~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/powerpc/kvm/book3s_64_mmu_hv.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  *
  4  * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  5  */
  6 
  7 #include <linux/types.h>
  8 #include <linux/string.h>
  9 #include <linux/kvm.h>
 10 #include <linux/kvm_host.h>
 11 #include <linux/highmem.h>
 12 #include <linux/gfp.h>
 13 #include <linux/slab.h>
 14 #include <linux/hugetlb.h>
 15 #include <linux/vmalloc.h>
 16 #include <linux/srcu.h>
 17 #include <linux/anon_inodes.h>
 18 #include <linux/file.h>
 19 #include <linux/debugfs.h>
 20 
 21 #include <asm/kvm_ppc.h>
 22 #include <asm/kvm_book3s.h>
 23 #include <asm/book3s/64/mmu-hash.h>
 24 #include <asm/hvcall.h>
 25 #include <asm/synch.h>
 26 #include <asm/ppc-opcode.h>
 27 #include <asm/cputable.h>
 28 #include <asm/pte-walk.h>
 29 
 30 #include "book3s.h"
 31 #include "book3s_hv.h"
 32 #include "trace_hv.h"
 33 
 34 //#define DEBUG_RESIZE_HPT      1
 35 
 36 #ifdef DEBUG_RESIZE_HPT
 37 #define resize_hpt_debug(resize, ...)                           \
 38         do {                                                    \
 39                 printk(KERN_DEBUG "RESIZE HPT %p: ", resize);   \
 40                 printk(__VA_ARGS__);                            \
 41         } while (0)
 42 #else
 43 #define resize_hpt_debug(resize, ...)                           \
 44         do { } while (0)
 45 #endif
 46 
 47 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
 48                                 long pte_index, unsigned long pteh,
 49                                 unsigned long ptel, unsigned long *pte_idx_ret);
 50 
 51 struct kvm_resize_hpt {
 52         /* These fields read-only after init */
 53         struct kvm *kvm;
 54         struct work_struct work;
 55         u32 order;
 56 
 57         /* These fields protected by kvm->arch.mmu_setup_lock */
 58 
 59         /* Possible values and their usage:
 60          *  <0     an error occurred during allocation,
 61          *  -EBUSY allocation is in the progress,
 62          *  0      allocation made successfully.
 63          */
 64         int error;
 65 
 66         /* Private to the work thread, until error != -EBUSY,
 67          * then protected by kvm->arch.mmu_setup_lock.
 68          */
 69         struct kvm_hpt_info hpt;
 70 };
 71 
 72 int kvmppc_allocate_hpt(struct kvm_hpt_info *info, u32 order)
 73 {
 74         unsigned long hpt = 0;
 75         int cma = 0;
 76         struct page *page = NULL;
 77         struct revmap_entry *rev;
 78         unsigned long npte;
 79 
 80         if ((order < PPC_MIN_HPT_ORDER) || (order > PPC_MAX_HPT_ORDER))
 81                 return -EINVAL;
 82 
 83         page = kvm_alloc_hpt_cma(1ul << (order - PAGE_SHIFT));
 84         if (page) {
 85                 hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page));
 86                 memset((void *)hpt, 0, (1ul << order));
 87                 cma = 1;
 88         }
 89 
 90         if (!hpt)
 91                 hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_RETRY_MAYFAIL
 92                                        |__GFP_NOWARN, order - PAGE_SHIFT);
 93 
 94         if (!hpt)
 95                 return -ENOMEM;
 96 
 97         /* HPTEs are 2**4 bytes long */
 98         npte = 1ul << (order - 4);
 99 
100         /* Allocate reverse map array */
101         rev = vmalloc(array_size(npte, sizeof(struct revmap_entry)));
102         if (!rev) {
103                 if (cma)
104                         kvm_free_hpt_cma(page, 1 << (order - PAGE_SHIFT));
105                 else
106                         free_pages(hpt, order - PAGE_SHIFT);
107                 return -ENOMEM;
108         }
109 
110         info->order = order;
111         info->virt = hpt;
112         info->cma = cma;
113         info->rev = rev;
114 
115         return 0;
116 }
117 
118 void kvmppc_set_hpt(struct kvm *kvm, struct kvm_hpt_info *info)
119 {
120         atomic64_set(&kvm->arch.mmio_update, 0);
121         kvm->arch.hpt = *info;
122         kvm->arch.sdr1 = __pa(info->virt) | (info->order - 18);
123 
124         pr_debug("KVM guest htab at %lx (order %ld), LPID %llx\n",
125                  info->virt, (long)info->order, kvm->arch.lpid);
126 }
127 
128 int kvmppc_alloc_reset_hpt(struct kvm *kvm, int order)
129 {
130         int err = -EBUSY;
131         struct kvm_hpt_info info;
132 
133         mutex_lock(&kvm->arch.mmu_setup_lock);
134         if (kvm->arch.mmu_ready) {
135                 kvm->arch.mmu_ready = 0;
136                 /* order mmu_ready vs. vcpus_running */
137                 smp_mb();
138                 if (atomic_read(&kvm->arch.vcpus_running)) {
139                         kvm->arch.mmu_ready = 1;
140                         goto out;
141                 }
142         }
143         if (kvm_is_radix(kvm)) {
144                 err = kvmppc_switch_mmu_to_hpt(kvm);
145                 if (err)
146                         goto out;
147         }
148 
149         if (kvm->arch.hpt.order == order) {
150                 /* We already have a suitable HPT */
151 
152                 /* Set the entire HPT to 0, i.e. invalid HPTEs */
153                 memset((void *)kvm->arch.hpt.virt, 0, 1ul << order);
154                 /*
155                  * Reset all the reverse-mapping chains for all memslots
156                  */
157                 kvmppc_rmap_reset(kvm);
158                 err = 0;
159                 goto out;
160         }
161 
162         if (kvm->arch.hpt.virt) {
163                 kvmppc_free_hpt(&kvm->arch.hpt);
164                 kvmppc_rmap_reset(kvm);
165         }
166 
167         err = kvmppc_allocate_hpt(&info, order);
168         if (err < 0)
169                 goto out;
170         kvmppc_set_hpt(kvm, &info);
171 
172 out:
173         if (err == 0)
174                 /* Ensure that each vcpu will flush its TLB on next entry. */
175                 cpumask_setall(&kvm->arch.need_tlb_flush);
176 
177         mutex_unlock(&kvm->arch.mmu_setup_lock);
178         return err;
179 }
180 
181 void kvmppc_free_hpt(struct kvm_hpt_info *info)
182 {
183         vfree(info->rev);
184         info->rev = NULL;
185         if (info->cma)
186                 kvm_free_hpt_cma(virt_to_page((void *)info->virt),
187                                  1 << (info->order - PAGE_SHIFT));
188         else if (info->virt)
189                 free_pages(info->virt, info->order - PAGE_SHIFT);
190         info->virt = 0;
191         info->order = 0;
192 }
193 
194 /* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
195 static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
196 {
197         return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
198 }
199 
200 /* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
201 static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
202 {
203         return (pgsize == 0x10000) ? 0x1000 : 0;
204 }
205 
206 void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
207                      unsigned long porder)
208 {
209         unsigned long i;
210         unsigned long npages;
211         unsigned long hp_v, hp_r;
212         unsigned long addr, hash;
213         unsigned long psize;
214         unsigned long hp0, hp1;
215         unsigned long idx_ret;
216         long ret;
217         struct kvm *kvm = vcpu->kvm;
218 
219         psize = 1ul << porder;
220         npages = memslot->npages >> (porder - PAGE_SHIFT);
221 
222         /* VRMA can't be > 1TB */
223         if (npages > 1ul << (40 - porder))
224                 npages = 1ul << (40 - porder);
225         /* Can't use more than 1 HPTE per HPTEG */
226         if (npages > kvmppc_hpt_mask(&kvm->arch.hpt) + 1)
227                 npages = kvmppc_hpt_mask(&kvm->arch.hpt) + 1;
228 
229         hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
230                 HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
231         hp1 = hpte1_pgsize_encoding(psize) |
232                 HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
233 
234         for (i = 0; i < npages; ++i) {
235                 addr = i << porder;
236                 /* can't use hpt_hash since va > 64 bits */
237                 hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25)))
238                         & kvmppc_hpt_mask(&kvm->arch.hpt);
239                 /*
240                  * We assume that the hash table is empty and no
241                  * vcpus are using it at this stage.  Since we create
242                  * at most one HPTE per HPTEG, we just assume entry 7
243                  * is available and use it.
244                  */
245                 hash = (hash << 3) + 7;
246                 hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
247                 hp_r = hp1 | addr;
248                 ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
249                                                  &idx_ret);
250                 if (ret != H_SUCCESS) {
251                         pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
252                                addr, ret);
253                         break;
254                 }
255         }
256 }
257 
258 int kvmppc_mmu_hv_init(void)
259 {
260         unsigned long nr_lpids;
261 
262         if (!mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE))
263                 return -EINVAL;
264 
265         if (cpu_has_feature(CPU_FTR_HVMODE)) {
266                 if (WARN_ON(mfspr(SPRN_LPID) != 0))
267                         return -EINVAL;
268                 nr_lpids = 1UL << mmu_lpid_bits;
269         } else {
270                 nr_lpids = 1UL << KVM_MAX_NESTED_GUESTS_SHIFT;
271         }
272 
273         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
274                 /* POWER7 has 10-bit LPIDs, POWER8 has 12-bit LPIDs */
275                 if (cpu_has_feature(CPU_FTR_ARCH_207S))
276                         WARN_ON(nr_lpids != 1UL << 12);
277                 else
278                         WARN_ON(nr_lpids != 1UL << 10);
279 
280                 /*
281                  * Reserve the last implemented LPID use in partition
282                  * switching for POWER7 and POWER8.
