~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/powerpc/kvm/book3s_hv_rm_mmu.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  *
  4  * Copyright 2010-2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  5  */
  6 
  7 #include <linux/types.h>
  8 #include <linux/string.h>
  9 #include <linux/kvm.h>
 10 #include <linux/kvm_host.h>
 11 #include <linux/hugetlb.h>
 12 #include <linux/module.h>
 13 #include <linux/log2.h>
 14 #include <linux/sizes.h>
 15 
 16 #include <asm/trace.h>
 17 #include <asm/kvm_ppc.h>
 18 #include <asm/kvm_book3s.h>
 19 #include <asm/book3s/64/mmu-hash.h>
 20 #include <asm/hvcall.h>
 21 #include <asm/synch.h>
 22 #include <asm/ppc-opcode.h>
 23 #include <asm/pte-walk.h>
 24 
 25 /* Translate address of a vmalloc'd thing to a linear map address */
 26 static void *real_vmalloc_addr(void *addr)
 27 {
 28         return __va(ppc_find_vmap_phys((unsigned long)addr));
 29 }
 30 
 31 /* Return 1 if we need to do a global tlbie, 0 if we can use tlbiel */
 32 static int global_invalidates(struct kvm *kvm)
 33 {
 34         int global;
 35         int cpu;
 36 
 37         /*
 38          * If there is only one vcore, and it's currently running,
 39          * as indicated by local_paca->kvm_hstate.kvm_vcpu being set,
 40          * we can use tlbiel as long as we mark all other physical
 41          * cores as potentially having stale TLB entries for this lpid.
 42          * Otherwise, don't use tlbiel.
 43          */
 44         if (kvm->arch.online_vcores == 1 && local_paca->kvm_hstate.kvm_vcpu)
 45                 global = 0;
 46         else
 47                 global = 1;
 48 
 49         /* LPID has been switched to host if in virt mode so can't do local */
 50         if (!global && (mfmsr() & (MSR_IR|MSR_DR)))
 51                 global = 1;
 52 
 53         if (!global) {
 54                 /* any other core might now have stale TLB entries... */
 55                 smp_wmb();
 56                 cpumask_setall(&kvm->arch.need_tlb_flush);
 57                 cpu = local_paca->kvm_hstate.kvm_vcore->pcpu;
 58                 cpumask_clear_cpu(cpu, &kvm->arch.need_tlb_flush);
 59         }
 60 
 61         return global;
 62 }
 63 
 64 /*
 65  * Add this HPTE into the chain for the real page.
 66  * Must be called with the chain locked; it unlocks the chain.
 67  */
 68 void kvmppc_add_revmap_chain(struct kvm *kvm, struct revmap_entry *rev,
 69                              unsigned long *rmap, long pte_index, int realmode)
 70 {
 71         struct revmap_entry *head, *tail;
 72         unsigned long i;
 73 
 74         if (*rmap & KVMPPC_RMAP_PRESENT) {
 75                 i = *rmap & KVMPPC_RMAP_INDEX;
 76                 head = &kvm->arch.hpt.rev[i];
 77                 if (realmode)
 78                         head = real_vmalloc_addr(head);
 79                 tail = &kvm->arch.hpt.rev[head->back];
 80                 if (realmode)
 81                         tail = real_vmalloc_addr(tail);
 82                 rev->forw = i;
 83                 rev->back = head->back;
 84                 tail->forw = pte_index;
 85                 head->back = pte_index;
 86         } else {
 87                 rev->forw = rev->back = pte_index;
 88                 *rmap = (*rmap & ~KVMPPC_RMAP_INDEX) |
 89                         pte_index | KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_HPT;
 90         }
 91         unlock_rmap(rmap);
 92 }
 93 EXPORT_SYMBOL_GPL(kvmppc_add_revmap_chain);
 94 
 95 /* Update the dirty bitmap of a memslot */
 96 void kvmppc_update_dirty_map(const struct kvm_memory_slot *memslot,
 97                              unsigned long gfn, unsigned long psize)
 98 {
 99         unsigned long npages;
100 
101         if (!psize || !memslot->dirty_bitmap)
102                 return;
103         npages = (psize + PAGE_SIZE - 1) / PAGE_SIZE;
104         gfn -= memslot->base_gfn;
105         set_dirty_bits_atomic(memslot->dirty_bitmap, gfn, npages);
106 }
107 EXPORT_SYMBOL_GPL(kvmppc_update_dirty_map);
108 
109 static void kvmppc_set_dirty_from_hpte(struct kvm *kvm,
110                                 unsigned long hpte_v, unsigned long hpte_gr)
111 {
112         struct kvm_memory_slot *memslot;
113         unsigned long gfn;
114         unsigned long psize;
115 
116         psize = kvmppc_actual_pgsz(hpte_v, hpte_gr);
117         gfn = hpte_rpn(hpte_gr, psize);
118         memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn);
119         if (memslot && memslot->dirty_bitmap)
120                 kvmppc_update_dirty_map(memslot, gfn, psize);
121 }
122 
123 /* Returns a pointer to the revmap entry for the page mapped by a HPTE */
124 static unsigned long *revmap_for_hpte(struct kvm *kvm, unsigned long hpte_v,
125                                       unsigned long hpte_gr,
126                                       struct kvm_memory_slot **memslotp,
127                                       unsigned long *gfnp)
128 {
129         struct kvm_memory_slot *memslot;
130         unsigned long *rmap;
131         unsigned long gfn;
132 
133         gfn = hpte_rpn(hpte_gr, kvmppc_actual_pgsz(hpte_v, hpte_gr));
134         memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn);
135         if (memslotp)
136                 *memslotp = memslot;
137         if (gfnp)
138                 *gfnp = gfn;
139         if (!memslot)
140                 return NULL;
141 
142         rmap = real_vmalloc_addr(&memslot->arch.rmap[gfn - memslot->base_gfn]);
143         return rmap;
144 }
145 
146 /* Remove this HPTE from the chain for a real page */
147 static void remove_revmap_chain(struct kvm *kvm, long pte_index,
148                                 struct revmap_entry *rev,
149                                 unsigned long hpte_v, unsigned long hpte_r)
150 {
151         struct revmap_entry *next, *prev;
152         unsigned long ptel, head;
153         unsigned long *rmap;
154         unsigned long rcbits;
155         struct kvm_memory_slot *memslot;
156         unsigned long gfn;
157 
158         rcbits = hpte_r & (HPTE_R_R | HPTE_R_C);
159         ptel = rev->guest_rpte |= rcbits;
160         rmap = revmap_for_hpte(kvm, hpte_v, ptel, &memslot, &gfn);
161         if (!rmap)
162                 return;
163         lock_rmap(rmap);
164 
165         head = *rmap & KVMPPC_RMAP_INDEX;
166         next = real_vmalloc_addr(&kvm->arch.hpt.rev[rev->forw]);
167         prev = real_vmalloc_addr(&kvm->arch.hpt.rev[rev->back]);
168         next->back = rev->back;
169         prev->forw = rev->forw;
170         if (head == pte_index) {
171                 head = rev->forw;
172                 if (head == pte_index)
173                         *rmap &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
174                 else
175                         *rmap = (*rmap & ~KVMPPC_RMAP_INDEX) | head;
176         }
177         *rmap |= rcbits << KVMPPC_RMAP_RC_SHIFT;
178         if (rcbits & HPTE_R_C)
179                 kvmppc_update_dirty_map(memslot, gfn,
180                                         kvmppc_actual_pgsz(hpte_v, hpte_r));
181         unlock_rmap(rmap);
182 }
183 
184 long kvmppc_do_h_enter(struct kvm *kvm, unsigned long flags,
185                        long pte_index, unsigned long pteh, unsigned long ptel,
186                        pgd_t *pgdir, bool realmode, unsigned long *pte_idx_ret)
187 {
188         unsigned long i, pa, gpa, gfn, psize;
189         unsigned long slot_fn, hva;
190         __be64 *hpte;
191         struct revmap_entry *rev;
192         unsigned long g_ptel;
193         struct kvm_memory_slot *memslot;
194         unsigned hpage_shift;
195         bool is_ci;
196         unsigned long *rmap;
197         pte_t *ptep;
198         unsigned int writing;
199         unsigned long mmu_seq;
200         unsigned long rcbits;
201 
202         if (kvm_is_radix(kvm))
203                 return H_FUNCTION;
204         /*
205          * The HPTE gets used by compute_tlbie_rb() to set TLBIE bits, so
206          * these functions should work together -- must ensure a guest can not
207          * cause problems with the TLBIE that KVM executes.
