1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * 4 * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 5 */ 6 7 #include <linux/types.h> 8 #include <linux/string.h> 9 #include <linux/kvm.h> 10 #include <linux/kvm_host.h> 11 #include <linux/highmem.h> 12 #include <linux/gfp.h> 13 #include <linux/slab.h> 14 #include <linux/hugetlb.h> 15 #include <linux/vmalloc.h> 16 #include <linux/srcu.h> 17 #include <linux/anon_inodes.h> 18 #include <linux/file.h> 19 #include <linux/debugfs.h> 20 21 #include <asm/kvm_ppc.h> 22 #include <asm/kvm_book3s.h> 23 #include <asm/book3s/64/mmu-hash.h> 24 #include <asm/hvcall.h> 25 #include <asm/synch.h> 26 #include <asm/ppc-opcode.h> 27 #include <asm/cputable.h> 28 #include <asm/pte-walk.h> 29 30 #include "book3s.h" 31 #include "book3s_hv.h" 32 #include "trace_hv.h" 33 34 //#define DEBUG_RESIZE_HPT 1 35 36 #ifdef DEBUG_RESIZE_HPT 37 #define resize_hpt_debug(resize, ...) \ 38 do { \ 39 printk(KERN_DEBUG "RESIZE HPT %p: ", resize); \ 40 printk(__VA_ARGS__); \ 41 } while (0) 42 #else 43 #define resize_hpt_debug(resize, ...) \ 44 do { } while (0) 45 #endif 46 47 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags, 48 long pte_index, unsigned long pteh, 49 unsigned long ptel, unsigned long *pte_idx_ret); 50 51 struct kvm_resize_hpt { 52 /* These fields read-only after init */ 53 struct kvm *kvm; 54 struct work_struct work; 55 u32 order; 56 57 /* These fields protected by kvm->arch.mmu_setup_lock */ 58 59 /* Possible values and their usage: 60 * <0 an error occurred during allocation, 61 * -EBUSY allocation is in the progress, 62 * 0 allocation made successfully. 63 */ 64 int error; 65 66 /* Private to the work thread, until error != -EBUSY, 67 * then protected by kvm->arch.mmu_setup_lock. 68 */ 69 struct kvm_hpt_info hpt; 70 }; 71 72 int kvmppc_allocate_hpt(struct kvm_hpt_info *info, u32 order) 73 { 74 unsigned long hpt = 0; 75 int cma = 0; 76 struct page *page = NULL; 77 struct revmap_entry *rev; 78 unsigned long npte; 79 80 if ((order < PPC_MIN_HPT_ORDER) || (order > PPC_MAX_HPT_ORDER)) 81 return -EINVAL; 82 83 page = kvm_alloc_hpt_cma(1ul << (order - PAGE_SHIFT)); 84 if (page) { 85 hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page)); 86 memset((void *)hpt, 0, (1ul << order)); 87 cma = 1; 88 } 89 90 if (!hpt) 91 hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_RETRY_MAYFAIL 92 |__GFP_NOWARN, order - PAGE_SHIFT); 93 94 if (!hpt) 95 return -ENOMEM; 96 97 /* HPTEs are 2**4 bytes long */ 98 npte = 1ul << (order - 4); 99 100 /* Allocate reverse map array */ 101 rev = vmalloc(array_size(npte, sizeof(struct revmap_entry))); 102 if (!rev) { 103 if (cma) 104 kvm_free_hpt_cma(page, 1 << (order - PAGE_SHIFT)); 105 else 106 free_pages(hpt, order - PAGE_SHIFT); 107 return -ENOMEM; 108 } 109 110 info->order = order; 111 info->virt = hpt; 112 info->cma = cma; 113 info->rev = rev; 114 115 return 0; 116 } 117 118 void kvmppc_set_hpt(struct kvm *kvm, struct kvm_hpt_info *info) 119 { 120 atomic64_set(&kvm->arch.mmio_update, 0); 121 kvm->arch.hpt = *info; 122 kvm->arch.sdr1 = __pa(info->virt) | (info->order - 18); 123 124 pr_debug("KVM guest htab at %lx (order %ld), LPID %llx\n", 125 info->virt, (long)info->order, kvm->arch.lpid); 126 } 127 128 int kvmppc_alloc_reset_hpt(struct kvm *kvm, int order) 129 { 130 int err = -EBUSY; 131 struct kvm_hpt_info info; 132 133 mutex_lock(&kvm->arch.mmu_setup_lock); 134 if (kvm->arch.mmu_ready) { 135 kvm->arch.mmu_ready = 0; 136 /* order mmu_ready vs. vcpus_running */ 137 smp_mb(); 138 if (atomic_read(&kvm->arch.vcpus_running)) { 139 kvm->arch.mmu_ready = 1; 140 goto out; 141 } 142 } 143 if (kvm_is_radix(kvm)) { 144 err = kvmppc_switch_mmu_to_hpt(kvm); 145 if (err) 146 goto out; 147 } 148 149 if (kvm->arch.hpt.order == order) { 150 /* We already have a suitable HPT */ 151 152 /* Set the entire HPT to 0, i.e. invalid HPTEs */ 153 memset((void *)kvm->arch.hpt.virt, 0, 1ul << order); 154 /* 155 * Reset all the reverse-mapping chains for all memslots 156 */ 157 kvmppc_rmap_reset(kvm); 158 err = 0; 159 goto out; 160 } 161 162 if (kvm->arch.hpt.virt) { 163 kvmppc_free_hpt(&kvm->arch.hpt); 164 kvmppc_rmap_reset(kvm); 165 } 166 167 err = kvmppc_allocate_hpt(&info, order); 168 if (err < 0) 169 goto out; 170 kvmppc_set_hpt(kvm, &info); 171 172 out: 173 if (err == 0) 174 /* Ensure that each vcpu will flush its TLB on next entry. */ 175 cpumask_setall(&kvm->arch.need_tlb_flush); 176 177 mutex_unlock(&kvm->arch.mmu_setup_lock); 178 return err; 179 } 180 181 void kvmppc_free_hpt(struct kvm_hpt_info *info) 182 { 183 vfree(info->rev); 184 info->rev = NULL; 185 if (info->cma) 186 kvm_free_hpt_cma(virt_to_page((void *)info->virt), 187 1 << (info->order - PAGE_SHIFT)); 188 else if (info->virt) 189 free_pages(info->virt, info->order - PAGE_SHIFT); 190 info->virt = 0; 191 info->order = 0; 192 } 193 194 /* Bits in first HPTE dword for pagesize 4k, 64k or 16M */ 195 static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize) 196 { 197 return (pgsize > 0x1000) ? HPTE_V_LARGE : 0; 198 } 199 200 /* Bits in second HPTE dword for pagesize 4k, 64k or 16M */ 201 static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize) 202 { 203 return (pgsize == 0x10000) ? 0x1000 : 0; 204 } 205 206 void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot, 207 unsigned long porder) 208 { 209 unsigned long i; 210 unsigned long npages; 211 unsigned long hp_v, hp_r; 212 unsigned long addr, hash; 213 unsigned long psize; 214 unsigned long hp0, hp1; 215 unsigned long idx_ret; 216 long ret; 217 struct kvm *kvm = vcpu->kvm; 218 219 psize = 1ul << porder; 220 npages = memslot->npages >> (porder - PAGE_SHIFT); 221 222 /* VRMA can't be > 1TB */ 223 if (npages > 1ul << (40 - porder)) 224 npages = 1ul << (40 - porder); 225 /* Can't use more than 1 HPTE per HPTEG */ 226 if (npages > kvmppc_hpt_mask(&kvm->arch.hpt) + 1) 227 npages = kvmppc_hpt_mask(&kvm->arch.hpt) + 1; 228 229 hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) | 230 HPTE_V_BOLTED | hpte0_pgsize_encoding(psize); 231 hp1 = hpte1_pgsize_encoding(psize) | 232 HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX; 233 234 for (i = 0; i < npages; ++i) { 235 addr = i << porder; 236 /* can't use hpt_hash since va > 64 bits */ 237 hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25))) 238 & kvmppc_hpt_mask(&kvm->arch.hpt); 239 /* 240 * We assume that the hash table is empty and no 241 * vcpus are using it at this stage. Since we create 242 * at most one HPTE per HPTEG, we just assume entry 7 243 * is available and use it. 244 */ 245 hash = (hash << 3) + 7; 246 hp_v = hp0 | ((addr >> 16) & ~0x7fUL); 247 hp_r = hp1 | addr; 248 ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r, 249 &idx_ret); 250 if (ret != H_SUCCESS) { 251 pr_err("KVM: map_vrma at %lx failed, ret=%ld\n", 252 addr, ret); 253 break; 254 } 255 } 256 } 257 258 int kvmppc_mmu_hv_init(void) 259 { 260 unsigned long nr_lpids; 261 262 if (!mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE)) 263 return -EINVAL; 264 265 if (cpu_has_feature(CPU_FTR_HVMODE)) { 266 if (WARN_ON(mfspr(SPRN_LPID) != 0)) 267 return -EINVAL; 268 nr_lpids = 1UL << mmu_lpid_bits; 269 } else { 270 nr_lpids = 1UL << KVM_MAX_NESTED_GUESTS_SHIFT; 271 } 272 273 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 274 /* POWER7 has 10-bit LPIDs, POWER8 has 12-bit LPIDs */ 275 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 276 WARN_ON(nr_lpids != 1UL << 12); 277 else 278 WARN_ON(nr_lpids != 1UL << 10); 279 280 /* 281 * Reserve the last implemented LPID use in partition 282 * switching for POWER7 and POWER8. 