283                  */
284                 nr_lpids -= 1;
285         }
286 
287         kvmppc_init_lpid(nr_lpids);
288 
289         return 0;
290 }
291 
292 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
293                                 long pte_index, unsigned long pteh,
294                                 unsigned long ptel, unsigned long *pte_idx_ret)
295 {
296         long ret;
297 
298         preempt_disable();
299         ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
300                                 kvm->mm->pgd, false, pte_idx_ret);
301         preempt_enable();
302         if (ret == H_TOO_HARD) {
303                 /* this can't happen */
304                 pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
305                 ret = H_RESOURCE;       /* or something */
306         }
307         return ret;
308 
309 }
310 
311 static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
312                                                          gva_t eaddr)
313 {
314         u64 mask;
315         int i;
316 
317         for (i = 0; i < vcpu->arch.slb_nr; i++) {
318                 if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
319                         continue;
320 
321                 if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
322                         mask = ESID_MASK_1T;
323                 else
324                         mask = ESID_MASK;
325 
326                 if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
327                         return &vcpu->arch.slb[i];
328         }
329         return NULL;
330 }
331 
332 static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
333                         unsigned long ea)
334 {
335         unsigned long ra_mask;
336 
337         ra_mask = kvmppc_actual_pgsz(v, r) - 1;
338         return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
339 }
340 
341 static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
342                         struct kvmppc_pte *gpte, bool data, bool iswrite)
343 {
344         struct kvm *kvm = vcpu->kvm;
345         struct kvmppc_slb *slbe;
346         unsigned long slb_v;
347         unsigned long pp, key;
348         unsigned long v, orig_v, gr;
349         __be64 *hptep;
350         long int index;
351         int virtmode = __kvmppc_get_msr_hv(vcpu) & (data ? MSR_DR : MSR_IR);
352 
353         if (kvm_is_radix(vcpu->kvm))
354                 return kvmppc_mmu_radix_xlate(vcpu, eaddr, gpte, data, iswrite);
355 
356         /* Get SLB entry */
357         if (virtmode) {
358                 slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
359                 if (!slbe)
360                         return -EINVAL;
361                 slb_v = slbe->origv;
362         } else {
363                 /* real mode access */
364                 slb_v = vcpu->kvm->arch.vrma_slb_v;
365         }
366 
367         preempt_disable();
368         /* Find the HPTE in the hash table */
369         index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
370                                          HPTE_V_VALID | HPTE_V_ABSENT);
371         if (index < 0) {
372                 preempt_enable();
373                 return -ENOENT;
374         }
375         hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
376         v = orig_v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
377         if (cpu_has_feature(CPU_FTR_ARCH_300))
378                 v = hpte_new_to_old_v(v, be64_to_cpu(hptep[1]));
379         gr = kvm->arch.hpt.rev[index].guest_rpte;
380 
381         unlock_hpte(hptep, orig_v);
382         preempt_enable();
383 
384         gpte->eaddr = eaddr;
385         gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
386 
387         /* Get PP bits and key for permission check */
388         pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
389         key = (__kvmppc_get_msr_hv(vcpu) & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
390         key &= slb_v;
391 
392         /* Calculate permissions */
393         gpte->may_read = hpte_read_permission(pp, key);
394         gpte->may_write = hpte_write_permission(pp, key);
395         gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
396 
397         /* Storage key permission check for POWER7 */
398         if (data && virtmode) {
399                 int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
400                 if (amrfield & 1)
401                         gpte->may_read = 0;
402                 if (amrfield & 2)
403                         gpte->may_write = 0;
404         }
405 
406         /* Get the guest physical address */
407         gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
408         return 0;
409 }
410 
411 /*
412  * Quick test for whether an instruction is a load or a store.
413  * If the instruction is a load or a store, then this will indicate
414  * which it is, at least on server processors.  (Embedded processors
415  * have some external PID instructions that don't follow the rule
416  * embodied here.)  If the instruction isn't a load or store, then
417  * this doesn't return anything useful.
418  */
419 static int instruction_is_store(ppc_inst_t instr)
420 {
421         unsigned int mask;
422         unsigned int suffix;
423 
424         mask = 0x10000000;
425         suffix = ppc_inst_val(instr);
426         if (ppc_inst_prefixed(instr))
427                 suffix = ppc_inst_suffix(instr);
428         else if ((suffix & 0xfc000000) == 0x7c000000)
429                 mask = 0x100;           /* major opcode 31 */
430         return (suffix & mask) != 0;
431 }
432 
433 int kvmppc_hv_emulate_mmio(struct kvm_vcpu *vcpu,
434                            unsigned long gpa, gva_t ea, int is_store)
435 {
436         ppc_inst_t last_inst;
437         bool is_prefixed = !!(kvmppc_get_msr(vcpu) & SRR1_PREFIXED);
438 
439         /*
440          * Fast path - check if the guest physical address corresponds to a
441          * device on the FAST_MMIO_BUS, if so we can avoid loading the
442          * instruction all together, then we can just handle it and return.
443          */
444         if (is_store) {
445                 int idx, ret;
446 
447                 idx = srcu_read_lock(&vcpu->kvm->srcu);
448                 ret = kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, (gpa_t) gpa, 0,
449                                        NULL);
450                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
451                 if (!ret) {
452                         kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + (is_prefixed ? 8 : 4));
453                         return RESUME_GUEST;
454                 }
455         }
456 
457         /*
458          * If we fail, we just return to the guest and try executing it again.
459          */
460         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
461                 EMULATE_DONE)
462                 return RESUME_GUEST;
463 
464         /*
465          * WARNING: We do not know for sure whether the instruction we just
466          * read from memory is the same that caused the fault in the first
467          * place.
468          *
469          * If the fault is prefixed but the instruction is not or vice
470          * versa, try again so that we don't advance pc the wrong amount.
471          */
472         if (ppc_inst_prefixed(last_inst) != is_prefixed)
473                 return RESUME_GUEST;
474 
475         /*
476          * If the instruction we read is neither an load or a store,
477          * then it can't access memory, so we don't need to worry about
478          * enforcing access permissions.  So, assuming it is a load or
479          * store, we just check that its direction (load or store) is
480          * consistent with the original fault, since that's what we
481          * checked the access permissions against.  If there is a mismatch
482          * we just return and retry the instruction.
483          */
484 
485         if (instruction_is_store(last_inst) != !!is_store)
486                 return RESUME_GUEST;
487 
488         /*
489          * Emulated accesses are emulated by looking at the hash for
490          * translation once, then performing the access later. The
491          * translation could be invalidated in the meantime in which
492          * point performing the subsequent memory access on the old
493          * physical address could possibly be a security hole for the
494          * guest (but not the host).
495          *
496          * This is less of an issue for MMIO stores since they aren't
497          * globally visible. It could be an issue for MMIO loads to
498          * a certain extent but we'll ignore it for now.
499          */
500 
501         vcpu->arch.paddr_accessed = gpa;
502         vcpu->arch.vaddr_accessed = ea;
503         return kvmppc_emulate_mmio(vcpu);
504 }
505 
506 int kvmppc_book3s_hv_page_fault(struct kvm_vcpu *vcpu,
507                                 unsigned long ea, unsigned long dsisr)
508 {
509         struct kvm *kvm = vcpu->kvm;
510         unsigned long hpte[3], r;
511         unsigned long hnow_v, hnow_r;
512         __be64 *hptep;
513         unsigned long mmu_seq, psize, pte_size;
514         unsigned long gpa_base, gfn_base;
515         unsigned long gpa, gfn, hva, pfn, hpa;
516         struct kvm_memory_slot *memslot;
517         unsigned long *rmap;
518         struct revmap_entry *rev;
519         struct page *page;
520         long index, ret;
521         bool is_ci;
522         bool writing, write_ok;
523         unsigned int shift;
524         unsigned long rcbits;
525         long mmio_update;
526         pte_t pte, *ptep;
527 
528         if (kvm_is_radix(kvm))
529                 return kvmppc_book3s_radix_page_fault(vcpu, ea, dsisr);
530 
531         /*
532          * Real-mode code has already searched the HPT and found the
533          * entry we're interested in.  Lock the entry and check that
534          * it hasn't changed.  If it has, just return and re-execute the
535          * instruction.
