~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/powerpc/kexec/file_load_64.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * ppc64 code to implement the kexec_file_load syscall
  4  *
  5  * Copyright (C) 2004  Adam Litke (agl@us.ibm.com)
  6  * Copyright (C) 2004  IBM Corp.
  7  * Copyright (C) 2004,2005  Milton D Miller II, IBM Corporation
  8  * Copyright (C) 2005  R Sharada (sharada@in.ibm.com)
  9  * Copyright (C) 2006  Mohan Kumar M (mohan@in.ibm.com)
 10  * Copyright (C) 2020  IBM Corporation
 11  *
 12  * Based on kexec-tools' kexec-ppc64.c, kexec-elf-rel-ppc64.c, fs2dt.c.
 13  * Heavily modified for the kernel by
 14  * Hari Bathini, IBM Corporation.
 15  */
 16 
 17 #include <linux/kexec.h>
 18 #include <linux/of_fdt.h>
 19 #include <linux/libfdt.h>
 20 #include <linux/of.h>
 21 #include <linux/of_address.h>
 22 #include <linux/memblock.h>
 23 #include <linux/slab.h>
 24 #include <linux/vmalloc.h>
 25 #include <asm/setup.h>
 26 #include <asm/drmem.h>
 27 #include <asm/firmware.h>
 28 #include <asm/kexec_ranges.h>
 29 #include <asm/crashdump-ppc64.h>
 30 #include <asm/mmzone.h>
 31 #include <asm/iommu.h>
 32 #include <asm/prom.h>
 33 #include <asm/plpks.h>
 34 #include <asm/cputhreads.h>
 35 
 36 struct umem_info {
 37         __be64 *buf;            /* data buffer for usable-memory property */
 38         u32 size;               /* size allocated for the data buffer */
 39         u32 max_entries;        /* maximum no. of entries */
 40         u32 idx;                /* index of current entry */
 41 
 42         /* usable memory ranges to look up */
 43         unsigned int nr_ranges;
 44         const struct range *ranges;
 45 };
 46 
 47 const struct kexec_file_ops * const kexec_file_loaders[] = {
 48         &kexec_elf64_ops,
 49         NULL
 50 };
 51 
 52 /**
 53  * __locate_mem_hole_top_down - Looks top down for a large enough memory hole
 54  *                              in the memory regions between buf_min & buf_max
 55  *                              for the buffer. If found, sets kbuf->mem.
 56  * @kbuf:                       Buffer contents and memory parameters.
 57  * @buf_min:                    Minimum address for the buffer.
 58  * @buf_max:                    Maximum address for the buffer.
 59  *
 60  * Returns 0 on success, negative errno on error.
 61  */
 62 static int __locate_mem_hole_top_down(struct kexec_buf *kbuf,
 63                                       u64 buf_min, u64 buf_max)
 64 {
 65         int ret = -EADDRNOTAVAIL;
 66         phys_addr_t start, end;
 67         u64 i;
 68 
 69         for_each_mem_range_rev(i, &start, &end) {
 70                 /*
 71                  * memblock uses [start, end) convention while it is
 72                  * [start, end] here. Fix the off-by-one to have the
 73                  * same convention.
 74                  */
 75                 end -= 1;
 76 
 77                 if (start > buf_max)
 78                         continue;
 79 
 80                 /* Memory hole not found */
 81                 if (end < buf_min)
 82                         break;
 83 
 84                 /* Adjust memory region based on the given range */
 85                 if (start < buf_min)
 86                         start = buf_min;
 87                 if (end > buf_max)
 88                         end = buf_max;
 89 
 90                 start = ALIGN(start, kbuf->buf_align);
 91                 if (start < end && (end - start + 1) >= kbuf->memsz) {
 92                         /* Suitable memory range found. Set kbuf->mem */
 93                         kbuf->mem = ALIGN_DOWN(end - kbuf->memsz + 1,
 94                                                kbuf->buf_align);
 95                         ret = 0;
 96                         break;
 97                 }
 98         }
 99 
100         return ret;
101 }
102 
103 /**
104  * locate_mem_hole_top_down_ppc64 - Skip special memory regions to find a
105  *                                  suitable buffer with top down approach.
106  * @kbuf:                           Buffer contents and memory parameters.
107  * @buf_min:                        Minimum address for the buffer.
108  * @buf_max:                        Maximum address for the buffer.
109  * @emem:                           Exclude memory ranges.
110  *
111  * Returns 0 on success, negative errno on error.
