~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/powerpc/kexec/core_64.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * PPC64 code to handle Linux booting another kernel.
  4  *
  5  * Copyright (C) 2004-2005, IBM Corp.
  6  *
  7  * Created by: Milton D Miller II
  8  */
  9 
 10 
 11 #include <linux/kexec.h>
 12 #include <linux/smp.h>
 13 #include <linux/thread_info.h>
 14 #include <linux/init_task.h>
 15 #include <linux/errno.h>
 16 #include <linux/kernel.h>
 17 #include <linux/cpu.h>
 18 #include <linux/hardirq.h>
 19 #include <linux/of.h>
 20 #include <linux/libfdt.h>
 21 
 22 #include <asm/page.h>
 23 #include <asm/current.h>
 24 #include <asm/machdep.h>
 25 #include <asm/cacheflush.h>
 26 #include <asm/firmware.h>
 27 #include <asm/paca.h>
 28 #include <asm/mmu.h>
 29 #include <asm/sections.h>       /* _end */
 30 #include <asm/setup.h>
 31 #include <asm/smp.h>
 32 #include <asm/hw_breakpoint.h>
 33 #include <asm/svm.h>
 34 #include <asm/ultravisor.h>
 35 #include <asm/crashdump-ppc64.h>
 36 
 37 int machine_kexec_prepare(struct kimage *image)
 38 {
 39         int i;
 40         unsigned long begin, end;       /* limits of segment */
 41         unsigned long low, high;        /* limits of blocked memory range */
 42         struct device_node *node;
 43         const unsigned long *basep;
 44         const unsigned int *sizep;
 45 
 46         /*
 47          * Since we use the kernel fault handlers and paging code to
 48          * handle the virtual mode, we must make sure no destination
 49          * overlaps kernel static data or bss.
 50          */
 51         for (i = 0; i < image->nr_segments; i++)
 52                 if (image->segment[i].mem < __pa(_end))
 53                         return -ETXTBSY;
 54 
 55         /* We also should not overwrite the tce tables */
 56         for_each_node_by_type(node, "pci") {
 57                 basep = of_get_property(node, "linux,tce-base", NULL);
 58                 sizep = of_get_property(node, "linux,tce-size", NULL);
 59                 if (basep == NULL || sizep == NULL)
 60                         continue;
 61 
 62                 low = *basep;
 63                 high = low + (*sizep);
 64 
 65                 for (i = 0; i < image->nr_segments; i++) {
 66                         begin = image->segment[i].mem;
 67                         end = begin + image->segment[i].memsz;
 68 
 69                         if ((begin < high) && (end > low)) {
 70                                 of_node_put(node);
 71                                 return -ETXTBSY;
 72                         }
 73                 }
 74         }
 75 
 76         return 0;
 77 }
 78 
 79 /* Called during kexec sequence with MMU off */
 80 static notrace void copy_segments(unsigned long ind)
 81 {
 82         unsigned long entry;
 83         unsigned long *ptr;
 84         void *dest;
 85         void *addr;
 86 
 87         /*
 88          * We rely on kexec_load to create a lists that properly
 89          * initializes these pointers before they are used.
 90          * We will still crash if the list is wrong, but at least
 91          * the compiler will be quiet.
 92          */
 93         ptr = NULL;
 94         dest = NULL;
 95 
 96         for (entry = ind; !(entry & IND_DONE); entry = *ptr++) {
 97                 addr = __va(entry & PAGE_MASK);
 98 
 99                 switch (entry & IND_FLAGS) {
100                 case IND_DESTINATION:
101                         dest = addr;
102                         break;
103                 case IND_INDIRECTION:
104                         ptr = addr;
105                         break;
106                 case IND_SOURCE:
107                         copy_page(dest, addr);
108                         dest += PAGE_SIZE;
109                 }
110         }
111 }
112 
113 /* Called during kexec sequence with MMU off */
114 notrace void kexec_copy_flush(struct kimage *image)
115 {
116         long i, nr_segments = image->nr_segments;
117         struct  kexec_segment ranges[KEXEC_SEGMENT_MAX];
118 
119         /* save the ranges on the stack to efficiently flush the icache */
120         memcpy(ranges, image->segment, sizeof(ranges));
121 
122         /*
123          * After this call we may not use anything allocated in dynamic
124          * memory, including *image.