536          */
537         if (ea != vcpu->arch.pgfault_addr)
538                 return RESUME_GUEST;
539 
540         if (vcpu->arch.pgfault_cache) {
541                 mmio_update = atomic64_read(&kvm->arch.mmio_update);
542                 if (mmio_update == vcpu->arch.pgfault_cache->mmio_update) {
543                         r = vcpu->arch.pgfault_cache->rpte;
544                         psize = kvmppc_actual_pgsz(vcpu->arch.pgfault_hpte[0],
545                                                    r);
546                         gpa_base = r & HPTE_R_RPN & ~(psize - 1);
547                         gfn_base = gpa_base >> PAGE_SHIFT;
548                         gpa = gpa_base | (ea & (psize - 1));
549                         return kvmppc_hv_emulate_mmio(vcpu, gpa, ea,
550                                                 dsisr & DSISR_ISSTORE);
551                 }
552         }
553         index = vcpu->arch.pgfault_index;
554         hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
555         rev = &kvm->arch.hpt.rev[index];
556         preempt_disable();
557         while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
558                 cpu_relax();
559         hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
560         hpte[1] = be64_to_cpu(hptep[1]);
561         hpte[2] = r = rev->guest_rpte;
562         unlock_hpte(hptep, hpte[0]);
563         preempt_enable();
564 
565         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
566                 hpte[0] = hpte_new_to_old_v(hpte[0], hpte[1]);
567                 hpte[1] = hpte_new_to_old_r(hpte[1]);
568         }
569         if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
570             hpte[1] != vcpu->arch.pgfault_hpte[1])
571                 return RESUME_GUEST;
572 
573         /* Translate the logical address and get the page */
574         psize = kvmppc_actual_pgsz(hpte[0], r);
575         gpa_base = r & HPTE_R_RPN & ~(psize - 1);
576         gfn_base = gpa_base >> PAGE_SHIFT;
577         gpa = gpa_base | (ea & (psize - 1));
578         gfn = gpa >> PAGE_SHIFT;
579         memslot = gfn_to_memslot(kvm, gfn);
580 
581         trace_kvm_page_fault_enter(vcpu, hpte, memslot, ea, dsisr);
582 
583         /* No memslot means it's an emulated MMIO region */
584         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
585                 return kvmppc_hv_emulate_mmio(vcpu, gpa, ea,
586                                               dsisr & DSISR_ISSTORE);
587 
588         /*
589          * This should never happen, because of the slot_is_aligned()
590          * check in kvmppc_do_h_enter().
591          */
592         if (gfn_base < memslot->base_gfn)
593                 return -EFAULT;
594 
595         /* used to check for invalidations in progress */
596         mmu_seq = kvm->mmu_invalidate_seq;
597         smp_rmb();
598 
599         ret = -EFAULT;
600         page = NULL;
601         writing = (dsisr & DSISR_ISSTORE) != 0;
602         /* If writing != 0, then the HPTE must allow writing, if we get here */
603         write_ok = writing;
604         hva = gfn_to_hva_memslot(memslot, gfn);
605 
606         /*
607          * Do a fast check first, since __gfn_to_pfn_memslot doesn't
608          * do it with !atomic && !async, which is how we call it.
609          * We always ask for write permission since the common case
610          * is that the page is writable.
611          */
612         if (get_user_page_fast_only(hva, FOLL_WRITE, &page)) {
613                 write_ok = true;
614         } else {
615                 /* Call KVM generic code to do the slow-path check */
616                 pfn = __gfn_to_pfn_memslot(memslot, gfn, false, false, NULL,
617                                            writing, &write_ok, NULL);
618                 if (is_error_noslot_pfn(pfn))
619                         return -EFAULT;
620                 page = NULL;
621                 if (pfn_valid(pfn)) {
622                         page = pfn_to_page(pfn);
623                         if (PageReserved(page))
624                                 page = NULL;
625                 }
626         }
627 
628         /*
629          * Read the PTE from the process' radix tree and use that
630          * so we get the shift and attribute bits.
631          */
632         spin_lock(&kvm->mmu_lock);
633         ptep = find_kvm_host_pte(kvm, mmu_seq, hva, &shift);
634         pte = __pte(0);
635         if (ptep)
636                 pte = READ_ONCE(*ptep);
637         spin_unlock(&kvm->mmu_lock);
638         /*
639          * If the PTE disappeared temporarily due to a THP
640          * collapse, just return and let the guest try again.
641          */
642         if (!pte_present(pte)) {
643                 if (page)
644                         put_page(page);
645                 return RESUME_GUEST;
646         }
647         hpa = pte_pfn(pte) << PAGE_SHIFT;
648         pte_size = PAGE_SIZE;
649         if (shift)
650                 pte_size = 1ul << shift;
651         is_ci = pte_ci(pte);
652 
653         if (psize > pte_size)
654                 goto out_put;
655         if (pte_size > psize)
656                 hpa |= hva & (pte_size - psize);
657 
658         /* Check WIMG vs. the actual page we're accessing */
659         if (!hpte_cache_flags_ok(r, is_ci)) {
660                 if (is_ci)
661                         goto out_put;
662                 /*
663                  * Allow guest to map emulated device memory as
664                  * uncacheable, but actually make it cacheable.
665                  */
666                 r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
667         }
668 
669         /*
670          * Set the HPTE to point to hpa.
671          * Since the hpa is at PAGE_SIZE granularity, make sure we
672          * don't mask out lower-order bits if psize < PAGE_SIZE.
673          */
674         if (psize < PAGE_SIZE)
675                 psize = PAGE_SIZE;
676         r = (r & HPTE_R_KEY_HI) | (r & ~(HPTE_R_PP0 - psize)) | hpa;
677         if (hpte_is_writable(r) && !write_ok)
678                 r = hpte_make_readonly(r);
679         ret = RESUME_GUEST;
680         preempt_disable();
681         while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
682                 cpu_relax();
683         hnow_v = be64_to_cpu(hptep[0]);
684         hnow_r = be64_to_cpu(hptep[1]);
685         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
686                 hnow_v = hpte_new_to_old_v(hnow_v, hnow_r);
687                 hnow_r = hpte_new_to_old_r(hnow_r);
688         }
689 
690         /*
691          * If the HPT is being resized, don't update the HPTE,
692          * instead let the guest retry after the resize operation is complete.
693          * The synchronization for mmu_ready test vs. set is provided
694          * by the HPTE lock.
695          */
696         if (!kvm->arch.mmu_ready)
697                 goto out_unlock;
698 
699         if ((hnow_v & ~HPTE_V_HVLOCK) != hpte[0] || hnow_r != hpte[1] ||
700             rev->guest_rpte != hpte[2])
701                 /* HPTE has been changed under us; let the guest retry */
702                 goto out_unlock;
703         hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
704 
705         /* Always put the HPTE in the rmap chain for the page base address */
706         rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn];
707         lock_rmap(rmap);
708 
709         /* Check if we might have been invalidated; let the guest retry if so */
710         ret = RESUME_GUEST;
711         if (mmu_invalidate_retry(vcpu->kvm, mmu_seq)) {
712                 unlock_rmap(rmap);
713                 goto out_unlock;
714         }
715 
716         /* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
717         rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
718         r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
719 
720         if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) {
721                 /* HPTE was previously valid, so we need to invalidate it */
722                 unlock_rmap(rmap);
723                 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
724                 kvmppc_invalidate_hpte(kvm, hptep, index);
725                 /* don't lose previous R and C bits */
726                 r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
727         } else {
728                 kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
729         }
730 
731         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
732                 r = hpte_old_to_new_r(hpte[0], r);
733                 hpte[0] = hpte_old_to_new_v(hpte[0]);
734         }
735         hptep[1] = cpu_to_be64(r);
736         eieio();
737         __unlock_hpte(hptep, hpte[0]);
738         asm volatile("ptesync" : : : "memory");
739         preempt_enable();
740         if (page && hpte_is_writable(r))
741                 set_page_dirty_lock(page);
742 
743  out_put:
744         trace_kvm_page_fault_exit(vcpu, hpte, ret);
745 
746         if (page)
747                 put_page(page);
748         return ret;
749 
750  out_unlock:
751         __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
752         preempt_enable();
753         goto out_put;
754 }
755 
756 void kvmppc_rmap_reset(struct kvm *kvm)
757 {
758         struct kvm_memslots *slots;
759         struct kvm_memory_slot *memslot;
760         int srcu_idx, bkt;
761 
762         srcu_idx = srcu_read_lock(&kvm->srcu);
763         slots = kvm_memslots(kvm);
764         kvm_for_each_memslot(memslot, bkt, slots) {
765                 /* Mutual exclusion with kvm_unmap_hva_range etc. */
766                 spin_lock(&kvm->mmu_lock);
767                 /*
768                  * This assumes it is acceptable to lose reference and
769                  * change bits across a reset.
770                  */
771                 memset(memslot->arch.rmap, 0,
772                        memslot->npages * sizeof(*memslot->arch.rmap));
773                 spin_unlock(&kvm->mmu_lock);
774         }
775         srcu_read_unlock(&kvm->srcu, srcu_idx);
776 }
777 
778 /* Must be called with both HPTE and rmap locked */
779 static void kvmppc_unmap_hpte(struct kvm *kvm, unsigned long i,
780                               struct kvm_memory_slot *memslot,
781                               unsigned long *rmapp, unsigned long gfn)
782 {
783         __be64 *hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
784         struct revmap_entry *rev = kvm->arch.hpt.rev;
785         unsigned long j, h;
786         unsigned long ptel, psize, rcbits;
787 
788         j = rev[i].forw;
789         if (j == i) {
790                 /* chain is now empty */
791                 *rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
792         } else {
793                 /* remove i from chain */
794                 h = rev[i].back;
795                 rev[h].forw = j;
796                 rev[j].back = h;
797                 rev[i].forw = rev[i].back = i;
798                 *rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
799         }
800 
801         /* Now check and modify the HPTE */
802         ptel = rev[i].guest_rpte;
803         psize = kvmppc_actual_pgsz(be64_to_cpu(hptep[0]), ptel);
804         if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
805             hpte_rpn(ptel, psize) == gfn) {
806                 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
807                 kvmppc_invalidate_hpte(kvm, hptep, i);
808                 hptep[1] &= ~cpu_to_be64(HPTE_R_KEY_HI | HPTE_R_KEY_LO);
809                 /* Harvest R and C */
810                 rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
811                 *rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
812                 if ((rcbits & HPTE_R_C) && memslot->dirty_bitmap)
813                         kvmppc_update_dirty_map(memslot, gfn, psize);
814                 if (rcbits & ~rev[i].guest_rpte) {
815                         rev[i].guest_rpte = ptel | rcbits;
816                         note_hpte_modification(kvm, &rev[i]);
817                 }
818         }
819 }
820 
821 static void kvm_unmap_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
822                             unsigned long gfn)
823 {
824         unsigned long i;
825         __be64 *hptep;
826         unsigned long *rmapp;
827 
828         rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
829         for (;;) {
830                 lock_rmap(rmapp);
831                 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
832                         unlock_rmap(rmapp);
833                         break;
834                 }
835 
836                 /*
837                  * To avoid an ABBA deadlock with the HPTE lock bit,
838                  * we can't spin on the HPTE lock while holding the
839                  * rmap chain lock.
