~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/powerpc/kexec/crash.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * Architecture specific (PPC64) functions for kexec based crash dumps.
  4  *
  5  * Copyright (C) 2005, IBM Corp.
  6  *
  7  * Created by: Haren Myneni
  8  */
  9 
 10 #include <linux/kernel.h>
 11 #include <linux/smp.h>
 12 #include <linux/reboot.h>
 13 #include <linux/kexec.h>
 14 #include <linux/export.h>
 15 #include <linux/crash_dump.h>
 16 #include <linux/delay.h>
 17 #include <linux/irq.h>
 18 #include <linux/types.h>
 19 #include <linux/libfdt.h>
 20 #include <linux/memory.h>
 21 
 22 #include <asm/processor.h>
 23 #include <asm/machdep.h>
 24 #include <asm/kexec.h>
 25 #include <asm/smp.h>
 26 #include <asm/setjmp.h>
 27 #include <asm/debug.h>
 28 #include <asm/interrupt.h>
 29 #include <asm/kexec_ranges.h>
 30 
 31 /*
 32  * The primary CPU waits a while for all secondary CPUs to enter. This is to
 33  * avoid sending an IPI if the secondary CPUs are entering
 34  * crash_kexec_secondary on their own (eg via a system reset).
 35  *
 36  * The secondary timeout has to be longer than the primary. Both timeouts are
 37  * in milliseconds.
 38  */
 39 #define PRIMARY_TIMEOUT         500
 40 #define SECONDARY_TIMEOUT       1000
 41 
 42 #define IPI_TIMEOUT             10000
 43 #define REAL_MODE_TIMEOUT       10000
 44 
 45 static int time_to_dump;
 46 
 47 /*
 48  * In case of system reset, secondary CPUs enter crash_kexec_secondary with out
 49  * having to send an IPI explicitly. So, indicate if the crash is via
 50  * system reset to avoid sending another IPI.
 51  */
 52 static int is_via_system_reset;
 53 
 54 /*
 55  * crash_wake_offline should be set to 1 by platforms that intend to wake
 56  * up offline cpus prior to jumping to a kdump kernel. Currently powernv
 57  * sets it to 1, since we want to avoid things from happening when an
 58  * offline CPU wakes up due to something like an HMI (malfunction error),
 59  * which propagates to all threads.
 60  */
 61 int crash_wake_offline;
 62 
 63 #define CRASH_HANDLER_MAX 3
 64 /* List of shutdown handles */
 65 static crash_shutdown_t crash_shutdown_handles[CRASH_HANDLER_MAX];
 66 static DEFINE_SPINLOCK(crash_handlers_lock);
 67 
 68 static unsigned long crash_shutdown_buf[JMP_BUF_LEN];
 69 static int crash_shutdown_cpu = -1;
 70 
 71 static int handle_fault(struct pt_regs *regs)
 72 {
 73         if (crash_shutdown_cpu == smp_processor_id())
 74                 longjmp(crash_shutdown_buf, 1);
 75         return 0;
 76 }
 77 
 78 #ifdef CONFIG_SMP
 79 
 80 static atomic_t cpus_in_crash;
 81 void crash_ipi_callback(struct pt_regs *regs)
 82 {
 83         static cpumask_t cpus_state_saved = CPU_MASK_NONE;
 84 
 85         int cpu = smp_processor_id();
 86 
 87         hard_irq_disable();
 88         if (!cpumask_test_cpu(cpu, &cpus_state_saved)) {
 89                 crash_save_cpu(regs, cpu);
 90                 cpumask_set_cpu(cpu, &cpus_state_saved);
 91         }
 92 
 93         atomic_inc(&cpus_in_crash);
 94         smp_mb__after_atomic();
 95 
 96         /*
 97          * Starting the kdump boot.
 98          * This barrier is needed to make sure that all CPUs are stopped.
