~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/powerpc/kvm/book3s_hv_builtin.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  4  */
  5 
  6 #include <linux/cpu.h>
  7 #include <linux/kvm_host.h>
  8 #include <linux/preempt.h>
  9 #include <linux/export.h>
 10 #include <linux/sched.h>
 11 #include <linux/spinlock.h>
 12 #include <linux/init.h>
 13 #include <linux/memblock.h>
 14 #include <linux/sizes.h>
 15 #include <linux/cma.h>
 16 #include <linux/bitops.h>
 17 
 18 #include <asm/cputable.h>
 19 #include <asm/interrupt.h>
 20 #include <asm/kvm_ppc.h>
 21 #include <asm/kvm_book3s.h>
 22 #include <asm/machdep.h>
 23 #include <asm/xics.h>
 24 #include <asm/xive.h>
 25 #include <asm/dbell.h>
 26 #include <asm/cputhreads.h>
 27 #include <asm/io.h>
 28 #include <asm/opal.h>
 29 #include <asm/smp.h>
 30 
 31 #define KVM_CMA_CHUNK_ORDER     18
 32 
 33 #include "book3s_xics.h"
 34 #include "book3s_xive.h"
 35 #include "book3s_hv.h"
 36 
 37 /*
 38  * Hash page table alignment on newer cpus(CPU_FTR_ARCH_206)
 39  * should be power of 2.
 40  */
 41 #define HPT_ALIGN_PAGES         ((1 << 18) >> PAGE_SHIFT) /* 256k */
 42 /*
 43  * By default we reserve 5% of memory for hash pagetable allocation.
 44  */
 45 static unsigned long kvm_cma_resv_ratio = 5;
 46 
 47 static struct cma *kvm_cma;
 48 
 49 static int __init early_parse_kvm_cma_resv(char *p)
 50 {
 51         pr_debug("%s(%s)\n", __func__, p);
 52         if (!p)
 53                 return -EINVAL;
 54         return kstrtoul(p, 0, &kvm_cma_resv_ratio);
 55 }
 56 early_param("kvm_cma_resv_ratio", early_parse_kvm_cma_resv);
 57 
 58 struct page *kvm_alloc_hpt_cma(unsigned long nr_pages)
 59 {
 60         VM_BUG_ON(order_base_2(nr_pages) < KVM_CMA_CHUNK_ORDER - PAGE_SHIFT);
 61 
 62         return cma_alloc(kvm_cma, nr_pages, order_base_2(HPT_ALIGN_PAGES),
 63                          false);
 64 }
 65 EXPORT_SYMBOL_GPL(kvm_alloc_hpt_cma);
 66 
 67 void kvm_free_hpt_cma(struct page *page, unsigned long nr_pages)
 68 {
 69         cma_release(kvm_cma, page, nr_pages);
 70 }
 71 EXPORT_SYMBOL_GPL(kvm_free_hpt_cma);
 72 
 73 /**
 74  * kvm_cma_reserve() - reserve area for kvm hash pagetable
 75  *
 76  * This function reserves memory from early allocator. It should be
 77  * called by arch specific code once the memblock allocator
 78  * has been activated and all other subsystems have already allocated/reserved
 79  * memory.
 80  */
 81 void __init kvm_cma_reserve(void)
 82 {
 83         unsigned long align_size;
 84         phys_addr_t selected_size;
 85 
 86         /*
 87          * We need CMA reservation only when we are in HV mode
 88          */
 89         if (!cpu_has_feature(CPU_FTR_HVMODE))
 90                 return;
 91 
 92         selected_size = PAGE_ALIGN(memblock_phys_mem_size() * kvm_cma_resv_ratio / 100);
 93         if (selected_size) {
 94                 pr_info("%s: reserving %ld MiB for global area\n", __func__,
 95                          (unsigned long)selected_size / SZ_1M);
 96                 align_size = HPT_ALIGN_PAGES << PAGE_SHIFT;
 97                 cma_declare_contiguous(0, selected_size, 0, align_size,
 98                         KVM_CMA_CHUNK_ORDER - PAGE_SHIFT, false, "kvm_cma",
 99                         &kvm_cma);
100         }
101 }
102 
103 /*
104  * Real-mode H_CONFER implementation.
