~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/powerpc/kvm/book3s_pr.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
  4  *
  5  * Authors:
  6  *    Alexander Graf <agraf@suse.de>
  7  *    Kevin Wolf <mail@kevin-wolf.de>
  8  *    Paul Mackerras <paulus@samba.org>
  9  *
 10  * Description:
 11  * Functions relating to running KVM on Book 3S processors where
 12  * we don't have access to hypervisor mode, and we run the guest
 13  * in problem state (user mode).
 14  *
 15  * This file is derived from arch/powerpc/kvm/44x.c,
 16  * by Hollis Blanchard <hollisb@us.ibm.com>.
 17  */
 18 
 19 #include <linux/kvm_host.h>
 20 #include <linux/export.h>
 21 #include <linux/err.h>
 22 #include <linux/slab.h>
 23 
 24 #include <asm/reg.h>
 25 #include <asm/cputable.h>
 26 #include <asm/cacheflush.h>
 27 #include <linux/uaccess.h>
 28 #include <asm/interrupt.h>
 29 #include <asm/io.h>
 30 #include <asm/kvm_ppc.h>
 31 #include <asm/kvm_book3s.h>
 32 #include <asm/mmu_context.h>
 33 #include <asm/switch_to.h>
 34 #include <asm/firmware.h>
 35 #include <asm/setup.h>
 36 #include <linux/gfp.h>
 37 #include <linux/sched.h>
 38 #include <linux/vmalloc.h>
 39 #include <linux/highmem.h>
 40 #include <linux/module.h>
 41 #include <linux/miscdevice.h>
 42 #include <asm/asm-prototypes.h>
 43 #include <asm/tm.h>
 44 
 45 #include "book3s.h"
 46 
 47 #define CREATE_TRACE_POINTS
 48 #include "trace_pr.h"
 49 
 50 /* #define EXIT_DEBUG */
 51 /* #define DEBUG_EXT */
 52 
 53 static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
 54                              ulong msr);
 55 #ifdef CONFIG_PPC_BOOK3S_64
 56 static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac);
 57 #endif
 58 
 59 /* Some compatibility defines */
 60 #ifdef CONFIG_PPC_BOOK3S_32
 61 #define MSR_USER32 MSR_USER
 62 #define MSR_USER64 MSR_USER
 63 #define HW_PAGE_SIZE PAGE_SIZE
 64 #define HPTE_R_M   _PAGE_COHERENT
 65 #endif
 66 
 67 static bool kvmppc_is_split_real(struct kvm_vcpu *vcpu)
 68 {
 69         ulong msr = kvmppc_get_msr(vcpu);
 70         return (msr & (MSR_IR|MSR_DR)) == MSR_DR;
 71 }
 72 
 73 static void kvmppc_fixup_split_real(struct kvm_vcpu *vcpu)
 74 {
 75         ulong msr = kvmppc_get_msr(vcpu);
 76         ulong pc = kvmppc_get_pc(vcpu);
 77 
 78         /* We are in DR only split real mode */
 79         if ((msr & (MSR_IR|MSR_DR)) != MSR_DR)
 80                 return;
 81 
 82         /* We have not fixed up the guest already */
 83         if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK)
 84                 return;
 85 
 86         /* The code is in fixupable address space */
 87         if (pc & SPLIT_HACK_MASK)
 88                 return;
 89 
 90         vcpu->arch.hflags |= BOOK3S_HFLAG_SPLIT_HACK;
 91         kvmppc_set_pc(vcpu, pc | SPLIT_HACK_OFFS);
 92 }
 93 
 94 static void kvmppc_unfixup_split_real(struct kvm_vcpu *vcpu)
 95 {
 96         if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) {
 97                 ulong pc = kvmppc_get_pc(vcpu);
 98                 ulong lr = kvmppc_get_lr(vcpu);
 99                 if ((pc & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS)
100                         kvmppc_set_pc(vcpu, pc & ~SPLIT_HACK_MASK);
101                 if ((lr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS)
102                         kvmppc_set_lr(vcpu, lr & ~SPLIT_HACK_MASK);
103                 vcpu->arch.hflags &= ~BOOK3S_HFLAG_SPLIT_HACK;
104         }
105 }
106 
107 static void kvmppc_inject_interrupt_pr(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags)
108 {
109         unsigned long msr, pc, new_msr, new_pc;
110 
111         kvmppc_unfixup_split_real(vcpu);
112 
113         msr = kvmppc_get_msr(vcpu);
114         pc = kvmppc_get_pc(vcpu);
115         new_msr = vcpu->arch.intr_msr;
116         new_pc = to_book3s(vcpu)->hior + vec;
117 
118 #ifdef CONFIG_PPC_BOOK3S_64
119         /* If transactional, change to suspend mode on IRQ delivery */
120         if (MSR_TM_TRANSACTIONAL(msr))
121                 new_msr |= MSR_TS_S;
122         else
123                 new_msr |= msr & MSR_TS_MASK;
124 #endif
125 
126         kvmppc_set_srr0(vcpu, pc);
127         kvmppc_set_srr1(vcpu, (msr & SRR1_MSR_BITS) | srr1_flags);
128         kvmppc_set_pc(vcpu, new_pc);
129         kvmppc_set_msr(vcpu, new_msr);
130 }
131 
132 static void kvmppc_core_vcpu_load_pr(struct kvm_vcpu *vcpu, int cpu)
133 {
134 #ifdef CONFIG_PPC_BOOK3S_64
135         struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
136         memcpy(svcpu->slb, to_book3s(vcpu)->slb_shadow, sizeof(svcpu->slb));
137         svcpu->slb_max = to_book3s(vcpu)->slb_shadow_max;
138         svcpu->in_use = 0;
139         svcpu_put(svcpu);
140 
141         /* Disable AIL if supported */
142         if (cpu_has_feature(CPU_FTR_HVMODE)) {
143                 if (cpu_has_feature(CPU_FTR_ARCH_207S))
144                         mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) & ~LPCR_AIL);
145                 if (cpu_has_feature(CPU_FTR_ARCH_300) && (current->thread.fscr & FSCR_SCV))
146                         mtspr(SPRN_FSCR, mfspr(SPRN_FSCR) & ~FSCR_SCV);
147         }
148 #endif
149 
150         vcpu->cpu = smp_processor_id();
151 #ifdef CONFIG_PPC_BOOK3S_32
152         current->thread.kvm_shadow_vcpu = vcpu->arch.shadow_vcpu;
153 #endif
154 
155         if (kvmppc_is_split_real(vcpu))
156                 kvmppc_fixup_split_real(vcpu);
157 
158         kvmppc_restore_tm_pr(vcpu);
159 }
160 
161 static void kvmppc_core_vcpu_put_pr(struct kvm_vcpu *vcpu)
162 {
163 #ifdef CONFIG_PPC_BOOK3S_64
164         struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
165         if (svcpu->in_use) {
166                 kvmppc_copy_from_svcpu(vcpu);
167         }
168         memcpy(to_book3s(vcpu)->slb_shadow, svcpu->slb, sizeof(svcpu->slb));
169         to_book3s(vcpu)->slb_shadow_max = svcpu->slb_max;
170         svcpu_put(svcpu);
171 
172         /* Enable AIL if supported */
173         if (cpu_has_feature(CPU_FTR_HVMODE)) {
174                 if (cpu_has_feature(CPU_FTR_ARCH_207S))
175                         mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_AIL_3);
176                 if (cpu_has_feature(CPU_FTR_ARCH_300) && (current->thread.fscr & FSCR_SCV))
177                         mtspr(SPRN_FSCR, mfspr(SPRN_FSCR) | FSCR_SCV);
178         }
179 #endif
180 
181         if (kvmppc_is_split_real(vcpu))
182                 kvmppc_unfixup_split_real(vcpu);
183 
184         kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
185         kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
186         kvmppc_save_tm_pr(vcpu);
187 
188         vcpu->cpu = -1;
189 }
190 
191 /* Copy data needed by real-mode code from vcpu to shadow vcpu */
192 void kvmppc_copy_to_svcpu(struct kvm_vcpu *vcpu)
193 {
194         struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
195 
196         svcpu->gpr[0] = vcpu->arch.regs.gpr[0];
197         svcpu->gpr[1] = vcpu->arch.regs.gpr[1];
198         svcpu->gpr[2] = vcpu->arch.regs.gpr[2];
199         svcpu->gpr[3] = vcpu->arch.regs.gpr[3];
200         svcpu->gpr[4] = vcpu->arch.regs.gpr[4];
201         svcpu->gpr[5] = vcpu->arch.regs.gpr[5];
202         svcpu->gpr[6] = vcpu->arch.regs.gpr[6];
203         svcpu->gpr[7] = vcpu->arch.regs.gpr[7];
204         svcpu->gpr[8] = vcpu->arch.regs.gpr[8];
205         svcpu->gpr[9] = vcpu->arch.regs.gpr[9];
206         svcpu->gpr[10] = vcpu->arch.regs.gpr[10];
207         svcpu->gpr[11] = vcpu->arch.regs.gpr[11];
208         svcpu->gpr[12] = vcpu->arch.regs.gpr[12];
209         svcpu->gpr[13] = vcpu->arch.regs.gpr[13];
210         svcpu->cr  = vcpu->arch.regs.ccr;
211         svcpu->xer = vcpu->arch.regs.xer;
212         svcpu->ctr = vcpu->arch.regs.ctr;
213         svcpu->lr  = vcpu->arch.regs.link;
214         svcpu->pc  = vcpu->arch.regs.nip;
215 #ifdef CONFIG_PPC_BOOK3S_64
216         svcpu->shadow_fscr = vcpu->arch.shadow_fscr;
217 #endif
218         /*
219          * Now also save the current time base value. We use this
220          * to find the guest purr and spurr value.