125          *
126          * Only globals and the stack are allowed.
127          */
128         copy_segments(image->head);
129 
130         /*
131          * we need to clear the icache for all dest pages sometime,
132          * including ones that were in place on the original copy
133          */
134         for (i = 0; i < nr_segments; i++)
135                 flush_icache_range((unsigned long)__va(ranges[i].mem),
136                         (unsigned long)__va(ranges[i].mem + ranges[i].memsz));
137 }
138 
139 #ifdef CONFIG_SMP
140 
141 static int kexec_all_irq_disabled = 0;
142 
143 static void kexec_smp_down(void *arg)
144 {
145         local_irq_disable();
146         hard_irq_disable();
147 
148         mb(); /* make sure our irqs are disabled before we say they are */
149         get_paca()->kexec_state = KEXEC_STATE_IRQS_OFF;
150         while(kexec_all_irq_disabled == 0)
151                 cpu_relax();
152         mb(); /* make sure all irqs are disabled before this */
153         hw_breakpoint_disable();
154         /*
155          * Now every CPU has IRQs off, we can clear out any pending
156          * IPIs and be sure that no more will come in after this.
157          */
158         if (ppc_md.kexec_cpu_down)
159                 ppc_md.kexec_cpu_down(0, 1);
160 
161         reset_sprs();
162 
163         kexec_smp_wait();
164         /* NOTREACHED */
165 }
166 
167 static void kexec_prepare_cpus_wait(int wait_state)
168 {
169         int my_cpu, i, notified=-1;
170 
171         hw_breakpoint_disable();
172         my_cpu = get_cpu();
173         /* Make sure each CPU has at least made it to the state we need.
174          *
175          * FIXME: There is a (slim) chance of a problem if not all of the CPUs
176          * are correctly onlined.  If somehow we start a CPU on boot with RTAS
177          * start-cpu, but somehow that CPU doesn't write callin_cpu_map[] in
178          * time, the boot CPU will timeout.  If it does eventually execute
179          * stuff, the secondary will start up (paca_ptrs[]->cpu_start was
180          * written) and get into a peculiar state.
181          * If the platform supports smp_ops->take_timebase(), the secondary CPU
182          * will probably be spinning in there.  If not (i.e. pseries), the
183          * secondary will continue on and try to online itself/idle/etc. If it
184          * survives that, we need to find these
185          * possible-but-not-online-but-should-be CPUs and chaperone them into
186          * kexec_smp_wait().
187          */
188         for_each_online_cpu(i) {
189                 if (i == my_cpu)
190                         continue;
191 
192                 while (paca_ptrs[i]->kexec_state < wait_state) {
193                         barrier();
194                         if (i != notified) {
195                                 printk(KERN_INFO "kexec: waiting for cpu %d "
196                                        "(physical %d) to enter %i state\n",
197                                        i, paca_ptrs[i]->hw_cpu_id, wait_state);
198                                 notified = i;
199                         }
200                 }
201         }
202         mb();
203 }
204 
205 /*
206  * We need to make sure each present CPU is online.  The next kernel will scan
207  * the device tree and assume primary threads are online and query secondary
208  * threads via RTAS to online them if required.  If we don't online primary
209  * threads, they will be stuck.  However, we also online secondary threads as we
210  * may be using 'cede offline'.  In this case RTAS doesn't see the secondary
211  * threads as offline -- and again, these CPUs will be stuck.
212  *
213  * So, we online all CPUs that should be running, including secondary threads.