112  */
113 static int locate_mem_hole_top_down_ppc64(struct kexec_buf *kbuf,
114                                           u64 buf_min, u64 buf_max,
115                                           const struct crash_mem *emem)
116 {
117         int i, ret = 0, err = -EADDRNOTAVAIL;
118         u64 start, end, tmin, tmax;
119 
120         tmax = buf_max;
121         for (i = (emem->nr_ranges - 1); i >= 0; i--) {
122                 start = emem->ranges[i].start;
123                 end = emem->ranges[i].end;
124 
125                 if (start > tmax)
126                         continue;
127 
128                 if (end < tmax) {
129                         tmin = (end < buf_min ? buf_min : end + 1);
130                         ret = __locate_mem_hole_top_down(kbuf, tmin, tmax);
131                         if (!ret)
132                                 return 0;
133                 }
134 
135                 tmax = start - 1;
136 
137                 if (tmax < buf_min) {
138                         ret = err;
139                         break;
140                 }
141                 ret = 0;
142         }
143 
144         if (!ret) {
145                 tmin = buf_min;
146                 ret = __locate_mem_hole_top_down(kbuf, tmin, tmax);
147         }
148         return ret;
149 }
150 
151 /**
152  * __locate_mem_hole_bottom_up - Looks bottom up for a large enough memory hole
153  *                               in the memory regions between buf_min & buf_max
154  *                               for the buffer. If found, sets kbuf->mem.
155  * @kbuf:                        Buffer contents and memory parameters.
156  * @buf_min:                     Minimum address for the buffer.
157  * @buf_max:                     Maximum address for the buffer.
158  *
159  * Returns 0 on success, negative errno on error.
160  */
161 static int __locate_mem_hole_bottom_up(struct kexec_buf *kbuf,
162                                        u64 buf_min, u64 buf_max)
163 {
164         int ret = -EADDRNOTAVAIL;
165         phys_addr_t start, end;
166         u64 i;
167 
168         for_each_mem_range(i, &start, &end) {
169                 /*
170                  * memblock uses [start, end) convention while it is
171                  * [start, end] here. Fix the off-by-one to have the
172                  * same convention.
173                  */
174                 end -= 1;
175 
176                 if (end < buf_min)
177                         continue;
178 
179                 /* Memory hole not found */
180                 if (start > buf_max)
181                         break;
182 
183                 /* Adjust memory region based on the given range */
184                 if (start < buf_min)
185                         start = buf_min;
186                 if (end > buf_max)
187                         end = buf_max;
188 
189                 start = ALIGN(start, kbuf->buf_align);
190                 if (start < end && (end - start + 1) >= kbuf->memsz) {
191                         /* Suitable memory range found. Set kbuf->mem */
192                         kbuf->mem = start;
193                         ret = 0;
194                         break;
195                 }
196         }
197 
198         return ret;
199 }
200 
201 /**
202  * locate_mem_hole_bottom_up_ppc64 - Skip special memory regions to find a
203  *                                   suitable buffer with bottom up approach.
204  * @kbuf:                            Buffer contents and memory parameters.
205  * @buf_min:                         Minimum address for the buffer.
206  * @buf_max:                         Maximum address for the buffer.
207  * @emem:                            Exclude memory ranges.
208  *
209  * Returns 0 on success, negative errno on error.
210  */
211 static int locate_mem_hole_bottom_up_ppc64(struct kexec_buf *kbuf,
212                                            u64 buf_min, u64 buf_max,
213                                            const struct crash_mem *emem)
214 {
215         int i, ret = 0, err = -EADDRNOTAVAIL;
216         u64 start, end, tmin, tmax;
217 
218         tmin = buf_min;
219         for (i = 0; i < emem->nr_ranges; i++) {
220                 start = emem->ranges[i].start;
221                 end = emem->ranges[i].end;
222 
223                 if (end < tmin)
224                         continue;
225 
226                 if (start > tmin) {
227                         tmax = (start > buf_max ? buf_max : start - 1);
228                         ret = __locate_mem_hole_bottom_up(kbuf, tmin, tmax);
229                         if (!ret)
230                                 return 0;
231                 }
232 
233                 tmin = end + 1;
234 
235                 if (tmin > buf_max) {
236                         ret = err;
237                         break;
238                 }
239                 ret = 0;
240         }
241 
242         if (!ret) {
243                 tmax = buf_max;
244                 ret = __locate_mem_hole_bottom_up(kbuf, tmin, tmax);
245         }
246         return ret;
247 }
248 
249 #ifdef CONFIG_CRASH_DUMP
250 /**
251  * check_realloc_usable_mem - Reallocate buffer if it can't accommodate entries
252  * @um_info:                  Usable memory buffer and ranges info.
253  * @cnt:                      No. of entries to accommodate.
254  *
255  * Frees up the old buffer if memory reallocation fails.
256  *
257  * Returns buffer on success, NULL on error.
258  */
259 static __be64 *check_realloc_usable_mem(struct umem_info *um_info, int cnt)
260 {
261         u32 new_size;
262         __be64 *tbuf;
263 
264         if ((um_info->idx + cnt) <= um_info->max_entries)
265                 return um_info->buf;
266 
267         new_size = um_info->size + MEM_RANGE_CHUNK_SZ;
268         tbuf = krealloc(um_info->buf, new_size, GFP_KERNEL);
269         if (tbuf) {
270                 um_info->buf = tbuf;
271                 um_info->size = new_size;
272                 um_info->max_entries = (um_info->size / sizeof(u64));
273         }
274 
275         return tbuf;
276 }
277 
278 /**
279  * add_usable_mem - Add the usable memory ranges within the given memory range
280  *                  to the buffer
281  * @um_info:        Usable memory buffer and ranges info.