840                  */
841                 i = *rmapp & KVMPPC_RMAP_INDEX;
842                 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
843                 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
844                         /* unlock rmap before spinning on the HPTE lock */
845                         unlock_rmap(rmapp);
846                         while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
847                                 cpu_relax();
848                         continue;
849                 }
850 
851                 kvmppc_unmap_hpte(kvm, i, memslot, rmapp, gfn);
852                 unlock_rmap(rmapp);
853                 __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
854         }
855 }
856 
857 bool kvm_unmap_gfn_range_hv(struct kvm *kvm, struct kvm_gfn_range *range)
858 {
859         gfn_t gfn;
860 
861         if (kvm_is_radix(kvm)) {
862                 for (gfn = range->start; gfn < range->end; gfn++)
863                         kvm_unmap_radix(kvm, range->slot, gfn);
864         } else {
865                 for (gfn = range->start; gfn < range->end; gfn++)
866                         kvm_unmap_rmapp(kvm, range->slot, gfn);
867         }
868 
869         return false;
870 }
871 
872 void kvmppc_core_flush_memslot_hv(struct kvm *kvm,
873                                   struct kvm_memory_slot *memslot)
874 {
875         unsigned long gfn;
876         unsigned long n;
877         unsigned long *rmapp;
878 
879         gfn = memslot->base_gfn;
880         rmapp = memslot->arch.rmap;
881         if (kvm_is_radix(kvm)) {
882                 kvmppc_radix_flush_memslot(kvm, memslot);
883                 return;
884         }
885 
886         for (n = memslot->npages; n; --n, ++gfn) {
887                 /*
888                  * Testing the present bit without locking is OK because
889                  * the memslot has been marked invalid already, and hence
890                  * no new HPTEs referencing this page can be created,
891                  * thus the present bit can't go from 0 to 1.
892                  */
893                 if (*rmapp & KVMPPC_RMAP_PRESENT)
894                         kvm_unmap_rmapp(kvm, memslot, gfn);
895                 ++rmapp;
896         }
897 }
898 
899 static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
900                           unsigned long gfn)
901 {
902         struct revmap_entry *rev = kvm->arch.hpt.rev;
903         unsigned long head, i, j;
904         __be64 *hptep;
905         bool ret = false;
906         unsigned long *rmapp;
907 
908         rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
909  retry:
910         lock_rmap(rmapp);
911         if (*rmapp & KVMPPC_RMAP_REFERENCED) {
912                 *rmapp &= ~KVMPPC_RMAP_REFERENCED;
913                 ret = true;
914         }
915         if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
916                 unlock_rmap(rmapp);
917                 return ret;
918         }
919 
920         i = head = *rmapp & KVMPPC_RMAP_INDEX;
921         do {
922                 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
923                 j = rev[i].forw;
924 
925                 /* If this HPTE isn't referenced, ignore it */
926                 if (!(be64_to_cpu(hptep[1]) & HPTE_R_R))
927                         continue;
928 
929                 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
930                         /* unlock rmap before spinning on the HPTE lock */
931                         unlock_rmap(rmapp);
932                         while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
933                                 cpu_relax();
934                         goto retry;
935                 }
936 
937                 /* Now check and modify the HPTE */
938                 if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
939                     (be64_to_cpu(hptep[1]) & HPTE_R_R)) {
940                         kvmppc_clear_ref_hpte(kvm, hptep, i);
941                         if (!(rev[i].guest_rpte & HPTE_R_R)) {
942                                 rev[i].guest_rpte |= HPTE_R_R;
943                                 note_hpte_modification(kvm, &rev[i]);
944                         }
945                         ret = true;
946                 }
947                 __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
948         } while ((i = j) != head);
949 
950         unlock_rmap(rmapp);
951         return ret;
952 }
953 
954 bool kvm_age_gfn_hv(struct kvm *kvm, struct kvm_gfn_range *range)
955 {
956         gfn_t gfn;
957         bool ret = false;
958 
959         if (kvm_is_radix(kvm)) {
960                 for (gfn = range->start; gfn < range->end; gfn++)
961                         ret |= kvm_age_radix(kvm, range->slot, gfn);
962         } else {
963                 for (gfn = range->start; gfn < range->end; gfn++)
964                         ret |= kvm_age_rmapp(kvm, range->slot, gfn);
965         }
966 
967         return ret;
968 }
969 
970 static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
971                                unsigned long gfn)
972 {
973         struct revmap_entry *rev = kvm->arch.hpt.rev;
974         unsigned long head, i, j;
975         unsigned long *hp;
976         bool ret = true;
977         unsigned long *rmapp;
978 
979         rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
980         if (*rmapp & KVMPPC_RMAP_REFERENCED)
981                 return true;
982 
983         lock_rmap(rmapp);
984         if (*rmapp & KVMPPC_RMAP_REFERENCED)
985                 goto out;
986 
987         if (*rmapp & KVMPPC_RMAP_PRESENT) {
988                 i = head = *rmapp & KVMPPC_RMAP_INDEX;
989                 do {
990                         hp = (unsigned long *)(kvm->arch.hpt.virt + (i << 4));
991                         j = rev[i].forw;
992                         if (be64_to_cpu(hp[1]) & HPTE_R_R)
993                                 goto out;
994                 } while ((i = j) != head);
995         }
996         ret = false;
997 
998  out:
999         unlock_rmap(rmapp);
1000         return ret;
1001 }
1002 
1003 bool kvm_test_age_gfn_hv(struct kvm *kvm, struct kvm_gfn_range *range)
1004 {
1005         WARN_ON(range->start + 1 != range->end);
1006 
1007         if (kvm_is_radix(kvm))
1008                 return kvm_test_age_radix(kvm, range->slot, range->start);
1009         else
1010                 return kvm_test_age_rmapp(kvm, range->slot, range->start);
1011 }
1012 
1013 static int vcpus_running(struct kvm *kvm)
1014 {
1015         return atomic_read(&kvm->arch.vcpus_running) != 0;
1016 }
1017 
1018 /*
1019  * Returns the number of system pages that are dirty.
1020  * This can be more than 1 if we find a huge-page HPTE.
1021  */
1022 static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp)
1023 {
1024         struct revmap_entry *rev = kvm->arch.hpt.rev;
1025         unsigned long head, i, j;
1026         unsigned long n;
1027         unsigned long v, r;
1028         __be64 *hptep;
1029         int npages_dirty = 0;
1030 
1031  retry:
1032         lock_rmap(rmapp);
1033         if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
1034                 unlock_rmap(rmapp);
1035                 return npages_dirty;
1036         }
1037 
1038         i = head = *rmapp & KVMPPC_RMAP_INDEX;
1039         do {
1040                 unsigned long hptep1;
1041                 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
1042                 j = rev[i].forw;
1043 
1044                 /*
1045                  * Checking the C (changed) bit here is racy since there
1046                  * is no guarantee about when the hardware writes it back.
1047                  * If the HPTE is not writable then it is stable since the
1048                  * page can't be written to, and we would have done a tlbie
1049                  * (which forces the hardware to complete any writeback)
1050                  * when making the HPTE read-only.
1051                  * If vcpus are running then this call is racy anyway
1052                  * since the page could get dirtied subsequently, so we
1053                  * expect there to be a further call which would pick up
1054                  * any delayed C bit writeback.
1055                  * Otherwise we need to do the tlbie even if C==0 in
1056                  * order to pick up any delayed writeback of C.