214  */
215 static void wake_offline_cpus(void)
216 {
217         int cpu = 0;
218 
219         for_each_present_cpu(cpu) {
220                 if (!cpu_online(cpu)) {
221                         printk(KERN_INFO "kexec: Waking offline cpu %d.\n",
222                                cpu);
223                         WARN_ON(add_cpu(cpu));
224                 }
225         }
226 }
227 
228 static void kexec_prepare_cpus(void)
229 {
230         wake_offline_cpus();
231         smp_call_function(kexec_smp_down, NULL, /* wait */0);
232         local_irq_disable();
233         hard_irq_disable();
234 
235         mb(); /* make sure IRQs are disabled before we say they are */
236         get_paca()->kexec_state = KEXEC_STATE_IRQS_OFF;
237 
238         kexec_prepare_cpus_wait(KEXEC_STATE_IRQS_OFF);
239         /* we are sure every CPU has IRQs off at this point */
240         kexec_all_irq_disabled = 1;
241 
242         /*
243          * Before removing MMU mappings make sure all CPUs have entered real
244          * mode:
245          */
246         kexec_prepare_cpus_wait(KEXEC_STATE_REAL_MODE);
247 
248         /* after we tell the others to go down */
249         if (ppc_md.kexec_cpu_down)
250                 ppc_md.kexec_cpu_down(0, 0);
251 
252         put_cpu();
253 }
254 
255 #else /* ! SMP */
256 
257 static void kexec_prepare_cpus(void)
258 {
259         /*
260          * move the secondarys to us so that we can copy
261          * the new kernel 0-0x100 safely
262          *
263          * do this if kexec in setup.c ?
264          *
265          * We need to release the cpus if we are ever going from an
266          * UP to an SMP kernel.
267          */
268         smp_release_cpus();
269         if (ppc_md.kexec_cpu_down)
270                 ppc_md.kexec_cpu_down(0, 0);
271         local_irq_disable();
272         hard_irq_disable();
273 }
274 
275 #endif /* SMP */
276 
277 /*
278  * kexec thread structure and stack.
279  *
280  * We need to make sure that this is 16384-byte aligned due to the
281  * way process stacks are handled.  It also must be statically allocated
282  * or allocated as part of the kimage, because everything else may be
283  * overwritten when we copy the kexec image.  We piggyback on the
284  * "init_task" linker section here to statically allocate a stack.
285  *
286  * We could use a smaller stack if we don't care about anything using
287  * current, but that audit has not been performed.
288  */
289 static union thread_union kexec_stack = { };
290 
291 /*
292  * For similar reasons to the stack above, the kexecing CPU needs to be on a
293  * static PACA; we switch to kexec_paca.
294  */
295 static struct paca_struct kexec_paca;
296 
297 /* Our assembly helper, in misc_64.S */
298 extern void kexec_sequence(void *newstack, unsigned long start,
299                            void *image, void *control,
300                            void (*clear_all)(void),
301                            bool copy_with_mmu_off) __noreturn;
302 
303 /* too late to fail here */
304 void default_machine_kexec(struct kimage *image)
305 {
306         bool copy_with_mmu_off;
307 
308         /* prepare control code if any */
309 
310         /*
311         * If the kexec boot is the normal one, need to shutdown other cpus
312         * into our wait loop and quiesce interrupts.
313         * Otherwise, in the case of crashed mode (crashing_cpu >= 0),
314         * stopping other CPUs and collecting their pt_regs is done before
315         * using debugger IPI.
316         */
317 
318         if (!kdump_in_progress())
319                 kexec_prepare_cpus();
320 
321 #ifdef CONFIG_PPC_PSERIES
322         /*
323          * This must be done after other CPUs have shut down, otherwise they
324          * could execute the 'scv' instruction, which is not supported with
325          * reloc disabled (see configure_exceptions()).
326          */
327         if (firmware_has_feature(FW_FEATURE_SET_MODE))
328                 pseries_disable_reloc_on_exc();
329 #endif
330 
331         printk("kexec: Starting switchover sequence.\n");
332 
333         /* switch to a staticly allocated stack.  Based on irq stack code.
334          * We setup preempt_count to avoid using VMX in memcpy.
335          * XXX: the task struct will likely be invalid once we do the copy!
336          */
337         current_thread_info()->flags = 0;
338         current_thread_info()->preempt_count = HARDIRQ_OFFSET;
339 
340         /* We need a static PACA, too; copy this CPU's PACA over and switch to
341          * it. Also poison per_cpu_offset and NULL lppaca to catch anyone using
342          * non-static data.