283 */ 284 nr_lpids -= 1; 285 } 286 287 kvmppc_init_lpid(nr_lpids); 288 289 return 0; 290 } 291 292 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags, 293 long pte_index, unsigned long pteh, 294 unsigned long ptel, unsigned long *pte_idx_ret) 295 { 296 long ret; 297 298 preempt_disable(); 299 ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel, 300 kvm->mm->pgd, false, pte_idx_ret); 301 preempt_enable(); 302 if (ret == H_TOO_HARD) { 303 /* this can't happen */ 304 pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n"); 305 ret = H_RESOURCE; /* or something */ 306 } 307 return ret; 308 309 } 310 311 static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu, 312 gva_t eaddr) 313 { 314 u64 mask; 315 int i; 316 317 for (i = 0; i < vcpu->arch.slb_nr; i++) { 318 if (!(vcpu->arch.slb[i].orige & SLB_ESID_V)) 319 continue; 320 321 if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T) 322 mask = ESID_MASK_1T; 323 else 324 mask = ESID_MASK; 325 326 if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0) 327 return &vcpu->arch.slb[i]; 328 } 329 return NULL; 330 } 331 332 static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r, 333 unsigned long ea) 334 { 335 unsigned long ra_mask; 336 337 ra_mask = kvmppc_actual_pgsz(v, r) - 1; 338 return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask); 339 } 340 341 static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr, 342 struct kvmppc_pte *gpte, bool data, bool iswrite) 343 { 344 struct kvm *kvm = vcpu->kvm; 345 struct kvmppc_slb *slbe; 346 unsigned long slb_v; 347 unsigned long pp, key; 348 unsigned long v, orig_v, gr; 349 __be64 *hptep; 350 long int index; 351 int virtmode = __kvmppc_get_msr_hv(vcpu) & (data ? MSR_DR : MSR_IR); 352 353 if (kvm_is_radix(vcpu->kvm)) 354 return kvmppc_mmu_radix_xlate(vcpu, eaddr, gpte, data, iswrite); 355 356 /* Get SLB entry */ 357 if (virtmode) { 358 slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr); 359 if (!slbe) 360 return -EINVAL; 361 slb_v = slbe->origv; 362 } else { 363 /* real mode access */ 364 slb_v = vcpu->kvm->arch.vrma_slb_v; 365 } 366 367 preempt_disable(); 368 /* Find the HPTE in the hash table */ 369 index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v, 370 HPTE_V_VALID | HPTE_V_ABSENT); 371 if (index < 0) { 372 preempt_enable(); 373 return -ENOENT; 374 } 375 hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4)); 376 v = orig_v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK; 377 if (cpu_has_feature(CPU_FTR_ARCH_300)) 378 v = hpte_new_to_old_v(v, be64_to_cpu(hptep[1])); 379 gr = kvm->arch.hpt.rev[index].guest_rpte; 380 381 unlock_hpte(hptep, orig_v); 382 preempt_enable(); 383 384 gpte->eaddr = eaddr; 385 gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff); 386 387 /* Get PP bits and key for permission check */ 388 pp = gr & (HPTE_R_PP0 | HPTE_R_PP); 389 key = (__kvmppc_get_msr_hv(vcpu) & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS; 390 key &= slb_v; 391 392 /* Calculate permissions */ 393 gpte->may_read = hpte_read_permission(pp, key); 394 gpte->may_write = hpte_write_permission(pp, key); 395 gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G)); 396 397 /* Storage key permission check for POWER7 */ 398 if (data && virtmode) { 399 int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr); 400 if (amrfield & 1) 401 gpte->may_read = 0; 402 if (amrfield & 2) 403 gpte->may_write = 0; 404 } 405 406 /* Get the guest physical address */ 407 gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr); 408 return 0; 409 } 410 411 /* 412 * Quick test for whether an instruction is a load or a store. 413 * If the instruction is a load or a store, then this will indicate 414 * which it is, at least on server processors. (Embedded processors 415 * have some external PID instructions that don't follow the rule 416 * embodied here.) If the instruction isn't a load or store, then 417 * this doesn't return anything useful. 418 */ 419 static int instruction_is_store(ppc_inst_t instr) 420 { 421 unsigned int mask; 422 unsigned int suffix; 423 424 mask = 0x10000000; 425 suffix = ppc_inst_val(instr); 426 if (ppc_inst_prefixed(instr)) 427 suffix = ppc_inst_suffix(instr); 428 else if ((suffix & 0xfc000000) == 0x7c000000) 429 mask = 0x100; /* major opcode 31 */ 430 return (suffix & mask) != 0; 431 } 432 433 int kvmppc_hv_emulate_mmio(struct kvm_vcpu *vcpu, 434 unsigned long gpa, gva_t ea, int is_store) 435 { 436 ppc_inst_t last_inst; 437 bool is_prefixed = !!(kvmppc_get_msr(vcpu) & SRR1_PREFIXED); 438 439 /* 440 * Fast path - check if the guest physical address corresponds to a 441 * device on the FAST_MMIO_BUS, if so we can avoid loading the 442 * instruction all together, then we can just handle it and return. 443 */ 444 if (is_store) { 445 int idx, ret; 446 447 idx = srcu_read_lock(&vcpu->kvm->srcu); 448 ret = kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, (gpa_t) gpa, 0, 449 NULL); 450 srcu_read_unlock(&vcpu->kvm->srcu, idx); 451 if (!ret) { 452 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + (is_prefixed ? 8 : 4)); 453 return RESUME_GUEST; 454 } 455 } 456 457 /* 458 * If we fail, we just return to the guest and try executing it again. 459 */ 460 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) != 461 EMULATE_DONE) 462 return RESUME_GUEST; 463 464 /* 465 * WARNING: We do not know for sure whether the instruction we just 466 * read from memory is the same that caused the fault in the first 467 * place. 468 * 469 * If the fault is prefixed but the instruction is not or vice 470 * versa, try again so that we don't advance pc the wrong amount. 471 */ 472 if (ppc_inst_prefixed(last_inst) != is_prefixed) 473 return RESUME_GUEST; 474 475 /* 476 * If the instruction we read is neither an load or a store, 477 * then it can't access memory, so we don't need to worry about 478 * enforcing access permissions. So, assuming it is a load or 479 * store, we just check that its direction (load or store) is 480 * consistent with the original fault, since that's what we 481 * checked the access permissions against. If there is a mismatch 482 * we just return and retry the instruction. 483 */ 484 485 if (instruction_is_store(last_inst) != !!is_store) 486 return RESUME_GUEST; 487 488 /* 489 * Emulated accesses are emulated by looking at the hash for 490 * translation once, then performing the access later. The 491 * translation could be invalidated in the meantime in which 492 * point performing the subsequent memory access on the old 493 * physical address could possibly be a security hole for the 494 * guest (but not the host). 495 * 496 * This is less of an issue for MMIO stores since they aren't 497 * globally visible. It could be an issue for MMIO loads to 498 * a certain extent but we'll ignore it for now. 499 */ 500 501 vcpu->arch.paddr_accessed = gpa; 502 vcpu->arch.vaddr_accessed = ea; 503 return kvmppc_emulate_mmio(vcpu); 504 } 505 506 int kvmppc_book3s_hv_page_fault(struct kvm_vcpu *vcpu, 507 unsigned long ea, unsigned long dsisr) 508 { 509 struct kvm *kvm = vcpu->kvm; 510 unsigned long hpte[3], r; 511 unsigned long hnow_v, hnow_r; 512 __be64 *hptep; 513 unsigned long mmu_seq, psize, pte_size; 514 unsigned long gpa_base, gfn_base; 515 unsigned long gpa, gfn, hva, pfn, hpa; 516 struct kvm_memory_slot *memslot; 517 unsigned long *rmap; 518 struct revmap_entry *rev; 519 struct page *page; 520 long index, ret; 521 bool is_ci; 522 bool writing, write_ok; 523 unsigned int shift; 524 unsigned long rcbits; 525 long mmio_update; 526 pte_t pte, *ptep; 527 528 if (kvm_is_radix(kvm)) 529 return kvmppc_book3s_radix_page_fault(vcpu, ea, dsisr); 530 531 /* 532 * Real-mode code has already searched the HPT and found the 533 * entry we're interested in. Lock the entry and check that 534 * it hasn't changed. If it has, just return and re-execute the 535 * instruction. 