1057                  */
1058                 hptep1 = be64_to_cpu(hptep[1]);
1059                 if (!(hptep1 & HPTE_R_C) &&
1060                     (!hpte_is_writable(hptep1) || vcpus_running(kvm)))
1061                         continue;
1062 
1063                 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
1064                         /* unlock rmap before spinning on the HPTE lock */
1065                         unlock_rmap(rmapp);
1066                         while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK))
1067                                 cpu_relax();
1068                         goto retry;
1069                 }
1070 
1071                 /* Now check and modify the HPTE */
1072                 if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) {
1073                         __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
1074                         continue;
1075                 }
1076 
1077                 /* need to make it temporarily absent so C is stable */
1078                 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
1079                 kvmppc_invalidate_hpte(kvm, hptep, i);
1080                 v = be64_to_cpu(hptep[0]);
1081                 r = be64_to_cpu(hptep[1]);
1082                 if (r & HPTE_R_C) {
1083                         hptep[1] = cpu_to_be64(r & ~HPTE_R_C);
1084                         if (!(rev[i].guest_rpte & HPTE_R_C)) {
1085                                 rev[i].guest_rpte |= HPTE_R_C;
1086                                 note_hpte_modification(kvm, &rev[i]);
1087                         }
1088                         n = kvmppc_actual_pgsz(v, r);
1089                         n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT;
1090                         if (n > npages_dirty)
1091                                 npages_dirty = n;
1092                         eieio();
1093                 }
1094                 v &= ~HPTE_V_ABSENT;
1095                 v |= HPTE_V_VALID;
1096                 __unlock_hpte(hptep, v);
1097         } while ((i = j) != head);
1098 
1099         unlock_rmap(rmapp);
1100         return npages_dirty;
1101 }
1102 
1103 void kvmppc_harvest_vpa_dirty(struct kvmppc_vpa *vpa,
1104                               struct kvm_memory_slot *memslot,
1105                               unsigned long *map)
1106 {
1107         unsigned long gfn;
1108 
1109         if (!vpa->dirty || !vpa->pinned_addr)
1110                 return;
1111         gfn = vpa->gpa >> PAGE_SHIFT;
1112         if (gfn < memslot->base_gfn ||
1113             gfn >= memslot->base_gfn + memslot->npages)
1114                 return;
1115 
1116         vpa->dirty = false;
1117         if (map)
1118                 __set_bit_le(gfn - memslot->base_gfn, map);
1119 }
1120 
1121 long kvmppc_hv_get_dirty_log_hpt(struct kvm *kvm,
1122                         struct kvm_memory_slot *memslot, unsigned long *map)
1123 {
1124         unsigned long i;
1125         unsigned long *rmapp;
1126 
1127         preempt_disable();
1128         rmapp = memslot->arch.rmap;
1129         for (i = 0; i < memslot->npages; ++i) {
1130                 int npages = kvm_test_clear_dirty_npages(kvm, rmapp);
1131                 /*
1132                  * Note that if npages > 0 then i must be a multiple of npages,
1133                  * since we always put huge-page HPTEs in the rmap chain
1134                  * corresponding to their page base address.
1135                  */
1136                 if (npages)
1137                         set_dirty_bits(map, i, npages);
1138                 ++rmapp;
1139         }
1140         preempt_enable();
1141         return 0;
1142 }
1143 
1144 void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
1145                             unsigned long *nb_ret)
1146 {
1147         struct kvm_memory_slot *memslot;
1148         unsigned long gfn = gpa >> PAGE_SHIFT;
1149         struct page *page, *pages[1];
1150         int npages;
1151         unsigned long hva, offset;
1152         int srcu_idx;
1153 
1154         srcu_idx = srcu_read_lock(&kvm->srcu);
1155         memslot = gfn_to_memslot(kvm, gfn);
1156         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1157                 goto err;
1158         hva = gfn_to_hva_memslot(memslot, gfn);
1159         npages = get_user_pages_fast(hva, 1, FOLL_WRITE, pages);
1160         if (npages < 1)
1161                 goto err;
1162         page = pages[0];
1163         srcu_read_unlock(&kvm->srcu, srcu_idx);
1164 
1165         offset = gpa & (PAGE_SIZE - 1);
1166         if (nb_ret)
1167                 *nb_ret = PAGE_SIZE - offset;
1168         return page_address(page) + offset;
1169 
1170  err:
1171         srcu_read_unlock(&kvm->srcu, srcu_idx);
1172         return NULL;
1173 }
1174 
1175 void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa,
1176                              bool dirty)
1177 {
1178         struct page *page = virt_to_page(va);
1179         struct kvm_memory_slot *memslot;
1180         unsigned long gfn;
1181         int srcu_idx;
1182 
1183         put_page(page);
1184 
1185         if (!dirty)
1186                 return;
1187 
1188         /* We need to mark this page dirty in the memslot dirty_bitmap, if any */
1189         gfn = gpa >> PAGE_SHIFT;
1190         srcu_idx = srcu_read_lock(&kvm->srcu);
1191         memslot = gfn_to_memslot(kvm, gfn);
1192         if (memslot && memslot->dirty_bitmap)
1193                 set_bit_le(gfn - memslot->base_gfn, memslot->dirty_bitmap);
1194         srcu_read_unlock(&kvm->srcu, srcu_idx);
1195 }
1196 
1197 /*
1198  * HPT resizing
1199  */
1200 static int resize_hpt_allocate(struct kvm_resize_hpt *resize)
1201 {
1202         int rc;
1203 
1204         rc = kvmppc_allocate_hpt(&resize->hpt, resize->order);
1205         if (rc < 0)
1206                 return rc;
1207 
1208         resize_hpt_debug(resize, "%s(): HPT @ 0x%lx\n", __func__,
1209                          resize->hpt.virt);
1210 
1211         return 0;
1212 }
1213 
1214 static unsigned long resize_hpt_rehash_hpte(struct kvm_resize_hpt *resize,
1215                                             unsigned long idx)
1216 {
1217         struct kvm *kvm = resize->kvm;
1218         struct kvm_hpt_info *old = &kvm->arch.hpt;
1219         struct kvm_hpt_info *new = &resize->hpt;
1220         unsigned long old_hash_mask = (1ULL << (old->order - 7)) - 1;
1221         unsigned long new_hash_mask = (1ULL << (new->order - 7)) - 1;
1222         __be64 *hptep, *new_hptep;
1223         unsigned long vpte, rpte, guest_rpte;
1224         int ret;
1225         struct revmap_entry *rev;
1226         unsigned long apsize, avpn, pteg, hash;
1227         unsigned long new_idx, new_pteg, replace_vpte;
1228         int pshift;
1229 
1230         hptep = (__be64 *)(old->virt + (idx << 4));
1231 
1232         /* Guest is stopped, so new HPTEs can't be added or faulted
1233          * in, only unmapped or altered by host actions.  So, it's
1234          * safe to check this before we take the HPTE lock */
1235         vpte = be64_to_cpu(hptep[0]);
1236         if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT))
1237                 return 0; /* nothing to do */
1238 
1239         while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
1240                 cpu_relax();
1241 
1242         vpte = be64_to_cpu(hptep[0]);
1243 
1244         ret = 0;
1245         if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT))
1246                 /* Nothing to do */
1247                 goto out;
1248 
1249         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1250                 rpte = be64_to_cpu(hptep[1]);
1251                 vpte = hpte_new_to_old_v(vpte, rpte);
1252         }
1253 
1254         /* Unmap */
1255         rev = &old->rev[idx];
1256         guest_rpte = rev->guest_rpte;
1257 
1258         ret = -EIO;
1259         apsize = kvmppc_actual_pgsz(vpte, guest_rpte);
1260         if (!apsize)
1261                 goto out;
1262 
1263         if (vpte & HPTE_V_VALID) {
1264                 unsigned long gfn = hpte_rpn(guest_rpte, apsize);
1265                 int srcu_idx = srcu_read_lock(&kvm->srcu);
1266                 struct kvm_memory_slot *memslot =
1267                         __gfn_to_memslot(kvm_memslots(kvm), gfn);
1268 
1269                 if (memslot) {
1270                         unsigned long *rmapp;
1271                         rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
1272 
1273                         lock_rmap(rmapp);
1274                         kvmppc_unmap_hpte(kvm, idx, memslot, rmapp, gfn);
1275                         unlock_rmap(rmapp);
1276                 }
1277 
1278                 srcu_read_unlock(&kvm->srcu, srcu_idx);
1279         }
1280 
1281         /* Reload PTE after unmap */
1282         vpte = be64_to_cpu(hptep[0]);
1283         BUG_ON(vpte & HPTE_V_VALID);
1284         BUG_ON(!(vpte & HPTE_V_ABSENT));
1285 
1286         ret = 0;
1287         if (!(vpte & HPTE_V_BOLTED))
1288                 goto out;
1289 
1290         rpte = be64_to_cpu(hptep[1]);
1291 
1292         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1293                 vpte = hpte_new_to_old_v(vpte, rpte);
1294                 rpte = hpte_new_to_old_r(rpte);
1295         }
1296 
1297         pshift = kvmppc_hpte_base_page_shift(vpte, rpte);
1298         avpn = HPTE_V_AVPN_VAL(vpte) & ~(((1ul << pshift) - 1) >> 23);
1299         pteg = idx / HPTES_PER_GROUP;
1300         if (vpte & HPTE_V_SECONDARY)
1301                 pteg = ~pteg;
1302 
1303         if (!(vpte & HPTE_V_1TB_SEG)) {
1304                 unsigned long offset, vsid;
1305 
1306                 /* We only have 28 - 23 bits of offset in avpn */
1307                 offset = (avpn & 0x1f) << 23;
1308                 vsid = avpn >> 5;
1309                 /* We can find more bits from the pteg value */