208          */
209         if ((pteh >> HPTE_V_SSIZE_SHIFT) & 0x2) {
210                 /* B=0b1x is a reserved value, disallow it. */
211                 return H_PARAMETER;
212         }
213         psize = kvmppc_actual_pgsz(pteh, ptel);
214         if (!psize)
215                 return H_PARAMETER;
216         writing = hpte_is_writable(ptel);
217         pteh &= ~(HPTE_V_HVLOCK | HPTE_V_ABSENT | HPTE_V_VALID);
218         ptel &= ~HPTE_GR_RESERVED;
219         g_ptel = ptel;
220 
221         /* used later to detect if we might have been invalidated */
222         mmu_seq = kvm->mmu_invalidate_seq;
223         smp_rmb();
224 
225         /* Find the memslot (if any) for this address */
226         gpa = (ptel & HPTE_R_RPN) & ~(psize - 1);
227         gfn = gpa >> PAGE_SHIFT;
228         memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn);
229         pa = 0;
230         is_ci = false;
231         rmap = NULL;
232         if (!(memslot && !(memslot->flags & KVM_MEMSLOT_INVALID))) {
233                 /* Emulated MMIO - mark this with key=31 */
234                 pteh |= HPTE_V_ABSENT;
235                 ptel |= HPTE_R_KEY_HI | HPTE_R_KEY_LO;
236                 goto do_insert;
237         }
238 
239         /* Check if the requested page fits entirely in the memslot. */
240         if (!slot_is_aligned(memslot, psize))
241                 return H_PARAMETER;
242         slot_fn = gfn - memslot->base_gfn;
243         rmap = &memslot->arch.rmap[slot_fn];
244 
245         /* Translate to host virtual address */
246         hva = __gfn_to_hva_memslot(memslot, gfn);
247 
248         arch_spin_lock(&kvm->mmu_lock.rlock.raw_lock);
249         ptep = find_kvm_host_pte(kvm, mmu_seq, hva, &hpage_shift);
250         if (ptep) {
251                 pte_t pte;
252                 unsigned int host_pte_size;
253 
254                 if (hpage_shift)
255                         host_pte_size = 1ul << hpage_shift;
256                 else
257                         host_pte_size = PAGE_SIZE;
258                 /*
259                  * We should always find the guest page size
260                  * to <= host page size, if host is using hugepage
261                  */
262                 if (host_pte_size < psize) {
263                         arch_spin_unlock(&kvm->mmu_lock.rlock.raw_lock);
264                         return H_PARAMETER;
265                 }
266                 pte = kvmppc_read_update_linux_pte(ptep, writing);
267                 if (pte_present(pte) && !pte_protnone(pte)) {
268                         if (writing && !pte_write(pte))
269                                 /* make the actual HPTE be read-only */
270                                 ptel = hpte_make_readonly(ptel);
271                         is_ci = pte_ci(pte);
272                         pa = pte_pfn(pte) << PAGE_SHIFT;
273                         pa |= hva & (host_pte_size - 1);
274                         pa |= gpa & ~PAGE_MASK;
275                 }
276         }
277         arch_spin_unlock(&kvm->mmu_lock.rlock.raw_lock);
278 
279         ptel &= HPTE_R_KEY | HPTE_R_PP0 | (psize-1);
280         ptel |= pa;
281 
282         if (pa)
283                 pteh |= HPTE_V_VALID;
284         else {
285                 pteh |= HPTE_V_ABSENT;
286                 ptel &= ~(HPTE_R_KEY_HI | HPTE_R_KEY_LO);
287         }
288 
289         /*If we had host pte mapping then  Check WIMG */
290         if (ptep && !hpte_cache_flags_ok(ptel, is_ci)) {
291                 if (is_ci)
292                         return H_PARAMETER;
293                 /*
294                  * Allow guest to map emulated device memory as
295                  * uncacheable, but actually make it cacheable.
296                  */
297                 ptel &= ~(HPTE_R_W|HPTE_R_I|HPTE_R_G);
298                 ptel |= HPTE_R_M;
299         }
300 
301         /* Find and lock the HPTEG slot to use */
302  do_insert:
303         if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
304                 return H_PARAMETER;
305         if (likely((flags & H_EXACT) == 0)) {
306                 pte_index &= ~7UL;
307                 hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
308                 for (i = 0; i < 8; ++i) {
309                         if ((be64_to_cpu(*hpte) & HPTE_V_VALID) == 0 &&
310                             try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID |
311                                           HPTE_V_ABSENT))
312                                 break;
313                         hpte += 2;
314                 }
315                 if (i == 8) {
316                         /*
317                          * Since try_lock_hpte doesn't retry (not even stdcx.
318                          * failures), it could be that there is a free slot
319                          * but we transiently failed to lock it.  Try again,
320                          * actually locking each slot and checking it.