536 */ 537 if (ea != vcpu->arch.pgfault_addr) 538 return RESUME_GUEST; 539 540 if (vcpu->arch.pgfault_cache) { 541 mmio_update = atomic64_read(&kvm->arch.mmio_update); 542 if (mmio_update == vcpu->arch.pgfault_cache->mmio_update) { 543 r = vcpu->arch.pgfault_cache->rpte; 544 psize = kvmppc_actual_pgsz(vcpu->arch.pgfault_hpte[0], 545 r); 546 gpa_base = r & HPTE_R_RPN & ~(psize - 1); 547 gfn_base = gpa_base >> PAGE_SHIFT; 548 gpa = gpa_base | (ea & (psize - 1)); 549 return kvmppc_hv_emulate_mmio(vcpu, gpa, ea, 550 dsisr & DSISR_ISSTORE); 551 } 552 } 553 index = vcpu->arch.pgfault_index; 554 hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4)); 555 rev = &kvm->arch.hpt.rev[index]; 556 preempt_disable(); 557 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) 558 cpu_relax(); 559 hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK; 560 hpte[1] = be64_to_cpu(hptep[1]); 561 hpte[2] = r = rev->guest_rpte; 562 unlock_hpte(hptep, hpte[0]); 563 preempt_enable(); 564 565 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 566 hpte[0] = hpte_new_to_old_v(hpte[0], hpte[1]); 567 hpte[1] = hpte_new_to_old_r(hpte[1]); 568 } 569 if (hpte[0] != vcpu->arch.pgfault_hpte[0] || 570 hpte[1] != vcpu->arch.pgfault_hpte[1]) 571 return RESUME_GUEST; 572 573 /* Translate the logical address and get the page */ 574 psize = kvmppc_actual_pgsz(hpte[0], r); 575 gpa_base = r & HPTE_R_RPN & ~(psize - 1); 576 gfn_base = gpa_base >> PAGE_SHIFT; 577 gpa = gpa_base | (ea & (psize - 1)); 578 gfn = gpa >> PAGE_SHIFT; 579 memslot = gfn_to_memslot(kvm, gfn); 580 581 trace_kvm_page_fault_enter(vcpu, hpte, memslot, ea, dsisr); 582 583 /* No memslot means it's an emulated MMIO region */ 584 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 585 return kvmppc_hv_emulate_mmio(vcpu, gpa, ea, 586 dsisr & DSISR_ISSTORE); 587 588 /* 589 * This should never happen, because of the slot_is_aligned() 590 * check in kvmppc_do_h_enter(). 591 */ 592 if (gfn_base < memslot->base_gfn) 593 return -EFAULT; 594 595 /* used to check for invalidations in progress */ 596 mmu_seq = kvm->mmu_invalidate_seq; 597 smp_rmb(); 598 599 ret = -EFAULT; 600 page = NULL; 601 writing = (dsisr & DSISR_ISSTORE) != 0; 602 /* If writing != 0, then the HPTE must allow writing, if we get here */ 603 write_ok = writing; 604 hva = gfn_to_hva_memslot(memslot, gfn); 605 606 /* 607 * Do a fast check first, since __gfn_to_pfn_memslot doesn't 608 * do it with !atomic && !async, which is how we call it. 609 * We always ask for write permission since the common case 610 * is that the page is writable. 611 */ 612 if (get_user_page_fast_only(hva, FOLL_WRITE, &page)) { 613 write_ok = true; 614 } else { 615 /* Call KVM generic code to do the slow-path check */ 616 pfn = __gfn_to_pfn_memslot(memslot, gfn, false, false, NULL, 617 writing, &write_ok, NULL); 618 if (is_error_noslot_pfn(pfn)) 619 return -EFAULT; 620 page = NULL; 621 if (pfn_valid(pfn)) { 622 page = pfn_to_page(pfn); 623 if (PageReserved(page)) 624 page = NULL; 625 } 626 } 627 628 /* 629 * Read the PTE from the process' radix tree and use that 630 * so we get the shift and attribute bits. 631 */ 632 spin_lock(&kvm->mmu_lock); 633 ptep = find_kvm_host_pte(kvm, mmu_seq, hva, &shift); 634 pte = __pte(0); 635 if (ptep) 636 pte = READ_ONCE(*ptep); 637 spin_unlock(&kvm->mmu_lock); 638 /* 639 * If the PTE disappeared temporarily due to a THP 640 * collapse, just return and let the guest try again. 641 */ 642 if (!pte_present(pte)) { 643 if (page) 644 put_page(page); 645 return RESUME_GUEST; 646 } 647 hpa = pte_pfn(pte) << PAGE_SHIFT; 648 pte_size = PAGE_SIZE; 649 if (shift) 650 pte_size = 1ul << shift; 651 is_ci = pte_ci(pte); 652 653 if (psize > pte_size) 654 goto out_put; 655 if (pte_size > psize) 656 hpa |= hva & (pte_size - psize); 657 658 /* Check WIMG vs. the actual page we're accessing */ 659 if (!hpte_cache_flags_ok(r, is_ci)) { 660 if (is_ci) 661 goto out_put; 662 /* 663 * Allow guest to map emulated device memory as 664 * uncacheable, but actually make it cacheable. 665 */ 666 r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M; 667 } 668 669 /* 670 * Set the HPTE to point to hpa. 671 * Since the hpa is at PAGE_SIZE granularity, make sure we 672 * don't mask out lower-order bits if psize < PAGE_SIZE. 673 */ 674 if (psize < PAGE_SIZE) 675 psize = PAGE_SIZE; 676 r = (r & HPTE_R_KEY_HI) | (r & ~(HPTE_R_PP0 - psize)) | hpa; 677 if (hpte_is_writable(r) && !write_ok) 678 r = hpte_make_readonly(r); 679 ret = RESUME_GUEST; 680 preempt_disable(); 681 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) 682 cpu_relax(); 683 hnow_v = be64_to_cpu(hptep[0]); 684 hnow_r = be64_to_cpu(hptep[1]); 685 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 686 hnow_v = hpte_new_to_old_v(hnow_v, hnow_r); 687 hnow_r = hpte_new_to_old_r(hnow_r); 688 } 689 690 /* 691 * If the HPT is being resized, don't update the HPTE, 692 * instead let the guest retry after the resize operation is complete. 693 * The synchronization for mmu_ready test vs. set is provided 694 * by the HPTE lock. 695 */ 696 if (!kvm->arch.mmu_ready) 697 goto out_unlock; 698 699 if ((hnow_v & ~HPTE_V_HVLOCK) != hpte[0] || hnow_r != hpte[1] || 700 rev->guest_rpte != hpte[2]) 701 /* HPTE has been changed under us; let the guest retry */ 702 goto out_unlock; 703 hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID; 704 705 /* Always put the HPTE in the rmap chain for the page base address */ 706 rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn]; 707 lock_rmap(rmap); 708 709 /* Check if we might have been invalidated; let the guest retry if so */ 710 ret = RESUME_GUEST; 711 if (mmu_invalidate_retry(vcpu->kvm, mmu_seq)) { 712 unlock_rmap(rmap); 713 goto out_unlock; 714 } 715 716 /* Only set R/C in real HPTE if set in both *rmap and guest_rpte */ 717 rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT; 718 r &= rcbits | ~(HPTE_R_R | HPTE_R_C); 719 720 if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) { 721 /* HPTE was previously valid, so we need to invalidate it */ 722 unlock_rmap(rmap); 723 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT); 724 kvmppc_invalidate_hpte(kvm, hptep, index); 725 /* don't lose previous R and C bits */ 726 r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C); 727 } else { 728 kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0); 729 } 730 731 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 732 r = hpte_old_to_new_r(hpte[0], r); 733 hpte[0] = hpte_old_to_new_v(hpte[0]); 734 } 735 hptep[1] = cpu_to_be64(r); 736 eieio(); 737 __unlock_hpte(hptep, hpte[0]); 738 asm volatile("ptesync" : : : "memory"); 739 preempt_enable(); 740 if (page && hpte_is_writable(r)) 741 set_page_dirty_lock(page); 742 743 out_put: 744 trace_kvm_page_fault_exit(vcpu, hpte, ret); 745 746 if (page) 747 put_page(page); 748 return ret; 749 750 out_unlock: 751 __unlock_hpte(hptep, be64_to_cpu(hptep[0])); 752 preempt_enable(); 753 goto out_put; 754 } 755 756 void kvmppc_rmap_reset(struct kvm *kvm) 757 { 758 struct kvm_memslots *slots; 759 struct kvm_memory_slot *memslot; 760 int srcu_idx, bkt; 761 762 srcu_idx = srcu_read_lock(&kvm->srcu); 763 slots = kvm_memslots(kvm); 764 kvm_for_each_memslot(memslot, bkt, slots) { 765 /* Mutual exclusion with kvm_unmap_hva_range etc. */ 766 spin_lock(&kvm->mmu_lock); 767 /* 768 * This assumes it is acceptable to lose reference and 769 * change bits across a reset. 