221          */
222         vcpu->arch.entry_tb = get_tb();
223         vcpu->arch.entry_vtb = get_vtb();
224         if (cpu_has_feature(CPU_FTR_ARCH_207S))
225                 vcpu->arch.entry_ic = mfspr(SPRN_IC);
226         svcpu->in_use = true;
227 
228         svcpu_put(svcpu);
229 }
230 
231 static void kvmppc_recalc_shadow_msr(struct kvm_vcpu *vcpu)
232 {
233         ulong guest_msr = kvmppc_get_msr(vcpu);
234         ulong smsr = guest_msr;
235 
236         /* Guest MSR values */
237 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
238         smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE |
239                 MSR_TM | MSR_TS_MASK;
240 #else
241         smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE;
242 #endif
243         /* Process MSR values */
244         smsr |= MSR_ME | MSR_RI | MSR_IR | MSR_DR | MSR_PR | MSR_EE;
245         /* External providers the guest reserved */
246         smsr |= (guest_msr & vcpu->arch.guest_owned_ext);
247         /* 64-bit Process MSR values */
248 #ifdef CONFIG_PPC_BOOK3S_64
249         smsr |= MSR_HV;
250 #endif
251 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
252         /*
253          * in guest privileged state, we want to fail all TM transactions.
254          * So disable MSR TM bit so that all tbegin. will be able to be
255          * trapped into host.
256          */
257         if (!(guest_msr & MSR_PR))
258                 smsr &= ~MSR_TM;
259 #endif
260         vcpu->arch.shadow_msr = smsr;
261 }
262 
263 /* Copy data touched by real-mode code from shadow vcpu back to vcpu */
264 void kvmppc_copy_from_svcpu(struct kvm_vcpu *vcpu)
265 {
266         struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
267 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
268         ulong old_msr;
269 #endif
270 
271         /*
272          * Maybe we were already preempted and synced the svcpu from
273          * our preempt notifiers. Don't bother touching this svcpu then.
274          */
275         if (!svcpu->in_use)
276                 goto out;
277 
278         vcpu->arch.regs.gpr[0] = svcpu->gpr[0];
279         vcpu->arch.regs.gpr[1] = svcpu->gpr[1];
280         vcpu->arch.regs.gpr[2] = svcpu->gpr[2];
281         vcpu->arch.regs.gpr[3] = svcpu->gpr[3];
282         vcpu->arch.regs.gpr[4] = svcpu->gpr[4];
283         vcpu->arch.regs.gpr[5] = svcpu->gpr[5];
284         vcpu->arch.regs.gpr[6] = svcpu->gpr[6];
285         vcpu->arch.regs.gpr[7] = svcpu->gpr[7];
286         vcpu->arch.regs.gpr[8] = svcpu->gpr[8];
287         vcpu->arch.regs.gpr[9] = svcpu->gpr[9];
288         vcpu->arch.regs.gpr[10] = svcpu->gpr[10];
289         vcpu->arch.regs.gpr[11] = svcpu->gpr[11];
290         vcpu->arch.regs.gpr[12] = svcpu->gpr[12];
291         vcpu->arch.regs.gpr[13] = svcpu->gpr[13];
292         vcpu->arch.regs.ccr  = svcpu->cr;
293         vcpu->arch.regs.xer = svcpu->xer;
294         vcpu->arch.regs.ctr = svcpu->ctr;
295         vcpu->arch.regs.link  = svcpu->lr;
296         vcpu->arch.regs.nip  = svcpu->pc;
297         vcpu->arch.shadow_srr1 = svcpu->shadow_srr1;
298         vcpu->arch.fault_dar   = svcpu->fault_dar;
299         vcpu->arch.fault_dsisr = svcpu->fault_dsisr;
300         vcpu->arch.last_inst   = svcpu->last_inst;
301 #ifdef CONFIG_PPC_BOOK3S_64
302         vcpu->arch.shadow_fscr = svcpu->shadow_fscr;
303 #endif
304         /*
305          * Update purr and spurr using time base on exit.
306          */
307         vcpu->arch.purr += get_tb() - vcpu->arch.entry_tb;
308         vcpu->arch.spurr += get_tb() - vcpu->arch.entry_tb;
309         to_book3s(vcpu)->vtb += get_vtb() - vcpu->arch.entry_vtb;
310         if (cpu_has_feature(CPU_FTR_ARCH_207S))
311                 vcpu->arch.ic += mfspr(SPRN_IC) - vcpu->arch.entry_ic;
312 
313 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
314         /*
315          * Unlike other MSR bits, MSR[TS]bits can be changed at guest without
316          * notifying host:
317          *  modified by unprivileged instructions like "tbegin"/"tend"/
318          * "tresume"/"tsuspend" in PR KVM guest.
319          *
320          * It is necessary to sync here to calculate a correct shadow_msr.
321          *
322          * privileged guest's tbegin will be failed at present. So we
323          * only take care of problem state guest.
324          */
325         old_msr = kvmppc_get_msr(vcpu);
326         if (unlikely((old_msr & MSR_PR) &&
327                 (vcpu->arch.shadow_srr1 & (MSR_TS_MASK)) !=
328                                 (old_msr & (MSR_TS_MASK)))) {
329                 old_msr &= ~(MSR_TS_MASK);
330                 old_msr |= (vcpu->arch.shadow_srr1 & (MSR_TS_MASK));
331                 kvmppc_set_msr_fast(vcpu, old_msr);
332                 kvmppc_recalc_shadow_msr(vcpu);
333         }
334 #endif
335 
336         svcpu->in_use = false;
337 
338 out:
339         svcpu_put(svcpu);
340 }
341 
342 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
343 void kvmppc_save_tm_sprs(struct kvm_vcpu *vcpu)
344 {
345         tm_enable();
346         vcpu->arch.tfhar = mfspr(SPRN_TFHAR);
347         vcpu->arch.texasr = mfspr(SPRN_TEXASR);
348         vcpu->arch.tfiar = mfspr(SPRN_TFIAR);
349         tm_disable();
350 }
351 
352 void kvmppc_restore_tm_sprs(struct kvm_vcpu *vcpu)
353 {
354         tm_enable();
355         mtspr(SPRN_TFHAR, vcpu->arch.tfhar);
356         mtspr(SPRN_TEXASR, vcpu->arch.texasr);
357         mtspr(SPRN_TFIAR, vcpu->arch.tfiar);
358         tm_disable();
359 }
360 
361 /* loadup math bits which is enabled at kvmppc_get_msr() but not enabled at
362  * hardware.
363  */
364 static void kvmppc_handle_lost_math_exts(struct kvm_vcpu *vcpu)
365 {
366         ulong exit_nr;
367         ulong ext_diff = (kvmppc_get_msr(vcpu) & ~vcpu->arch.guest_owned_ext) &
368                 (MSR_FP | MSR_VEC | MSR_VSX);
369 
370         if (!ext_diff)
371                 return;
372 
373         if (ext_diff == MSR_FP)
374                 exit_nr = BOOK3S_INTERRUPT_FP_UNAVAIL;
375         else if (ext_diff == MSR_VEC)
376                 exit_nr = BOOK3S_INTERRUPT_ALTIVEC;
377         else
378                 exit_nr = BOOK3S_INTERRUPT_VSX;
379 
380         kvmppc_handle_ext(vcpu, exit_nr, ext_diff);
381 }
382 
383 void kvmppc_save_tm_pr(struct kvm_vcpu *vcpu)
384 {
385         if (!(MSR_TM_ACTIVE(kvmppc_get_msr(vcpu)))) {
386                 kvmppc_save_tm_sprs(vcpu);
387                 return;
388         }
389 
390         kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
391         kvmppc_giveup_ext(vcpu, MSR_VSX);
392 
393         preempt_disable();
394         _kvmppc_save_tm_pr(vcpu, mfmsr());
395         preempt_enable();
396 }
397 
398 void kvmppc_restore_tm_pr(struct kvm_vcpu *vcpu)
399 {
400         if (!MSR_TM_ACTIVE(kvmppc_get_msr(vcpu))) {
401                 kvmppc_restore_tm_sprs(vcpu);
402                 if (kvmppc_get_msr(vcpu) & MSR_TM) {
403                         kvmppc_handle_lost_math_exts(vcpu);
404                         if (vcpu->arch.fscr & FSCR_TAR)
405                                 kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
406                 }
407                 return;
408         }
409 
410         preempt_disable();
411         _kvmppc_restore_tm_pr(vcpu, kvmppc_get_msr(vcpu));
412         preempt_enable();
413 
414         if (kvmppc_get_msr(vcpu) & MSR_TM) {
415                 kvmppc_handle_lost_math_exts(vcpu);
416                 if (vcpu->arch.fscr & FSCR_TAR)
417                         kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
418         }
419 }
420 #endif
421 
422 static int kvmppc_core_check_requests_pr(struct kvm_vcpu *vcpu)
423 {
424         int r = 1; /* Indicate we want to get back into the guest */
425 
426         /* We misuse TLB_FLUSH to indicate that we want to clear
427            all shadow cache entries */
428         if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
429                 kvmppc_mmu_pte_flush(vcpu, 0, 0);
430 
431         return r;
432 }
433 
434 /************* MMU Notifiers *************/
435 static bool do_kvm_unmap_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
436 {
437         unsigned long i;
438         struct kvm_vcpu *vcpu;
439 
440         kvm_for_each_vcpu(i, vcpu, kvm)
441                 kvmppc_mmu_pte_pflush(vcpu, range->start << PAGE_SHIFT,
442                                       range->end << PAGE_SHIFT);
443 
444         return false;
445 }
446 
447 static bool kvm_unmap_gfn_range_pr(struct kvm *kvm, struct kvm_gfn_range *range)
448 {
449         return do_kvm_unmap_gfn(kvm, range);
450 }
451 
452 static bool kvm_age_gfn_pr(struct kvm *kvm, struct kvm_gfn_range *range)
453 {
454         /* XXX could be more clever ;) */
455         return false;
456 }
457 
458 static bool kvm_test_age_gfn_pr(struct kvm *kvm, struct kvm_gfn_range *range)
459 {
460         /* XXX could be more clever ;) */
461         return false;
462 }
463 
464 /*****************************************/
465 
466 static void kvmppc_set_msr_pr(struct kvm_vcpu *vcpu, u64 msr)
467 {
468         ulong old_msr;
469 
470         /* For PAPR guest, make sure MSR reflects guest mode */
471         if (vcpu->arch.papr_enabled)
472                 msr = (msr & ~MSR_HV) | MSR_ME;
473 
474 #ifdef EXIT_DEBUG
475         printk(KERN_INFO "KVM: Set MSR to 0x%llx\n", msr);
476 #endif
477 
478 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
479         /* We should never target guest MSR to TS=10 && PR=0,
480          * since we always fail transaction for guest privilege
481          * state.