321                          */
322                         hpte -= 16;
323                         for (i = 0; i < 8; ++i) {
324                                 u64 pte;
325                                 while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
326                                         cpu_relax();
327                                 pte = be64_to_cpu(hpte[0]);
328                                 if (!(pte & (HPTE_V_VALID | HPTE_V_ABSENT)))
329                                         break;
330                                 __unlock_hpte(hpte, pte);
331                                 hpte += 2;
332                         }
333                         if (i == 8)
334                                 return H_PTEG_FULL;
335                 }
336                 pte_index += i;
337         } else {
338                 hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
339                 if (!try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID |
340                                    HPTE_V_ABSENT)) {
341                         /* Lock the slot and check again */
342                         u64 pte;
343 
344                         while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
345                                 cpu_relax();
346                         pte = be64_to_cpu(hpte[0]);
347                         if (pte & (HPTE_V_VALID | HPTE_V_ABSENT)) {
348                                 __unlock_hpte(hpte, pte);
349                                 return H_PTEG_FULL;
350                         }
351                 }
352         }
353 
354         /* Save away the guest's idea of the second HPTE dword */
355         rev = &kvm->arch.hpt.rev[pte_index];
356         if (realmode)
357                 rev = real_vmalloc_addr(rev);
358         if (rev) {
359                 rev->guest_rpte = g_ptel;
360                 note_hpte_modification(kvm, rev);
361         }
362 
363         /* Link HPTE into reverse-map chain */
364         if (pteh & HPTE_V_VALID) {
365                 if (realmode)
366                         rmap = real_vmalloc_addr(rmap);
367                 lock_rmap(rmap);
368                 /* Check for pending invalidations under the rmap chain lock */
369                 if (mmu_invalidate_retry(kvm, mmu_seq)) {
370                         /* inval in progress, write a non-present HPTE */
371                         pteh |= HPTE_V_ABSENT;
372                         pteh &= ~HPTE_V_VALID;
373                         ptel &= ~(HPTE_R_KEY_HI | HPTE_R_KEY_LO);
374                         unlock_rmap(rmap);
375                 } else {
376                         kvmppc_add_revmap_chain(kvm, rev, rmap, pte_index,
377                                                 realmode);
378                         /* Only set R/C in real HPTE if already set in *rmap */
379                         rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
380                         ptel &= rcbits | ~(HPTE_R_R | HPTE_R_C);
381                 }
382         }
383 
384         /* Convert to new format on P9 */
385         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
386                 ptel = hpte_old_to_new_r(pteh, ptel);
387                 pteh = hpte_old_to_new_v(pteh);
388         }
389         hpte[1] = cpu_to_be64(ptel);
390 
391         /* Write the first HPTE dword, unlocking the HPTE and making it valid */
392         eieio();
393         __unlock_hpte(hpte, pteh);
394         asm volatile("ptesync" : : : "memory");
395 
396         *pte_idx_ret = pte_index;
397         return H_SUCCESS;
398 }
399 EXPORT_SYMBOL_GPL(kvmppc_do_h_enter);
400 
401 long kvmppc_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
402                     long pte_index, unsigned long pteh, unsigned long ptel)
403 {
404         return kvmppc_do_h_enter(vcpu->kvm, flags, pte_index, pteh, ptel,
405                                  vcpu->arch.pgdir, true,
406                                  &vcpu->arch.regs.gpr[4]);
407 }
408 EXPORT_SYMBOL_GPL(kvmppc_h_enter);
409 
410 #ifdef __BIG_ENDIAN__
411 #define LOCK_TOKEN      (*(u32 *)(&get_paca()->lock_token))
412 #else
413 #define LOCK_TOKEN      (*(u32 *)(&get_paca()->paca_index))
414 #endif
415 
416 static inline int is_mmio_hpte(unsigned long v, unsigned long r)
417 {
418         return ((v & HPTE_V_ABSENT) &&
419                 (r & (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) ==
420                 (HPTE_R_KEY_HI | HPTE_R_KEY_LO));
421 }
422 
423 static inline void fixup_tlbie_lpid(unsigned long rb_value, unsigned long lpid)
424 {
425 
426         if (cpu_has_feature(CPU_FTR_P9_TLBIE_ERAT_BUG)) {
427                 /* Radix flush for a hash guest */
428 
429                 unsigned long rb,rs,prs,r,ric;
430 
431                 rb = PPC_BIT(52); /* IS = 2 */
432                 rs = 0;  /* lpid = 0 */
433                 prs = 0; /* partition scoped */
434                 r = 1;   /* radix format */
435                 ric = 0; /* RIC_FLSUH_TLB */
436 
437                 /*
438                  * Need the extra ptesync to make sure we don't
439                  * re-order the tlbie
440                  */
441                 asm volatile("ptesync": : :"memory");
442                 asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
443                              : : "r"(rb), "i"(r), "i"(prs),
444                                "i"(ric), "r"(rs) : "memory");
445         }
446 
447         if (cpu_has_feature(CPU_FTR_P9_TLBIE_STQ_BUG)) {
448                 asm volatile("ptesync": : :"memory");
449                 asm volatile(PPC_TLBIE_5(%0,%1,0,0,0) : :
450                              "r" (rb_value), "r" (lpid));
451         }
452 }
453 
454 static void do_tlbies(struct kvm *kvm, unsigned long *rbvalues,
455                       long npages, int global, bool need_sync)
456 {
457         long i;
458 
459         /*
460          * We use the POWER9 5-operand versions of tlbie and tlbiel here.
461          * Since we are using RIC=0 PRS=0 R=0, and P7/P8 tlbiel ignores
462          * the RS field, this is backwards-compatible with P7 and P8.
463          */
464         if (global) {
465                 if (need_sync)
466                         asm volatile("ptesync" : : : "memory");
467                 for (i = 0; i < npages; ++i) {
468                         asm volatile(PPC_TLBIE_5(%0,%1,0,0,0) : :
469                                      "r" (rbvalues[i]), "r" (kvm->arch.lpid));
470                 }
471 
472                 fixup_tlbie_lpid(rbvalues[i - 1], kvm->arch.lpid);
473                 asm volatile("eieio; tlbsync; ptesync" : : : "memory");
474         } else {
475                 if (need_sync)
476                         asm volatile("ptesync" : : : "memory");
477                 for (i = 0; i < npages; ++i) {
478                         asm volatile(PPC_TLBIEL(%0,%1,0,0,0) : :
479                                      "r" (rbvalues[i]), "r" (0));
480                 }
481                 asm volatile("ptesync" : : : "memory");
482         }
483 }
484 
485 long kvmppc_do_h_remove(struct kvm *kvm, unsigned long flags,
486                         unsigned long pte_index, unsigned long avpn,
487                         unsigned long *hpret)
488 {
489         __be64 *hpte;
490         unsigned long v, r, rb;
491         struct revmap_entry *rev;
492         u64 pte, orig_pte, pte_r;
493 
494         if (kvm_is_radix(kvm))
495                 return H_FUNCTION;
496         if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
497                 return H_PARAMETER;
498         hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
499         while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
500                 cpu_relax();
501         pte = orig_pte = be64_to_cpu(hpte[0]);
502         pte_r = be64_to_cpu(hpte[1]);
503         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
504                 pte = hpte_new_to_old_v(pte, pte_r);
505                 pte_r = hpte_new_to_old_r(pte_r);
506         }
507         if ((pte & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 ||
508             ((flags & H_AVPN) && (pte & ~0x7fUL) != avpn) ||
509             ((flags & H_ANDCOND) && (pte & avpn) != 0)) {
510                 __unlock_hpte(hpte, orig_pte);
511                 return H_NOT_FOUND;
512         }
513 
514         rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
515         v = pte & ~HPTE_V_HVLOCK;
516         if (v & HPTE_V_VALID) {
517                 hpte[0] &= ~cpu_to_be64(HPTE_V_VALID);
518                 rb = compute_tlbie_rb(v, pte_r, pte_index);
519                 do_tlbies(kvm, &rb, 1, global_invalidates(kvm), true);
520                 /*
521                  * The reference (R) and change (C) bits in a HPT
522                  * entry can be set by hardware at any time up until
523                  * the HPTE is invalidated and the TLB invalidation
524                  * sequence has completed.  This means that when
525                  * removing a HPTE, we need to re-read the HPTE after
526                  * the invalidation sequence has completed in order to
527                  * obtain reliable values of R and C.