770 */ 771 memset(memslot->arch.rmap, 0, 772 memslot->npages * sizeof(*memslot->arch.rmap)); 773 spin_unlock(&kvm->mmu_lock); 774 } 775 srcu_read_unlock(&kvm->srcu, srcu_idx); 776 } 777 778 /* Must be called with both HPTE and rmap locked */ 779 static void kvmppc_unmap_hpte(struct kvm *kvm, unsigned long i, 780 struct kvm_memory_slot *memslot, 781 unsigned long *rmapp, unsigned long gfn) 782 { 783 __be64 *hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4)); 784 struct revmap_entry *rev = kvm->arch.hpt.rev; 785 unsigned long j, h; 786 unsigned long ptel, psize, rcbits; 787 788 j = rev[i].forw; 789 if (j == i) { 790 /* chain is now empty */ 791 *rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX); 792 } else { 793 /* remove i from chain */ 794 h = rev[i].back; 795 rev[h].forw = j; 796 rev[j].back = h; 797 rev[i].forw = rev[i].back = i; 798 *rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j; 799 } 800 801 /* Now check and modify the HPTE */ 802 ptel = rev[i].guest_rpte; 803 psize = kvmppc_actual_pgsz(be64_to_cpu(hptep[0]), ptel); 804 if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) && 805 hpte_rpn(ptel, psize) == gfn) { 806 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT); 807 kvmppc_invalidate_hpte(kvm, hptep, i); 808 hptep[1] &= ~cpu_to_be64(HPTE_R_KEY_HI | HPTE_R_KEY_LO); 809 /* Harvest R and C */ 810 rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C); 811 *rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT; 812 if ((rcbits & HPTE_R_C) && memslot->dirty_bitmap) 813 kvmppc_update_dirty_map(memslot, gfn, psize); 814 if (rcbits & ~rev[i].guest_rpte) { 815 rev[i].guest_rpte = ptel | rcbits; 816 note_hpte_modification(kvm, &rev[i]); 817 } 818 } 819 } 820 821 static void kvm_unmap_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot, 822 unsigned long gfn) 823 { 824 unsigned long i; 825 __be64 *hptep; 826 unsigned long *rmapp; 827 828 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; 829 for (;;) { 830 lock_rmap(rmapp); 831 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) { 832 unlock_rmap(rmapp); 833 break; 834 } 835 836 /* 837 * To avoid an ABBA deadlock with the HPTE lock bit, 838 * we can't spin on the HPTE lock while holding the 839 * rmap chain lock. 840 */ 841 i = *rmapp & KVMPPC_RMAP_INDEX; 842 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4)); 843 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) { 844 /* unlock rmap before spinning on the HPTE lock */ 845 unlock_rmap(rmapp); 846 while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK) 847 cpu_relax(); 848 continue; 849 } 850 851 kvmppc_unmap_hpte(kvm, i, memslot, rmapp, gfn); 852 unlock_rmap(rmapp); 853 __unlock_hpte(hptep, be64_to_cpu(hptep[0])); 854 } 855 } 856 857 bool kvm_unmap_gfn_range_hv(struct kvm *kvm, struct kvm_gfn_range *range) 858 { 859 gfn_t gfn; 860 861 if (kvm_is_radix(kvm)) { 862 for (gfn = range->start; gfn < range->end; gfn++) 863 kvm_unmap_radix(kvm, range->slot, gfn); 864 } else { 865 for (gfn = range->start; gfn < range->end; gfn++) 866 kvm_unmap_rmapp(kvm, range->slot, gfn); 867 } 868 869 return false; 870 } 871 872 void kvmppc_core_flush_memslot_hv(struct kvm *kvm, 873 struct kvm_memory_slot *memslot) 874 { 875 unsigned long gfn; 876 unsigned long n; 877 unsigned long *rmapp; 878 879 gfn = memslot->base_gfn; 880 rmapp = memslot->arch.rmap; 881 if (kvm_is_radix(kvm)) { 882 kvmppc_radix_flush_memslot(kvm, memslot); 883 return; 884 } 885 886 for (n = memslot->npages; n; --n, ++gfn) { 887 /* 888 * Testing the present bit without locking is OK because 889 * the memslot has been marked invalid already, and hence 890 * no new HPTEs referencing this page can be created, 891 * thus the present bit can't go from 0 to 1. 892 */ 893 if (*rmapp & KVMPPC_RMAP_PRESENT) 894 kvm_unmap_rmapp(kvm, memslot, gfn); 895 ++rmapp; 896 } 897 } 898 899 static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot, 900 unsigned long gfn) 901 { 902 struct revmap_entry *rev = kvm->arch.hpt.rev; 903 unsigned long head, i, j; 904 __be64 *hptep; 905 bool ret = false; 906 unsigned long *rmapp; 907 908 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; 909 retry: 910 lock_rmap(rmapp); 911 if (*rmapp & KVMPPC_RMAP_REFERENCED) { 912 *rmapp &= ~KVMPPC_RMAP_REFERENCED; 913 ret = true; 914 } 915 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) { 916 unlock_rmap(rmapp); 917 return ret; 918 } 919 920 i = head = *rmapp & KVMPPC_RMAP_INDEX; 921 do { 922 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4)); 923 j = rev[i].forw; 924 925 /* If this HPTE isn't referenced, ignore it */ 926 if (!(be64_to_cpu(hptep[1]) & HPTE_R_R)) 927 continue; 928 929 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) { 930 /* unlock rmap before spinning on the HPTE lock */ 931 unlock_rmap(rmapp); 932 while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK) 933 cpu_relax(); 934 goto retry; 935 } 936 937 /* Now check and modify the HPTE */ 938 if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) && 939 (be64_to_cpu(hptep[1]) & HPTE_R_R)) { 940 kvmppc_clear_ref_hpte(kvm, hptep, i); 941 if (!(rev[i].guest_rpte & HPTE_R_R)) { 942 rev[i].guest_rpte |= HPTE_R_R; 943 note_hpte_modification(kvm, &rev[i]); 944 } 945 ret = true; 946 } 947 __unlock_hpte(hptep, be64_to_cpu(hptep[0])); 948 } while ((i = j) != head); 949 950 unlock_rmap(rmapp); 951 return ret; 952 } 953 954 bool kvm_age_gfn_hv(struct kvm *kvm, struct kvm_gfn_range *range) 955 { 956 gfn_t gfn; 957 bool ret = false; 958 959 if (kvm_is_radix(kvm)) { 960 for (gfn = range->start; gfn < range->end; gfn++) 961 ret |= kvm_age_radix(kvm, range->slot, gfn); 962 } else { 963 for (gfn = range->start; gfn < range->end; gfn++) 964 ret |= kvm_age_rmapp(kvm, range->slot, gfn); 965 } 966 967 return ret; 968 } 969 970 static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot, 971 unsigned long gfn) 972 { 973 struct revmap_entry *rev = kvm->arch.hpt.rev; 974 unsigned long head, i, j; 975 unsigned long *hp; 976 bool ret = true; 977 unsigned long *rmapp; 978 979 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; 980 if (*rmapp & KVMPPC_RMAP_REFERENCED) 981 return true; 982 983 lock_rmap(rmapp); 984 if (*rmapp & KVMPPC_RMAP_REFERENCED) 985 goto out; 986 987 if (*rmapp & KVMPPC_RMAP_PRESENT) { 988 i = head = *rmapp & KVMPPC_RMAP_INDEX; 989 do { 990 hp = (unsigned long *)(kvm->arch.hpt.virt + (i << 4)); 991 j = rev[i].forw; 992 if (be64_to_cpu(hp[1]) & HPTE_R_R) 993 goto out; 994 } while ((i = j) != head); 995 } 996 ret = false; 997 998 out: 999 unlock_rmap(rmapp); 1000 return ret; 1001 } 1002 1003 bool kvm_test_age_gfn_hv(struct kvm *kvm, struct kvm_gfn_range *range) 1004 { 1005 WARN_ON(range->start + 1 != range->end); 1006 1007 if (kvm_is_radix(kvm)) 1008 return kvm_test_age_radix(kvm, range->slot, range->start); 1009 else 1010 return kvm_test_age_rmapp(kvm, range->slot, range->start); 1011 } 1012 1013 static int vcpus_running(struct kvm *kvm) 1014 { 1015 return atomic_read(&kvm->arch.vcpus_running) != 0; 1016 } 1017 1018 /* 1019 * Returns the number of system pages that are dirty. 