482          */
483         if (!(msr & MSR_PR) && MSR_TM_TRANSACTIONAL(msr))
484                 kvmppc_emulate_tabort(vcpu,
485                         TM_CAUSE_KVM_FAC_UNAV | TM_CAUSE_PERSISTENT);
486 #endif
487 
488         old_msr = kvmppc_get_msr(vcpu);
489         msr &= to_book3s(vcpu)->msr_mask;
490         kvmppc_set_msr_fast(vcpu, msr);
491         kvmppc_recalc_shadow_msr(vcpu);
492 
493         if (msr & MSR_POW) {
494                 if (!vcpu->arch.pending_exceptions) {
495                         kvm_vcpu_halt(vcpu);
496                         vcpu->stat.generic.halt_wakeup++;
497 
498                         /* Unset POW bit after we woke up */
499                         msr &= ~MSR_POW;
500                         kvmppc_set_msr_fast(vcpu, msr);
501                 }
502         }
503 
504         if (kvmppc_is_split_real(vcpu))
505                 kvmppc_fixup_split_real(vcpu);
506         else
507                 kvmppc_unfixup_split_real(vcpu);
508 
509         if ((kvmppc_get_msr(vcpu) & (MSR_PR|MSR_IR|MSR_DR)) !=
510                    (old_msr & (MSR_PR|MSR_IR|MSR_DR))) {
511                 kvmppc_mmu_flush_segments(vcpu);
512                 kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
513 
514                 /* Preload magic page segment when in kernel mode */
515                 if (!(msr & MSR_PR) && vcpu->arch.magic_page_pa) {
516                         struct kvm_vcpu_arch *a = &vcpu->arch;
517 
518                         if (msr & MSR_DR)
519                                 kvmppc_mmu_map_segment(vcpu, a->magic_page_ea);
520                         else
521                                 kvmppc_mmu_map_segment(vcpu, a->magic_page_pa);
522                 }
523         }
524 
525         /*
526          * When switching from 32 to 64-bit, we may have a stale 32-bit
527          * magic page around, we need to flush it. Typically 32-bit magic
528          * page will be instantiated when calling into RTAS. Note: We
529          * assume that such transition only happens while in kernel mode,
530          * ie, we never transition from user 32-bit to kernel 64-bit with
531          * a 32-bit magic page around.
532          */
533         if (vcpu->arch.magic_page_pa &&
534             !(old_msr & MSR_PR) && !(old_msr & MSR_SF) && (msr & MSR_SF)) {
535                 /* going from RTAS to normal kernel code */
536                 kvmppc_mmu_pte_flush(vcpu, (uint32_t)vcpu->arch.magic_page_pa,
537                                      ~0xFFFUL);
538         }
539 
540         /* Preload FPU if it's enabled */
541         if (kvmppc_get_msr(vcpu) & MSR_FP)
542                 kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
543 
544 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
545         if (kvmppc_get_msr(vcpu) & MSR_TM)
546                 kvmppc_handle_lost_math_exts(vcpu);
547 #endif
548 }
549 
550 static void kvmppc_set_pvr_pr(struct kvm_vcpu *vcpu, u32 pvr)
551 {
552         u32 host_pvr;
553 
554         vcpu->arch.hflags &= ~BOOK3S_HFLAG_SLB;
555         vcpu->arch.pvr = pvr;
556 #ifdef CONFIG_PPC_BOOK3S_64
557         if ((pvr >= 0x330000) && (pvr < 0x70330000)) {
558                 kvmppc_mmu_book3s_64_init(vcpu);
559                 if (!to_book3s(vcpu)->hior_explicit)
560                         to_book3s(vcpu)->hior = 0xfff00000;
561                 to_book3s(vcpu)->msr_mask = 0xffffffffffffffffULL;
562                 vcpu->arch.cpu_type = KVM_CPU_3S_64;
563         } else
564 #endif
565         {
566                 kvmppc_mmu_book3s_32_init(vcpu);
567                 if (!to_book3s(vcpu)->hior_explicit)
568                         to_book3s(vcpu)->hior = 0;
569                 to_book3s(vcpu)->msr_mask = 0xffffffffULL;
570                 vcpu->arch.cpu_type = KVM_CPU_3S_32;
571         }
572 
573         kvmppc_sanity_check(vcpu);
574 
575         /* If we are in hypervisor level on 970, we can tell the CPU to
576          * treat DCBZ as 32 bytes store */
577         vcpu->arch.hflags &= ~BOOK3S_HFLAG_DCBZ32;
578         if (vcpu->arch.mmu.is_dcbz32(vcpu) && (mfmsr() & MSR_HV) &&
579             !strcmp(cur_cpu_spec->platform, "ppc970"))
580                 vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
581 
582         /* Cell performs badly if MSR_FEx are set. So let's hope nobody
583            really needs them in a VM on Cell and force disable them. */
584         if (!strcmp(cur_cpu_spec->platform, "ppc-cell-be"))
585                 to_book3s(vcpu)->msr_mask &= ~(MSR_FE0 | MSR_FE1);
586 
587         /*
588          * If they're asking for POWER6 or later, set the flag
589          * indicating that we can do multiple large page sizes
590          * and 1TB segments.
591          * Also set the flag that indicates that tlbie has the large
592          * page bit in the RB operand instead of the instruction.
593          */
594         switch (PVR_VER(pvr)) {
595         case PVR_POWER6:
596         case PVR_POWER7:
597         case PVR_POWER7p:
598         case PVR_POWER8:
599         case PVR_POWER8E:
600         case PVR_POWER8NVL:
601         case PVR_HX_C2000:
602         case PVR_POWER9:
603                 vcpu->arch.hflags |= BOOK3S_HFLAG_MULTI_PGSIZE |
604                         BOOK3S_HFLAG_NEW_TLBIE;
605                 break;
606         }
607 
608 #ifdef CONFIG_PPC_BOOK3S_32
609         /* 32 bit Book3S always has 32 byte dcbz */
610         vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
611 #endif
612 
613         /* On some CPUs we can execute paired single operations natively */
614         asm ( "mfpvr %0" : "=r"(host_pvr));
615         switch (host_pvr) {
616         case 0x00080200:        /* lonestar 2.0 */
617         case 0x00088202:        /* lonestar 2.2 */
618         case 0x70000100:        /* gekko 1.0 */
619         case 0x00080100:        /* gekko 2.0 */
620         case 0x00083203:        /* gekko 2.3a */
621         case 0x00083213:        /* gekko 2.3b */
622         case 0x00083204:        /* gekko 2.4 */
623         case 0x00083214:        /* gekko 2.4e (8SE) - retail HW2 */
624         case 0x00087200:        /* broadway */
625                 vcpu->arch.hflags |= BOOK3S_HFLAG_NATIVE_PS;
626                 /* Enable HID2.PSE - in case we need it later */
627                 mtspr(SPRN_HID2_GEKKO, mfspr(SPRN_HID2_GEKKO) | (1 << 29));
628         }
629 }
630 
631 /* Book3s_32 CPUs always have 32 bytes cache line size, which Linux assumes. To
632  * make Book3s_32 Linux work on Book3s_64, we have to make sure we trap dcbz to
633  * emulate 32 bytes dcbz length.
634  *
635  * The Book3s_64 inventors also realized this case and implemented a special bit
636  * in the HID5 register, which is a hypervisor ressource. Thus we can't use it.
637  *
638  * My approach here is to patch the dcbz instruction on executing pages.