 99          */
100         while (!time_to_dump)
101                 cpu_relax();
102 
103         if (ppc_md.kexec_cpu_down)
104                 ppc_md.kexec_cpu_down(1, 1);
105 
106 #ifdef CONFIG_PPC64
107         kexec_smp_wait();
108 #else
109         for (;;);       /* FIXME */
110 #endif
111 
112         /* NOTREACHED */
113 }
114 
115 static void crash_kexec_prepare_cpus(void)
116 {
117         unsigned int msecs;
118         volatile unsigned int ncpus = num_online_cpus() - 1;/* Excluding the panic cpu */
119         volatile int tries = 0;
120         int (*old_handler)(struct pt_regs *regs);
121 
122         printk(KERN_EMERG "Sending IPI to other CPUs\n");
123 
124         if (crash_wake_offline)
125                 ncpus = num_present_cpus() - 1;
126 
127         /*
128          * If we came in via system reset, secondaries enter via crash_kexec_secondary().
129          * So, wait a while for the secondary CPUs to enter for that case.
130          * Else, send IPI to all other CPUs.
131          */
132         if (is_via_system_reset)
133                 mdelay(PRIMARY_TIMEOUT);
134         else
135                 crash_send_ipi(crash_ipi_callback);
136         smp_wmb();
137 
138 again:
139         /*
140          * FIXME: Until we will have the way to stop other CPUs reliably,
141          * the crash CPU will send an IPI and wait for other CPUs to
142          * respond.
143          */
144         msecs = IPI_TIMEOUT;
145         while ((atomic_read(&cpus_in_crash) < ncpus) && (--msecs > 0))
146                 mdelay(1);
147 
148         /* Would it be better to replace the trap vector here? */
149 
150         if (atomic_read(&cpus_in_crash) >= ncpus) {
151                 printk(KERN_EMERG "IPI complete\n");
152                 return;
153         }
154 
155         printk(KERN_EMERG "ERROR: %d cpu(s) not responding\n",
156                 ncpus - atomic_read(&cpus_in_crash));
157 
158         /*
159          * If we have a panic timeout set then we can't wait indefinitely
160          * for someone to activate system reset. We also give up on the
161          * second time through if system reset fail to work.
162          */
163         if ((panic_timeout > 0) || (tries > 0))
164                 return;
165 
166         /*
167          * A system reset will cause all CPUs to take an 0x100 exception.
168          * The primary CPU returns here via setjmp, and the secondary
169          * CPUs reexecute the crash_kexec_secondary path.
170          */
171         old_handler = __debugger;
172         __debugger = handle_fault;
173         crash_shutdown_cpu = smp_processor_id();
174 
175         if (setjmp(crash_shutdown_buf) == 0) {
176                 printk(KERN_EMERG "Activate system reset (dumprestart) "
177                                   "to stop other cpu(s)\n");
178 
179                 /*
180                  * A system reset will force all CPUs to execute the
181                  * crash code again. We need to reset cpus_in_crash so we
182                  * wait for everyone to do this.
183                  */
184                 atomic_set(&cpus_in_crash, 0);
185                 smp_mb();
186 
187                 while (atomic_read(&cpus_in_crash) < ncpus)
188                         cpu_relax();
189         }
190 
191         crash_shutdown_cpu = -1;
192         __debugger = old_handler;
193 
194         tries++;
195         goto again;
196 }
197 
198 /*
199  * This function will be called by secondary cpus.
200  */
201 void crash_kexec_secondary(struct pt_regs *regs)
202 {
203         unsigned long flags;
204         int msecs = SECONDARY_TIMEOUT;
205 
206         local_irq_save(flags);
207 
208         /* Wait for the primary crash CPU to signal its progress */
209         while (crashing_cpu < 0) {
210                 if (--msecs < 0) {
211                         /* No response, kdump image may not have been loaded */
212                         local_irq_restore(flags);
213                         return;
214                 }
215 
216                 mdelay(1);
217         }
218 
219         crash_ipi_callback(regs);
220 }
221 
222 #else   /* ! CONFIG_SMP */
223 
224 static void crash_kexec_prepare_cpus(void)
225 {
226         /*
227          * move the secondaries to us so that we can copy
228          * the new kernel 0-0x100 safely
229          *
230          * do this if kexec in setup.c ?