1020 * This can be more than 1 if we find a huge-page HPTE. 1021 */ 1022 static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp) 1023 { 1024 struct revmap_entry *rev = kvm->arch.hpt.rev; 1025 unsigned long head, i, j; 1026 unsigned long n; 1027 unsigned long v, r; 1028 __be64 *hptep; 1029 int npages_dirty = 0; 1030 1031 retry: 1032 lock_rmap(rmapp); 1033 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) { 1034 unlock_rmap(rmapp); 1035 return npages_dirty; 1036 } 1037 1038 i = head = *rmapp & KVMPPC_RMAP_INDEX; 1039 do { 1040 unsigned long hptep1; 1041 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4)); 1042 j = rev[i].forw; 1043 1044 /* 1045 * Checking the C (changed) bit here is racy since there 1046 * is no guarantee about when the hardware writes it back. 1047 * If the HPTE is not writable then it is stable since the 1048 * page can't be written to, and we would have done a tlbie 1049 * (which forces the hardware to complete any writeback) 1050 * when making the HPTE read-only. 1051 * If vcpus are running then this call is racy anyway 1052 * since the page could get dirtied subsequently, so we 1053 * expect there to be a further call which would pick up 1054 * any delayed C bit writeback. 1055 * Otherwise we need to do the tlbie even if C==0 in 1056 * order to pick up any delayed writeback of C. 1057 */ 1058 hptep1 = be64_to_cpu(hptep[1]); 1059 if (!(hptep1 & HPTE_R_C) && 1060 (!hpte_is_writable(hptep1) || vcpus_running(kvm))) 1061 continue; 1062 1063 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) { 1064 /* unlock rmap before spinning on the HPTE lock */ 1065 unlock_rmap(rmapp); 1066 while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK)) 1067 cpu_relax(); 1068 goto retry; 1069 } 1070 1071 /* Now check and modify the HPTE */ 1072 if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) { 1073 __unlock_hpte(hptep, be64_to_cpu(hptep[0])); 1074 continue; 1075 } 1076 1077 /* need to make it temporarily absent so C is stable */ 1078 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT); 1079 kvmppc_invalidate_hpte(kvm, hptep, i); 1080 v = be64_to_cpu(hptep[0]); 1081 r = be64_to_cpu(hptep[1]); 1082 if (r & HPTE_R_C) { 1083 hptep[1] = cpu_to_be64(r & ~HPTE_R_C); 1084 if (!(rev[i].guest_rpte & HPTE_R_C)) { 1085 rev[i].guest_rpte |= HPTE_R_C; 1086 note_hpte_modification(kvm, &rev[i]); 1087 } 1088 n = kvmppc_actual_pgsz(v, r); 1089 n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT; 1090 if (n > npages_dirty) 1091 npages_dirty = n; 1092 eieio(); 1093 } 1094 v &= ~HPTE_V_ABSENT; 1095 v |= HPTE_V_VALID; 1096 __unlock_hpte(hptep, v); 1097 } while ((i = j) != head); 1098 1099 unlock_rmap(rmapp); 1100 return npages_dirty; 1101 } 1102 1103 void kvmppc_harvest_vpa_dirty(struct kvmppc_vpa *vpa, 1104 struct kvm_memory_slot *memslot, 1105 unsigned long *map) 1106 { 1107 unsigned long gfn; 1108 1109 if (!vpa->dirty || !vpa->pinned_addr) 1110 return; 1111 gfn = vpa->gpa >> PAGE_SHIFT; 1112 if (gfn < memslot->base_gfn || 1113 gfn >= memslot->base_gfn + memslot->npages) 1114 return; 1115 1116 vpa->dirty = false; 1117 if (map) 1118 __set_bit_le(gfn - memslot->base_gfn, map); 1119 } 1120 1121 long kvmppc_hv_get_dirty_log_hpt(struct kvm *kvm, 1122 struct kvm_memory_slot *memslot, unsigned long *map) 1123 { 1124 unsigned long i; 1125 unsigned long *rmapp; 1126 1127 preempt_disable(); 1128 rmapp = memslot->arch.rmap; 1129 for (i = 0; i < memslot->npages; ++i) { 1130 int npages = kvm_test_clear_dirty_npages(kvm, rmapp); 1131 /* 1132 * Note that if npages > 0 then i must be a multiple of npages, 1133 * since we always put huge-page HPTEs in the rmap chain 1134 * corresponding to their page base address. 1135 */ 1136 if (npages) 1137 set_dirty_bits(map, i, npages); 1138 ++rmapp; 1139 } 1140 preempt_enable(); 1141 return 0; 1142 } 1143 1144 void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa, 1145 unsigned long *nb_ret) 1146 { 1147 struct kvm_memory_slot *memslot; 1148 unsigned long gfn = gpa >> PAGE_SHIFT; 1149 struct page *page, *pages[1]; 1150 int npages; 1151 unsigned long hva, offset; 1152 int srcu_idx; 1153 1154 srcu_idx = srcu_read_lock(&kvm->srcu); 1155 memslot = gfn_to_memslot(kvm, gfn); 1156 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 1157 goto err; 1158 hva = gfn_to_hva_memslot(memslot, gfn); 1159 npages = get_user_pages_fast(hva, 1, FOLL_WRITE, pages); 1160 if (npages < 1) 1161 goto err; 1162 page = pages[0]; 1163 srcu_read_unlock(&kvm->srcu, srcu_idx); 1164 1165 offset = gpa & (PAGE_SIZE - 1); 1166 if (nb_ret) 1167 *nb_ret = PAGE_SIZE - offset; 1168 return page_address(page) + offset; 1169 1170 err: 1171 srcu_read_unlock(&kvm->srcu, srcu_idx); 1172 return NULL; 1173 } 1174 1175 void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa, 1176 bool dirty) 1177 { 1178 struct page *page = virt_to_page(va); 1179 struct kvm_memory_slot *memslot; 1180 unsigned long gfn; 1181 int srcu_idx; 1182 1183 put_page(page); 1184 1185 if (!dirty) 1186 return; 1187 1188 /* We need to mark this page dirty in the memslot dirty_bitmap, if any */ 1189 gfn = gpa >> PAGE_SHIFT; 1190 srcu_idx = srcu_read_lock(&kvm->srcu); 1191 memslot = gfn_to_memslot(kvm, gfn); 1192 if (memslot && memslot->dirty_bitmap) 1193 set_bit_le(gfn - memslot->base_gfn, memslot->dirty_bitmap); 1194 srcu_read_unlock(&kvm->srcu, srcu_idx); 1195 } 1196 1197 /* 1198 * HPT resizing 1199 */ 1200 static int resize_hpt_allocate(struct kvm_resize_hpt *resize) 1201 { 1202 int rc; 1203 1204 rc = kvmppc_allocate_hpt(&resize->hpt, resize->order); 1205 if (rc < 0) 1206 return rc; 1207 1208 resize_hpt_debug(resize, "%s(): HPT @ 0x%lx\n", __func__, 1209 resize->hpt.virt); 1210 1211 return 0; 1212 } 1213 1214 static unsigned long resize_hpt_rehash_hpte(struct kvm_resize_hpt *resize, 1215 unsigned long idx) 1216 { 1217 struct kvm *kvm = resize->kvm; 1218 struct kvm_hpt_info *old = &kvm->arch.hpt; 1219 struct kvm_hpt_info *new = &resize->hpt; 1220 unsigned long old_hash_mask = (1ULL << (old->order - 7)) - 1; 1221 unsigned long new_hash_mask = (1ULL << (new->order - 7)) - 1; 1222 __be64 *hptep, *new_hptep; 1223 unsigned long vpte, rpte, guest_rpte; 1224 int ret; 1225 struct revmap_entry *rev; 1226 unsigned long apsize, avpn, pteg, hash; 1227 unsigned long new_idx, new_pteg, replace_vpte; 1228 int pshift; 1229 1230 hptep = (__be64 *)(old->virt + (idx << 4)); 1231 1232 /* Guest is stopped, so new HPTEs can't be added or faulted 1233 * in, only unmapped or altered by host actions. So, it's 1234 * safe to check this before we take the HPTE lock */ 1235 vpte = be64_to_cpu(hptep[0]); 1236 if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT)) 1237 return 0; /* nothing to do */ 1238 1239 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) 1240 cpu_relax(); 1241 1242 vpte = be64_to_cpu(hptep[0]); 1243 1244 ret = 0; 1245 if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT)) 1246 /* Nothing to do */ 1247 goto out; 1248 1249 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1250 rpte = be64_to_cpu(hptep[1]); 1251 vpte = hpte_new_to_old_v(vpte, rpte); 1252 } 1253 1254 /* Unmap */ 1255 rev = &old->rev[idx]; 1256 guest_rpte = rev->guest_rpte; 1257 1258 ret = -EIO; 1259 apsize = kvmppc_actual_pgsz(vpte, guest_rpte); 1260 if (!apsize) 1261 goto out; 1262 1263 if (vpte & HPTE_V_VALID) { 1264 unsigned long gfn = hpte_rpn(guest_rpte, apsize); 1265 int srcu_idx = srcu_read_lock(&kvm->srcu); 1266 struct kvm_memory_slot *memslot = 1267 __gfn_to_memslot(kvm_memslots(kvm), gfn); 1268 1269 if (memslot) { 1270 unsigned long *rmapp; 1271 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; 1272 1273 lock_rmap(rmapp); 1274 kvmppc_unmap_hpte(kvm, idx, memslot, rmapp, gfn); 1275 unlock_rmap(rmapp); 1276 } 1277 1278 srcu_read_unlock(&kvm->srcu, srcu_idx); 1279 } 1280 1281 /* Reload PTE after unmap */ 1282 vpte = be64_to_cpu(hptep[0]); 1283 BUG_ON(vpte & HPTE_V_VALID); 1284 BUG_ON(!