639  */
640 static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte)
641 {
642         struct page *hpage;
643         u64 hpage_offset;
644         u32 *page;
645         int i;
646 
647         hpage = gfn_to_page(vcpu->kvm, pte->raddr >> PAGE_SHIFT);
648         if (is_error_page(hpage))
649                 return;
650 
651         hpage_offset = pte->raddr & ~PAGE_MASK;
652         hpage_offset &= ~0xFFFULL;
653         hpage_offset /= 4;
654 
655         get_page(hpage);
656         page = kmap_atomic(hpage);
657 
658         /* patch dcbz into reserved instruction, so we trap */
659         for (i=hpage_offset; i < hpage_offset + (HW_PAGE_SIZE / 4); i++)
660                 if ((be32_to_cpu(page[i]) & 0xff0007ff) == INS_DCBZ)
661                         page[i] &= cpu_to_be32(0xfffffff7);
662 
663         kunmap_atomic(page);
664         put_page(hpage);
665 }
666 
667 static bool kvmppc_visible_gpa(struct kvm_vcpu *vcpu, gpa_t gpa)
668 {
669         ulong mp_pa = vcpu->arch.magic_page_pa;
670 
671         if (!(kvmppc_get_msr(vcpu) & MSR_SF))
672                 mp_pa = (uint32_t)mp_pa;
673 
674         gpa &= ~0xFFFULL;
675         if (unlikely(mp_pa) && unlikely((mp_pa & KVM_PAM) == (gpa & KVM_PAM))) {
676                 return true;
677         }
678 
679         return kvm_is_visible_gfn(vcpu->kvm, gpa >> PAGE_SHIFT);
680 }
681 
682 static int kvmppc_handle_pagefault(struct kvm_vcpu *vcpu,
683                             ulong eaddr, int vec)
684 {
685         bool data = (vec == BOOK3S_INTERRUPT_DATA_STORAGE);
686         bool iswrite = false;
687         int r = RESUME_GUEST;
688         int relocated;
689         int page_found = 0;
690         struct kvmppc_pte pte = { 0 };
691         bool dr = (kvmppc_get_msr(vcpu) & MSR_DR) ? true : false;
692         bool ir = (kvmppc_get_msr(vcpu) & MSR_IR) ? true : false;
693         u64 vsid;
694 
695         relocated = data ? dr : ir;
696         if (data && (vcpu->arch.fault_dsisr & DSISR_ISSTORE))
697                 iswrite = true;
698 
699         /* Resolve real address if translation turned on */
700         if (relocated) {
701                 page_found = vcpu->arch.mmu.xlate(vcpu, eaddr, &pte, data, iswrite);
702         } else {
703                 pte.may_execute = true;
704                 pte.may_read = true;
705                 pte.may_write = true;
706                 pte.raddr = eaddr & KVM_PAM;
707                 pte.eaddr = eaddr;
708                 pte.vpage = eaddr >> 12;
709                 pte.page_size = MMU_PAGE_64K;
710                 pte.wimg = HPTE_R_M;
711         }
712 
713         switch (kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) {
714         case 0:
715                 pte.vpage |= ((u64)VSID_REAL << (SID_SHIFT - 12));
716                 break;
717         case MSR_DR:
718                 if (!data &&
719                     (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) &&
720                     ((pte.raddr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS))
721                         pte.raddr &= ~SPLIT_HACK_MASK;
722                 fallthrough;
723         case MSR_IR:
724                 vcpu->arch.mmu.esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid);
725 
726                 if ((kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) == MSR_DR)
727                         pte.vpage |= ((u64)VSID_REAL_DR << (SID_SHIFT - 12));
728                 else
729                         pte.vpage |= ((u64)VSID_REAL_IR << (SID_SHIFT - 12));
730                 pte.vpage |= vsid;
731 
732                 if (vsid == -1)
733                         page_found = -EINVAL;
734                 break;
735         }
736 
737         if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
738            (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
739                 /*
740                  * If we do the dcbz hack, we have to NX on every execution,
741                  * so we can patch the executing code. This renders our guest
742                  * NX-less.
743                  */
744                 pte.may_execute = !data;
745         }
746 
747         if (page_found == -ENOENT || page_found == -EPERM) {
748                 /* Page not found in guest PTE entries, or protection fault */
749                 u64 flags;
750 
751                 if (page_found == -EPERM)
752                         flags = DSISR_PROTFAULT;
753                 else
754                         flags = DSISR_NOHPTE;
755                 if (data) {
756                         flags |= vcpu->arch.fault_dsisr & DSISR_ISSTORE;
757                         kvmppc_core_queue_data_storage(vcpu, 0, eaddr, flags);
758                 } else {
759                         kvmppc_core_queue_inst_storage(vcpu, flags);
760                 }
761         } else if (page_found == -EINVAL) {
762                 /* Page not found in guest SLB */
763                 kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
764                 kvmppc_book3s_queue_irqprio(vcpu, vec + 0x80);
765         } else if (kvmppc_visible_gpa(vcpu, pte.raddr)) {
766                 if (data && !(vcpu->arch.fault_dsisr & DSISR_NOHPTE)) {
767                         /*
768                          * There is already a host HPTE there, presumably
769                          * a read-only one for a page the guest thinks
770                          * is writable, so get rid of it first.
771                          */
772                         kvmppc_mmu_unmap_page(vcpu, &pte);
773                 }
774                 /* The guest's PTE is not mapped yet. Map on the host */
775                 if (kvmppc_mmu_map_page(vcpu, &pte, iswrite) == -EIO) {
776                         /* Exit KVM if mapping failed */
777                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
778                         return RESUME_HOST;
779                 }
780                 if (data)
781                         vcpu->stat.sp_storage++;
782                 else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
783                          (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32)))
784                         kvmppc_patch_dcbz(vcpu, &pte);
785         } else {
786                 /* MMIO */
787                 vcpu->stat.mmio_exits++;
788                 vcpu->arch.paddr_accessed = pte.raddr;
789                 vcpu->arch.vaddr_accessed = pte.eaddr;
790                 r = kvmppc_emulate_mmio(vcpu);
791                 if ( r == RESUME_HOST_NV )
792                         r = RESUME_HOST;
793         }
794 
795         return r;
796 }
797 
798 /* Give up external provider (FPU, Altivec, VSX) */
799 void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr)
800 {
801         struct thread_struct *t = &current->thread;
802 
803         /*
804          * VSX instructions can access FP and vector registers, so if
805          * we are giving up VSX, make sure we give up FP and VMX as well.
806          */
807         if (msr & MSR_VSX)
808                 msr |= MSR_FP | MSR_VEC;
809 
810         msr &= vcpu->arch.guest_owned_ext;
811         if (!msr)
812                 return;
813 
814 #ifdef DEBUG_EXT
815         printk(KERN_INFO "Giving up ext 0x%lx\n", msr);
816 #endif
817 
818         if (msr & MSR_FP) {
819                 /*
820                  * Note that on CPUs with VSX, giveup_fpu stores
821                  * both the traditional FP registers and the added VSX
822                  * registers into thread.fp_state.fpr[].
823                  */
824                 if (t->regs->msr & MSR_FP)
825                         giveup_fpu(current);
826                 t->fp_save_area = NULL;
827         }
828 
829 #ifdef CONFIG_ALTIVEC
830         if (msr & MSR_VEC) {
831                 if (current->thread.regs->msr & MSR_VEC)
832                         giveup_altivec(current);
833                 t->vr_save_area = NULL;
834         }
835 #endif
836 
837         vcpu->arch.guest_owned_ext &= ~(msr | MSR_VSX);
838         kvmppc_recalc_shadow_msr(vcpu);
839 }
840 
841 /* Give up facility (TAR / EBB / DSCR) */
842 void kvmppc_giveup_fac(struct kvm_vcpu *vcpu, ulong fac)
843 {
844 #ifdef CONFIG_PPC_BOOK3S_64
845         if (!(vcpu->arch.shadow_fscr & (1ULL << fac))) {
846                 /* Facility not available to the guest, ignore giveup request*/
847                 return;
848         }
849 
850         switch (fac) {
851         case FSCR_TAR_LG:
852                 vcpu->arch.tar = mfspr(SPRN_TAR);
853                 mtspr(SPRN_TAR, current->thread.tar);
854                 vcpu->arch.shadow_fscr &= ~FSCR_TAR;
855                 break;
856         }
857 #endif
858 }
859 
860 /* Handle external providers (FPU, Altivec, VSX) */
861 static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
862                              ulong msr)
863 {
864         struct thread_struct *t = &current->thread;
865 
866         /* When we have paired singles, we emulate in software */
867         if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE)
868                 return RESUME_GUEST;
869 
870         if (!(kvmppc_get_msr(vcpu) & msr)) {
871                 kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
872                 return RESUME_GUEST;
873         }
874 
875         if (msr == MSR_VSX) {
876                 /* No VSX?  Give an illegal instruction interrupt */
877 #ifdef CONFIG_VSX
878                 if (!cpu_has_feature(CPU_FTR_VSX))
879 #endif
880                 {
881                         kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
882                         return RESUME_GUEST;
883                 }
884 
885                 /*
886                  * We have to load up all the FP and VMX registers before
887                  * we can let the guest use VSX instructions.
888                  */
889                 msr = MSR_FP | MSR_VEC | MSR_VSX;
890         }
891 
892         /* See if we already own all the ext(s) needed */
893         msr &= ~vcpu->arch.guest_owned_ext;
894         if (!msr)
895                 return RESUME_GUEST;
896 
897 #ifdef DEBUG_EXT
898         printk(KERN_INFO "Loading up ext 0x%lx\n", msr);
899 #endif
900 
901         if (msr & MSR_FP) {
902                 preempt_disable();
903                 enable_kernel_fp();
904                 load_fp_state(&vcpu->arch.fp);
905                 disable_kernel_fp();
906                 t->fp_save_area = &vcpu->arch.fp;
907                 preempt_enable();
908         }
909 
910         if (msr & MSR_VEC) {
911 #ifdef CONFIG_ALTIVEC
912                 preempt_disable();
913                 enable_kernel_altivec();
914                 load_vr_state(&vcpu->arch.vr);
915                 disable_kernel_altivec();
916                 t->vr_save_area = &vcpu->arch.vr;
917                 preempt_enable();
918 #endif
919         }
920 
921         t->regs->msr |= msr;
922         vcpu->arch.guest_owned_ext |= msr;
923         kvmppc_recalc_shadow_msr(vcpu);
924 
925         return RESUME_GUEST;
926 }
927 
928 /*
929  * Kernel code using FP or VMX could have flushed guest state to
930  * the thread_struct; if so, get it back now.