282  * @base:           Base address of memory range to look for.
283  * @end:            End address of memory range to look for.
284  *
285  * Returns 0 on success, negative errno on error.
286  */
287 static int add_usable_mem(struct umem_info *um_info, u64 base, u64 end)
288 {
289         u64 loc_base, loc_end;
290         bool add;
291         int i;
292 
293         for (i = 0; i < um_info->nr_ranges; i++) {
294                 add = false;
295                 loc_base = um_info->ranges[i].start;
296                 loc_end = um_info->ranges[i].end;
297                 if (loc_base >= base && loc_end <= end)
298                         add = true;
299                 else if (base < loc_end && end > loc_base) {
300                         if (loc_base < base)
301                                 loc_base = base;
302                         if (loc_end > end)
303                                 loc_end = end;
304                         add = true;
305                 }
306 
307                 if (add) {
308                         if (!check_realloc_usable_mem(um_info, 2))
309                                 return -ENOMEM;
310 
311                         um_info->buf[um_info->idx++] = cpu_to_be64(loc_base);
312                         um_info->buf[um_info->idx++] =
313                                         cpu_to_be64(loc_end - loc_base + 1);
314                 }
315         }
316 
317         return 0;
318 }
319 
320 /**
321  * kdump_setup_usable_lmb - This is a callback function that gets called by
322  *                          walk_drmem_lmbs for every LMB to set its
323  *                          usable memory ranges.
324  * @lmb:                    LMB info.
325  * @usm:                    linux,drconf-usable-memory property value.
326  * @data:                   Pointer to usable memory buffer and ranges info.
327  *
328  * Returns 0 on success, negative errno on error.
329  */
330 static int kdump_setup_usable_lmb(struct drmem_lmb *lmb, const __be32 **usm,
331                                   void *data)
332 {
333         struct umem_info *um_info;
334         int tmp_idx, ret;
335         u64 base, end;
336 
337         /*
338          * kdump load isn't supported on kernels already booted with
339          * linux,drconf-usable-memory property.
340          */
341         if (*usm) {
342                 pr_err("linux,drconf-usable-memory property already exists!");
343                 return -EINVAL;
344         }
345 
346         um_info = data;
347         tmp_idx = um_info->idx;
348         if (!check_realloc_usable_mem(um_info, 1))
349                 return -ENOMEM;
350 
351         um_info->idx++;
352         base = lmb->base_addr;
353         end = base + drmem_lmb_size() - 1;
354         ret = add_usable_mem(um_info, base, end);
355         if (!ret) {
356                 /*
357                  * Update the no. of ranges added. Two entries (base & size)
358                  * for every range added.
359                  */
360                 um_info->buf[tmp_idx] =
361                                 cpu_to_be64((um_info->idx - tmp_idx - 1) / 2);
362         }
363 
364         return ret;
365 }
366 
367 #define NODE_PATH_LEN           256
368 /**
369  * add_usable_mem_property - Add usable memory property for the given
370  *                           memory node.
371  * @fdt:                     Flattened device tree for the kdump kernel.
372  * @dn:                      Memory node.
373  * @um_info:                 Usable memory buffer and ranges info.
374  *
375  * Returns 0 on success, negative errno on error.
376  */
377 static int add_usable_mem_property(void *fdt, struct device_node *dn,
378                                    struct umem_info *um_info)
379 {
380         int node;
381         char path[NODE_PATH_LEN];
382         int i, ret;
383         u64 base, size;
384 
385         of_node_get(dn);
386 
387         if (snprintf(path, NODE_PATH_LEN, "%pOF", dn) > (NODE_PATH_LEN - 1)) {
388                 pr_err("Buffer (%d) too small for memory node: %pOF\n",
389                        NODE_PATH_LEN, dn);
390                 return -EOVERFLOW;
391         }
392         kexec_dprintk("Memory node path: %s\n", path);
393 
394         /* Now that we know the path, find its offset in kdump kernel's fdt */
395         node = fdt_path_offset(fdt, path);
396         if (node < 0) {
397                 pr_err("Malformed device tree: error reading %s\n", path);
398                 ret = -EINVAL;
399                 goto out;
400         }
401 
402         um_info->idx  = 0;
403         if (!check_realloc_usable_mem(um_info, 2)) {
404                 ret = -ENOMEM;
405                 goto out;
406         }
407 
408         /*
409          * "reg" property represents sequence of (addr,size) tuples
410          * each representing a memory range.
411          */
412         for (i = 0; ; i++) {
413                 ret = of_property_read_reg(dn, i, &base, &size);
414                 if (ret)
415                         break;
416 
417                 ret = add_usable_mem(um_info, base, base + size - 1);
418                 if (ret)
419                         goto out;
420         }
421 
422         // No reg or empty reg? Skip this node.
423         if (i == 0)
424                 goto out;
425 
426         /*
427          * No kdump kernel usable memory found in this memory node.
428          * Write (0,0) tuple in linux,usable-memory property for
429          * this region to be ignored.