(vpte & HPTE_V_ABSENT)); 1285 1286 ret = 0; 1287 if (!(vpte & HPTE_V_BOLTED)) 1288 goto out; 1289 1290 rpte = be64_to_cpu(hptep[1]); 1291 1292 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1293 vpte = hpte_new_to_old_v(vpte, rpte); 1294 rpte = hpte_new_to_old_r(rpte); 1295 } 1296 1297 pshift = kvmppc_hpte_base_page_shift(vpte, rpte); 1298 avpn = HPTE_V_AVPN_VAL(vpte) & ~(((1ul << pshift) - 1) >> 23); 1299 pteg = idx / HPTES_PER_GROUP; 1300 if (vpte & HPTE_V_SECONDARY) 1301 pteg = ~pteg; 1302 1303 if (!(vpte & HPTE_V_1TB_SEG)) { 1304 unsigned long offset, vsid; 1305 1306 /* We only have 28 - 23 bits of offset in avpn */ 1307 offset = (avpn & 0x1f) << 23; 1308 vsid = avpn >> 5; 1309 /* We can find more bits from the pteg value */ 1310 if (pshift < 23) 1311 offset |= ((vsid ^ pteg) & old_hash_mask) << pshift; 1312 1313 hash = vsid ^ (offset >> pshift); 1314 } else { 1315 unsigned long offset, vsid; 1316 1317 /* We only have 40 - 23 bits of seg_off in avpn */ 1318 offset = (avpn & 0x1ffff) << 23; 1319 vsid = avpn >> 17; 1320 if (pshift < 23) 1321 offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask) << pshift; 1322 1323 hash = vsid ^ (vsid << 25) ^ (offset >> pshift); 1324 } 1325 1326 new_pteg = hash & new_hash_mask; 1327 if (vpte & HPTE_V_SECONDARY) 1328 new_pteg = ~hash & new_hash_mask; 1329 1330 new_idx = new_pteg * HPTES_PER_GROUP + (idx % HPTES_PER_GROUP); 1331 new_hptep = (__be64 *)(new->virt + (new_idx << 4)); 1332 1333 replace_vpte = be64_to_cpu(new_hptep[0]); 1334 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1335 unsigned long replace_rpte = be64_to_cpu(new_hptep[1]); 1336 replace_vpte = hpte_new_to_old_v(replace_vpte, replace_rpte); 1337 } 1338 1339 if (replace_vpte & (HPTE_V_VALID | HPTE_V_ABSENT)) { 1340 BUG_ON(new->order >= old->order); 1341 1342 if (replace_vpte & HPTE_V_BOLTED) { 1343 if (vpte & HPTE_V_BOLTED) 1344 /* Bolted collision, nothing we can do */ 1345 ret = -ENOSPC; 1346 /* Discard the new HPTE */ 1347 goto out; 1348 } 1349 1350 /* Discard the previous HPTE */ 1351 } 1352 1353 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1354 rpte = hpte_old_to_new_r(vpte, rpte); 1355 vpte = hpte_old_to_new_v(vpte); 1356 } 1357 1358 new_hptep[1] = cpu_to_be64(rpte); 1359 new->rev[new_idx].guest_rpte = guest_rpte; 1360 /* No need for a barrier, since new HPT isn't active */ 1361 new_hptep[0] = cpu_to_be64(vpte); 1362 unlock_hpte(new_hptep, vpte); 1363 1364 out: 1365 unlock_hpte(hptep, vpte); 1366 return ret; 1367 } 1368 1369 static int resize_hpt_rehash(struct kvm_resize_hpt *resize) 1370 { 1371 struct kvm *kvm = resize->kvm; 1372 unsigned long i; 1373 int rc; 1374 1375 for (i = 0; i < kvmppc_hpt_npte(&kvm->arch.hpt); i++) { 1376 rc = resize_hpt_rehash_hpte(resize, i); 1377 if (rc != 0) 1378 return rc; 1379 } 1380 1381 return 0; 1382 } 1383 1384 static void resize_hpt_pivot(struct kvm_resize_hpt *resize) 1385 { 1386 struct kvm *kvm = resize->kvm; 1387 struct kvm_hpt_info hpt_tmp; 1388 1389 /* Exchange the pending tables in the resize structure with 1390 * the active tables */ 1391 1392 resize_hpt_debug(resize, "resize_hpt_pivot()\n"); 1393 1394 spin_lock(&kvm->mmu_lock); 1395 asm volatile("ptesync" : : : "memory"); 1396 1397 hpt_tmp = kvm->arch.hpt; 1398 kvmppc_set_hpt(kvm, &resize->hpt); 1399 resize->hpt = hpt_tmp; 1400 1401 spin_unlock(&kvm->mmu_lock); 1402 1403 synchronize_srcu_expedited(&kvm->srcu); 1404 1405 if (cpu_has_feature(CPU_FTR_ARCH_300)) 1406 kvmppc_setup_partition_table(kvm); 1407 1408 resize_hpt_debug(resize, "resize_hpt_pivot() done\n"); 1409 } 1410 1411 static void resize_hpt_release(struct kvm *kvm, struct kvm_resize_hpt *resize) 1412 { 1413 if (WARN_ON(!mutex_is_locked(&kvm->arch.mmu_setup_lock))) 1414 return; 1415 1416 if (!resize) 1417 return; 1418 1419 if (resize->error != -EBUSY) { 1420 if (resize->hpt.virt) 1421 kvmppc_free_hpt(&resize->hpt); 1422 kfree(resize); 1423 } 1424 1425 if (kvm->arch.resize_hpt == resize) 1426 kvm->arch.resize_hpt = NULL; 1427 } 1428 1429 static void resize_hpt_prepare_work(struct work_struct *work) 1430 { 1431 struct kvm_resize_hpt *resize = container_of(work, 1432 struct kvm_resize_hpt, 1433 work); 1434 struct kvm *kvm = resize->kvm; 1435 int err = 0; 1436 1437 if (WARN_ON(resize->error != -EBUSY)) 1438 return; 1439 1440 mutex_lock(&kvm->arch.mmu_setup_lock); 1441 1442 /* Request is still current? */ 1443 if (kvm->arch.resize_hpt == resize) { 1444 /* We may request large allocations here: 1445 * do not sleep with kvm->arch.mmu_setup_lock held for a while. 1446 */ 1447 mutex_unlock(&kvm->arch.mmu_setup_lock); 1448 1449 resize_hpt_debug(resize, "%s(): order = %d\n", __func__, 1450 resize->order); 1451 1452 err = resize_hpt_allocate(resize); 1453 1454 /* We have strict assumption about -EBUSY 1455 * when preparing for HPT resize. 1456 */ 1457 if (WARN_ON(err == -EBUSY)) 1458 err = -EINPROGRESS; 1459 1460 mutex_lock(&kvm->arch.mmu_setup_lock); 1461 /* It is possible that kvm->arch.resize_hpt != resize 1462 * after we grab kvm->arch.mmu_setup_lock again. 1463 */ 1464 } 1465 1466 resize->error = err; 1467 1468 if (kvm->arch.resize_hpt != resize) 1469 resize_hpt_release(kvm, resize); 1470 1471 mutex_unlock(&kvm->arch.mmu_setup_lock); 1472 } 1473 1474 int kvm_vm_ioctl_resize_hpt_prepare(struct kvm *kvm, 1475 struct kvm_ppc_resize_hpt *rhpt) 1476 { 1477 unsigned long flags = rhpt->flags; 1478 unsigned long shift = rhpt->shift; 1479 struct kvm_resize_hpt *resize; 1480 int ret; 1481 1482 if (flags != 0 || kvm_is_radix(kvm)) 1483 return -EINVAL; 1484 1485 if (shift && ((shift < 18) || (shift > 46))) 1486 return -EINVAL; 1487 1488 mutex_lock(&kvm->arch.mmu_setup_lock); 1489 1490 resize = kvm->arch.resize_hpt; 1491 1492 if (resize) { 1493 if (resize->order == shift) { 1494 /* Suitable resize in progress? */ 1495 ret = resize->error; 1496 if (ret == -EBUSY) 1497 ret = 100; /* estimated time in ms */ 1498 else if (ret) 1499 resize_hpt_release(kvm, resize); 1500 1501 goto out; 1502 } 1503 1504 /* not suitable, cancel it */ 1505 resize_hpt_release(kvm, resize); 1506 } 1507 1508 ret = 0; 1509 if (!shift) 1510 goto out; /* nothing to do */ 1511 1512 /* start new resize */ 1513 1514 resize = kzalloc(sizeof(*resize), GFP_KERNEL); 1515 if (!resize) { 1516 ret = -ENOMEM; 1517 goto out; 1518 } 1519 1520 resize->error = -EBUSY; 1521 resize->order = shift; 1522 resize->kvm = kvm; 1523 INIT_WORK(&resize->work, resize_hpt_prepare_work); 1524 kvm->arch.resize_hpt = resize; 1525 1526 schedule_work(&resize->work); 1527 1528 ret = 100; /* estimated time in ms */ 1529 1530 out: 1531 mutex_unlock(&kvm->arch.mmu_setup_lock); 1532 return ret; 1533 } 1534 1535 static void resize_hpt_boot_vcpu(void *opaque) 1536 { 1537 /* Nothing to do, just force a KVM exit */ 1538 } 1539 1540 int kvm_vm_ioctl_resize_hpt_commit(struct kvm *kvm, 1541 struct kvm_ppc_resize_hpt *rhpt) 1542 { 1543 unsigned long flags = rhpt->flags; 1544 unsigned long shift = rhpt->shift; 1545 struct kvm_resize_hpt *resize; 1546 int ret; 1547 1548 if (flags != 0 || kvm_is_radix(kvm)) 1549 return -EINVAL; 1550 1551 if (shift && ((shift < 18) || (shift > 46))) 1552 return -EINVAL; 1553 1554 mutex_lock(&kvm->arch.mmu_setup_lock); 1555 1556 resize = kvm->arch.resize_hpt; 1557 1558 /* This shouldn't be possible */ 1559 ret = -EIO; 1560 if (WARN_ON(!kvm->arch.mmu_ready)) 1561 goto out_no_hpt; 1562 1563 /* Stop VCPUs from running while we mess with the HPT */ 1564 kvm->arch.mmu_ready = 0; 1565 smp_mb(); 1566 1567 /* Boot all CPUs out of the guest so they re-read 1568 * mmu_ready */ 1569 on_each_cpu(resize_hpt_boot_vcpu, NULL, 1); 1570 1571 ret = -ENXIO; 1572 if (!resize || (resize->order != shift)) 1573 goto out; 1574 1575 ret = resize->error; 1576 if (ret) 1577 goto out; 1578 1579 ret = resize_hpt_rehash(resize); 1580 if (ret) 1581 goto out; 1582 1583 resize_hpt_pivot(resize); 1584 1585 out: 1586 /* Let VCPUs run again */ 1587 kvm->arch.mmu_ready = 1; 1588 smp_mb(); 1589 out_no_hpt: 1590 resize_hpt_release(kvm, resize); 1591 mutex_unlock(&kvm->arch.mmu_setup_lock); 1592 return ret; 1593 } 1594 1595 /* 1596 * Functions for reading and writing the hash table via reads and 1597 * writes on a file descriptor. 