528                  */
529                 remove_revmap_chain(kvm, pte_index, rev, v,
530                                     be64_to_cpu(hpte[1]));
531         }
532         r = rev->guest_rpte & ~HPTE_GR_RESERVED;
533         note_hpte_modification(kvm, rev);
534         unlock_hpte(hpte, 0);
535 
536         if (is_mmio_hpte(v, pte_r))
537                 atomic64_inc(&kvm->arch.mmio_update);
538 
539         if (v & HPTE_V_ABSENT)
540                 v = (v & ~HPTE_V_ABSENT) | HPTE_V_VALID;
541         hpret[0] = v;
542         hpret[1] = r;
543         return H_SUCCESS;
544 }
545 EXPORT_SYMBOL_GPL(kvmppc_do_h_remove);
546 
547 long kvmppc_h_remove(struct kvm_vcpu *vcpu, unsigned long flags,
548                      unsigned long pte_index, unsigned long avpn)
549 {
550         return kvmppc_do_h_remove(vcpu->kvm, flags, pte_index, avpn,
551                                   &vcpu->arch.regs.gpr[4]);
552 }
553 EXPORT_SYMBOL_GPL(kvmppc_h_remove);
554 
555 long kvmppc_h_bulk_remove(struct kvm_vcpu *vcpu)
556 {
557         struct kvm *kvm = vcpu->kvm;
558         unsigned long *args = &vcpu->arch.regs.gpr[4];
559         __be64 *hp, *hptes[4];
560         unsigned long tlbrb[4];
561         long int i, j, k, n, found, indexes[4];
562         unsigned long flags, req, pte_index, rcbits;
563         int global;
564         long int ret = H_SUCCESS;
565         struct revmap_entry *rev, *revs[4];
566         u64 hp0, hp1;
567 
568         if (kvm_is_radix(kvm))
569                 return H_FUNCTION;
570         global = global_invalidates(kvm);
571         for (i = 0; i < 4 && ret == H_SUCCESS; ) {
572                 n = 0;
573                 for (; i < 4; ++i) {
574                         j = i * 2;
575                         pte_index = args[j];
576                         flags = pte_index >> 56;
577                         pte_index &= ((1ul << 56) - 1);
578                         req = flags >> 6;
579                         flags &= 3;
580                         if (req == 3) {         /* no more requests */
581                                 i = 4;
582                                 break;
583                         }
584                         if (req != 1 || flags == 3 ||
585                             pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt)) {
586                                 /* parameter error */
587                                 args[j] = ((0xa0 | flags) << 56) + pte_index;
588                                 ret = H_PARAMETER;
589                                 break;
590                         }
591                         hp = (__be64 *) (kvm->arch.hpt.virt + (pte_index << 4));
592                         /* to avoid deadlock, don't spin except for first */
593                         if (!try_lock_hpte(hp, HPTE_V_HVLOCK)) {
594                                 if (n)
595                                         break;
596                                 while (!try_lock_hpte(hp, HPTE_V_HVLOCK))
597                                         cpu_relax();
598                         }
599                         found = 0;
600                         hp0 = be64_to_cpu(hp[0]);
601                         hp1 = be64_to_cpu(hp[1]);
602                         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
603                                 hp0 = hpte_new_to_old_v(hp0, hp1);
604                                 hp1 = hpte_new_to_old_r(hp1);
605                         }
606                         if (hp0 & (HPTE_V_ABSENT | HPTE_V_VALID)) {
607                                 switch (flags & 3) {
608                                 case 0:         /* absolute */
609                                         found = 1;
610                                         break;
611                                 case 1:         /* andcond */
612                                         if (!(hp0 & args[j + 1]))
613                                                 found = 1;
614                                         break;
615                                 case 2:         /* AVPN */
616                                         if ((hp0 & ~0x7fUL) == args[j + 1])
617                                                 found = 1;
618                                         break;
619                                 }
620                         }
621                         if (!found) {
622                                 hp[0] &= ~cpu_to_be64(HPTE_V_HVLOCK);
623                                 args[j] = ((0x90 | flags) << 56) + pte_index;
624                                 continue;
625                         }
626 
627                         args[j] = ((0x80 | flags) << 56) + pte_index;
628                         rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
629                         note_hpte_modification(kvm, rev);
630 
631                         if (!(hp0 & HPTE_V_VALID)) {
632                                 /* insert R and C bits from PTE */
633                                 rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C);
634                                 args[j] |= rcbits << (56 - 5);
635                                 hp[0] = 0;
636                                 if (is_mmio_hpte(hp0, hp1))
637                                         atomic64_inc(&kvm->arch.mmio_update);
638                                 continue;
639                         }
640 
641                         /* leave it locked */
642                         hp[0] &= ~cpu_to_be64(HPTE_V_VALID);
643                         tlbrb[n] = compute_tlbie_rb(hp0, hp1, pte_index);
644                         indexes[n] = j;
645                         hptes[n] = hp;
646                         revs[n] = rev;
647                         ++n;
648                 }
649 
650                 if (!n)
651                         break;
652 
653                 /* Now that we've collected a batch, do the tlbies */
654                 do_tlbies(kvm, tlbrb, n, global, true);
655 
656                 /* Read PTE low words after tlbie to get final R/C values */
657                 for (k = 0; k < n; ++k) {
658                         j = indexes[k];
659                         pte_index = args[j] & ((1ul << 56) - 1);
660                         hp = hptes[k];
661                         rev = revs[k];
662                         remove_revmap_chain(kvm, pte_index, rev,
663                                 be64_to_cpu(hp[0]), be64_to_cpu(hp[1]));
664                         rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C);
665                         args[j] |= rcbits << (56 - 5);
666                         __unlock_hpte(hp, 0);
667                 }
668         }
669 
670         return ret;
671 }
672 EXPORT_SYMBOL_GPL(kvmppc_h_bulk_remove);
673 
674 long kvmppc_h_protect(struct kvm_vcpu *vcpu, unsigned long flags,
675                       unsigned long pte_index, unsigned long avpn)