105  * We check if we are the only vcpu out of this virtual core
106  * still running in the guest and not ceded.  If so, we pop up
107  * to the virtual-mode implementation; if not, just return to
108  * the guest.
109  */
110 long int kvmppc_rm_h_confer(struct kvm_vcpu *vcpu, int target,
111                             unsigned int yield_count)
112 {
113         struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore;
114         int ptid = local_paca->kvm_hstate.ptid;
115         int threads_running;
116         int threads_ceded;
117         int threads_conferring;
118         u64 stop = get_tb() + 10 * tb_ticks_per_usec;
119         int rv = H_SUCCESS; /* => don't yield */
120 
121         set_bit(ptid, &vc->conferring_threads);
122         while ((get_tb() < stop) && !VCORE_IS_EXITING(vc)) {
123                 threads_running = VCORE_ENTRY_MAP(vc);
124                 threads_ceded = vc->napping_threads;
125                 threads_conferring = vc->conferring_threads;
126                 if ((threads_ceded | threads_conferring) == threads_running) {
127                         rv = H_TOO_HARD; /* => do yield */
128                         break;
129                 }
130         }
131         clear_bit(ptid, &vc->conferring_threads);
132         return rv;
133 }
134 
135 /*
136  * When running HV mode KVM we need to block certain operations while KVM VMs
137  * exist in the system. We use a counter of VMs to track this.
138  *
139  * One of the operations we need to block is onlining of secondaries, so we
140  * protect hv_vm_count with cpus_read_lock/unlock().
141  */
142 static atomic_t hv_vm_count;
143 
144 void kvm_hv_vm_activated(void)
145 {
146         cpus_read_lock();
147         atomic_inc(&hv_vm_count);
148         cpus_read_unlock();
149 }
150 EXPORT_SYMBOL_GPL(kvm_hv_vm_activated);
151 
152 void kvm_hv_vm_deactivated(void)
153 {
154         cpus_read_lock();
155         atomic_dec(&hv_vm_count);
156         cpus_read_unlock();
157 }
158 EXPORT_SYMBOL_GPL(kvm_hv_vm_deactivated);
159 
160 bool kvm_hv_mode_active(void)
161 {
162         return atomic_read(&hv_vm_count) != 0;
163 }
164 
165 extern int hcall_real_table[], hcall_real_table_end[];
166 
167 int kvmppc_hcall_impl_hv_realmode(unsigned long cmd)
168 {
169         cmd /= 4;
170         if (cmd < hcall_real_table_end - hcall_real_table &&
171             hcall_real_table[cmd])
172                 return 1;
173 
174         return 0;
175 }
176 EXPORT_SYMBOL_GPL(kvmppc_hcall_impl_hv_realmode);
177 
178 int kvmppc_hwrng_present(void)
179 {
180         return ppc_md.get_random_seed != NULL;
181 }
182 EXPORT_SYMBOL_GPL(kvmppc_hwrng_present);
183 
184 long kvmppc_rm_h_random(struct kvm_vcpu *vcpu)
185 {
186         unsigned long rand;
187 
188         if (ppc_md.get_random_seed &&
189             ppc_md.get_random_seed(&rand)) {
190                 kvmppc_set_gpr(vcpu, 4, rand);
191                 return H_SUCCESS;
192         }
193 
194         return H_HARDWARE;
195 }
196 
197 /*
198  * Send an interrupt or message to another CPU.
199  * The caller needs to include any barrier needed to order writes
200  * to memory vs. the IPI/message.