1310                 if (pshift < 23)
1311                         offset |= ((vsid ^ pteg) & old_hash_mask) << pshift;
1312 
1313                 hash = vsid ^ (offset >> pshift);
1314         } else {
1315                 unsigned long offset, vsid;
1316 
1317                 /* We only have 40 - 23 bits of seg_off in avpn */
1318                 offset = (avpn & 0x1ffff) << 23;
1319                 vsid = avpn >> 17;
1320                 if (pshift < 23)
1321                         offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask) << pshift;
1322 
1323                 hash = vsid ^ (vsid << 25) ^ (offset >> pshift);
1324         }
1325 
1326         new_pteg = hash & new_hash_mask;
1327         if (vpte & HPTE_V_SECONDARY)
1328                 new_pteg = ~hash & new_hash_mask;
1329 
1330         new_idx = new_pteg * HPTES_PER_GROUP + (idx % HPTES_PER_GROUP);
1331         new_hptep = (__be64 *)(new->virt + (new_idx << 4));
1332 
1333         replace_vpte = be64_to_cpu(new_hptep[0]);
1334         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1335                 unsigned long replace_rpte = be64_to_cpu(new_hptep[1]);
1336                 replace_vpte = hpte_new_to_old_v(replace_vpte, replace_rpte);
1337         }
1338 
1339         if (replace_vpte & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1340                 BUG_ON(new->order >= old->order);
1341 
1342                 if (replace_vpte & HPTE_V_BOLTED) {
1343                         if (vpte & HPTE_V_BOLTED)
1344                                 /* Bolted collision, nothing we can do */
1345                                 ret = -ENOSPC;
1346                         /* Discard the new HPTE */
1347                         goto out;
1348                 }
1349 
1350                 /* Discard the previous HPTE */
1351         }
1352 
1353         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1354                 rpte = hpte_old_to_new_r(vpte, rpte);
1355                 vpte = hpte_old_to_new_v(vpte);
1356         }
1357 
1358         new_hptep[1] = cpu_to_be64(rpte);
1359         new->rev[new_idx].guest_rpte = guest_rpte;
1360         /* No need for a barrier, since new HPT isn't active */
1361         new_hptep[0] = cpu_to_be64(vpte);
1362         unlock_hpte(new_hptep, vpte);
1363 
1364 out:
1365         unlock_hpte(hptep, vpte);
1366         return ret;
1367 }
1368 
1369 static int resize_hpt_rehash(struct kvm_resize_hpt *resize)
1370 {
1371         struct kvm *kvm = resize->kvm;
1372         unsigned  long i;
1373         int rc;
1374 
1375         for (i = 0; i < kvmppc_hpt_npte(&kvm->arch.hpt); i++) {
1376                 rc = resize_hpt_rehash_hpte(resize, i);
1377                 if (rc != 0)
1378                         return rc;
1379         }
1380 
1381         return 0;
1382 }
1383 
1384 static void resize_hpt_pivot(struct kvm_resize_hpt *resize)
1385 {
1386         struct kvm *kvm = resize->kvm;
1387         struct kvm_hpt_info hpt_tmp;
1388 
1389         /* Exchange the pending tables in the resize structure with
1390          * the active tables */
1391 
1392         resize_hpt_debug(resize, "resize_hpt_pivot()\n");
1393 
1394         spin_lock(&kvm->mmu_lock);
1395         asm volatile("ptesync" : : : "memory");
1396 
1397         hpt_tmp = kvm->arch.hpt;
1398         kvmppc_set_hpt(kvm, &resize->hpt);
1399         resize->hpt = hpt_tmp;
1400 
1401         spin_unlock(&kvm->mmu_lock);
1402 
1403         synchronize_srcu_expedited(&kvm->srcu);
1404 
1405         if (cpu_has_feature(CPU_FTR_ARCH_300))
1406                 kvmppc_setup_partition_table(kvm);
1407 
1408         resize_hpt_debug(resize, "resize_hpt_pivot() done\n");
1409 }
1410 
1411 static void resize_hpt_release(struct kvm *kvm, struct kvm_resize_hpt *resize)
1412 {
1413         if (WARN_ON(!mutex_is_locked(&kvm->arch.mmu_setup_lock)))
1414                 return;
1415 
1416         if (!resize)
1417                 return;
1418 
1419         if (resize->error != -EBUSY) {
1420                 if (resize->hpt.virt)
1421                         kvmppc_free_hpt(&resize->hpt);
1422                 kfree(resize);
1423         }
1424 
1425         if (kvm->arch.resize_hpt == resize)
1426                 kvm->arch.resize_hpt = NULL;
1427 }
1428 
1429 static void resize_hpt_prepare_work(struct work_struct *work)
1430 {
1431         struct kvm_resize_hpt *resize = container_of(work,
1432                                                      struct kvm_resize_hpt,
1433                                                      work);
1434         struct kvm *kvm = resize->kvm;
1435         int err = 0;
1436 
1437         if (WARN_ON(resize->error != -EBUSY))
1438                 return;
1439 
1440         mutex_lock(&kvm->arch.mmu_setup_lock);
1441 
1442         /* Request is still current? */
1443         if (kvm->arch.resize_hpt == resize) {
1444                 /* We may request large allocations here:
1445                  * do not sleep with kvm->arch.mmu_setup_lock held for a while.
1446                  */
1447                 mutex_unlock(&kvm->arch.mmu_setup_lock);
1448 
1449                 resize_hpt_debug(resize, "%s(): order = %d\n", __func__,
1450                                  resize->order);
1451 
1452                 err = resize_hpt_allocate(resize);
1453 
1454                 /* We have strict assumption about -EBUSY
1455                  * when preparing for HPT resize.
1456                  */
1457                 if (WARN_ON(err == -EBUSY))
1458                         err = -EINPROGRESS;
1459 
1460                 mutex_lock(&kvm->arch.mmu_setup_lock);
1461                 /* It is possible that kvm->arch.resize_hpt != resize
1462                  * after we grab kvm->arch.mmu_setup_lock again.
1463                  */
1464         }
1465 
1466         resize->error = err;
1467 
1468         if (kvm->arch.resize_hpt != resize)
1469                 resize_hpt_release(kvm, resize);
1470 
1471         mutex_unlock(&kvm->arch.mmu_setup_lock);
1472 }
1473 
1474 int kvm_vm_ioctl_resize_hpt_prepare(struct kvm *kvm,
1475                                     struct kvm_ppc_resize_hpt *rhpt)
1476 {
1477         unsigned long flags = rhpt->flags;
1478         unsigned long shift = rhpt->shift;
1479         struct kvm_resize_hpt *resize;
1480         int ret;
1481 
1482         if (flags != 0 || kvm_is_radix(kvm))
1483                 return -EINVAL;
1484 
1485         if (shift && ((shift < 18) || (shift > 46)))
1486                 return -EINVAL;
1487 
1488         mutex_lock(&kvm->arch.mmu_setup_lock);
1489 
1490         resize = kvm->arch.resize_hpt;
1491 
1492         if (resize) {
1493                 if (resize->order == shift) {
1494                         /* Suitable resize in progress? */
1495                         ret = resize->error;
1496                         if (ret == -EBUSY)
1497                                 ret = 100; /* estimated time in ms */
1498                         else if (ret)
1499                                 resize_hpt_release(kvm, resize);
1500 
1501                         goto out;
1502                 }
1503 
1504                 /* not suitable, cancel it */
1505                 resize_hpt_release(kvm, resize);
1506         }
1507 
1508         ret = 0;
1509         if (!shift)
1510                 goto out; /* nothing to do */
1511 
1512         /* start new resize */
1513 
1514         resize = kzalloc(sizeof(*resize), GFP_KERNEL);
1515         if (!resize) {
1516                 ret = -ENOMEM;
1517                 goto out;
1518         }
1519 
1520         resize->error = -EBUSY;
1521         resize->order = shift;
1522         resize->kvm = kvm;
1523         INIT_WORK(&resize->work, resize_hpt_prepare_work);
1524         kvm->arch.resize_hpt = resize;
1525 
1526         schedule_work(&resize->work);
1527 
1528         ret = 100; /* estimated time in ms */
1529 
1530 out:
1531         mutex_unlock(&kvm->arch.mmu_setup_lock);
1532         return ret;
1533 }
1534 
1535 static void resize_hpt_boot_vcpu(void *opaque)
1536 {
1537         /* Nothing to do, just force a KVM exit */
1538 }
1539 
1540 int kvm_vm_ioctl_resize_hpt_commit(struct kvm *kvm,
1541                                    struct kvm_ppc_resize_hpt *rhpt)
1542 {
1543         unsigned long flags = rhpt->flags;
1544         unsigned long shift = rhpt->shift;
1545         struct kvm_resize_hpt *resize;
1546         int ret;
1547 
1548         if (flags != 0 || kvm_is_radix(kvm))
1549                 return -EINVAL;
1550 
1551         if (shift && ((shift < 18) || (shift > 46)))
1552                 return -EINVAL;
1553 
1554         mutex_lock(&kvm->arch.mmu_setup_lock);
1555 
1556         resize = kvm->arch.resize_hpt;
1557 
1558         /* This shouldn't be possible */
1559         ret = -EIO;
1560         if (WARN_ON(!kvm->arch.mmu_ready))
1561                 goto out_no_hpt;
1562 
1563         /* Stop VCPUs from running while we mess with the HPT */
1564         kvm->arch.mmu_ready = 0;
1565         smp_mb();
1566 
1567         /* Boot all CPUs out of the guest so they re-read
1568          * mmu_ready */
1569         on_each_cpu(resize_hpt_boot_vcpu, NULL, 1);
1570 
1571         ret = -ENXIO;
1572         if (!resize || (resize->order != shift))
1573                 goto out;
1574 
1575         ret = resize->error;
1576         if (ret)
1577                 goto out;
1578 
1579         ret = resize_hpt_rehash(resize);
1580         if (ret)
1581                 goto out;
1582 
1583         resize_hpt_pivot(resize);
1584 
1585 out:
1586         /* Let VCPUs run again */
1587         kvm->arch.mmu_ready = 1;
1588         smp_mb();
1589 out_no_hpt:
1590         resize_hpt_release(kvm, resize);
1591         mutex_unlock(&kvm->arch.mmu_setup_lock);
1592         return ret;
1593 }
1594 
1595 /*
1596  * Functions for reading and writing the hash table via reads and
1597  * writes on a file descriptor.