676 {
677         struct kvm *kvm = vcpu->kvm;
678         __be64 *hpte;
679         struct revmap_entry *rev;
680         unsigned long v, r, rb, mask, bits;
681         u64 pte_v, pte_r;
682 
683         if (kvm_is_radix(kvm))
684                 return H_FUNCTION;
685         if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
686                 return H_PARAMETER;
687 
688         hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
689         while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
690                 cpu_relax();
691         v = pte_v = be64_to_cpu(hpte[0]);
692         if (cpu_has_feature(CPU_FTR_ARCH_300))
693                 v = hpte_new_to_old_v(v, be64_to_cpu(hpte[1]));
694         if ((v & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 ||
695             ((flags & H_AVPN) && (v & ~0x7fUL) != avpn)) {
696                 __unlock_hpte(hpte, pte_v);
697                 return H_NOT_FOUND;
698         }
699 
700         pte_r = be64_to_cpu(hpte[1]);
701         bits = (flags << 55) & HPTE_R_PP0;
702         bits |= (flags << 48) & HPTE_R_KEY_HI;
703         bits |= flags & (HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_LO);
704 
705         /* Update guest view of 2nd HPTE dword */
706         mask = HPTE_R_PP0 | HPTE_R_PP | HPTE_R_N |
707                 HPTE_R_KEY_HI | HPTE_R_KEY_LO;
708         rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
709         if (rev) {
710                 r = (rev->guest_rpte & ~mask) | bits;
711                 rev->guest_rpte = r;
712                 note_hpte_modification(kvm, rev);
713         }
714 
715         /* Update HPTE */
716         if (v & HPTE_V_VALID) {
717                 /*
718                  * If the page is valid, don't let it transition from
719                  * readonly to writable.  If it should be writable, we'll
720                  * take a trap and let the page fault code sort it out.
721                  */
722                 r = (pte_r & ~mask) | bits;
723                 if (hpte_is_writable(r) && !hpte_is_writable(pte_r))
724                         r = hpte_make_readonly(r);
725                 /* If the PTE is changing, invalidate it first */
726                 if (r != pte_r) {
727                         rb = compute_tlbie_rb(v, r, pte_index);
728                         hpte[0] = cpu_to_be64((pte_v & ~HPTE_V_VALID) |
729                                               HPTE_V_ABSENT);
730                         do_tlbies(kvm, &rb, 1, global_invalidates(kvm), true);
731                         /* Don't lose R/C bit updates done by hardware */
732                         r |= be64_to_cpu(hpte[1]) & (HPTE_R_R | HPTE_R_C);
733                         hpte[1] = cpu_to_be64(r);
734                 }
735         }
736         unlock_hpte(hpte, pte_v & ~HPTE_V_HVLOCK);
737         asm volatile("ptesync" : : : "memory");
738         if (is_mmio_hpte(v, pte_r))
739                 atomic64_inc(&kvm->arch.mmio_update);
740 
741         return H_SUCCESS;
742 }
743 EXPORT_SYMBOL_GPL(kvmppc_h_protect);
744 
745 long kvmppc_h_read(struct kvm_vcpu *vcpu, unsigned long flags,
746                    unsigned long pte_index)
747 {
748         struct kvm *kvm = vcpu->kvm;
749         __be64 *hpte;
750         unsigned long v, r;
751         int i, n = 1;
752         struct revmap_entry *rev = NULL;
753 
754         if (kvm_is_radix(kvm))
755                 return H_FUNCTION;
756         if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
757                 return H_PARAMETER;
758         if (flags & H_READ_4) {
759                 pte_index &= ~3;
760                 n = 4;
761         }
762         rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
763         for (i = 0; i < n; ++i, ++pte_index) {
764                 hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
765                 v = be64_to_cpu(hpte[0]) & ~HPTE_V_HVLOCK;
766                 r = be64_to_cpu(hpte[1]);
767                 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
768                         v = hpte_new_to_old_v(v, r);
769                         r = hpte_new_to_old_r(r);
770                 }
771                 if (v & HPTE_V_ABSENT) {
772                         v &= ~HPTE_V_ABSENT;
773                         v |= HPTE_V_VALID;
774                 }
775                 if (v & HPTE_V_VALID) {
776                         r = rev[i].guest_rpte | (r & (HPTE_R_R | HPTE_R_C));
777                         r &= ~HPTE_GR_RESERVED;
778                 }
779                 kvmppc_set_gpr(vcpu, 4 + i * 2, v);
780                 kvmppc_set_gpr(vcpu, 5 + i * 2, r);
781         }
782         return H_SUCCESS;
783 }
784 EXPORT_SYMBOL_GPL(kvmppc_h_read);
785 
786 long kvmppc_h_clear_ref(struct kvm_vcpu *vcpu, unsigned long flags,
787                         unsigned long pte_index)
788 {
789         struct kvm *kvm = vcpu->kvm;
790         __be64 *hpte;
791         unsigned long v, r, gr;
792         struct revmap_entry *rev;
793         unsigned long *rmap;
794         long ret = H_NOT_FOUND;
795 
796         if (kvm_is_radix(kvm))
797                 return H_FUNCTION;
798         if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
799                 return H_PARAMETER;
800 
801         rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
802         hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
803         while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
804                 cpu_relax();
805         v = be64_to_cpu(hpte[0]);
806         r = be64_to_cpu(hpte[1]);
807         if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
808                 goto out;
809 
810         gr = rev->guest_rpte;
811         if (rev->guest_rpte & HPTE_R_R) {
812                 rev->guest_rpte &= ~HPTE_R_R;
813                 note_hpte_modification(kvm, rev);
814         }
815         if (v & HPTE_V_VALID) {
816                 gr |= r & (HPTE_R_R | HPTE_R_C);
817                 if (r & HPTE_R_R) {
818                         kvmppc_clear_ref_hpte(kvm, hpte, pte_index);
819                         rmap = revmap_for_hpte(kvm, v, gr, NULL, NULL);
820                         if (rmap) {
821                                 lock_rmap(rmap);
822                                 *rmap |= KVMPPC_RMAP_REFERENCED;
823                                 unlock_rmap(rmap);
824                         }
825                 }
826         }
827         kvmppc_set_gpr(vcpu, 4, gr);
828         ret = H_SUCCESS;
829  out:
830         unlock_hpte(hpte, v & ~HPTE_V_HVLOCK);
831         return ret;
832 }
833 EXPORT_SYMBOL_GPL(kvmppc_h_clear_ref);
834 
835 long kvmppc_h_clear_mod(struct kvm_vcpu *vcpu, unsigned long flags,
836                         unsigned long pte_index)
837 {
838         struct kvm *kvm = vcpu->kvm;
839         __be64 *hpte;