430          */
431         if (um_info->idx == 0) {
432                 um_info->buf[0] = 0;
433                 um_info->buf[1] = 0;
434                 um_info->idx = 2;
435         }
436 
437         ret = fdt_setprop(fdt, node, "linux,usable-memory", um_info->buf,
438                           (um_info->idx * sizeof(u64)));
439 
440 out:
441         of_node_put(dn);
442         return ret;
443 }
444 
445 
446 /**
447  * update_usable_mem_fdt - Updates kdump kernel's fdt with linux,usable-memory
448  *                         and linux,drconf-usable-memory DT properties as
449  *                         appropriate to restrict its memory usage.
450  * @fdt:                   Flattened device tree for the kdump kernel.
451  * @usable_mem:            Usable memory ranges for kdump kernel.
452  *
453  * Returns 0 on success, negative errno on error.
454  */
455 static int update_usable_mem_fdt(void *fdt, struct crash_mem *usable_mem)
456 {
457         struct umem_info um_info;
458         struct device_node *dn;
459         int node, ret = 0;
460 
461         if (!usable_mem) {
462                 pr_err("Usable memory ranges for kdump kernel not found\n");
463                 return -ENOENT;
464         }
465 
466         node = fdt_path_offset(fdt, "/ibm,dynamic-reconfiguration-memory");
467         if (node == -FDT_ERR_NOTFOUND)
468                 kexec_dprintk("No dynamic reconfiguration memory found\n");
469         else if (node < 0) {
470                 pr_err("Malformed device tree: error reading /ibm,dynamic-reconfiguration-memory.\n");
471                 return -EINVAL;
472         }
473 
474         um_info.buf  = NULL;
475         um_info.size = 0;
476         um_info.max_entries = 0;
477         um_info.idx  = 0;
478         /* Memory ranges to look up */
479         um_info.ranges = &(usable_mem->ranges[0]);
480         um_info.nr_ranges = usable_mem->nr_ranges;
481 
482         dn = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
483         if (dn) {
484                 ret = walk_drmem_lmbs(dn, &um_info, kdump_setup_usable_lmb);
485                 of_node_put(dn);
486 
487                 if (ret) {
488                         pr_err("Could not setup linux,drconf-usable-memory property for kdump\n");
489                         goto out;
490                 }
491 
492                 ret = fdt_setprop(fdt, node, "linux,drconf-usable-memory",
493                                   um_info.buf, (um_info.idx * sizeof(u64)));
494                 if (ret) {
495                         pr_err("Failed to update fdt with linux,drconf-usable-memory property: %s",
496                                fdt_strerror(ret));
497                         goto out;
498                 }
499         }
500 
501         /*
502          * Walk through each memory node and set linux,usable-memory property
503          * for the corresponding node in kdump kernel's fdt.
504          */
505         for_each_node_by_type(dn, "memory") {
506                 ret = add_usable_mem_property(fdt, dn, &um_info);
507                 if (ret) {
508                         pr_err("Failed to set linux,usable-memory property for %s node",
509                                dn->full_name);
510                         of_node_put(dn);
511                         goto out;
512                 }
513         }
514 
515 out:
516         kfree(um_info.buf);
517         return ret;
518 }
519 
520 /**
521  * load_backup_segment - Locate a memory hole to place the backup region.
522  * @image:               Kexec image.
523  * @kbuf:                Buffer contents and memory parameters.
524  *
525  * Returns 0 on success, negative errno on error.
526  */
527 static int load_backup_segment(struct kimage *image, struct kexec_buf *kbuf)
528 {
529         void *buf;
530         int ret;
531 
532         /*
533          * Setup a source buffer for backup segment.
534          *
535          * A source buffer has no meaning for backup region as data will
536          * be copied from backup source, after crash, in the purgatory.
537          * But as load segment code doesn't recognize such segments,
538          * setup a dummy source buffer to keep it happy for now.
539          */
540         buf = vzalloc(BACKUP_SRC_SIZE);
541         if (!buf)
542                 return -ENOMEM;
543 
544         kbuf->buffer = buf;
545         kbuf->mem = KEXEC_BUF_MEM_UNKNOWN;
546         kbuf->bufsz = kbuf->memsz = BACKUP_SRC_SIZE;
547         kbuf->top_down = false;
548 
549         ret = kexec_add_buffer(kbuf);
550         if (ret) {
551                 vfree(buf);
552                 return ret;
553         }
554 
555         image->arch.backup_buf = buf;
556         image->arch.backup_start = kbuf->mem;
557         return 0;
558 }
559 
560 /**
561  * update_backup_region_phdr - Update backup region's offset for the core to
562  *                             export the region appropriately.
563  * @image:                     Kexec image.
564  * @ehdr:                      ELF core header.
565  *
566  * Assumes an exclusive program header is setup for the backup region
567  * in the ELF headers
568  *
569  * Returns nothing.