201  */
202 void kvmhv_rm_send_ipi(int cpu)
203 {
204         void __iomem *xics_phys;
205         unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
206 
207         /* On POWER9 we can use msgsnd for any destination cpu. */
208         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
209                 msg |= get_hard_smp_processor_id(cpu);
210                 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
211                 return;
212         }
213 
214         /* On POWER8 for IPIs to threads in the same core, use msgsnd. */
215         if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
216             cpu_first_thread_sibling(cpu) ==
217             cpu_first_thread_sibling(raw_smp_processor_id())) {
218                 msg |= cpu_thread_in_core(cpu);
219                 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
220                 return;
221         }
222 
223         /* We should never reach this */
224         if (WARN_ON_ONCE(xics_on_xive()))
225             return;
226 
227         /* Else poke the target with an IPI */
228         xics_phys = paca_ptrs[cpu]->kvm_hstate.xics_phys;
229         if (xics_phys)
230                 __raw_rm_writeb(IPI_PRIORITY, xics_phys + XICS_MFRR);
231         else
232                 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
233 }
234 
235 /*
236  * The following functions are called from the assembly code
237  * in book3s_hv_rmhandlers.S.
238  */
239 static void kvmhv_interrupt_vcore(struct kvmppc_vcore *vc, int active)
240 {
241         int cpu = vc->pcpu;
242 
243         /* Order setting of exit map vs. msgsnd/IPI */
244         smp_mb();
245         for (; active; active >>= 1, ++cpu)
246                 if (active & 1)
247                         kvmhv_rm_send_ipi(cpu);
248 }
249 
250 void kvmhv_commence_exit(int trap)
251 {
252         struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore;
253         int ptid = local_paca->kvm_hstate.ptid;
254         struct kvm_split_mode *sip = local_paca->kvm_hstate.kvm_split_mode;
255         int me, ee, i;
256 
257         /* Set our bit in the threads-exiting-guest map in the 0xff00
258            bits of vcore->entry_exit_map */
259         me = 0x100 << ptid;
260         do {
261                 ee = vc->entry_exit_map;
262         } while (cmpxchg(&vc->entry_exit_map, ee, ee | me) != ee);
263 
264         /* Are we the first here? */
265         if ((ee >> 8) != 0)
266                 return;
267 
268         /*
269          * Trigger the other threads in this vcore to exit the guest.
270          * If this is a hypervisor decrementer interrupt then they
271          * will be already on their way out of the guest.
272          */
273         if (trap != BOOK3S_INTERRUPT_HV_DECREMENTER)
274                 kvmhv_interrupt_vcore(vc, ee & ~(1 << ptid));
275 
276         /*
277          * If we are doing dynamic micro-threading, interrupt the other
278          * subcores to pull them out of their guests too.
279          */
280         if (!sip)
281                 return;
282 
283         for (i = 0; i < MAX_SUBCORES; ++i) {
284                 vc = sip->vc[i];
285                 if (!vc)
286                         break;
287                 do {
288                         ee = vc->entry_exit_map;
289                         /* Already asked to exit? */
290                         if ((ee >> 8) != 0)
291                                 break;
292                 } while (cmpxchg(&vc->entry_exit_map, ee,
293                                  ee | VCORE_EXIT_REQ) != ee);
294                 if ((ee >> 8) == 0)
295                         kvmhv_interrupt_vcore(vc, ee);
296         }
297 }
298 
299 struct kvmppc_host_rm_ops *kvmppc_host_rm_ops_hv;
300 EXPORT_SYMBOL_GPL(kvmppc_host_rm_ops_hv);
301 
302 #ifdef CONFIG_KVM_XICS
303 static struct kvmppc_irq_map *get_irqmap(struct kvmppc_passthru_irqmap *pimap,
304                                          u32 xisr)
305 {
306         int i;
307 
308         /*
309          * We access the mapped array here without a lock.  That
310          * is safe because we never reduce the number of entries
311          * in the array and we never change the v_hwirq field of
312          * an entry once it is set.