931  */
932 static void kvmppc_handle_lost_ext(struct kvm_vcpu *vcpu)
933 {
934         unsigned long lost_ext;
935 
936         lost_ext = vcpu->arch.guest_owned_ext & ~current->thread.regs->msr;
937         if (!lost_ext)
938                 return;
939 
940         if (lost_ext & MSR_FP) {
941                 preempt_disable();
942                 enable_kernel_fp();
943                 load_fp_state(&vcpu->arch.fp);
944                 disable_kernel_fp();
945                 preempt_enable();
946         }
947 #ifdef CONFIG_ALTIVEC
948         if (lost_ext & MSR_VEC) {
949                 preempt_disable();
950                 enable_kernel_altivec();
951                 load_vr_state(&vcpu->arch.vr);
952                 disable_kernel_altivec();
953                 preempt_enable();
954         }
955 #endif
956         current->thread.regs->msr |= lost_ext;
957 }
958 
959 #ifdef CONFIG_PPC_BOOK3S_64
960 
961 void kvmppc_trigger_fac_interrupt(struct kvm_vcpu *vcpu, ulong fac)
962 {
963         /* Inject the Interrupt Cause field and trigger a guest interrupt */
964         vcpu->arch.fscr &= ~(0xffULL << 56);
965         vcpu->arch.fscr |= (fac << 56);
966         kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_FAC_UNAVAIL);
967 }
968 
969 static void kvmppc_emulate_fac(struct kvm_vcpu *vcpu, ulong fac)
970 {
971         enum emulation_result er = EMULATE_FAIL;
972 
973         if (!(kvmppc_get_msr(vcpu) & MSR_PR))
974                 er = kvmppc_emulate_instruction(vcpu);
975 
976         if ((er != EMULATE_DONE) && (er != EMULATE_AGAIN)) {
977                 /* Couldn't emulate, trigger interrupt in guest */
978                 kvmppc_trigger_fac_interrupt(vcpu, fac);
979         }
980 }
981 
982 /* Enable facilities (TAR, EBB, DSCR) for the guest */
983 static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac)
984 {
985         bool guest_fac_enabled;
986         BUG_ON(!cpu_has_feature(CPU_FTR_ARCH_207S));
987 
988         /*
989          * Not every facility is enabled by FSCR bits, check whether the
990          * guest has this facility enabled at all.
991          */
992         switch (fac) {
993         case FSCR_TAR_LG:
994         case FSCR_EBB_LG:
995                 guest_fac_enabled = (vcpu->arch.fscr & (1ULL << fac));
996                 break;
997         case FSCR_TM_LG:
998                 guest_fac_enabled = kvmppc_get_msr(vcpu) & MSR_TM;
999                 break;
1000         default:
1001                 guest_fac_enabled = false;
1002                 break;
1003         }
1004 
1005         if (!guest_fac_enabled) {
1006                 /* Facility not enabled by the guest */
1007                 kvmppc_trigger_fac_interrupt(vcpu, fac);
1008                 return RESUME_GUEST;
1009         }
1010 
1011         switch (fac) {
1012         case FSCR_TAR_LG:
1013                 /* TAR switching isn't lazy in Linux yet */
1014                 current->thread.tar = mfspr(SPRN_TAR);
1015                 mtspr(SPRN_TAR, vcpu->arch.tar);
1016                 vcpu->arch.shadow_fscr |= FSCR_TAR;
1017                 break;
1018         default:
1019                 kvmppc_emulate_fac(vcpu, fac);
1020                 break;
1021         }
1022 
1023 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1024         /* Since we disabled MSR_TM at privilege state, the mfspr instruction
1025          * for TM spr can trigger TM fac unavailable. In this case, the
1026          * emulation is handled by kvmppc_emulate_fac(), which invokes
1027          * kvmppc_emulate_mfspr() finally. But note the mfspr can include
1028          * RT for NV registers. So it need to restore those NV reg to reflect
1029          * the update.
1030          */
1031         if ((fac == FSCR_TM_LG) && !(kvmppc_get_msr(vcpu) & MSR_PR))
1032                 return RESUME_GUEST_NV;
1033 #endif
1034 
1035         return RESUME_GUEST;
1036 }
1037 
1038 void kvmppc_set_fscr(struct kvm_vcpu *vcpu, u64 fscr)
1039 {
1040         if (fscr & FSCR_SCV)
1041                 fscr &= ~FSCR_SCV; /* SCV must not be enabled */
1042         /* Prohibit prefixed instructions for now */
1043         fscr &= ~FSCR_PREFIX;
1044         if ((vcpu->arch.fscr & FSCR_TAR) && !(fscr & FSCR_TAR)) {
1045                 /* TAR got dropped, drop it in shadow too */
1046                 kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
1047         } else if (!(vcpu->arch.fscr & FSCR_TAR) && (fscr & FSCR_TAR)) {
1048                 vcpu->arch.fscr = fscr;
1049                 kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
1050                 return;
1051         }
1052 
1053         vcpu->arch.fscr = fscr;
1054 }
1055 #endif
1056 
1057 static void kvmppc_setup_debug(struct kvm_vcpu *vcpu)
1058 {
1059         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
1060                 u64 msr = kvmppc_get_msr(vcpu);
1061 
1062                 kvmppc_set_msr(vcpu, msr | MSR_SE);
1063         }
1064 }
1065 
1066 static void kvmppc_clear_debug(struct kvm_vcpu *vcpu)
1067 {
1068         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
1069                 u64 msr = kvmppc_get_msr(vcpu);
1070 
1071                 kvmppc_set_msr(vcpu, msr & ~MSR_SE);
1072         }
1073 }
1074 
1075 static int kvmppc_exit_pr_progint(struct kvm_vcpu *vcpu, unsigned int exit_nr)
1076 {
1077         enum emulation_result er;
1078         ulong flags;
1079         ppc_inst_t last_inst;
1080         int emul, r;
1081 
1082         /*
1083          * shadow_srr1 only contains valid flags if we came here via a program
1084          * exception. The other exceptions (emulation assist, FP unavailable,
1085          * etc.) do not provide flags in SRR1, so use an illegal-instruction
1086          * exception when injecting a program interrupt into the guest.
1087          */
1088         if (exit_nr == BOOK3S_INTERRUPT_PROGRAM)
1089                 flags = vcpu->arch.shadow_srr1 & 0x1f0000ull;
1090         else
1091                 flags = SRR1_PROGILL;
1092 
1093         emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
1094         if (emul != EMULATE_DONE)
1095                 return RESUME_GUEST;
1096 
1097         if (kvmppc_get_msr(vcpu) & MSR_PR) {
1098 #ifdef EXIT_DEBUG
1099                 pr_info("Userspace triggered 0x700 exception at\n 0x%lx (0x%x)\n",
1100                         kvmppc_get_pc(vcpu), ppc_inst_val(last_inst));
1101 #endif
1102                 if ((ppc_inst_val(last_inst) & 0xff0007ff) != (INS_DCBZ & 0xfffffff7)) {
1103                         kvmppc_core_queue_program(vcpu, flags);
1104                         return RESUME_GUEST;
1105                 }
1106         }
1107 
1108         vcpu->stat.emulated_inst_exits++;
1109         er = kvmppc_emulate_instruction(vcpu);
1110         switch (er) {
1111         case EMULATE_DONE:
1112                 r = RESUME_GUEST_NV;
1113                 break;
1114         case EMULATE_AGAIN:
1115                 r = RESUME_GUEST;
1116                 break;
1117         case EMULATE_FAIL:
1118                 pr_crit("%s: emulation at %lx failed (%08x)\n",
1119                         __func__, kvmppc_get_pc(vcpu), ppc_inst_val(last_inst));
1120                 kvmppc_core_queue_program(vcpu, flags);
1121                 r = RESUME_GUEST;
1122                 break;
1123         case EMULATE_DO_MMIO:
1124                 vcpu->run->exit_reason = KVM_EXIT_MMIO;
1125                 r = RESUME_HOST_NV;
1126                 break;
1127         case EMULATE_EXIT_USER:
1128                 r = RESUME_HOST_NV;
1129                 break;
1130         default:
1131                 BUG();
1132         }
1133 
1134         return r;
1135 }
1136 
1137 int kvmppc_handle_exit_pr(struct kvm_vcpu *vcpu, unsigned int exit_nr)
1138 {
1139         struct kvm_run *run = vcpu->run;
1140         int r = RESUME_HOST;
1141         int s;
1142 
1143         vcpu->stat.sum_exits++;
1144 
1145         run->exit_reason = KVM_EXIT_UNKNOWN;
1146         run->ready_for_interrupt_injection = 1;
1147 
1148         /* We get here with MSR.EE=1 */
1149 
1150         trace_kvm_exit(exit_nr, vcpu);
1151         guest_exit();
1152 
1153         switch (exit_nr) {
1154         case BOOK3S_INTERRUPT_INST_STORAGE:
1155         {
1156                 ulong shadow_srr1 = vcpu->arch.shadow_srr1;
1157                 vcpu->stat.pf_instruc++;
1158 
1159                 if (kvmppc_is_split_real(vcpu))
1160                         kvmppc_fixup_split_real(vcpu);
1161 
1162 #ifdef CONFIG_PPC_BOOK3S_32
1163                 /* We set segments as unused segments when invalidating them. So
1164                  * treat the respective fault as segment fault. */
1165                 {
1166                         struct kvmppc_book3s_shadow_vcpu *svcpu;
1167                         u32 sr;
1168 
1169                         svcpu = svcpu_get(vcpu);
1170                         sr = svcpu->sr[kvmppc_get_pc(vcpu) >> SID_SHIFT];
1171                         svcpu_put(svcpu);
1172                         if (sr == SR_INVALID) {
1173                                 kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
1174                                 r = RESUME_GUEST;
1175                                 break;
1176                         }
1177                 }
1178 #endif
1179 
1180                 /* only care about PTEG not found errors, but leave NX alone */
1181                 if (shadow_srr1 & 0x40000000) {
1182                         int idx = srcu_read_lock(&vcpu->kvm->srcu);
1183                         r = kvmppc_handle_pagefault(vcpu, kvmppc_get_pc(vcpu), exit_nr);
1184                         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1185                         vcpu->stat.sp_instruc++;
1186                 } else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
1187                           (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
1188                         /*
1189                          * XXX If we do the dcbz hack we use the NX bit to flush&patch the page,
1190                          *     so we can't use the NX bit inside the guest. Let's cross our fingers,
1191                          *     that no guest that needs the dcbz hack does NX.