570  */
571 static void update_backup_region_phdr(struct kimage *image, Elf64_Ehdr *ehdr)
572 {
573         Elf64_Phdr *phdr;
574         unsigned int i;
575 
576         phdr = (Elf64_Phdr *)(ehdr + 1);
577         for (i = 0; i < ehdr->e_phnum; i++) {
578                 if (phdr->p_paddr == BACKUP_SRC_START) {
579                         phdr->p_offset = image->arch.backup_start;
580                         kexec_dprintk("Backup region offset updated to 0x%lx\n",
581                                       image->arch.backup_start);
582                         return;
583                 }
584         }
585 }
586 
587 static unsigned int kdump_extra_elfcorehdr_size(struct crash_mem *cmem)
588 {
589 #if defined(CONFIG_CRASH_HOTPLUG) && defined(CONFIG_MEMORY_HOTPLUG)
590         unsigned int extra_sz = 0;
591 
592         if (CONFIG_CRASH_MAX_MEMORY_RANGES > (unsigned int)PN_XNUM)
593                 pr_warn("Number of Phdrs %u exceeds max\n", CONFIG_CRASH_MAX_MEMORY_RANGES);
594         else if (cmem->nr_ranges >= CONFIG_CRASH_MAX_MEMORY_RANGES)
595                 pr_warn("Configured crash mem ranges may not be enough\n");
596         else
597                 extra_sz = (CONFIG_CRASH_MAX_MEMORY_RANGES - cmem->nr_ranges) * sizeof(Elf64_Phdr);
598 
599         return extra_sz;
600 #endif
601         return 0;
602 }
603 
604 /**
605  * load_elfcorehdr_segment - Setup crash memory ranges and initialize elfcorehdr
606  *                           segment needed to load kdump kernel.
607  * @image:                   Kexec image.
608  * @kbuf:                    Buffer contents and memory parameters.
609  *
610  * Returns 0 on success, negative errno on error.
611  */
612 static int load_elfcorehdr_segment(struct kimage *image, struct kexec_buf *kbuf)
613 {
614         struct crash_mem *cmem = NULL;
615         unsigned long headers_sz;
616         void *headers = NULL;
617         int ret;
618 
619         ret = get_crash_memory_ranges(&cmem);
620         if (ret)
621                 goto out;
622 
623         /* Setup elfcorehdr segment */
624         ret = crash_prepare_elf64_headers(cmem, false, &headers, &headers_sz);
625         if (ret) {
626                 pr_err("Failed to prepare elf headers for the core\n");
627                 goto out;
628         }
629 
630         /* Fix the offset for backup region in the ELF header */
631         update_backup_region_phdr(image, headers);
632 
633         kbuf->buffer = headers;
634         kbuf->mem = KEXEC_BUF_MEM_UNKNOWN;
635         kbuf->bufsz = headers_sz;
636         kbuf->memsz = headers_sz + kdump_extra_elfcorehdr_size(cmem);
637         kbuf->top_down = false;
638 
639         ret = kexec_add_buffer(kbuf);
640         if (ret) {
641                 vfree(headers);
642                 goto out;
643         }
644 
645         image->elf_load_addr = kbuf->mem;
646         image->elf_headers_sz = headers_sz;
647         image->elf_headers = headers;
648 out:
649         kfree(cmem);
650         return ret;
651 }
652 
653 /**
654  * load_crashdump_segments_ppc64 - Initialize the additional segements needed
655  *                                 to load kdump kernel.
656  * @image:                         Kexec image.
657  * @kbuf:                          Buffer contents and memory parameters.
658  *
659  * Returns 0 on success, negative errno on error.
660  */
661 int load_crashdump_segments_ppc64(struct kimage *image,
662                                   struct kexec_buf *kbuf)
663 {
664         int ret;
665 
666         /* Load backup segment - first 64K bytes of the crashing kernel */
667         ret = load_backup_segment(image, kbuf);
668         if (ret) {
669                 pr_err("Failed to load backup segment\n");
670                 return ret;
671         }
672         kexec_dprintk("Loaded the backup region at 0x%lx\n", kbuf->mem);
673 
674         /* Load elfcorehdr segment - to export crashing kernel's vmcore */
675         ret = load_elfcorehdr_segment(image, kbuf);
676         if (ret) {
677                 pr_err("Failed to load elfcorehdr segment\n");
678                 return ret;
679         }
680         kexec_dprintk("Loaded elf core header at 0x%lx, bufsz=0x%lx memsz=0x%lx\n",
681                       image->elf_load_addr, kbuf->bufsz, kbuf->memsz);
682 
683         return 0;
684 }
685 #endif
686 
687 /**
688  * setup_purgatory_ppc64 - initialize PPC64 specific purgatory's global
689  *                         variables and call setup_purgatory() to initialize
690  *                         common global variable.
691  * @image:                 kexec image.
692  * @slave_code:            Slave code for the purgatory.
693  * @fdt:                   Flattened device tree for the next kernel.
694  * @kernel_load_addr:      Address where the kernel is loaded.
695  * @fdt_load_addr:         Address where the flattened device tree is loaded.
696  *
697  * Returns 0 on success, negative errno on error.