231          */
232 #ifdef CONFIG_PPC64
233         smp_release_cpus();
234 #else
235         /* FIXME */
236 #endif
237 }
238 
239 void crash_kexec_secondary(struct pt_regs *regs)
240 {
241 }
242 #endif  /* CONFIG_SMP */
243 
244 /* wait for all the CPUs to hit real mode but timeout if they don't come in */
245 #if defined(CONFIG_SMP) && defined(CONFIG_PPC64)
246 noinstr static void __maybe_unused crash_kexec_wait_realmode(int cpu)
247 {
248         unsigned int msecs;
249         int i;
250 
251         msecs = REAL_MODE_TIMEOUT;
252         for (i=0; i < nr_cpu_ids && msecs > 0; i++) {
253                 if (i == cpu)
254                         continue;
255 
256                 while (paca_ptrs[i]->kexec_state < KEXEC_STATE_REAL_MODE) {
257                         barrier();
258                         if (!cpu_possible(i) || !cpu_online(i) || (msecs <= 0))
259                                 break;
260                         msecs--;
261                         mdelay(1);
262                 }
263         }
264         mb();
265 }
266 #else
267 static inline void crash_kexec_wait_realmode(int cpu) {}
268 #endif  /* CONFIG_SMP && CONFIG_PPC64 */
269 
270 void crash_kexec_prepare(void)
271 {
272         /* Avoid hardlocking with irresponsive CPU holding logbuf_lock */
273         printk_deferred_enter();
274 
275         /*
276          * This function is only called after the system
277          * has panicked or is otherwise in a critical state.
278          * The minimum amount of code to allow a kexec'd kernel
279          * to run successfully needs to happen here.
280          *
281          * In practice this means stopping other cpus in
282          * an SMP system.
283          * The kernel is broken so disable interrupts.
284          */
285         hard_irq_disable();
286 
287         /*
288          * Make a note of crashing cpu. Will be used in machine_kexec
289          * such that another IPI will not be sent.
290          */
291         crashing_cpu = smp_processor_id();
292 
293         crash_kexec_prepare_cpus();
294 }
295 
296 /*
297  * Register a function to be called on shutdown.  Only use this if you
298  * can't reset your device in the second kernel.
299  */
300 int crash_shutdown_register(crash_shutdown_t handler)
301 {
302         unsigned int i, rc;
303 
304         spin_lock(&crash_handlers_lock);
305         for (i = 0 ; i < CRASH_HANDLER_MAX; i++)
306                 if (!crash_shutdown_handles[i]) {
307                         /* Insert handle at first empty entry */
308                         crash_shutdown_handles[i] = handler;
309                         rc = 0;
310                         break;
311                 }
312 
313         if (i == CRASH_HANDLER_MAX) {
314                 printk(KERN_ERR "Crash shutdown handles full, "
315                        "not registered.\n");
316                 rc = 1;
317         }
318 
319         spin_unlock(&crash_handlers_lock);
320         return rc;
321 }
322 EXPORT_SYMBOL(crash_shutdown_register);
323 
324 int crash_shutdown_unregister(crash_shutdown_t handler)
325 {
326         unsigned int i, rc;
327 
328         spin_lock(&crash_handlers_lock);
329         for (i = 0 ; i < CRASH_HANDLER_MAX; i++)
330                 if (crash_shutdown_handles[i] == handler)
331                         break;
332 
333         if (i == CRASH_HANDLER_MAX) {
334                 printk(KERN_ERR "Crash shutdown handle not found\n");
335                 rc = 1;
336         } else {
337                 /* Shift handles down */
338                 for (; i < (CRASH_HANDLER_MAX - 1); i++)
339                         crash_shutdown_handles[i] =
340                                 crash_shutdown_handles[i+1];
341                 /*
342                  * Reset last entry to NULL now that it has been shifted down,
343                  * this will allow new handles to be added here.
344                  */
345                 crash_shutdown_handles[i] = NULL;
346                 rc = 0;
347         }
348 
349         spin_unlock(&crash_handlers_lock);
350         return rc;
351 }
352 EXPORT_SYMBOL(crash_shutdown_unregister);
353 
354 void default_machine_crash_shutdown(struct pt_regs *regs)
355 {
356         volatile unsigned int i;
357         int (*old_handler)(struct pt_regs *regs);
358 
359         if (TRAP(regs) == INTERRUPT_SYSTEM_RESET)
360                 is_via_system_reset = 1;
361 
362         crash_smp_send_stop();
363 
364         crash_save_cpu(regs, crashing_cpu);
365 
366         time_to_dump = 1;
367 
368         crash_kexec_wait_realmode(crashing_cpu);
369 
370         machine_kexec_mask_interrupts();
371 
372         /*
373          * Call registered shutdown routines safely.  Swap out
374          * __debugger_fault_handler, and replace on exit.