1192                          */
1193                         kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL);
1194                         r = RESUME_GUEST;
1195                 } else {
1196                         kvmppc_core_queue_inst_storage(vcpu,
1197                                                 shadow_srr1 & 0x58000000);
1198                         r = RESUME_GUEST;
1199                 }
1200                 break;
1201         }
1202         case BOOK3S_INTERRUPT_DATA_STORAGE:
1203         {
1204                 ulong dar = kvmppc_get_fault_dar(vcpu);
1205                 u32 fault_dsisr = vcpu->arch.fault_dsisr;
1206                 vcpu->stat.pf_storage++;
1207 
1208 #ifdef CONFIG_PPC_BOOK3S_32
1209                 /* We set segments as unused segments when invalidating them. So
1210                  * treat the respective fault as segment fault. */
1211                 {
1212                         struct kvmppc_book3s_shadow_vcpu *svcpu;
1213                         u32 sr;
1214 
1215                         svcpu = svcpu_get(vcpu);
1216                         sr = svcpu->sr[dar >> SID_SHIFT];
1217                         svcpu_put(svcpu);
1218                         if (sr == SR_INVALID) {
1219                                 kvmppc_mmu_map_segment(vcpu, dar);
1220                                 r = RESUME_GUEST;
1221                                 break;
1222                         }
1223                 }
1224 #endif
1225 
1226                 /*
1227                  * We need to handle missing shadow PTEs, and
1228                  * protection faults due to us mapping a page read-only
1229                  * when the guest thinks it is writable.
1230                  */
1231                 if (fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT)) {
1232                         int idx = srcu_read_lock(&vcpu->kvm->srcu);
1233                         r = kvmppc_handle_pagefault(vcpu, dar, exit_nr);
1234                         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1235                 } else {
1236                         kvmppc_core_queue_data_storage(vcpu, 0, dar, fault_dsisr);
1237                         r = RESUME_GUEST;
1238                 }
1239                 break;
1240         }
1241         case BOOK3S_INTERRUPT_DATA_SEGMENT:
1242                 if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_fault_dar(vcpu)) < 0) {
1243                         kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
1244                         kvmppc_book3s_queue_irqprio(vcpu,
1245                                 BOOK3S_INTERRUPT_DATA_SEGMENT);
1246                 }
1247                 r = RESUME_GUEST;
1248                 break;
1249         case BOOK3S_INTERRUPT_INST_SEGMENT:
1250                 if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)) < 0) {
1251                         kvmppc_book3s_queue_irqprio(vcpu,
1252                                 BOOK3S_INTERRUPT_INST_SEGMENT);
1253                 }
1254                 r = RESUME_GUEST;
1255                 break;
1256         /* We're good on these - the host merely wanted to get our attention */
1257         case BOOK3S_INTERRUPT_DECREMENTER:
1258         case BOOK3S_INTERRUPT_HV_DECREMENTER:
1259         case BOOK3S_INTERRUPT_DOORBELL:
1260         case BOOK3S_INTERRUPT_H_DOORBELL:
1261                 vcpu->stat.dec_exits++;
1262                 r = RESUME_GUEST;
1263                 break;
1264         case BOOK3S_INTERRUPT_EXTERNAL:
1265         case BOOK3S_INTERRUPT_EXTERNAL_HV:
1266         case BOOK3S_INTERRUPT_H_VIRT:
1267                 vcpu->stat.ext_intr_exits++;
1268                 r = RESUME_GUEST;
1269                 break;
1270         case BOOK3S_INTERRUPT_HMI:
1271         case BOOK3S_INTERRUPT_PERFMON:
1272         case BOOK3S_INTERRUPT_SYSTEM_RESET:
1273                 r = RESUME_GUEST;
1274                 break;
1275         case BOOK3S_INTERRUPT_PROGRAM:
1276         case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1277                 r = kvmppc_exit_pr_progint(vcpu, exit_nr);
1278                 break;
1279         case BOOK3S_INTERRUPT_SYSCALL:
1280         {
1281                 ppc_inst_t last_sc;
1282                 int emul;
1283 
1284                 /* Get last sc for papr */
1285                 if (vcpu->arch.papr_enabled) {
1286                         /* The sc instruction points SRR0 to the next inst */
1287                         emul = kvmppc_get_last_inst(vcpu, INST_SC, &last_sc);
1288                         if (emul != EMULATE_DONE) {
1289                                 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) - 4);
1290                                 r = RESUME_GUEST;
1291                                 break;
1292                         }
1293                 }
1294 
1295                 if (vcpu->arch.papr_enabled &&
1296                     (ppc_inst_val(last_sc) == 0x44000022) &&
1297                     !(kvmppc_get_msr(vcpu) & MSR_PR)) {
1298                         /* SC 1 papr hypercalls */
1299                         ulong cmd = kvmppc_get_gpr(vcpu, 3);
1300                         int i;
1301 
1302 #ifdef CONFIG_PPC_BOOK3S_64
1303                         if (kvmppc_h_pr(vcpu, cmd) == EMULATE_DONE) {
1304                                 r = RESUME_GUEST;
1305                                 break;
1306                         }
1307 #endif
1308 
1309                         run->papr_hcall.nr = cmd;
1310                         for (i = 0; i < 9; ++i) {
1311                                 ulong gpr = kvmppc_get_gpr(vcpu, 4 + i);
1312                                 run->papr_hcall.args[i] = gpr;
1313                         }
1314                         run->exit_reason = KVM_EXIT_PAPR_HCALL;
1315                         vcpu->arch.hcall_needed = 1;
1316                         r = RESUME_HOST;
1317                 } else if (vcpu->arch.osi_enabled &&
1318                     (((u32)kvmppc_get_gpr(vcpu, 3)) == OSI_SC_MAGIC_R3) &&
1319                     (((u32)kvmppc_get_gpr(vcpu, 4)) == OSI_SC_MAGIC_R4)) {
1320                         /* MOL hypercalls */
1321                         u64 *gprs = run->osi.gprs;
1322                         int i;
1323 
1324                         run->exit_reason = KVM_EXIT_OSI;
1325                         for (i = 0; i < 32; i++)
1326                                 gprs[i] = kvmppc_get_gpr(vcpu, i);
1327                         vcpu->arch.osi_needed = 1;
1328                         r = RESUME_HOST_NV;
1329                 } else if (!(kvmppc_get_msr(vcpu) & MSR_PR) &&
1330                     (((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) {
1331                         /* KVM PV hypercalls */
1332                         kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu));
1333                         r = RESUME_GUEST;
1334                 } else {
1335                         /* Guest syscalls */
1336                         vcpu->stat.syscall_exits++;
1337                         kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1338                         r = RESUME_GUEST;
1339                 }
1340                 break;
1341         }
1342         case BOOK3S_INTERRUPT_FP_UNAVAIL:
1343         case BOOK3S_INTERRUPT_ALTIVEC:
1344         case BOOK3S_INTERRUPT_VSX:
1345         {
1346                 int ext_msr = 0;
1347                 int emul;
1348                 ppc_inst_t last_inst;
1349 
1350                 if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE) {
1351                         /* Do paired single instruction emulation */
1352                         emul = kvmppc_get_last_inst(vcpu, INST_GENERIC,
1353                                                     &last_inst);
1354                         if (emul == EMULATE_DONE)
1355                                 r = kvmppc_exit_pr_progint(vcpu, exit_nr);
1356                         else
1357                                 r = RESUME_GUEST;
1358 
1359                         break;
1360                 }
1361 
1362                 /* Enable external provider */
1363                 switch (exit_nr) {
1364                 case BOOK3S_INTERRUPT_FP_UNAVAIL:
1365                         ext_msr = MSR_FP;
1366                         break;
1367 
1368                 case BOOK3S_INTERRUPT_ALTIVEC:
1369                         ext_msr = MSR_VEC;
1370                         break;
1371 
1372                 case BOOK3S_INTERRUPT_VSX:
1373                         ext_msr = MSR_VSX;
1374                         break;
1375                 }
1376 
1377                 r = kvmppc_handle_ext(vcpu, exit_nr, ext_msr);
1378                 break;
1379         }
1380         case BOOK3S_INTERRUPT_ALIGNMENT:
1381         {
1382                 ppc_inst_t last_inst;
1383                 int emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
1384 
1385                 if (emul == EMULATE_DONE) {
1386                         u32 dsisr;
1387                         u64 dar;
1388 
1389                         dsisr = kvmppc_alignment_dsisr(vcpu, ppc_inst_val(last_inst));
1390                         dar = kvmppc_alignment_dar(vcpu, ppc_inst_val(last_inst));
1391 
1392                         kvmppc_set_dsisr(vcpu, dsisr);
1393                         kvmppc_set_dar(vcpu, dar);
1394 
1395                         kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1396                 }
1397                 r = RESUME_GUEST;
1398                 break;
1399         }
1400 #ifdef CONFIG_PPC_BOOK3S_64
1401         case BOOK3S_INTERRUPT_FAC_UNAVAIL:
1402                 r = kvmppc_handle_fac(vcpu, vcpu->arch.shadow_fscr >> 56);
1403                 break;
1404 #endif
1405         case BOOK3S_INTERRUPT_MACHINE_CHECK:
1406                 kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1407                 r = RESUME_GUEST;
1408                 break;
1409         case BOOK3S_INTERRUPT_TRACE:
1410                 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
1411                         run->exit_reason = KVM_EXIT_DEBUG;
1412                         r = RESUME_HOST;
1413                 } else {
1414                         kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1415                         r = RESUME_GUEST;
1416                 }
1417                 break;
1418         default:
1419         {
1420                 ulong shadow_srr1 = vcpu->arch.shadow_srr1;
1421                 /* Ugh - bork here! What did we get? */
1422                 printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | msr=0x%lx\n",
1423                         exit_nr, kvmppc_get_pc(vcpu), shadow_srr1);
1424                 r = RESUME_HOST;
1425                 BUG();
1426                 break;
1427         }
1428         }
1429 
1430         if (!(r & RESUME_HOST)) {
1431                 /* To avoid clobbering exit_reason, only check for signals if
1432                  * we aren't already exiting to userspace for some other
1433                  * reason. */
1434 
1435                 /*
1436                  * Interrupts could be timers for the guest which we have to
1437                  * inject again, so let's postpone them until we're in the guest
1438                  * and if we really did time things so badly, then we just exit
1439                  * again due to a host external interrupt.