1598  *
1599  * Reads return the guest view of the hash table, which has to be
1600  * pieced together from the real hash table and the guest_rpte
1601  * values in the revmap array.
1602  *
1603  * On writes, each HPTE written is considered in turn, and if it
1604  * is valid, it is written to the HPT as if an H_ENTER with the
1605  * exact flag set was done.  When the invalid count is non-zero
1606  * in the header written to the stream, the kernel will make
1607  * sure that that many HPTEs are invalid, and invalidate them
1608  * if not.
1609  */
1610 
1611 struct kvm_htab_ctx {
1612         unsigned long   index;
1613         unsigned long   flags;
1614         struct kvm      *kvm;
1615         int             first_pass;
1616 };
1617 
1618 #define HPTE_SIZE       (2 * sizeof(unsigned long))
1619 
1620 /*
1621  * Returns 1 if this HPT entry has been modified or has pending
1622  * R/C bit changes.
1623  */
1624 static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp)
1625 {
1626         unsigned long rcbits_unset;
1627 
1628         if (revp->guest_rpte & HPTE_GR_MODIFIED)
1629                 return 1;
1630 
1631         /* Also need to consider changes in reference and changed bits */
1632         rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1633         if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) &&
1634             (be64_to_cpu(hptp[1]) & rcbits_unset))
1635                 return 1;
1636 
1637         return 0;
1638 }
1639 
1640 static long record_hpte(unsigned long flags, __be64 *hptp,
1641                         unsigned long *hpte, struct revmap_entry *revp,
1642                         int want_valid, int first_pass)
1643 {
1644         unsigned long v, r, hr;
1645         unsigned long rcbits_unset;
1646         int ok = 1;
1647         int valid, dirty;
1648 
1649         /* Unmodified entries are uninteresting except on the first pass */
1650         dirty = hpte_dirty(revp, hptp);
1651         if (!first_pass && !dirty)
1652                 return 0;
1653 
1654         valid = 0;
1655         if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1656                 valid = 1;
1657                 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
1658                     !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED))
1659                         valid = 0;
1660         }
1661         if (valid != want_valid)
1662                 return 0;
1663 
1664         v = r = 0;
1665         if (valid || dirty) {
1666                 /* lock the HPTE so it's stable and read it */
1667                 preempt_disable();
1668                 while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
1669                         cpu_relax();
1670                 v = be64_to_cpu(hptp[0]);
1671                 hr = be64_to_cpu(hptp[1]);
1672                 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1673                         v = hpte_new_to_old_v(v, hr);
1674                         hr = hpte_new_to_old_r(hr);
1675                 }
1676 
1677                 /* re-evaluate valid and dirty from synchronized HPTE value */
1678                 valid = !!(v & HPTE_V_VALID);
1679                 dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);
1680 
1681                 /* Harvest R and C into guest view if necessary */
1682                 rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1683                 if (valid && (rcbits_unset & hr)) {
1684                         revp->guest_rpte |= (hr &
1685                                 (HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED;
1686                         dirty = 1;
1687                 }
1688 
1689                 if (v & HPTE_V_ABSENT) {
1690                         v &= ~HPTE_V_ABSENT;
1691                         v |= HPTE_V_VALID;
1692                         valid = 1;
1693                 }
1694                 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
1695                         valid = 0;
1696 
1697                 r = revp->guest_rpte;
1698                 /* only clear modified if this is the right sort of entry */
1699                 if (valid == want_valid && dirty) {
1700                         r &= ~HPTE_GR_MODIFIED;
1701                         revp->guest_rpte = r;
1702                 }
1703                 unlock_hpte(hptp, be64_to_cpu(hptp[0]));
1704                 preempt_enable();
1705                 if (!(valid == want_valid && (first_pass || dirty)))
1706                         ok = 0;
1707         }
1708         hpte[0] = cpu_to_be64(v);
1709         hpte[1] = cpu_to_be64(r);
1710         return ok;
1711 }
1712 
1713 static ssize_t kvm_htab_read(struct file *file, char __user *buf,
1714                              size_t count, loff_t *ppos)
1715 {
1716         struct kvm_htab_ctx *ctx = file->private_data;
1717         struct kvm *kvm = ctx->kvm;
1718         struct kvm_get_htab_header hdr;
1719         __be64 *hptp;
1720         struct revmap_entry *revp;
1721         unsigned long i, nb, nw;
1722         unsigned long __user *lbuf;
1723         struct kvm_get_htab_header __user *hptr;
1724         unsigned long flags;
1725         int first_pass;
1726         unsigned long hpte[2];
1727 
1728         if (!access_ok(buf, count))
1729                 return -EFAULT;
1730         if (kvm_is_radix(kvm))
1731                 return 0;
1732 
1733         first_pass = ctx->first_pass;
1734         flags = ctx->flags;
1735 
1736         i = ctx->index;
1737         hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
1738         revp = kvm->arch.hpt.rev + i;
1739         lbuf = (unsigned long __user *)buf;
1740 
1741         nb = 0;
1742         while (nb + sizeof(hdr) + HPTE_SIZE < count) {
1743                 /* Initialize header */
1744                 hptr = (struct kvm_get_htab_header __user *)buf;
1745                 hdr.n_valid = 0;
1746                 hdr.n_invalid = 0;
1747                 nw = nb;
1748                 nb += sizeof(hdr);
1749                 lbuf = (unsigned long __user *)(buf + sizeof(hdr));
1750 
1751                 /* Skip uninteresting entries, i.e. clean on not-first pass */
1752                 if (!first_pass) {
1753                         while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1754                                !hpte_dirty(revp, hptp)) {
1755                                 ++i;
1756                                 hptp += 2;
1757                                 ++revp;
1758                         }
1759                 }
1760                 hdr.index = i;
1761 
1762                 /* Grab a series of valid entries */
1763                 while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1764                        hdr.n_valid < 0xffff &&
1765                        nb + HPTE_SIZE < count &&
1766                        record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
1767                         /* valid entry, write it out */
1768                         ++hdr.n_valid;
1769                         if (__put_user(hpte[0], lbuf) ||
1770                             __put_user(hpte[1], lbuf + 1))
1771                                 return -EFAULT;
1772                         nb += HPTE_SIZE;
1773                         lbuf += 2;
1774                         ++i;
1775                         hptp += 2;
1776                         ++revp;
1777                 }
1778                 /* Now skip invalid entries while we can */
1779                 while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1780                        hdr.n_invalid < 0xffff &&
1781                        record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
1782                         /* found an invalid entry */
1783                         ++hdr.n_invalid;
1784                         ++i;
1785                         hptp += 2;
1786                         ++revp;
1787                 }
1788 
1789                 if (hdr.n_valid || hdr.n_invalid) {
1790                         /* write back the header */
1791                         if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
1792                                 return -EFAULT;
1793                         nw = nb;
1794                         buf = (char __user *)lbuf;
1795                 } else {
1796                         nb = nw;
1797                 }
1798 
1799                 /* Check if we've wrapped around the hash table */
1800                 if (i >= kvmppc_hpt_npte(&kvm->arch.hpt)) {
1801                         i = 0;
1802                         ctx->first_pass = 0;
1803                         break;
1804                 }
1805         }
1806 
1807         ctx->index = i;
1808 
1809         return nb;
1810 }
1811 
1812 static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
1813                               size_t count, loff_t *ppos)
1814 {
1815         struct kvm_htab_ctx *ctx = file->private_data;
1816         struct kvm *kvm = ctx->kvm;
1817         struct kvm_get_htab_header hdr;
1818         unsigned long i, j;
1819         unsigned long v, r;
1820         unsigned long __user *lbuf;
1821         __be64 *hptp;
1822         unsigned long tmp[2];
1823         ssize_t nb;
1824         long int err, ret;
1825         int mmu_ready;
1826         int pshift;
1827 
1828         if (!access_ok(buf, count))
1829                 return -EFAULT;
1830         if (kvm_is_radix(kvm))
1831                 return -EINVAL;
1832 
1833         /* lock out vcpus from running while we're doing this */
1834         mutex_lock(&kvm->arch.mmu_setup_lock);
1835         mmu_ready = kvm->arch.mmu_ready;
1836         if (mmu_ready) {
1837                 kvm->arch.mmu_ready = 0;        /* temporarily */
1838                 /* order mmu_ready vs. vcpus_running */
1839                 smp_mb();
1840                 if (atomic_read(&kvm->arch.vcpus_running)) {
1841                         kvm->arch.mmu_ready = 1;
1842                         mutex_unlock(&kvm->arch.mmu_setup_lock);
1843                         return -EBUSY;
1844                 }
1845         }
1846 
1847         err = 0;
1848         for (nb = 0; nb + sizeof(hdr) <= count; ) {
1849                 err = -EFAULT;
1850                 if (__copy_from_user(&hdr, buf, sizeof(hdr)))
1851                         break;
1852 
1853                 err = 0;
1854                 if (nb + hdr.n_valid * HPTE_SIZE > count)
1855                         break;
1856 
1857                 nb += sizeof(hdr);
1858                 buf += sizeof(hdr);
1859 
1860                 err = -EINVAL;
1861                 i = hdr.index;