375          */
376         old_handler = __debugger_fault_handler;
377         __debugger_fault_handler = handle_fault;
378         crash_shutdown_cpu = smp_processor_id();
379         for (i = 0; i < CRASH_HANDLER_MAX && crash_shutdown_handles[i]; i++) {
380                 if (setjmp(crash_shutdown_buf) == 0) {
381                         /*
382                          * Insert syncs and delay to ensure
383                          * instructions in the dangerous region don't
384                          * leak away from this protected region.
385                          */
386                         asm volatile("sync; isync");
387                         /* dangerous region */
388                         crash_shutdown_handles[i]();
389                         asm volatile("sync; isync");
390                 }
391         }
392         crash_shutdown_cpu = -1;
393         __debugger_fault_handler = old_handler;
394 
395         if (ppc_md.kexec_cpu_down)
396                 ppc_md.kexec_cpu_down(1, 0);
397 }
398 
399 #ifdef CONFIG_CRASH_HOTPLUG
400 #undef pr_fmt
401 #define pr_fmt(fmt) "crash hp: " fmt
402 
403 /*
404  * Advertise preferred elfcorehdr size to userspace via
405  * /sys/kernel/crash_elfcorehdr_size sysfs interface.
406  */
407 unsigned int arch_crash_get_elfcorehdr_size(void)
408 {
409         unsigned long phdr_cnt;
410 
411         /* A program header for possible CPUs + vmcoreinfo */
412         phdr_cnt = num_possible_cpus() + 1;
413         if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG))
414                 phdr_cnt += CONFIG_CRASH_MAX_MEMORY_RANGES;
415 
416         return sizeof(struct elfhdr) + (phdr_cnt * sizeof(Elf64_Phdr));
417 }
418 
419 /**
420  * update_crash_elfcorehdr() - Recreate the elfcorehdr and replace it with old
421  *                             elfcorehdr in the kexec segment array.
422  * @image: the active struct kimage
423  * @mn: struct memory_notify data handler
424  */
425 static void update_crash_elfcorehdr(struct kimage *image, struct memory_notify *mn)
426 {
427         int ret;
428         struct crash_mem *cmem = NULL;
429         struct kexec_segment *ksegment;
430         void *ptr, *mem, *elfbuf = NULL;
431         unsigned long elfsz, memsz, base_addr, size;
432 
433         ksegment = &image->segment[image->elfcorehdr_index];
434         mem = (void *) ksegment->mem;
435         memsz = ksegment->memsz;
436 
437         ret = get_crash_memory_ranges(&cmem);
438         if (ret) {
439                 pr_err("Failed to get crash mem range\n");
440                 return;
441         }
442 
443         /*
444          * The hot unplugged memory is part of crash memory ranges,
445          * remove it here.
446          */
447         if (image->hp_action == KEXEC_CRASH_HP_REMOVE_MEMORY) {
448                 base_addr = PFN_PHYS(mn->start_pfn);
449                 size = mn->nr_pages * PAGE_SIZE;
450                 ret = remove_mem_range(&cmem, base_addr, size);
451                 if (ret) {
452                         pr_err("Failed to remove hot-unplugged memory from crash memory ranges\n");
453                         goto out;
454                 }
455         }
456 
457         ret = crash_prepare_elf64_headers(cmem, false, &elfbuf, &elfsz);
458         if (ret) {
459                 pr_err("Failed to prepare elf header\n");
460                 goto out;
461         }
462 
463         /*
464          * It is unlikely that kernel hit this because elfcorehdr kexec
465          * segment (memsz) is built with addition space to accommodate growing
466          * number of crash memory ranges while loading the kdump kernel. It is
467          * Just to avoid any unforeseen case.
