch_debugfs_dir, NULL,
774                                    &fops_link_stack_flush);
775         return 0;
776 }
777 device_initcall(count_cache_flush_debugfs_init);
778 
779 static int rfi_flush_set(void *data, u64 val)
780 {
781         bool enable;
782 
783         if (val == 1)
784                 enable = true;
785         else if (val == 0)
786                 enable = false;
787         else
788                 return -EINVAL;
789 
790         /* Only do anything if we're changing state */
791         if (enable != rfi_flush)
792                 rfi_flush_enable(enable);
793 
794         return 0;
795 }
796 
797 static int rfi_flush_get(void *data, u64 *val)
798 {
799         *val = rfi_flush ? 1 : 0;
800         return 0;
801 }
802 
803 DEFINE_SIMPLE_ATTRIBUTE(fops_rfi_flush, rfi_flush_get, rfi_flush_set, "%llu\n");
804 
805 static int entry_flush_set(void *data, u64 val)
806 {
807         bool enable;
808 
809         if (val == 1)
810                 enable = true;
811         else if (val == 0)
812                 enable = false;
813         else
814                 return -EINVAL;
815 
816         /* Only do anything if we're changing state */
817         if (enable != entry_flush)
818                 entry_flush_enable(enable);
819 
820         return 0;
821 }
822 
823 static int entry_flush_get(void *data, u64 *val)
824 {
825         *val = entry_flush ? 1 : 0;
826         return 0;
827 }
828 
829 DEFINE_SIMPLE_ATTRIBUTE(fops_entry_flush, entry_flush_get, entry_flush_set, "%llu\n");
830 
831 static int uaccess_flush_set(void *data, u64 val)
832 {
833         bool enable;
834 
835         if (val == 1)
836                 enable = true;
837         else if (val == 0)
838                 enable = false;
839         else
840                 return -EINVAL;
841 
842         /* Only do anything if we're changing state */
843         if (enable != uaccess_flush)
844                 uaccess_flush_enable(enable);
845 
846         return 0;
847 }
848 
849 static int uaccess_flush_get(void *data, u64 *val)
850 {
851         *val = uaccess_flush ? 1 : 0;
852         return 0;
853 }
854 
855 DEFINE_SIMPLE_ATTRIBUTE(fops_uaccess_flush, uaccess_flush_get, uaccess_flush_set, "%llu\n");
856 
857 static __init int rfi_flush_debugfs_init(void)
858 {
859         debugfs_create_file("rfi_flush", 0600, arch_debugfs_dir, NULL, &fops_rfi_flush);
860         debugfs_create_file("entry_flush", 0600, arch_debugfs_dir, NULL, &fops_entry_flush);
861         debugfs_create_file("uaccess_flush", 0600, arch_debugfs_dir, NULL, &fops_uaccess_flush);
862         return 0;
863 }
864 device_initcall(rfi_flush_debugfs_init);
865 #endif /* CONFIG_DEBUG_FS */
866 #endif /* CONFIG_PPC_BOOK3S_64 */
867 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php