1862                 if (i >= kvmppc_hpt_npte(&kvm->arch.hpt) ||
1863                     i + hdr.n_valid + hdr.n_invalid > kvmppc_hpt_npte(&kvm->arch.hpt))
1864                         break;
1865 
1866                 hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
1867                 lbuf = (unsigned long __user *)buf;
1868                 for (j = 0; j < hdr.n_valid; ++j) {
1869                         __be64 hpte_v;
1870                         __be64 hpte_r;
1871 
1872                         err = -EFAULT;
1873                         if (__get_user(hpte_v, lbuf) ||
1874                             __get_user(hpte_r, lbuf + 1))
1875                                 goto out;
1876                         v = be64_to_cpu(hpte_v);
1877                         r = be64_to_cpu(hpte_r);
1878                         err = -EINVAL;
1879                         if (!(v & HPTE_V_VALID))
1880                                 goto out;
1881                         pshift = kvmppc_hpte_base_page_shift(v, r);
1882                         if (pshift <= 0)
1883                                 goto out;
1884                         lbuf += 2;
1885                         nb += HPTE_SIZE;
1886 
1887                         if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1888                                 kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1889                         err = -EIO;
1890                         ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
1891                                                          tmp);
1892                         if (ret != H_SUCCESS) {
1893                                 pr_err("%s ret %ld i=%ld v=%lx r=%lx\n", __func__, ret, i, v, r);
1894                                 goto out;
1895                         }
1896                         if (!mmu_ready && is_vrma_hpte(v)) {
1897                                 unsigned long senc, lpcr;
1898 
1899                                 senc = slb_pgsize_encoding(1ul << pshift);
1900                                 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1901                                         (VRMA_VSID << SLB_VSID_SHIFT_1T);
1902                                 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
1903                                         lpcr = senc << (LPCR_VRMASD_SH - 4);
1904                                         kvmppc_update_lpcr(kvm, lpcr,
1905                                                            LPCR_VRMASD);
1906                                 } else {
1907                                         kvmppc_setup_partition_table(kvm);
1908                                 }
1909                                 mmu_ready = 1;
1910                         }
1911                         ++i;
1912                         hptp += 2;
1913                 }
1914 
1915                 for (j = 0; j < hdr.n_invalid; ++j) {
1916                         if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1917                                 kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1918                         ++i;
1919                         hptp += 2;
1920                 }
1921                 err = 0;
1922         }
1923 
1924  out:
1925         /* Order HPTE updates vs. mmu_ready */
1926         smp_wmb();
1927         kvm->arch.mmu_ready = mmu_ready;
1928         mutex_unlock(&kvm->arch.mmu_setup_lock);
1929 
1930         if (err)
1931                 return err;
1932         return nb;
1933 }
1934 
1935 static int kvm_htab_release(struct inode *inode, struct file *filp)
1936 {
1937         struct kvm_htab_ctx *ctx = filp->private_data;
1938 
1939         filp->private_data = NULL;
1940         if (!(ctx->flags & KVM_GET_HTAB_WRITE))
1941                 atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
1942         kvm_put_kvm(ctx->kvm);
1943         kfree(ctx);
1944         return 0;
1945 }
1946 
1947 static const struct file_operations kvm_htab_fops = {
1948         .read           = kvm_htab_read,
1949         .write          = kvm_htab_write,
1950         .llseek         = default_llseek,
1951         .release        = kvm_htab_release,
1952 };
1953 
1954 int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
1955 {
1956         int ret;
1957         struct kvm_htab_ctx *ctx;
1958         int rwflag;
1959 
1960         /* reject flags we don't recognize */
1961         if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
1962                 return -EINVAL;
1963         ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1964         if (!ctx)
1965                 return -ENOMEM;
1966         kvm_get_kvm(kvm);
1967         ctx->kvm = kvm;
1968         ctx->index = ghf->start_index;
1969         ctx->flags = ghf->flags;
1970         ctx->first_pass = 1;
1971 
1972         rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
1973         ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC);
1974         if (ret < 0) {
1975                 kfree(ctx);
1976                 kvm_put_kvm_no_destroy(kvm);
1977                 return ret;
1978         }
1979 
1980         if (rwflag == O_RDONLY) {
1981                 mutex_lock(&kvm->slots_lock);
1982                 atomic_inc(&kvm->arch.hpte_mod_interest);
1983                 /* make sure kvmppc_do_h_enter etc. see the increment */
1984                 synchronize_srcu_expedited(&kvm->srcu);
1985                 mutex_unlock(&kvm->slots_lock);
1986         }
1987 
1988         return ret;
1989 }
1990 
1991 struct debugfs_htab_state {
1992         struct kvm      *kvm;
1993         struct mutex    mutex;
1994         unsigned long   hpt_index;
1995         int             chars_left;
1996         int             buf_index;
1997         char            buf[64];
1998 };
1999 
2000 static int debugfs_htab_open(struct inode *inode, struct file *file)
2001 {
2002         struct kvm *kvm = inode->i_private;
2003         struct debugfs_htab_state *p;
2004 
2005         p = kzalloc(sizeof(*p), GFP_KERNEL);
2006         if (!p)
2007                 return -ENOMEM;
2008 
2009         kvm_get_kvm(kvm);
2010         p->kvm = kvm;
2011         mutex_init(&p->mutex);
2012         file->private_data = p;
2013 
2014         return nonseekable_open(inode, file);
2015 }
2016 
2017 static int debugfs_htab_release(struct inode *inode, struct file *file)
2018 {
2019         struct debugfs_htab_state *p = file->private_data;
2020 
2021         kvm_put_kvm(p->kvm);
2022         kfree(p);
2023         return 0;
2024 }
2025 
2026 static ssize_t debugfs_htab_read(struct file *file, char __user *buf,
2027                                  size_t len, loff_t *ppos)
2028 {
2029         struct debugfs_htab_state *p = file->private_data;
2030         ssize_t ret, r;
2031         unsigned long i, n;
2032         unsigned long v, hr, gr;
2033         struct kvm *kvm;
2034         __be64 *hptp;
2035 
2036         kvm = p->kvm;
2037         if (kvm_is_radix(kvm))
2038                 return 0;
2039 
2040         ret = mutex_lock_interruptible(&p->mutex);
2041         if (ret)
2042                 return ret;
2043 
2044         if (p->chars_left) {
2045                 n = p->chars_left;
2046                 if (n > len)
2047                         n = len;
2048                 r = copy_to_user(buf, p->buf + p->buf_index, n);
2049                 n -= r;
2050                 p->chars_left -= n;
2051                 p->buf_index += n;
2052                 buf += n;
2053                 len -= n;
2054                 ret = n;
2055                 if (r) {
2056                         if (!n)
2057                                 ret = -EFAULT;
2058                         goto out;
2059                 }
2060         }
2061 
2062         i = p->hpt_index;
2063         hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
2064         for (; len != 0 && i < kvmppc_hpt_npte(&kvm->arch.hpt);
2065              ++i, hptp += 2) {
2066                 if (!(be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)))
2067                         continue;
2068 
2069                 /* lock the HPTE so it's stable and read it */
2070                 preempt_disable();
2071                 while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
2072                         cpu_relax();
2073                 v = be64_to_cpu(hptp[0]) & ~HPTE_V_HVLOCK;
2074                 hr = be64_to_cpu(hptp[1]);
2075                 gr = kvm->arch.hpt.rev[i].guest_rpte;
2076                 unlock_hpte(hptp, v);
2077                 preempt_enable();
2078 
2079                 if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
2080                         continue;
2081 
2082                 n = scnprintf(p->buf, sizeof(p->buf),
2083                               "%6lx %.16lx %.16lx %.16lx\n",
2084                               i, v, hr, gr);
2085                 p->chars_left = n;
2086                 if (n > len)
2087                         n = len;
2088                 r = copy_to_user(buf, p->buf, n);
2089                 n -= r;
2090                 p->chars_left -= n;
2091                 p->buf_index = n;
2092                 buf += n;
2093                 len -= n;
2094                 ret += n;
2095                 if (r) {
2096                         if (!ret)
2097                                 ret = -EFAULT;
2098                         goto out;
2099                 }
2100         }
2101         p->hpt_index = i;
2102 
2103  out:
2104         mutex_unlock(&p->mutex);
2105         return ret;
2106 }
2107 
2108 static ssize_t debugfs_htab_write(struct file *file, const char __user *buf,
2109                            size_t len, loff_t *ppos)
2110 {
2111         return -EACCES;
2112 }
2113 
2114 static const struct file_operations debugfs_htab_fops = {
2115         .owner   = THIS_MODULE,
2116         .open    = debugfs_htab_open,
2117         .release = debugfs_htab_release,
2118         .read    = debugfs_htab_read,
2119         .write   = debugfs_htab_write,
2120         .llseek  = generic_file_llseek,
2121 };
2122 
2123 void kvmppc_mmu_debugfs_init(struct kvm *kvm)
2124 {
2125         debugfs_create_file("htab", 0400, kvm->debugfs_dentry, kvm,
2126                             &debugfs_htab_fops);
2127 }
2128 
2129 void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
2130 {
2131         struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
2132 
2133         vcpu->arch.slb_nr = 32;         /* POWER7/POWER8 */
2134 
2135         mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
2136 
2137         vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
2138 }
2139 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php