313          *
314          * We have also carefully ordered the stores in the writer
315          * and the loads here in the reader, so that if we find a matching
316          * hwirq here, the associated GSI and irq_desc fields are valid.
317          */
318         for (i = 0; i < pimap->n_mapped; i++)  {
319                 if (xisr == pimap->mapped[i].r_hwirq) {
320                         /*
321                          * Order subsequent reads in the caller to serialize
322                          * with the writer.
323                          */
324                         smp_rmb();
325                         return &pimap->mapped[i];
326                 }
327         }
328         return NULL;
329 }
330 
331 /*
332  * If we have an interrupt that's not an IPI, check if we have a
333  * passthrough adapter and if so, check if this external interrupt
334  * is for the adapter.
335  * We will attempt to deliver the IRQ directly to the target VCPU's
336  * ICP, the virtual ICP (based on affinity - the xive value in ICS).
337  *
338  * If the delivery fails or if this is not for a passthrough adapter,
339  * return to the host to handle this interrupt. We earlier
340  * saved a copy of the XIRR in the PACA, it will be picked up by
341  * the host ICP driver.
342  */
343 static int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again)
344 {
345         struct kvmppc_passthru_irqmap *pimap;
346         struct kvmppc_irq_map *irq_map;
347         struct kvm_vcpu *vcpu;
348 
349         vcpu = local_paca->kvm_hstate.kvm_vcpu;
350         if (!vcpu)
351                 return 1;
352         pimap = kvmppc_get_passthru_irqmap(vcpu->kvm);
353         if (!pimap)
354                 return 1;
355         irq_map = get_irqmap(pimap, xisr);
356         if (!irq_map)
357                 return 1;
358 
359         /* We're handling this interrupt, generic code doesn't need to */
360         local_paca->kvm_hstate.saved_xirr = 0;
361 
362         return kvmppc_deliver_irq_passthru(vcpu, xirr, irq_map, pimap, again);
363 }
364 
365 #else
366 static inline int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again)
367 {
368         return 1;
369 }
370 #endif
371 
372 /*
373  * Determine what sort of external interrupt is pending (if any).
374  * Returns:
375  *      0 if no interrupt is pending
376  *      1 if an interrupt is pending that needs to be handled by the host
377  *      2 Passthrough that needs completion in the host
378  *      -1 if there was a guest wakeup IPI (which has now been cleared)
379  *      -2 if there is PCI passthrough external interrupt that was handled
380  */
381 static long kvmppc_read_one_intr(bool *again);
382 
383 long kvmppc_read_intr(void)
384 {
385         long ret = 0;
386         long rc;
387         bool again;
388 
389         if (xive_enabled())
390                 return 1;
391 
392         do {
393                 again = false;
394                 rc = kvmppc_read_one_intr(&again);
395                 if (rc && (ret == 0 || rc > ret))
396                         ret = rc;
397         } while (again);
398         return ret;
399 }
400 
401 static long kvmppc_read_one_intr(bool *again)
402 {
403         void __iomem *xics_phys;
404         u32 h_xirr;
405         __be32 xirr;
406         u32 xisr;
407         u8 host_ipi;
408         int64_t rc;
409 
410         if (xive_enabled())
411                 return 1;
412 
413         /* see if a host IPI is pending */
414         host_ipi = READ_ONCE(local_paca->kvm_hstate.host_ipi);
415         if (host_ipi)
416                 return 1;
417 
418         /* Now read the interrupt from the ICP */
419         xics_phys = local_paca->kvm_hstate.xics_phys;
420         rc = 0;
421         if (!xics_phys)
422                 rc = opal_int_get_xirr(&xirr, false);
423         else
424                 xirr = __raw_rm_readl(xics_phys + XICS_XIRR);
425         if (rc < 0)
426                 return 1;
427 
428         /*
429          * Save XIRR for later. Since we get control in reverse endian
430          * on LE systems, save it byte reversed and fetch it back in
431          * host endian. Note that xirr is the value read from the
432          * XIRR register, while h_xirr is the host endian version.