1440                  */
1441                 s = kvmppc_prepare_to_enter(vcpu);
1442                 if (s <= 0)
1443                         r = s;
1444                 else {
1445                         /* interrupts now hard-disabled */
1446                         kvmppc_fix_ee_before_entry();
1447                 }
1448 
1449                 kvmppc_handle_lost_ext(vcpu);
1450         }
1451 
1452         trace_kvm_book3s_reenter(r, vcpu);
1453 
1454         return r;
1455 }
1456 
1457 static int kvm_arch_vcpu_ioctl_get_sregs_pr(struct kvm_vcpu *vcpu,
1458                                             struct kvm_sregs *sregs)
1459 {
1460         struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
1461         int i;
1462 
1463         sregs->pvr = vcpu->arch.pvr;
1464 
1465         sregs->u.s.sdr1 = to_book3s(vcpu)->sdr1;
1466         if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
1467                 for (i = 0; i < 64; i++) {
1468                         sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige | i;
1469                         sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1470                 }
1471         } else {
1472                 for (i = 0; i < 16; i++)
1473                         sregs->u.s.ppc32.sr[i] = kvmppc_get_sr(vcpu, i);
1474 
1475                 for (i = 0; i < 8; i++) {
1476                         sregs->u.s.ppc32.ibat[i] = vcpu3s->ibat[i].raw;
1477                         sregs->u.s.ppc32.dbat[i] = vcpu3s->dbat[i].raw;
1478                 }
1479         }
1480 
1481         return 0;
1482 }
1483 
1484 static int kvm_arch_vcpu_ioctl_set_sregs_pr(struct kvm_vcpu *vcpu,
1485                                             struct kvm_sregs *sregs)
1486 {
1487         struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
1488         int i;
1489 
1490         kvmppc_set_pvr_pr(vcpu, sregs->pvr);
1491 
1492         vcpu3s->sdr1 = sregs->u.s.sdr1;
1493 #ifdef CONFIG_PPC_BOOK3S_64
1494         if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
1495                 /* Flush all SLB entries */
1496                 vcpu->arch.mmu.slbmte(vcpu, 0, 0);
1497                 vcpu->arch.mmu.slbia(vcpu);
1498 
1499                 for (i = 0; i < 64; i++) {
1500                         u64 rb = sregs->u.s.ppc64.slb[i].slbe;
1501                         u64 rs = sregs->u.s.ppc64.slb[i].slbv;
1502 
1503                         if (rb & SLB_ESID_V)
1504                                 vcpu->arch.mmu.slbmte(vcpu, rs, rb);
1505                 }
1506         } else
1507 #endif
1508         {
1509                 for (i = 0; i < 16; i++) {
1510                         vcpu->arch.mmu.mtsrin(vcpu, i, sregs->u.s.ppc32.sr[i]);
1511                 }
1512                 for (i = 0; i < 8; i++) {
1513                         kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), false,
1514                                        (u32)sregs->u.s.ppc32.ibat[i]);
1515                         kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), true,
1516                                        (u32)(sregs->u.s.ppc32.ibat[i] >> 32));
1517                         kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), false,
1518                                        (u32)sregs->u.s.ppc32.dbat[i]);
1519                         kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), true,
1520                                        (u32)(sregs->u.s.ppc32.dbat[i] >> 32));
1521                 }
1522         }
1523 
1524         /* Flush the MMU after messing with the segments */
1525         kvmppc_mmu_pte_flush(vcpu, 0, 0);
1526 
1527         return 0;
1528 }
1529 
1530 static int kvmppc_get_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
1531                                  union kvmppc_one_reg *val)
1532 {
1533         int r = 0;
1534 
1535         switch (id) {
1536         case KVM_REG_PPC_DEBUG_INST:
1537                 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1538                 break;
1539         case KVM_REG_PPC_HIOR:
1540                 *val = get_reg_val(id, to_book3s(vcpu)->hior);
1541                 break;
1542         case KVM_REG_PPC_VTB:
1543                 *val = get_reg_val(id, to_book3s(vcpu)->vtb);
1544                 break;
1545         case KVM_REG_PPC_LPCR:
1546         case KVM_REG_PPC_LPCR_64:
1547                 /*
1548                  * We are only interested in the LPCR_ILE bit
1549                  */
1550                 if (vcpu->arch.intr_msr & MSR_LE)
1551                         *val = get_reg_val(id, LPCR_ILE);
1552                 else
1553                         *val = get_reg_val(id, 0);
1554                 break;
1555 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1556         case KVM_REG_PPC_TFHAR:
1557                 *val = get_reg_val(id, vcpu->arch.tfhar);
1558                 break;
1559         case KVM_REG_PPC_TFIAR:
1560                 *val = get_reg_val(id, vcpu->arch.tfiar);
1561                 break;
1562         case KVM_REG_PPC_TEXASR:
1563                 *val = get_reg_val(id, vcpu->arch.texasr);
1564                 break;
1565         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1566                 *val = get_reg_val(id,
1567                                 vcpu->arch.gpr_tm[id-KVM_REG_PPC_TM_GPR0]);
1568                 break;
1569         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1570         {
1571                 int i, j;
1572 
1573                 i = id - KVM_REG_PPC_TM_VSR0;
1574                 if (i < 32)
1575                         for (j = 0; j < TS_FPRWIDTH; j++)
1576                                 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1577                 else {
1578                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1579                                 val->vval = vcpu->arch.vr_tm.vr[i-32];
1580                         else
1581                                 r = -ENXIO;
1582                 }
1583                 break;
1584         }
1585         case KVM_REG_PPC_TM_CR:
1586                 *val = get_reg_val(id, vcpu->arch.cr_tm);
1587                 break;
1588         case KVM_REG_PPC_TM_XER:
1589                 *val = get_reg_val(id, vcpu->arch.xer_tm);
1590                 break;
1591         case KVM_REG_PPC_TM_LR:
1592                 *val = get_reg_val(id, vcpu->arch.lr_tm);
1593                 break;
1594         case KVM_REG_PPC_TM_CTR:
1595                 *val = get_reg_val(id, vcpu->arch.ctr_tm);
1596                 break;
1597         case KVM_REG_PPC_TM_FPSCR:
1598                 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1599                 break;
1600         case KVM_REG_PPC_TM_AMR:
1601                 *val = get_reg_val(id, vcpu->arch.amr_tm);
1602                 break;
1603         case KVM_REG_PPC_TM_PPR:
1604                 *val = get_reg_val(id, vcpu->arch.ppr_tm);
1605                 break;
1606         case KVM_REG_PPC_TM_VRSAVE:
1607                 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1608                 break;
1609         case KVM_REG_PPC_TM_VSCR:
1610                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1611                         *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1612                 else
1613                         r = -ENXIO;
1614                 break;
1615         case KVM_REG_PPC_TM_DSCR:
1616                 *val = get_reg_val(id, vcpu->arch.dscr_tm);
1617                 break;
1618         case KVM_REG_PPC_TM_TAR:
1619                 *val = get_reg_val(id, vcpu->arch.tar_tm);
1620                 break;
1621 #endif
1622         default:
1623                 r = -EINVAL;
1624                 break;
1625         }
1626 
1627         return r;
1628 }
1629 
1630 static void kvmppc_set_lpcr_pr(struct kvm_vcpu *vcpu, u64 new_lpcr)
1631 {
1632         if (new_lpcr & LPCR_ILE)
1633                 vcpu->arch.intr_msr |= MSR_LE;
1634         else
1635                 vcpu->arch.intr_msr &= ~MSR_LE;
1636 }
1637 
1638 static int kvmppc_set_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
1639                                  union kvmppc_one_reg *val)
1640 {
1641         int r = 0;
1642 
1643         switch (id) {
1644         case KVM_REG_PPC_HIOR:
1645                 to_book3s(vcpu)->hior = set_reg_val(id, *val);
1646                 to_book3s(vcpu)->hior_explicit = true;
1647                 break;
1648         case KVM_REG_PPC_VTB:
1649                 to_book3s(vcpu)->vtb = set_reg_val(id, *val);
1650                 break;
1651         case KVM_REG_PPC_LPCR:
1652         case KVM_REG_PPC_LPCR_64:
1653                 kvmppc_set_lpcr_pr(vcpu, set_reg_val(id, *val));
1654                 break;
1655 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1656         case KVM_REG_PPC_TFHAR:
1657                 vcpu->arch.tfhar = set_reg_val(id, *val);
1658                 break;
1659         case KVM_REG_PPC_TFIAR:
1660                 vcpu->arch.tfiar = set_reg_val(id, *val);
1661                 break;
1662         case KVM_REG_PPC_TEXASR:
1663                 vcpu->arch.texasr = set_reg_val(id, *val);
1664                 break;
1665         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1666                 vcpu->arch.gpr_tm[id - KVM_REG_PPC_TM_GPR0] =
1667                         set_reg_val(id, *val);
1668                 break;
1669         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1670         {
1671                 int i, j;
1672 
1673                 i = id - KVM_REG_PPC_TM_VSR0;
1674                 if (i < 32)
1675                         for (j = 0; j < TS_FPRWIDTH; j++)
1676                                 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1677                 else
1678                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1679                                 vcpu->arch.vr_tm.vr[i-32] = val->vval;
1680                         else
1681                                 r = -ENXIO;
1682                 break;
1683         }
1684         case KVM_REG_PPC_TM_CR:
1685                 vcpu->arch.cr_tm = set_reg_val(id, *val);
1686                 break;
1687         case KVM_REG_PPC_TM_XER:
1688                 vcpu->arch.xer_tm = set_reg_val(id, *val);
1689                 break;
1690         case KVM_REG_PPC_TM_LR:
1691                 vcpu->arch.lr_tm = set_reg_val(id, *val);
1692                 break;
1693         case KVM_REG_PPC_TM_CTR:
1694                 vcpu->arch.ctr_tm = set_reg_val(id, *val);
1695                 break;
1696         case KVM_REG_PPC_TM_FPSCR:
1697                 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1698                 break;
1699         case KVM_REG_PPC_TM_AMR:
1700                 vcpu->arch.amr_tm = set_reg_val(id, *val);
1701                 break;
1702         case KVM_REG_PPC_TM_PPR:
1703                 vcpu->arch.ppr_tm = set_reg_val(id, *val);
1704                 break;
1705         case KVM_REG_PPC_TM_VRSAVE:
1706                 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1707                 break;
1708         case KVM_REG_PPC_TM_VSCR:
1709                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1710                         vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1711                 else
1712                         r = -ENXIO;
1713                 break;
1714         case KVM_REG_PPC_TM_DSCR:
1715                 vcpu->arch.dscr_tm = set_reg_val(id, *val);
1716                 break;
1717         case KVM_REG_PPC_TM_TAR:
1718                 vcpu->arch.tar_tm = set_reg_val(id, *val);
1719                 break;
1720 #endif
1721         default:
1722                 r = -EINVAL;
1723                 break;
1724         }
1725 
1726         return r;
1727 }
1728 
1729 static int kvmppc_core_vcpu_create_pr(struct kvm_vcpu *vcpu)
1730 {
1731         struct kvmppc_vcpu_book3s *vcpu_book3s;
1732         unsigned long p;
1733         int err;
1734 
1735         err = -ENOMEM;
1736 
1737         vcpu_book3s = vzalloc(sizeof(struct kvmppc_vcpu_book3s));
1738         if (!vcpu_book3s)
1739                 goto out;
1740         vcpu->arch.book3s = vcpu_book3s;
1741 
1742 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1743         vcpu->arch.shadow_vcpu =
1744                 kzalloc(sizeof(*vcpu->arch.shadow_vcpu), GFP_KERNEL);
1745         if (!vcpu->arch.shadow_vcpu)
1746                 goto free_vcpu3s;
1747 #endif
1748 
1749         p = __get_free_page(GFP_KERNEL|__GFP_ZERO);
1750         if (!p)
1751                 goto free_shadow_vcpu;
1752         vcpu->arch.shared = (void *)p;
1753 #ifdef CONFIG_PPC_BOOK3S_64
1754         /* Always start the shared struct in native endian mode */
1755 #ifdef __BIG_ENDIAN__
1756         vcpu->arch.shared_big_endian = true;
1757 #else
1758         vcpu->arch.shared_big_endian = false;
1759 #endif
1760 
1761         /*
1762          * Default to the same as the host if we're on sufficiently
1763          * recent machine that we have 1TB segments;
1764          * otherwise default to PPC970FX.