840         unsigned long v, r, gr;
841         struct revmap_entry *rev;
842         long ret = H_NOT_FOUND;
843 
844         if (kvm_is_radix(kvm))
845                 return H_FUNCTION;
846         if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
847                 return H_PARAMETER;
848 
849         rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
850         hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
851         while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
852                 cpu_relax();
853         v = be64_to_cpu(hpte[0]);
854         r = be64_to_cpu(hpte[1]);
855         if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
856                 goto out;
857 
858         gr = rev->guest_rpte;
859         if (gr & HPTE_R_C) {
860                 rev->guest_rpte &= ~HPTE_R_C;
861                 note_hpte_modification(kvm, rev);
862         }
863         if (v & HPTE_V_VALID) {
864                 /* need to make it temporarily absent so C is stable */
865                 hpte[0] |= cpu_to_be64(HPTE_V_ABSENT);
866                 kvmppc_invalidate_hpte(kvm, hpte, pte_index);
867                 r = be64_to_cpu(hpte[1]);
868                 gr |= r & (HPTE_R_R | HPTE_R_C);
869                 if (r & HPTE_R_C) {
870                         hpte[1] = cpu_to_be64(r & ~HPTE_R_C);
871                         eieio();
872                         kvmppc_set_dirty_from_hpte(kvm, v, gr);
873                 }
874         }
875         kvmppc_set_gpr(vcpu, 4, gr);
876         ret = H_SUCCESS;
877  out:
878         unlock_hpte(hpte, v & ~HPTE_V_HVLOCK);
879         return ret;
880 }
881 EXPORT_SYMBOL_GPL(kvmppc_h_clear_mod);
882 
883 static int kvmppc_get_hpa(struct kvm_vcpu *vcpu, unsigned long mmu_seq,
884                           unsigned long gpa, int writing, unsigned long *hpa,
885                           struct kvm_memory_slot **memslot_p)
886 {
887         struct kvm *kvm = vcpu->kvm;
888         struct kvm_memory_slot *memslot;
889         unsigned long gfn, hva, pa, psize = PAGE_SHIFT;
890         unsigned int shift;
891         pte_t *ptep, pte;
892 
893         /* Find the memslot for this address */
894         gfn = gpa >> PAGE_SHIFT;
895         memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn);
896         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
897                 return H_PARAMETER;
898 
899         /* Translate to host virtual address */
900         hva = __gfn_to_hva_memslot(memslot, gfn);
901 
902         /* Try to find the host pte for that virtual address */
903         ptep = find_kvm_host_pte(kvm, mmu_seq, hva, &shift);
904         if (!ptep)
905                 return H_TOO_HARD;
906         pte = kvmppc_read_update_linux_pte(ptep, writing);
907         if (!pte_present(pte))
908                 return H_TOO_HARD;
909 
910         /* Convert to a physical address */
911         if (shift)
912                 psize = 1UL << shift;
913         pa = pte_pfn(pte) << PAGE_SHIFT;
914         pa |= hva & (psize - 1);
915         pa |= gpa & ~PAGE_MASK;
916 
917         if (hpa)
918                 *hpa = pa;
919         if (memslot_p)
920                 *memslot_p = memslot;
921 
922         return H_SUCCESS;
923 }
924 
925 static long kvmppc_do_h_page_init_zero(struct kvm_vcpu *vcpu,
926                                        unsigned long dest)
927 {
928         struct kvm_memory_slot *memslot;
929         struct kvm *kvm = vcpu->kvm;
930         unsigned long pa, mmu_seq;
931         long ret = H_SUCCESS;
932         int i;
933 
934         /* Used later to detect if we might have been invalidated */
935         mmu_seq = kvm->mmu_invalidate_seq;
936         smp_rmb();
937 
938         arch_spin_lock(&kvm->mmu_lock.rlock.raw_lock);
939 
940         ret = kvmppc_get_hpa(vcpu, mmu_seq, dest, 1, &pa, &memslot);
941         if (ret != H_SUCCESS)
942                 goto out_unlock;
943 
944         /* Zero the page */
945         for (i = 0; i < SZ_4K; i += L1_CACHE_BYTES, pa += L1_CACHE_BYTES)
946                 dcbz((void *)pa);
947         kvmppc_update_dirty_map(memslot, dest >> PAGE_SHIFT, PAGE_SIZE);
948 
949 out_unlock:
950         arch_spin_unlock(&kvm->mmu_lock.rlock.raw_lock);
951         return ret;
952 }
953 
954 static long kvmppc_do_h_page_init_copy(struct kvm_vcpu *vcpu,
955                                        unsigned long dest, unsigned long src)
956 {
957         unsigned long dest_pa, src_pa, mmu_seq;
958         struct kvm_memory_slot *dest_memslot;
959         struct kvm *kvm = vcpu->kvm;
960         long ret = H_SUCCESS;
961 
962         /* Used later to detect if we might have been invalidated */
963         mmu_seq = kvm->mmu_invalidate_seq;
964         smp_rmb();
965 
966         arch_spin_lock(&kvm->mmu_lock.rlock.raw_lock);
967         ret = kvmppc_get_hpa(vcpu, mmu_seq, dest, 1, &dest_pa, &dest_memslot);
968         if (ret != H_SUCCESS)
969                 goto out_unlock;
970 
971         ret = kvmppc_get_hpa(vcpu, mmu_seq, src, 0, &src_pa, NULL);
972         if (ret != H_SUCCESS)
973                 goto out_unlock;
974 
975         /* Copy the page */
976         memcpy((void *)dest_pa, (void *)src_pa, SZ_4K);
977 
978         kvmppc_update_dirty_map(dest_memslot, dest >> PAGE_SHIFT, PAGE_SIZE);
979 
980 out_unlock:
981         arch_spin_unlock(&kvm->mmu_lock.rlock.raw_lock);
982         return ret;
983 }
984 
985 long kvmppc_rm_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags,
986                            unsigned long dest, unsigned long src)
987 {
988         struct kvm *kvm = vcpu->kvm;
989         u64 pg_mask = SZ_4K - 1;        /* 4K page size */
990         long ret = H_SUCCESS;
991 
992         /* Don't handle radix mode here, go up to the virtual mode handler */
993         if (kvm_is_radix(kvm))
994                 return H_TOO_HARD;
995 
996         /* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
997         if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE |
998                       H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED))
999                 return H_PARAMETER;
1000 
1001         /* dest (and src if copy_page flag set) must be page aligned */
1002         if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask)))
1003                 return H_PARAMETER;
1004 
1005         /* zero and/or copy the page as determined by the flags */
1006         if (flags & H_COPY_PAGE)
1007                 ret = kvmppc_do_h_page_init_copy(vcpu, dest, src);
1008         else if (flags & H_ZERO_PAGE)
1009                 ret = kvmppc_do_h_page_init_zero(vcpu, dest);
1010 
1011         /* We can ignore the other flags */
1012 
1013         return ret;
1014 }
1015 
1016 void kvmppc_invalidate_hpte(struct kvm *kvm, __be64 *hptep,
1017                         unsigned long pte_index)
1018 {
1019         unsigned long rb;
1020         u64 hp0, hp1;