698  */
699 int setup_purgatory_ppc64(struct kimage *image, const void *slave_code,
700                           const void *fdt, unsigned long kernel_load_addr,
701                           unsigned long fdt_load_addr)
702 {
703         struct device_node *dn = NULL;
704         int ret;
705 
706         ret = setup_purgatory(image, slave_code, fdt, kernel_load_addr,
707                               fdt_load_addr);
708         if (ret)
709                 goto out;
710 
711         if (image->type == KEXEC_TYPE_CRASH) {
712                 u32 my_run_at_load = 1;
713 
714                 /*
715                  * Tell relocatable kernel to run at load address
716                  * via the word meant for that at 0x5c.
717                  */
718                 ret = kexec_purgatory_get_set_symbol(image, "run_at_load",
719                                                      &my_run_at_load,
720                                                      sizeof(my_run_at_load),
721                                                      false);
722                 if (ret)
723                         goto out;
724         }
725 
726         /* Tell purgatory where to look for backup region */
727         ret = kexec_purgatory_get_set_symbol(image, "backup_start",
728                                              &image->arch.backup_start,
729                                              sizeof(image->arch.backup_start),
730                                              false);
731         if (ret)
732                 goto out;
733 
734         /* Setup OPAL base & entry values */
735         dn = of_find_node_by_path("/ibm,opal");
736         if (dn) {
737                 u64 val;
738 
739                 of_property_read_u64(dn, "opal-base-address", &val);
740                 ret = kexec_purgatory_get_set_symbol(image, "opal_base", &val,
741                                                      sizeof(val), false);
742                 if (ret)
743                         goto out;
744 
745                 of_property_read_u64(dn, "opal-entry-address", &val);
746                 ret = kexec_purgatory_get_set_symbol(image, "opal_entry", &val,
747                                                      sizeof(val), false);
748         }
749 out:
750         if (ret)
751                 pr_err("Failed to setup purgatory symbols");
752         of_node_put(dn);
753         return ret;
754 }
755 
756 /**
757  * cpu_node_size - Compute the size of a CPU node in the FDT.
758  *                 This should be done only once and the value is stored in
759  *                 a static variable.
760  * Returns the max size of a CPU node in the FDT.
761  */
762 static unsigned int cpu_node_size(void)
763 {
764         static unsigned int size;
765         struct device_node *dn;
766         struct property *pp;
767 
768         /*
769          * Don't compute it twice, we are assuming that the per CPU node size
770          * doesn't change during the system's life.
771          */
772         if (size)
773                 return size;
774 
775         dn = of_find_node_by_type(NULL, "cpu");
776         if (WARN_ON_ONCE(!dn)) {
777                 // Unlikely to happen
778                 return 0;
779         }
780 
781         /*
782          * We compute the sub node size for a CPU node, assuming it
783          * will be the same for all.
784          */
785         size += strlen(dn->name) + 5;
786         for_each_property_of_node(dn, pp) {
787                 size += strlen(pp->name);
788                 size += pp->length;
789         }
790 
791         of_node_put(dn);
792         return size;
793 }
794 
795 static unsigned int kdump_extra_fdt_size_ppc64(struct kimage *image, unsigned int cpu_nodes)
796 {
797         unsigned int extra_size = 0;
798         u64 usm_entries;
799 #ifdef CONFIG_CRASH_HOTPLUG
800         unsigned int possible_cpu_nodes;
801 #endif
802 
803         if (!IS_ENABLED(CONFIG_CRASH_DUMP) || image->type != KEXEC_TYPE_CRASH)
804                 return 0;
805 
806         /*
807          * For kdump kernel, account for linux,usable-memory and
808          * linux,drconf-usable-memory properties. Get an approximate on the
809          * number of usable memory entries and use for FDT size estimation.
810          */
811         if (drmem_lmb_size()) {
812                 usm_entries = ((memory_hotplug_max() / drmem_lmb_size()) +
813                                (2 * (resource_size(&crashk_res) / drmem_lmb_size())));
814                 extra_size += (unsigned int)(usm_entries * sizeof(u64));
815         }
816 
817 #ifdef CONFIG_CRASH_HOTPLUG
818         /*
819          * Make sure enough space is reserved to accommodate possible CPU nodes
820          * in the crash FDT. This allows packing possible CPU nodes which are
821          * not yet present in the system without regenerating the entire FDT.
822          */
823         if (image->type == KEXEC_TYPE_CRASH) {
824                 possible_cpu_nodes = num_possible_cpus() / threads_per_core;
825                 if (possible_cpu_nodes > cpu_nodes)
826                         extra_size += (possible_cpu_nodes - cpu_nodes) * cpu_node_size();
827         }
828 #endif
829 
830         return extra_size;
831 }
832 
833 /**
834  * kexec_extra_fdt_size_ppc64 - Return the estimated additional size needed to
835  *                              setup FDT for kexec/kdump kernel.
836  * @image:                      kexec image being loaded.
837  *
838  * Returns the estimated extra size needed for kexec/kdump kernel FDT.