343          */
344         memcpy(&kexec_paca, get_paca(), sizeof(struct paca_struct));
345         kexec_paca.data_offset = 0xedeaddeadeeeeeeeUL;
346 #ifdef CONFIG_PPC_PSERIES
347         kexec_paca.lppaca_ptr = NULL;
348 #endif
349 
350         if (is_secure_guest() && !(image->preserve_context ||
351                                    image->type == KEXEC_TYPE_CRASH)) {
352                 uv_unshare_all_pages();
353                 printk("kexec: Unshared all shared pages.\n");
354         }
355 
356         paca_ptrs[kexec_paca.paca_index] = &kexec_paca;
357 
358         setup_paca(&kexec_paca);
359 
360         /*
361          * The lppaca should be unregistered at this point so the HV won't
362          * touch it. In the case of a crash, none of the lppacas are
363          * unregistered so there is not much we can do about it here.
364          */
365 
366         /*
367          * On Book3S, the copy must happen with the MMU off if we are either
368          * using Radix page tables or we are not in an LPAR since we can
369          * overwrite the page tables while copying.
370          *
371          * In an LPAR, we keep the MMU on otherwise we can't access beyond
372          * the RMA. On BookE there is no real MMU off mode, so we have to
373          * keep it enabled as well (but then we have bolted TLB entries).
374          */
375 #ifdef CONFIG_PPC_BOOK3E_64
376         copy_with_mmu_off = false;
377 #else
378         copy_with_mmu_off = radix_enabled() ||
379                 !(firmware_has_feature(FW_FEATURE_LPAR) ||
380                   firmware_has_feature(FW_FEATURE_PS3_LV1));
381 #endif
382 
383         /* Some things are best done in assembly.  Finding globals with
384          * a toc is easier in C, so pass in what we can.
385          */
386         kexec_sequence(&kexec_stack, image->start, image,
387                        page_address(image->control_code_page),
388                        mmu_cleanup_all, copy_with_mmu_off);
389         /* NOTREACHED */
390 }
391 
392 #ifdef CONFIG_PPC_64S_HASH_MMU
393 /* Values we need to export to the second kernel via the device tree. */
394 static __be64 htab_base;
395 static __be64 htab_size;
396 
397 static struct property htab_base_prop = {
398         .name = "linux,htab-base",
399         .length = sizeof(unsigned long),
400         .value = &htab_base,
401 };
402 
403 static struct property htab_size_prop = {
404         .name = "linux,htab-size",
405         .length = sizeof(unsigned long),
406         .value = &htab_size,
407 };
408 
409 static int __init export_htab_values(void)
410 {
411         struct device_node *node;
412 
413         /* On machines with no htab htab_address is NULL */
414         if (!htab_address)
415                 return -ENODEV;
416 
417         node = of_find_node_by_path("/chosen");
418         if (!node)
419                 return -ENODEV;
420 
421         /* remove any stale properties so ours can be found */
422         of_remove_property(node, of_find_property(node, htab_base_prop.name, NULL));
423         of_remove_property(node, of_find_property(node, htab_size_prop.name, NULL));
424 
425         htab_base = cpu_to_be64(__pa(htab_address));
426         of_add_property(node, &htab_base_prop);
427         htab_size = cpu_to_be64(htab_size_bytes);
428         of_add_property(node, &htab_size_prop);
429 
430         of_node_put(node);
431         return 0;
432 }
433 late_initcall(export_htab_values);
434 #endif /* CONFIG_PPC_64S_HASH_MMU */
435 
436 #if defined(CONFIG_KEXEC_FILE) || defined(CONFIG_CRASH_DUMP)
437 /**
438  * add_node_props - Reads node properties from device node structure and add
439  *                  them to fdt.
440  * @fdt:            Flattened device tree of the kernel
441  * @node_offset:    offset of the node to add a property at
442  * @dn:             device node pointer
443  *
444  * Returns 0 on success, negative errno on error.