468          */
469         if (elfsz > memsz) {
470                 pr_err("Updated crash elfcorehdr elfsz %lu > memsz %lu", elfsz, memsz);
471                 goto out;
472         }
473 
474         ptr = __va(mem);
475         if (ptr) {
476                 /* Temporarily invalidate the crash image while it is replaced */
477                 xchg(&kexec_crash_image, NULL);
478 
479                 /* Replace the old elfcorehdr with newly prepared elfcorehdr */
480                 memcpy((void *)ptr, elfbuf, elfsz);
481 
482                 /* The crash image is now valid once again */
483                 xchg(&kexec_crash_image, image);
484         }
485 out:
486         kvfree(cmem);
487         kvfree(elfbuf);
488 }
489 
490 /**
491  * get_fdt_index - Loop through the kexec segment array and find
492  *                 the index of the FDT segment.
493  * @image: a pointer to kexec_crash_image
494  *
495  * Returns the index of FDT segment in the kexec segment array
496  * if found; otherwise -1.
497  */
498 static int get_fdt_index(struct kimage *image)
499 {
500         void *ptr;
501         unsigned long mem;
502         int i, fdt_index = -1;
503 
504         /* Find the FDT segment index in kexec segment array. */
505         for (i = 0; i < image->nr_segments; i++) {
506                 mem = image->segment[i].mem;
507                 ptr = __va(mem);
508 
509                 if (ptr && fdt_magic(ptr) == FDT_MAGIC) {
510                         fdt_index = i;
511                         break;
512                 }
513         }
514 
515         return fdt_index;
516 }
517 
518 /**
519  * update_crash_fdt - updates the cpus node of the crash FDT.
520  *
521  * @image: a pointer to kexec_crash_image
522  */
523 static void update_crash_fdt(struct kimage *image)
524 {
525         void *fdt;
526         int fdt_index;
527 
528         fdt_index = get_fdt_index(image);
529         if (fdt_index < 0) {
530                 pr_err("Unable to locate FDT segment.\n");
531                 return;
532         }
533 
534         fdt = __va((void *)image->segment[fdt_index].mem);
535 
536         /* Temporarily invalidate the crash image while it is replaced */
537         xchg(&kexec_crash_image, NULL);
538 
539         /* update FDT to reflect changes in CPU resources */
540         if (update_cpus_node(fdt))
541                 pr_err("Failed to update crash FDT");
542 
543         /* The crash image is now valid once again */
544         xchg(&kexec_crash_image, image);
545 }
546 
547 int arch_crash_hotplug_support(struct kimage *image, unsigned long kexec_flags)
548 {
549 #ifdef CONFIG_KEXEC_FILE
550         if (image->file_mode)
551                 return 1;
552 #endif
553         return kexec_flags & KEXEC_CRASH_HOTPLUG_SUPPORT;
554 }
555 
556 /**
557  * arch_crash_handle_hotplug_event - Handle crash CPU/Memory hotplug events to update the
558  *                                   necessary kexec segments based on the hotplug event.
559  * @image: a pointer to kexec_crash_image
560  * @arg: struct memory_notify handler for memory hotplug case and NULL for CPU hotplug case.
561  *
562  * Update the kdump image based on the type of hotplug event, represented by image->hp_action.
563  * CPU add: Update the FDT segment to include the newly added CPU.
564  * CPU remove: No action is needed, with the assumption that it's okay to have offline CPUs
565  *             part of the FDT.
566  * Memory add/remove: No action is taken as this is not yet supported.
567  */
568 void arch_crash_handle_hotplug_event(struct kimage *image, void *arg)
569 {
570         struct memory_notify *mn;
571 
572         switch (image->hp_action) {
573         case KEXEC_CRASH_HP_REMOVE_CPU:
574                 return;
575 
576         case KEXEC_CRASH_HP_ADD_CPU:
577                 update_crash_fdt(image);
578                 break;
579 
580         case KEXEC_CRASH_HP_REMOVE_MEMORY:
581         case KEXEC_CRASH_HP_ADD_MEMORY:
582                 mn = (struct memory_notify *)arg;
583                 update_crash_elfcorehdr(image, mn);
584                 return;
585         default:
586                 pr_warn_once("Unknown hotplug action\n");
587         }
588 }
589 #endif /* CONFIG_CRASH_HOTPLUG */
590 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php