1021 
1022         hptep[0] &= ~cpu_to_be64(HPTE_V_VALID);
1023         hp0 = be64_to_cpu(hptep[0]);
1024         hp1 = be64_to_cpu(hptep[1]);
1025         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1026                 hp0 = hpte_new_to_old_v(hp0, hp1);
1027                 hp1 = hpte_new_to_old_r(hp1);
1028         }
1029         rb = compute_tlbie_rb(hp0, hp1, pte_index);
1030         do_tlbies(kvm, &rb, 1, 1, true);
1031 }
1032 EXPORT_SYMBOL_GPL(kvmppc_invalidate_hpte);
1033 
1034 void kvmppc_clear_ref_hpte(struct kvm *kvm, __be64 *hptep,
1035                            unsigned long pte_index)
1036 {
1037         unsigned long rb;
1038         unsigned char rbyte;
1039         u64 hp0, hp1;
1040 
1041         hp0 = be64_to_cpu(hptep[0]);
1042         hp1 = be64_to_cpu(hptep[1]);
1043         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1044                 hp0 = hpte_new_to_old_v(hp0, hp1);
1045                 hp1 = hpte_new_to_old_r(hp1);
1046         }
1047         rb = compute_tlbie_rb(hp0, hp1, pte_index);
1048         rbyte = (be64_to_cpu(hptep[1]) & ~HPTE_R_R) >> 8;
1049         /* modify only the second-last byte, which contains the ref bit */
1050         *((char *)hptep + 14) = rbyte;
1051         do_tlbies(kvm, &rb, 1, 1, false);
1052 }
1053 EXPORT_SYMBOL_GPL(kvmppc_clear_ref_hpte);
1054 
1055 static int slb_base_page_shift[4] = {
1056         24,     /* 16M */
1057         16,     /* 64k */
1058         34,     /* 16G */
1059         20,     /* 1M, unsupported */
1060 };
1061 
1062 static struct mmio_hpte_cache_entry *mmio_cache_search(struct kvm_vcpu *vcpu,
1063                 unsigned long eaddr, unsigned long slb_v, long mmio_update)
1064 {
1065         struct mmio_hpte_cache_entry *entry = NULL;
1066         unsigned int pshift;
1067         unsigned int i;
1068 
1069         for (i = 0; i < MMIO_HPTE_CACHE_SIZE; i++) {
1070                 entry = &vcpu->arch.mmio_cache.entry[i];
1071                 if (entry->mmio_update == mmio_update) {
1072                         pshift = entry->slb_base_pshift;
1073                         if ((entry->eaddr >> pshift) == (eaddr >> pshift) &&
1074                             entry->slb_v == slb_v)
1075                                 return entry;
1076                 }
1077         }
1078         return NULL;
1079 }
1080 
1081 static struct mmio_hpte_cache_entry *
1082                         next_mmio_cache_entry(struct kvm_vcpu *vcpu)
1083 {
1084         unsigned int index = vcpu->arch.mmio_cache.index;
1085 
1086         vcpu->arch.mmio_cache.index++;
1087         if (vcpu->arch.mmio_cache.index == MMIO_HPTE_CACHE_SIZE)
1088                 vcpu->arch.mmio_cache.index = 0;
1089 
1090         return &vcpu->arch.mmio_cache.entry[index];
1091 }
1092 
1093 /* When called from virtmode, this func should be protected by
1094  * preempt_disable(), otherwise, the holding of HPTE_V_HVLOCK
1095  * can trigger deadlock issue.
1096  */
1097 long kvmppc_hv_find_lock_hpte(struct kvm *kvm, gva_t eaddr, unsigned long slb_v,
1098                               unsigned long valid)
1099 {
1100         unsigned int i;
1101         unsigned int pshift;
1102         unsigned long somask;
1103         unsigned long vsid, hash;
1104         unsigned long avpn;
1105         __be64 *hpte;
1106         unsigned long mask, val;
1107         unsigned long v, r, orig_v;
1108 
1109         /* Get page shift, work out hash and AVPN etc. */
1110         mask = SLB_VSID_B | HPTE_V_AVPN | HPTE_V_SECONDARY;
1111         val = 0;
1112         pshift = 12;
1113         if (slb_v & SLB_VSID_L) {
1114                 mask |= HPTE_V_LARGE;
1115                 val |= HPTE_V_LARGE;
1116                 pshift = slb_base_page_shift[(slb_v & SLB_VSID_LP) >> 4];
1117         }
1118         if (slb_v & SLB_VSID_B_1T) {
1119                 somask = (1UL << 40) - 1;
1120                 vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT_1T;
1121                 vsid ^= vsid << 25;
1122         } else {
1123                 somask = (1UL << 28) - 1;
1124                 vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT;
1125         }
1126         hash = (vsid ^ ((eaddr & somask) >> pshift)) & kvmppc_hpt_mask(&kvm->arch.hpt);
1127         avpn = slb_v & ~(somask >> 16); /* also includes B */
1128         avpn |= (eaddr & somask) >> 16;
1129 
1130         if (pshift >= 24)
1131                 avpn &= ~((1UL << (pshift - 16)) - 1);
1132         else
1133                 avpn &= ~0x7fUL;
1134         val |= avpn;
1135 
1136         for (;;) {
1137                 hpte = (__be64 *)(kvm->arch.hpt.virt + (hash << 7));
1138 
1139                 for (i = 0; i < 16; i += 2) {
1140                         /* Read the PTE racily */
1141                         v = be64_to_cpu(hpte[i]) & ~HPTE_V_HVLOCK;
1142                         if (cpu_has_feature(CPU_FTR_ARCH_300))
1143                                 v = hpte_new_to_old_v(v, be64_to_cpu(hpte[i+1]));
1144 
1145                         /* Check valid/absent, hash, segment size and AVPN */
1146                         if (!(v & valid) || (v & mask) != val)
1147                                 continue;
1148 
1149                         /* Lock the PTE and read it under the lock */
1150                         while (!try_lock_hpte(&hpte[i], HPTE_V_HVLOCK))
1151                                 cpu_relax();
1152                         v = orig_v = be64_to_cpu(hpte[i]) & ~HPTE_V_HVLOCK;
1153                         r = be64_to_cpu(hpte[i+1]);
1154                         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1155                                 v = hpte_new_to_old_v(v, r);
1156                                 r = hpte_new_to_old_r(r);
1157                         }
1158 
1159                         /*
1160                          * Check the HPTE again, including base page size
1161                          */
1162                         if ((v & valid) && (v & mask) == val &&
1163                             kvmppc_hpte_base_page_shift(v, r) == pshift)
1164                                 /* Return with the HPTE still locked */
1165                                 return (hash << 3) + (i >> 1);
1166 
1167                         __unlock_hpte(&hpte[i], orig_v);
1168                 }
1169 
1170                 if (val & HPTE_V_SECONDARY)
1171                         break;
1172                 val |= HPTE_V_SECONDARY;
1173                 hash = hash ^ kvmppc_hpt_mask(&kvm->arch.hpt);
1174         }
1175         return -1;
1176 }
1177 EXPORT_SYMBOL(kvmppc_hv_find_lock_hpte);
1178 
1179 /*
1180  * Called in real mode to check whether an HPTE not found fault
1181  * is due to accessing a paged-out page or an emulated MMIO page,
1182  * or if a protection fault is due to accessing a page that the
1183  * guest wanted read/write access to but which we made read-only.