839  */
840 unsigned int kexec_extra_fdt_size_ppc64(struct kimage *image, struct crash_mem *rmem)
841 {
842         struct device_node *dn;
843         unsigned int cpu_nodes = 0, extra_size = 0;
844 
845         // Budget some space for the password blob. There's already extra space
846         // for the key name
847         if (plpks_is_available())
848                 extra_size += (unsigned int)plpks_get_passwordlen();
849 
850         /* Get the number of CPU nodes in the current device tree */
851         for_each_node_by_type(dn, "cpu") {
852                 cpu_nodes++;
853         }
854 
855         /* Consider extra space for CPU nodes added since the boot time */
856         if (cpu_nodes > boot_cpu_node_count)
857                 extra_size += (cpu_nodes - boot_cpu_node_count) * cpu_node_size();
858 
859         /* Consider extra space for reserved memory ranges if any */
860         if (rmem->nr_ranges > 0)
861                 extra_size += sizeof(struct fdt_reserve_entry) * rmem->nr_ranges;
862 
863         return extra_size + kdump_extra_fdt_size_ppc64(image, cpu_nodes);
864 }
865 
866 static int copy_property(void *fdt, int node_offset, const struct device_node *dn,
867                          const char *propname)
868 {
869         const void *prop, *fdtprop;
870         int len = 0, fdtlen = 0;
871 
872         prop = of_get_property(dn, propname, &len);
873         fdtprop = fdt_getprop(fdt, node_offset, propname, &fdtlen);
874 
875         if (fdtprop && !prop)
876                 return fdt_delprop(fdt, node_offset, propname);
877         else if (prop)
878                 return fdt_setprop(fdt, node_offset, propname, prop, len);
879         else
880                 return -FDT_ERR_NOTFOUND;
881 }
882 
883 static int update_pci_dma_nodes(void *fdt, const char *dmapropname)
884 {
885         struct device_node *dn;
886         int pci_offset, root_offset, ret = 0;
887 
888         if (!firmware_has_feature(FW_FEATURE_LPAR))
889                 return 0;
890 
891         root_offset = fdt_path_offset(fdt, "/");
892         for_each_node_with_property(dn, dmapropname) {
893                 pci_offset = fdt_subnode_offset(fdt, root_offset, of_node_full_name(dn));
894                 if (pci_offset < 0)
895                         continue;
896 
897                 ret = copy_property(fdt, pci_offset, dn, "ibm,dma-window");
898                 if (ret < 0) {
899                         of_node_put(dn);
900                         break;
901                 }
902                 ret = copy_property(fdt, pci_offset, dn, dmapropname);
903                 if (ret < 0) {
904                         of_node_put(dn);
905                         break;
906                 }
907         }
908 
909         return ret;
910 }
911 
912 /**
913  * setup_new_fdt_ppc64 - Update the flattend device-tree of the kernel
914  *                       being loaded.
915  * @image:               kexec image being loaded.
916  * @fdt:                 Flattened device tree for the next kernel.
917  * @rmem:                Reserved memory ranges.
918  *
919  * Returns 0 on success, negative errno on error.
920  */
921 int setup_new_fdt_ppc64(const struct kimage *image, void *fdt, struct crash_mem *rmem)
922 {
923         struct crash_mem *umem = NULL;
924         int i, nr_ranges, ret;
925 
926 #ifdef CONFIG_CRASH_DUMP
927         /*
928          * Restrict memory usage for kdump kernel by setting up
929          * usable memory ranges and memory reserve map.
930          */
931         if (image->type == KEXEC_TYPE_CRASH) {
932                 ret = get_usable_memory_ranges(&umem);
933                 if (ret)
934                         goto out;
935 
936                 ret = update_usable_mem_fdt(fdt, umem);
937                 if (ret) {
938                         pr_err("Error setting up usable-memory property for kdump kernel\n");
939                         goto out;
940                 }
941 
942                 /*
943                  * Ensure we don't touch crashed kernel's memory except the
944                  * first 64K of RAM, which will be backed up.
945                  */
946                 ret = fdt_add_mem_rsv(fdt, BACKUP_SRC_END + 1,
947                                       crashk_res.start - BACKUP_SRC_SIZE);
948                 if (ret) {
949                         pr_err("Error reserving crash memory: %s\n",
950                                fdt_strerror(ret));
951                         goto out;
952                 }
953 
954                 /* Ensure backup region is not used by kdump/capture kernel */
955                 ret = fdt_add_mem_rsv(fdt, image->arch.backup_start,
956                                       BACKUP_SRC_SIZE);
957                 if (ret) {
958                         pr_err("Error reserving memory for backup: %s\n",
959                                fdt_strerror(ret));
960                         goto out;
961                 }
962         }
963 #endif
964 
965         /* Update cpus nodes information to account hotplug CPUs. */
966         ret =  update_cpus_node(fdt);
967         if (ret < 0)
968                 goto out;
969 
970         ret = update_pci_dma_nodes(fdt, DIRECT64_PROPNAME);
971         if (ret < 0)
972                 goto out;
973 
974         ret = update_pci_dma_nodes(fdt, DMA64_PROPNAME);
975         if (ret < 0)
976                 goto out;
977 
978         /* Update memory reserve map */
979         nr_ranges = rmem ? rmem->nr_ranges : 0;
980         for (i = 0; i < nr_ranges; i++) {
981                 u64 base, size;
982 
983                 base = rmem->ranges[i].start;
984                 size = rmem->ranges[i].end - base + 1;
985                 ret = fdt_add_mem_rsv(fdt, base, size);
986                 if (ret) {
987                         pr_err("Error updating memory reserve map: %s\n",
988                                fdt_strerror(ret));
989                         goto out;
990                 }
991         }
992 
993         // If we have PLPKS active, we need to provide the password to the new kernel
994         if (plpks_is_available())
995                 ret = plpks_populate_fdt(fdt);
996 
997 out:
998         kfree(umem);
999         return ret;
1000 }
1001 
1002 /**
1003  * arch_kexec_locate_mem_hole - Skip special memory regions like rtas, opal,
1004  *                              tce-table, reserved-ranges & such (exclude
1005  *                              memory ranges) as they can't be used for kexec
1006  *                              segment buffer. Sets kbuf->mem when a suitable
1007  *                              memory hole is found.