433          */
434         h_xirr = be32_to_cpu(xirr);
435         local_paca->kvm_hstate.saved_xirr = h_xirr;
436         xisr = h_xirr & 0xffffff;
437         /*
438          * Ensure that the store/load complete to guarantee all side
439          * effects of loading from XIRR has completed
440          */
441         smp_mb();
442 
443         /* if nothing pending in the ICP */
444         if (!xisr)
445                 return 0;
446 
447         /* We found something in the ICP...
448          *
449          * If it is an IPI, clear the MFRR and EOI it.
450          */
451         if (xisr == XICS_IPI) {
452                 rc = 0;
453                 if (xics_phys) {
454                         __raw_rm_writeb(0xff, xics_phys + XICS_MFRR);
455                         __raw_rm_writel(xirr, xics_phys + XICS_XIRR);
456                 } else {
457                         opal_int_set_mfrr(hard_smp_processor_id(), 0xff);
458                         rc = opal_int_eoi(h_xirr);
459                 }
460                 /* If rc > 0, there is another interrupt pending */
461                 *again = rc > 0;
462 
463                 /*
464                  * Need to ensure side effects of above stores
465                  * complete before proceeding.
466                  */
467                 smp_mb();
468 
469                 /*
470                  * We need to re-check host IPI now in case it got set in the
471                  * meantime. If it's clear, we bounce the interrupt to the
472                  * guest
473                  */
474                 host_ipi = READ_ONCE(local_paca->kvm_hstate.host_ipi);
475                 if (unlikely(host_ipi != 0)) {
476                         /* We raced with the host,
477                          * we need to resend that IPI, bummer
478                          */
479                         if (xics_phys)
480                                 __raw_rm_writeb(IPI_PRIORITY,
481                                                 xics_phys + XICS_MFRR);
482                         else
483                                 opal_int_set_mfrr(hard_smp_processor_id(),
484                                                   IPI_PRIORITY);
485                         /* Let side effects complete */
486                         smp_mb();
487                         return 1;
488                 }
489 
490                 /* OK, it's an IPI for us */
491                 local_paca->kvm_hstate.saved_xirr = 0;
492                 return -1;
493         }
494 
495         return kvmppc_check_passthru(xisr, xirr, again);
496 }
497 
498 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
499 {
500         vcpu->arch.ceded = 0;
501         if (vcpu->arch.timer_running) {
502                 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
503                 vcpu->arch.timer_running = 0;
504         }
505 }
506 
507 void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
508 {
509         /* Guest must always run with ME enabled, HV disabled. */
510         msr = (msr | MSR_ME) & ~MSR_HV;
511 
512         /*
513          * Check for illegal transactional state bit combination
514          * and if we find it, force the TS field to a safe state.
515          */
516         if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
517                 msr &= ~MSR_TS_MASK;
518         __kvmppc_set_msr_hv(vcpu, msr);
519         kvmppc_end_cede(vcpu);
520 }
521 EXPORT_SYMBOL_GPL(kvmppc_set_msr_hv);
522 
523 static void inject_interrupt(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags)
524 {
525         unsigned long msr, pc, new_msr, new_pc;
526 
527         msr = kvmppc_get_msr(vcpu);
528         pc = kvmppc_get_pc(vcpu);
529         new_msr = vcpu->arch.intr_msr;
530         new_pc = vec;
531 
532         /* If transactional, change to suspend mode on IRQ delivery */
533         if (MSR_TM_TRANSACTIONAL(msr))
534                 new_msr |= MSR_TS_S;
535         else
536                 new_msr |= msr & MSR_TS_MASK;
537 
538         /*
539          * Perform MSR and PC adjustment for LPCR[AIL]=3 if it is set and
540          * applicable. AIL=2 is not supported.
541          *
542          * AIL does not apply to SRESET, MCE, or HMI (which is never
543          * delivered to the guest), and does not apply if IR=0 or DR=0.