1598 * 1599 * Reads return the guest view of the hash table, which has to be 1600 * pieced together from the real hash table and the guest_rpte 1601 * values in the revmap array. 1602 * 1603 * On writes, each HPTE written is considered in turn, and if it 1604 * is valid, it is written to the HPT as if an H_ENTER with the 1605 * exact flag set was done. When the invalid count is non-zero 1606 * in the header written to the stream, the kernel will make 1607 * sure that that many HPTEs are invalid, and invalidate them 1608 * if not. 1609 */ 1610 1611 struct kvm_htab_ctx { 1612 unsigned long index; 1613 unsigned long flags; 1614 struct kvm *kvm; 1615 int first_pass; 1616 }; 1617 1618 #define HPTE_SIZE (2 * sizeof(unsigned long)) 1619 1620 /* 1621 * Returns 1 if this HPT entry has been modified or has pending 1622 * R/C bit changes. 1623 */ 1624 static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp) 1625 { 1626 unsigned long rcbits_unset; 1627 1628 if (revp->guest_rpte & HPTE_GR_MODIFIED) 1629 return 1; 1630 1631 /* Also need to consider changes in reference and changed bits */ 1632 rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C); 1633 if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) && 1634 (be64_to_cpu(hptp[1]) & rcbits_unset)) 1635 return 1; 1636 1637 return 0; 1638 } 1639 1640 static long record_hpte(unsigned long flags, __be64 *hptp, 1641 unsigned long *hpte, struct revmap_entry *revp, 1642 int want_valid, int first_pass) 1643 { 1644 unsigned long v, r, hr; 1645 unsigned long rcbits_unset; 1646 int ok = 1; 1647 int valid, dirty; 1648 1649 /* Unmodified entries are uninteresting except on the first pass */ 1650 dirty = hpte_dirty(revp, hptp); 1651 if (!first_pass && !dirty) 1652 return 0; 1653 1654 valid = 0; 1655 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) { 1656 valid = 1; 1657 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && 1658 !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED)) 1659 valid = 0; 1660 } 1661 if (valid != want_valid) 1662 return 0; 1663 1664 v = r = 0; 1665 if (valid || dirty) { 1666 /* lock the HPTE so it's stable and read it */ 1667 preempt_disable(); 1668 while (!try_lock_hpte(hptp, HPTE_V_HVLOCK)) 1669 cpu_relax(); 1670 v = be64_to_cpu(hptp[0]); 1671 hr = be64_to_cpu(hptp[1]); 1672 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1673 v = hpte_new_to_old_v(v, hr); 1674 hr = hpte_new_to_old_r(hr); 1675 } 1676 1677 /* re-evaluate valid and dirty from synchronized HPTE value */ 1678 valid = !!(v & HPTE_V_VALID); 1679 dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED); 1680 1681 /* Harvest R and C into guest view if necessary */ 1682 rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C); 1683 if (valid && (rcbits_unset & hr)) { 1684 revp->guest_rpte |= (hr & 1685 (HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED; 1686 dirty = 1; 1687 } 1688 1689 if (v & HPTE_V_ABSENT) { 1690 v &= ~HPTE_V_ABSENT; 1691 v |= HPTE_V_VALID; 1692 valid = 1; 1693 } 1694 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED)) 1695 valid = 0; 1696 1697 r = revp->guest_rpte; 1698 /* only clear modified if this is the right sort of entry */ 1699 if (valid == want_valid && dirty) { 1700 r &= ~HPTE_GR_MODIFIED; 1701 revp->guest_rpte = r; 1702 } 1703 unlock_hpte(hptp, be64_to_cpu(hptp[0])); 1704 preempt_enable(); 1705 if (!(valid == want_valid && (first_pass || dirty))) 1706 ok = 0; 1707 } 1708 hpte[0] = cpu_to_be64(v); 1709 hpte[1] = cpu_to_be64(r); 1710 return ok; 1711 } 1712 1713 static ssize_t kvm_htab_read(struct file *file, char __user *buf, 1714 size_t count, loff_t *ppos) 1715 { 1716 struct kvm_htab_ctx *ctx = file->private_data; 1717 struct kvm *kvm = ctx->kvm; 1718 struct kvm_get_htab_header hdr; 1719 __be64 *hptp; 1720 struct revmap_entry *revp; 1721 unsigned long i, nb, nw; 1722 unsigned long __user *lbuf; 1723 struct kvm_get_htab_header __user *hptr; 1724 unsigned long flags; 1725 int first_pass; 1726 unsigned long hpte[2]; 1727 1728 if (!access_ok(buf, count)) 1729 return -EFAULT; 1730 if (kvm_is_radix(kvm)) 1731 return 0; 1732 1733 first_pass = ctx->first_pass; 1734 flags = ctx->flags; 1735 1736 i = ctx->index; 1737 hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE)); 1738 revp = kvm->arch.hpt.rev + i; 1739 lbuf = (unsigned long __user *)buf; 1740 1741 nb = 0; 1742 while (nb + sizeof(hdr) + HPTE_SIZE < count) { 1743 /* Initialize header */ 1744 hptr = (struct kvm_get_htab_header __user *)buf; 1745 hdr.n_valid = 0; 1746 hdr.n_invalid = 0; 1747 nw = nb; 1748 nb += sizeof(hdr); 1749 lbuf = (unsigned long __user *)(buf + sizeof(hdr)); 1750 1751 /* Skip uninteresting entries, i.e. clean on not-first pass */ 1752 if (!first_pass) { 1753 while (i < kvmppc_hpt_npte(&kvm->arch.hpt) && 1754 !hpte_dirty(revp, hptp)) { 1755 ++i; 1756 hptp += 2; 1757 ++revp; 1758 } 1759 } 1760 hdr.index = i; 1761 1762 /* Grab a series of valid entries */ 1763 while (i < kvmppc_hpt_npte(&kvm->arch.hpt) && 1764 hdr.n_valid < 0xffff && 1765 nb + HPTE_SIZE < count && 1766 record_hpte(flags, hptp, hpte, revp, 1, first_pass)) { 1767 /* valid entry, write it out */ 1768 ++hdr.n_valid; 1769 if (__put_user(hpte[0], lbuf) || 1770 __put_user(hpte[1], lbuf + 1)) 1771 return -EFAULT; 1772 nb += HPTE_SIZE; 1773 lbuf += 2; 1774 ++i; 1775 hptp += 2; 1776 ++revp; 1777 } 1778 /* Now skip invalid entries while we can */ 1779 while (i < kvmppc_hpt_npte(&kvm->arch.hpt) && 1780 hdr.n_invalid < 0xffff && 1781 record_hpte(flags, hptp, hpte, revp, 0, first_pass)) { 1782 /* found an invalid entry */ 1783 ++hdr.n_invalid; 1784 ++i; 1785 hptp += 2; 1786 ++revp; 1787 } 1788 1789 if (hdr.n_valid || hdr.n_invalid) { 1790 /* write back the header */ 1791 if (__copy_to_user(hptr, &hdr, sizeof(hdr))) 1792 return -EFAULT; 1793 nw = nb; 1794 buf = (char __user *)lbuf; 1795 } else { 1796 nb = nw; 1797 } 1798 1799 /* Check if we've wrapped around the hash table */ 1800 if (i >= kvmppc_hpt_npte(&kvm->arch.hpt)) { 1801 i = 0; 1802 ctx->first_pass = 0; 1803 break; 1804 } 1805 } 1806 1807 ctx->index = i; 1808 1809 return nb; 1810 } 1811 1812 static ssize_t kvm_htab_write(struct file *file, const char __user *buf, 1813 size_t count, loff_t *ppos) 1814 { 1815 struct kvm_htab_ctx *ctx = file->private_data; 1816 struct kvm *kvm = ctx->kvm; 1817 struct kvm_get_htab_header hdr; 1818 unsigned long i, j; 1819 unsigned long v, r; 1820 unsigned long __user *lbuf; 1821 __be64 *hptp; 1822 unsigned long tmp[2]; 1823 ssize_t nb; 1824 long int err, ret; 1825 int mmu_ready; 1826 int pshift; 1827 1828 if (!access_ok(buf, count)) 1829 return -EFAULT; 1830 if (kvm_is_radix(kvm)) 1831 return -EINVAL; 1832 1833 /* lock out vcpus from running while we're doing this */ 1834 mutex_lock(&kvm->arch.mmu_setup_lock); 1835 mmu_ready = kvm->arch.mmu_ready; 1836 if (mmu_ready) { 1837 kvm->arch.mmu_ready = 0; /* temporarily */ 1838 /* order mmu_ready vs. vcpus_running */ 1839 smp_mb(); 1840 if (atomic_read(&kvm->arch.vcpus_running)) { 1841 kvm->arch.mmu_ready = 1; 1842 mutex_unlock(&kvm->arch.mmu_setup_lock); 1843 return -EBUSY; 1844 } 1845 } 1846 1847 err = 0; 1848 for (nb = 0; nb + sizeof(hdr) <= count; ) { 1849 err = -EFAULT; 1850 if (__copy_from_user(&hdr, buf, sizeof(hdr))) 1851 break; 1852 1853 err = 0; 1854 if (nb + hdr.n_valid * HPTE_SIZE > count) 1855 break; 1856 1857 nb += sizeof(hdr); 1858 buf += sizeof(hdr); 1859 1860 err = -EINVAL; 1861 i = hdr.index; 1862 if (i >= kvmppc_hpt_npte(&kvm->arch.hpt) || 1863 i + hdr.n_valid + hdr.n_invalid > kvmppc_hpt_npte(&kvm->arch.hpt)) 1864 break; 1865 1866 hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE)); 1867 lbuf = (unsigned long __user *)buf; 1868 for (j = 0; j < hdr.n_valid; ++j) { 1869 __be64 hpte_v; 1870 __be64 hpte_r; 1871 1872 err = -EFAULT; 1873 if (__get_user(hpte_v, lbuf) || 1874 __get_user(hpte_r, lbuf + 1)) 1875 goto out; 1876 v = be64_to_cpu(hpte_v); 1877 r = be64_to_cpu(hpte_r); 1878 err = -EINVAL; 1879 if (!