1008  * @kbuf:                       Buffer contents and memory parameters.
1009  *
1010  * Assumes minimum of PAGE_SIZE alignment for kbuf->memsz & kbuf->buf_align.
1011  *
1012  * Returns 0 on success, negative errno on error.
1013  */
1014 int arch_kexec_locate_mem_hole(struct kexec_buf *kbuf)
1015 {
1016         struct crash_mem **emem;
1017         u64 buf_min, buf_max;
1018         int ret;
1019 
1020         /* Look up the exclude ranges list while locating the memory hole */
1021         emem = &(kbuf->image->arch.exclude_ranges);
1022         if (!(*emem) || ((*emem)->nr_ranges == 0)) {
1023                 pr_warn("No exclude range list. Using the default locate mem hole method\n");
1024                 return kexec_locate_mem_hole(kbuf);
1025         }
1026 
1027         buf_min = kbuf->buf_min;
1028         buf_max = kbuf->buf_max;
1029         /* Segments for kdump kernel should be within crashkernel region */
1030         if (IS_ENABLED(CONFIG_CRASH_DUMP) && kbuf->image->type == KEXEC_TYPE_CRASH) {
1031                 buf_min = (buf_min < crashk_res.start ?
1032                            crashk_res.start : buf_min);
1033                 buf_max = (buf_max > crashk_res.end ?
1034                            crashk_res.end : buf_max);
1035         }
1036 
1037         if (buf_min > buf_max) {
1038                 pr_err("Invalid buffer min and/or max values\n");
1039                 return -EINVAL;
1040         }
1041 
1042         if (kbuf->top_down)
1043                 ret = locate_mem_hole_top_down_ppc64(kbuf, buf_min, buf_max,
1044                                                      *emem);
1045         else
1046                 ret = locate_mem_hole_bottom_up_ppc64(kbuf, buf_min, buf_max,
1047                                                       *emem);
1048 
1049         /* Add the buffer allocated to the exclude list for the next lookup */
1050         if (!ret) {
1051                 add_mem_range(emem, kbuf->mem, kbuf->memsz);
1052                 sort_memory_ranges(*emem, true);
1053         } else {
1054                 pr_err("Failed to locate memory buffer of size %lu\n",
1055                        kbuf->memsz);
1056         }
1057         return ret;
1058 }
1059 
1060 /**
1061  * arch_kexec_kernel_image_probe - Does additional handling needed to setup
1062  *                                 kexec segments.
1063  * @image:                         kexec image being loaded.
1064  * @buf:                           Buffer pointing to elf data.
1065  * @buf_len:                       Length of the buffer.
1066  *
1067  * Returns 0 on success, negative errno on error.
1068  */
1069 int arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
1070                                   unsigned long buf_len)
1071 {
1072         int ret;
1073 
1074         /* Get exclude memory ranges needed for setting up kexec segments */
1075         ret = get_exclude_memory_ranges(&(image->arch.exclude_ranges));
1076         if (ret) {
1077                 pr_err("Failed to setup exclude memory ranges for buffer lookup\n");
1078                 return ret;
1079         }
1080 
1081         return kexec_image_probe_default(image, buf, buf_len);
1082 }
1083 
1084 /**
1085  * arch_kimage_file_post_load_cleanup - Frees up all the allocations done
1086  *                                      while loading the image.
1087  * @image:                              kexec image being loaded.
1088  *
1089  * Returns 0 on success, negative errno on error.
1090  */
1091 int arch_kimage_file_post_load_cleanup(struct kimage *image)
1092 {
1093         kfree(image->arch.exclude_ranges);
1094         image->arch.exclude_ranges = NULL;
1095 
1096         vfree(image->arch.backup_buf);
1097         image->arch.backup_buf = NULL;
1098 
1099         vfree(image->elf_headers);
1100         image->elf_headers = NULL;
1101         image->elf_headers_sz = 0;
1102 
1103         kvfree(image->arch.fdt);
1104         image->arch.fdt = NULL;
1105 
1106         return kexec_image_post_load_cleanup_default(image);
1107 }
1108 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php