544          */
545         if (vec != BOOK3S_INTERRUPT_SYSTEM_RESET &&
546             vec != BOOK3S_INTERRUPT_MACHINE_CHECK &&
547             (vcpu->arch.vcore->lpcr & LPCR_AIL) == LPCR_AIL_3 &&
548             (msr & (MSR_IR|MSR_DR)) == (MSR_IR|MSR_DR) ) {
549                 new_msr |= MSR_IR | MSR_DR;
550                 new_pc += 0xC000000000004000ULL;
551         }
552 
553         kvmppc_set_srr0(vcpu, pc);
554         kvmppc_set_srr1(vcpu, (msr & SRR1_MSR_BITS) | srr1_flags);
555         kvmppc_set_pc(vcpu, new_pc);
556         __kvmppc_set_msr_hv(vcpu, new_msr);
557 }
558 
559 void kvmppc_inject_interrupt_hv(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags)
560 {
561         inject_interrupt(vcpu, vec, srr1_flags);
562         kvmppc_end_cede(vcpu);
563 }
564 EXPORT_SYMBOL_GPL(kvmppc_inject_interrupt_hv);
565 
566 /*
567  * Is there a PRIV_DOORBELL pending for the guest (on POWER9)?
568  * Can we inject a Decrementer or a External interrupt?
569  */
570 void kvmppc_guest_entry_inject_int(struct kvm_vcpu *vcpu)
571 {
572         int ext;
573         unsigned long lpcr;
574 
575         WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
576 
577         /* Insert EXTERNAL bit into LPCR at the MER bit position */
578         ext = (vcpu->arch.pending_exceptions >> BOOK3S_IRQPRIO_EXTERNAL) & 1;
579         lpcr = mfspr(SPRN_LPCR);
580         lpcr |= ext << LPCR_MER_SH;
581         mtspr(SPRN_LPCR, lpcr);
582         isync();
583 
584         if (vcpu->arch.shregs.msr & MSR_EE) {
585                 if (ext) {
586                         inject_interrupt(vcpu, BOOK3S_INTERRUPT_EXTERNAL, 0);
587                 } else {
588                         long int dec = mfspr(SPRN_DEC);
589                         if (!(lpcr & LPCR_LD))
590                                 dec = (int) dec;
591                         if (dec < 0)
592                                 inject_interrupt(vcpu,
593                                         BOOK3S_INTERRUPT_DECREMENTER, 0);
594                 }
595         }
596 
597         if (vcpu->arch.doorbell_request) {
598                 mtspr(SPRN_DPDES, 1);
599                 vcpu->arch.vcore->dpdes = 1;
600                 smp_wmb();
601                 vcpu->arch.doorbell_request = 0;
602         }
603 }
604 
605 static void flush_guest_tlb(struct kvm *kvm)
606 {
607         unsigned long rb, set;
608 
609         rb = PPC_BIT(52);       /* IS = 2 */
610         for (set = 0; set < kvm->arch.tlb_sets; ++set) {
611                 /* R=0 PRS=0 RIC=0 */
612                 asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1)
613                              : : "r" (rb), "i" (0), "i" (0), "i" (0),
614                                "r" (0) : "memory");
615                 rb += PPC_BIT(51);      /* increment set number */
616         }
617         asm volatile("ptesync": : :"memory");
618 }
619 
620 void kvmppc_check_need_tlb_flush(struct kvm *kvm, int pcpu)
621 {
622         if (cpumask_test_cpu(pcpu, &kvm->arch.need_tlb_flush)) {
623                 flush_guest_tlb(kvm);
624 
625                 /* Clear the bit after the TLB flush */
626                 cpumask_clear_cpu(pcpu, &kvm->arch.need_tlb_flush);
627         }
628 }
629 EXPORT_SYMBOL_GPL(kvmppc_check_need_tlb_flush);
630 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php