(v & HPTE_V_VALID)) 1880 goto out; 1881 pshift = kvmppc_hpte_base_page_shift(v, r); 1882 if (pshift <= 0) 1883 goto out; 1884 lbuf += 2; 1885 nb += HPTE_SIZE; 1886 1887 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) 1888 kvmppc_do_h_remove(kvm, 0, i, 0, tmp); 1889 err = -EIO; 1890 ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r, 1891 tmp); 1892 if (ret != H_SUCCESS) { 1893 pr_err("%s ret %ld i=%ld v=%lx r=%lx\n", __func__, ret, i, v, r); 1894 goto out; 1895 } 1896 if (!mmu_ready && is_vrma_hpte(v)) { 1897 unsigned long senc, lpcr; 1898 1899 senc = slb_pgsize_encoding(1ul << pshift); 1900 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | 1901 (VRMA_VSID << SLB_VSID_SHIFT_1T); 1902 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 1903 lpcr = senc << (LPCR_VRMASD_SH - 4); 1904 kvmppc_update_lpcr(kvm, lpcr, 1905 LPCR_VRMASD); 1906 } else { 1907 kvmppc_setup_partition_table(kvm); 1908 } 1909 mmu_ready = 1; 1910 } 1911 ++i; 1912 hptp += 2; 1913 } 1914 1915 for (j = 0; j < hdr.n_invalid; ++j) { 1916 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) 1917 kvmppc_do_h_remove(kvm, 0, i, 0, tmp); 1918 ++i; 1919 hptp += 2; 1920 } 1921 err = 0; 1922 } 1923 1924 out: 1925 /* Order HPTE updates vs. mmu_ready */ 1926 smp_wmb(); 1927 kvm->arch.mmu_ready = mmu_ready; 1928 mutex_unlock(&kvm->arch.mmu_setup_lock); 1929 1930 if (err) 1931 return err; 1932 return nb; 1933 } 1934 1935 static int kvm_htab_release(struct inode *inode, struct file *filp) 1936 { 1937 struct kvm_htab_ctx *ctx = filp->private_data; 1938 1939 filp->private_data = NULL; 1940 if (!(ctx->flags & KVM_GET_HTAB_WRITE)) 1941 atomic_dec(&ctx->kvm->arch.hpte_mod_interest); 1942 kvm_put_kvm(ctx->kvm); 1943 kfree(ctx); 1944 return 0; 1945 } 1946 1947 static const struct file_operations kvm_htab_fops = { 1948 .read = kvm_htab_read, 1949 .write = kvm_htab_write, 1950 .llseek = default_llseek, 1951 .release = kvm_htab_release, 1952 }; 1953 1954 int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf) 1955 { 1956 int ret; 1957 struct kvm_htab_ctx *ctx; 1958 int rwflag; 1959 1960 /* reject flags we don't recognize */ 1961 if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE)) 1962 return -EINVAL; 1963 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 1964 if (!ctx) 1965 return -ENOMEM; 1966 kvm_get_kvm(kvm); 1967 ctx->kvm = kvm; 1968 ctx->index = ghf->start_index; 1969 ctx->flags = ghf->flags; 1970 ctx->first_pass = 1; 1971 1972 rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY; 1973 ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC); 1974 if (ret < 0) { 1975 kfree(ctx); 1976 kvm_put_kvm_no_destroy(kvm); 1977 return ret; 1978 } 1979 1980 if (rwflag == O_RDONLY) { 1981 mutex_lock(&kvm->slots_lock); 1982 atomic_inc(&kvm->arch.hpte_mod_interest); 1983 /* make sure kvmppc_do_h_enter etc. see the increment */ 1984 synchronize_srcu_expedited(&kvm->srcu); 1985 mutex_unlock(&kvm->slots_lock); 1986 } 1987 1988 return ret; 1989 } 1990 1991 struct debugfs_htab_state { 1992 struct kvm *kvm; 1993 struct mutex mutex; 1994 unsigned long hpt_index; 1995 int chars_left; 1996 int buf_index; 1997 char buf[64]; 1998 }; 1999 2000 static int debugfs_htab_open(struct inode *inode, struct file *file) 2001 { 2002 struct kvm *kvm = inode->i_private; 2003 struct debugfs_htab_state *p; 2004 2005 p = kzalloc(sizeof(*p), GFP_KERNEL); 2006 if (!p) 2007 return -ENOMEM; 2008 2009 kvm_get_kvm(kvm); 2010 p->kvm = kvm; 2011 mutex_init(&p->mutex); 2012 file->private_data = p; 2013 2014 return nonseekable_open(inode, file); 2015 } 2016 2017 static int debugfs_htab_release(struct inode *inode, struct file *file) 2018 { 2019 struct debugfs_htab_state *p = file->private_data; 2020 2021 kvm_put_kvm(p->kvm); 2022 kfree(p); 2023 return 0; 2024 } 2025 2026 static ssize_t debugfs_htab_read(struct file *file, char __user *buf, 2027 size_t len, loff_t *ppos) 2028 { 2029 struct debugfs_htab_state *p = file->private_data; 2030 ssize_t ret, r; 2031 unsigned long i, n; 2032 unsigned long v, hr, gr; 2033 struct kvm *kvm; 2034 __be64 *hptp; 2035 2036 kvm = p->kvm; 2037 if (kvm_is_radix(kvm)) 2038 return 0; 2039 2040 ret = mutex_lock_interruptible(&p->mutex); 2041 if (ret) 2042 return ret; 2043 2044 if (p->chars_left) { 2045 n = p->chars_left; 2046 if (n > len) 2047 n = len; 2048 r = copy_to_user(buf, p->buf + p->buf_index, n); 2049 n -= r; 2050 p->chars_left -= n; 2051 p->buf_index += n; 2052 buf += n; 2053 len -= n; 2054 ret = n; 2055 if (r) { 2056 if (!n) 2057 ret = -EFAULT; 2058 goto out; 2059 } 2060 } 2061 2062 i = p->hpt_index; 2063 hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE)); 2064 for (; len != 0 && i < kvmppc_hpt_npte(&kvm->arch.hpt); 2065 ++i, hptp += 2) { 2066 if (!(be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))) 2067 continue; 2068 2069 /* lock the HPTE so it's stable and read it */ 2070 preempt_disable(); 2071 while (!try_lock_hpte(hptp, HPTE_V_HVLOCK)) 2072 cpu_relax(); 2073 v = be64_to_cpu(hptp[0]) & ~HPTE_V_HVLOCK; 2074 hr = be64_to_cpu(hptp[1]); 2075 gr = kvm->arch.hpt.rev[i].guest_rpte; 2076 unlock_hpte(hptp, v); 2077 preempt_enable(); 2078 2079 if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT))) 2080 continue; 2081 2082 n = scnprintf(p->buf, sizeof(p->buf), 2083 "%6lx %.16lx %.16lx %.16lx\n", 2084 i, v, hr, gr); 2085 p->chars_left = n; 2086 if (n > len) 2087 n = len; 2088 r = copy_to_user(buf, p->buf, n); 2089 n -= r; 2090 p->chars_left -= n; 2091 p->buf_index = n; 2092 buf += n; 2093 len -= n; 2094 ret += n; 2095 if (r) { 2096 if (!ret) 2097 ret = -EFAULT; 2098 goto out; 2099 } 2100 } 2101 p->hpt_index = i; 2102 2103 out: 2104 mutex_unlock(&p->mutex); 2105 return ret; 2106 } 2107 2108 static ssize_t debugfs_htab_write(struct file *file, const char __user *buf, 2109 size_t len, loff_t *ppos) 2110 { 2111 return -EACCES; 2112 } 2113 2114 static const struct file_operations debugfs_htab_fops = { 2115 .owner = THIS_MODULE, 2116 .open = debugfs_htab_open, 2117 .release = debugfs_htab_release, 2118 .read = debugfs_htab_read, 2119 .write = debugfs_htab_write, 2120 .llseek = generic_file_llseek, 2121 }; 2122 2123 void kvmppc_mmu_debugfs_init(struct kvm *kvm) 2124 { 2125 debugfs_create_file("htab", 0400, kvm->debugfs_dentry, kvm, 2126 &debugfs_htab_fops); 2127 } 2128 2129 void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu) 2130 { 2131 struct kvmppc_mmu *mmu = &vcpu->arch.mmu; 2132 2133 vcpu->arch.slb_nr = 32; /* POWER7/POWER8 */ 2134 2135 mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate; 2136 2137 vcpu->arch.hflags |= BOOK3S_HFLAG_SLB; 2138 } 2139
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.