1184  * Returns a possibly modified status (DSISR) value if not
1185  * (i.e. pass the interrupt to the guest),
1186  * -1 to pass the fault up to host kernel mode code, -2 to do that
1187  * and also load the instruction word (for MMIO emulation),
1188  * or 0 if we should make the guest retry the access.
1189  */
1190 long kvmppc_hpte_hv_fault(struct kvm_vcpu *vcpu, unsigned long addr,
1191                           unsigned long slb_v, unsigned int status, bool data)
1192 {
1193         struct kvm *kvm = vcpu->kvm;
1194         long int index;
1195         unsigned long v, r, gr, orig_v;
1196         __be64 *hpte;
1197         unsigned long valid;
1198         struct revmap_entry *rev;
1199         unsigned long pp, key;
1200         struct mmio_hpte_cache_entry *cache_entry = NULL;
1201         long mmio_update = 0;
1202 
1203         /* For protection fault, expect to find a valid HPTE */
1204         valid = HPTE_V_VALID;
1205         if (status & DSISR_NOHPTE) {
1206                 valid |= HPTE_V_ABSENT;
1207                 mmio_update = atomic64_read(&kvm->arch.mmio_update);
1208                 cache_entry = mmio_cache_search(vcpu, addr, slb_v, mmio_update);
1209         }
1210         if (cache_entry) {
1211                 index = cache_entry->pte_index;
1212                 v = cache_entry->hpte_v;
1213                 r = cache_entry->hpte_r;
1214                 gr = cache_entry->rpte;
1215         } else {
1216                 index = kvmppc_hv_find_lock_hpte(kvm, addr, slb_v, valid);
1217                 if (index < 0) {
1218                         if (status & DSISR_NOHPTE)
1219                                 return status;  /* there really was no HPTE */
1220                         return 0;       /* for prot fault, HPTE disappeared */
1221                 }
1222                 hpte = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
1223                 v = orig_v = be64_to_cpu(hpte[0]) & ~HPTE_V_HVLOCK;
1224                 r = be64_to_cpu(hpte[1]);
1225                 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1226                         v = hpte_new_to_old_v(v, r);
1227                         r = hpte_new_to_old_r(r);
1228                 }
1229                 rev = real_vmalloc_addr(&kvm->arch.hpt.rev[index]);
1230                 gr = rev->guest_rpte;
1231 
1232                 unlock_hpte(hpte, orig_v);
1233         }
1234 
1235         /* For not found, if the HPTE is valid by now, retry the instruction */
1236         if ((status & DSISR_NOHPTE) && (v & HPTE_V_VALID))
1237                 return 0;
1238 
1239         /* Check access permissions to the page */
1240         pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
1241         key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
1242         status &= ~DSISR_NOHPTE;        /* DSISR_NOHPTE == SRR1_ISI_NOPT */
1243         if (!data) {
1244                 if (gr & (HPTE_R_N | HPTE_R_G))
1245                         return status | SRR1_ISI_N_G_OR_CIP;
1246                 if (!hpte_read_permission(pp, slb_v & key))
1247                         return status | SRR1_ISI_PROT;
1248         } else if (status & DSISR_ISSTORE) {
1249                 /* check write permission */
1250                 if (!hpte_write_permission(pp, slb_v & key))
1251                         return status | DSISR_PROTFAULT;
1252         } else {
1253                 if (!hpte_read_permission(pp, slb_v & key))
1254                         return status | DSISR_PROTFAULT;
1255         }
1256 
1257         /* Check storage key, if applicable */
1258         if (data && (vcpu->arch.shregs.msr & MSR_DR)) {
1259                 unsigned int perm = hpte_get_skey_perm(gr, vcpu->arch.amr);
1260                 if (status & DSISR_ISSTORE)
1261                         perm >>= 1;
1262                 if (perm & 1)
1263                         return status | DSISR_KEYFAULT;
1264         }
1265 
1266         /* Save HPTE info for virtual-mode handler */
1267         vcpu->arch.pgfault_addr = addr;
1268         vcpu->arch.pgfault_index = index;
1269         vcpu->arch.pgfault_hpte[0] = v;
1270         vcpu->arch.pgfault_hpte[1] = r;
1271         vcpu->arch.pgfault_cache = cache_entry;
1272 
1273         /* Check the storage key to see if it is possibly emulated MMIO */
1274         if ((r & (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) ==
1275             (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) {
1276                 if (!cache_entry) {
1277                         unsigned int pshift = 12;
1278                         unsigned int pshift_index;
1279 
1280                         if (slb_v & SLB_VSID_L) {
1281                                 pshift_index = ((slb_v & SLB_VSID_LP) >> 4);
1282                                 pshift = slb_base_page_shift[pshift_index];
1283                         }
1284                         cache_entry = next_mmio_cache_entry(vcpu);
1285                         cache_entry->eaddr = addr;
1286                         cache_entry->slb_base_pshift = pshift;
1287                         cache_entry->pte_index = index;
1288                         cache_entry->hpte_v = v;
1289                         cache_entry->hpte_r = r;
1290                         cache_entry->rpte = gr;
1291                         cache_entry->slb_v = slb_v;
1292                         cache_entry->mmio_update = mmio_update;
1293                 }
1294                 if (data && (vcpu->arch.shregs.msr & MSR_IR))
1295                         return -2;      /* MMIO emulation - load instr word */
1296         }
1297 
1298         return -1;              /* send fault up to host kernel mode */
1299 }
1300 EXPORT_SYMBOL_GPL(kvmppc_hpte_hv_fault);
1301 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php