445  */
446 static int add_node_props(void *fdt, int node_offset, const struct device_node *dn)
447 {
448         int ret = 0;
449         struct property *pp;
450 
451         if (!dn)
452                 return -EINVAL;
453 
454         for_each_property_of_node(dn, pp) {
455                 ret = fdt_setprop(fdt, node_offset, pp->name, pp->value, pp->length);
456                 if (ret < 0) {
457                         pr_err("Unable to add %s property: %s\n", pp->name, fdt_strerror(ret));
458                         return ret;
459                 }
460         }
461         return ret;
462 }
463 
464 /**
465  * update_cpus_node - Update cpus node of flattened device tree using of_root
466  *                    device node.
467  * @fdt:              Flattened device tree of the kernel.
468  *
469  * Returns 0 on success, negative errno on error.
470  *
471  * Note: expecting no subnodes under /cpus/<node> with device_type == "cpu".
472  * If this changes, update this function to include them.
473  */
474 int update_cpus_node(void *fdt)
475 {
476         int prev_node_offset;
477         const char *device_type;
478         const struct fdt_property *prop;
479         struct device_node *cpus_node, *dn;
480         int cpus_offset, cpus_subnode_offset, ret = 0;
481 
482         cpus_offset = fdt_path_offset(fdt, "/cpus");
483         if (cpus_offset < 0 && cpus_offset != -FDT_ERR_NOTFOUND) {
484                 pr_err("Malformed device tree: error reading /cpus node: %s\n",
485                        fdt_strerror(cpus_offset));
486                 return cpus_offset;
487         }
488 
489         prev_node_offset = cpus_offset;
490         /* Delete sub-nodes of /cpus node with device_type == "cpu" */
491         for (cpus_subnode_offset = fdt_first_subnode(fdt, cpus_offset); cpus_subnode_offset >= 0;) {
492                 /* Ignore nodes that do not have a device_type property or device_type != "cpu" */
493                 prop = fdt_get_property(fdt, cpus_subnode_offset, "device_type", NULL);
494                 if (!prop || strcmp(prop->data, "cpu")) {
495                         prev_node_offset = cpus_subnode_offset;
496                         goto next_node;
497                 }
498 
499                 ret = fdt_del_node(fdt, cpus_subnode_offset);
500                 if (ret < 0) {
501                         pr_err("Failed to delete a cpus sub-node: %s\n", fdt_strerror(ret));
502                         return ret;
503                 }
504 next_node:
505                 if (prev_node_offset == cpus_offset)
506                         cpus_subnode_offset = fdt_first_subnode(fdt, cpus_offset);
507                 else
508                         cpus_subnode_offset = fdt_next_subnode(fdt, prev_node_offset);
509         }
510 
511         cpus_node = of_find_node_by_path("/cpus");
512         /* Fail here to avoid kexec/kdump kernel boot hung */
513         if (!cpus_node) {
514                 pr_err("No /cpus node found\n");
515                 return -EINVAL;
516         }
517 
518         /* Add all /cpus sub-nodes of device_type == "cpu" to FDT */
519         for_each_child_of_node(cpus_node, dn) {
520                 /* Ignore device nodes that do not have a device_type property
521                  * or device_type != "cpu".
522                  */
523                 device_type = of_get_property(dn, "device_type", NULL);
524                 if (!device_type || strcmp(device_type, "cpu"))
525                         continue;
526 
527                 cpus_subnode_offset = fdt_add_subnode(fdt, cpus_offset, dn->full_name);
528                 if (cpus_subnode_offset < 0) {
529                         pr_err("Unable to add %s subnode: %s\n", dn->full_name,
530                                fdt_strerror(cpus_subnode_offset));
531                         ret = cpus_subnode_offset;
532                         goto out;
533                 }
534 
535                 ret = add_node_props(fdt, cpus_subnode_offset, dn);
536                 if (ret < 0)
537                         goto out;
538         }
539 out:
540         of_node_put(cpus_node);
541         of_node_put(dn);
542         return ret;
543 }
544 #endif /* CONFIG_KEXEC_FILE || CONFIG_CRASH_DUMP */
545 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php