1765          */
1766         vcpu->arch.pvr = 0x3C0301;
1767         if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1768                 vcpu->arch.pvr = mfspr(SPRN_PVR);
1769         vcpu->arch.intr_msr = MSR_SF;
1770 #else
1771         /* default to book3s_32 (750) */
1772         vcpu->arch.pvr = 0x84202;
1773         vcpu->arch.intr_msr = 0;
1774 #endif
1775         kvmppc_set_pvr_pr(vcpu, vcpu->arch.pvr);
1776         vcpu->arch.slb_nr = 64;
1777 
1778         vcpu->arch.shadow_msr = MSR_USER64 & ~MSR_LE;
1779 
1780         err = kvmppc_mmu_init_pr(vcpu);
1781         if (err < 0)
1782                 goto free_shared_page;
1783 
1784         return 0;
1785 
1786 free_shared_page:
1787         free_page((unsigned long)vcpu->arch.shared);
1788 free_shadow_vcpu:
1789 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1790         kfree(vcpu->arch.shadow_vcpu);
1791 free_vcpu3s:
1792 #endif
1793         vfree(vcpu_book3s);
1794 out:
1795         return err;
1796 }
1797 
1798 static void kvmppc_core_vcpu_free_pr(struct kvm_vcpu *vcpu)
1799 {
1800         struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
1801 
1802         kvmppc_mmu_destroy_pr(vcpu);
1803         free_page((unsigned long)vcpu->arch.shared & PAGE_MASK);
1804 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1805         kfree(vcpu->arch.shadow_vcpu);
1806 #endif
1807         vfree(vcpu_book3s);
1808 }
1809 
1810 static int kvmppc_vcpu_run_pr(struct kvm_vcpu *vcpu)
1811 {
1812         int ret;
1813 
1814         /* Check if we can run the vcpu at all */
1815         if (!vcpu->arch.sane) {
1816                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1817                 ret = -EINVAL;
1818                 goto out;
1819         }
1820 
1821         kvmppc_setup_debug(vcpu);
1822 
1823         /*
1824          * Interrupts could be timers for the guest which we have to inject
1825          * again, so let's postpone them until we're in the guest and if we
1826          * really did time things so badly, then we just exit again due to
1827          * a host external interrupt.
1828          */
1829         ret = kvmppc_prepare_to_enter(vcpu);
1830         if (ret <= 0)
1831                 goto out;
1832         /* interrupts now hard-disabled */
1833 
1834         /* Save FPU, Altivec and VSX state */
1835         giveup_all(current);
1836 
1837         /* Preload FPU if it's enabled */
1838         if (kvmppc_get_msr(vcpu) & MSR_FP)
1839                 kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
1840 
1841         kvmppc_fix_ee_before_entry();
1842 
1843         ret = __kvmppc_vcpu_run(vcpu);
1844 
1845         kvmppc_clear_debug(vcpu);
1846 
1847         /* No need for guest_exit. It's done in handle_exit.
1848            We also get here with interrupts enabled. */
1849 
1850         /* Make sure we save the guest FPU/Altivec/VSX state */
1851         kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
1852 
1853         /* Make sure we save the guest TAR/EBB/DSCR state */
1854         kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
1855 
1856         srr_regs_clobbered();
1857 out:
1858         vcpu->mode = OUTSIDE_GUEST_MODE;
1859         return ret;
1860 }
1861 
1862 /*
1863  * Get (and clear) the dirty memory log for a memory slot.
1864  */
1865 static int kvm_vm_ioctl_get_dirty_log_pr(struct kvm *kvm,
1866                                          struct kvm_dirty_log *log)
1867 {
1868         struct kvm_memory_slot *memslot;
1869         struct kvm_vcpu *vcpu;
1870         ulong ga, ga_end;
1871         int is_dirty = 0;
1872         int r;
1873         unsigned long n;
1874 
1875         mutex_lock(&kvm->slots_lock);
1876 
1877         r = kvm_get_dirty_log(kvm, log, &is_dirty, &memslot);
1878         if (r)
1879                 goto out;
1880 
1881         /* If nothing is dirty, don't bother messing with page tables. */
1882         if (is_dirty) {
1883                 ga = memslot->base_gfn << PAGE_SHIFT;
1884                 ga_end = ga + (memslot->npages << PAGE_SHIFT);
1885 
1886                 kvm_for_each_vcpu(n, vcpu, kvm)
1887                         kvmppc_mmu_pte_pflush(vcpu, ga, ga_end);
1888 
1889                 n = kvm_dirty_bitmap_bytes(memslot);
1890                 memset(memslot->dirty_bitmap, 0, n);
1891         }
1892 
1893         r = 0;
1894 out:
1895         mutex_unlock(&kvm->slots_lock);
1896         return r;
1897 }
1898 
1899 static void kvmppc_core_flush_memslot_pr(struct kvm *kvm,
1900                                          struct kvm_memory_slot *memslot)
1901 {
1902         return;
1903 }
1904 
1905 static int kvmppc_core_prepare_memory_region_pr(struct kvm *kvm,
1906                                 const struct kvm_memory_slot *old,
1907                                 struct kvm_memory_slot *new,
1908                                 enum kvm_mr_change change)
1909 {
1910         return 0;
1911 }
1912 
1913 static void kvmppc_core_commit_memory_region_pr(struct kvm *kvm,
1914                                 struct kvm_memory_slot *old,
1915                                 const struct kvm_memory_slot *new,
1916                                 enum kvm_mr_change change)
1917 {
1918         return;
1919 }
1920 
1921 static void kvmppc_core_free_memslot_pr(struct kvm_memory_slot *slot)
1922 {
1923         return;
1924 }
1925 
1926 #ifdef CONFIG_PPC64
1927 static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
1928                                          struct kvm_ppc_smmu_info *info)
1929 {
1930         long int i;
1931         struct kvm_vcpu *vcpu;
1932 
1933         info->flags = 0;
1934 
1935         /* SLB is always 64 entries */
1936         info->slb_size = 64;
1937 
1938         /* Standard 4k base page size segment */
1939         info->sps[0].page_shift = 12;
1940         info->sps[0].slb_enc = 0;
1941         info->sps[0].enc[0].page_shift = 12;
1942         info->sps[0].enc[0].pte_enc = 0;
1943 
1944         /*
1945          * 64k large page size.
1946          * We only want to put this in if the CPUs we're emulating
1947          * support it, but unfortunately we don't have a vcpu easily
1948          * to hand here to test.  Just pick the first vcpu, and if
1949          * that doesn't exist yet, report the minimum capability,
1950          * i.e., no 64k pages.
1951          * 1T segment support goes along with 64k pages.
1952          */
1953         i = 1;
1954         vcpu = kvm_get_vcpu(kvm, 0);
1955         if (vcpu && (vcpu->arch.hflags & BOOK3S_HFLAG_MULTI_PGSIZE)) {
1956                 info->flags = KVM_PPC_1T_SEGMENTS;
1957                 info->sps[i].page_shift = 16;
1958                 info->sps[i].slb_enc = SLB_VSID_L | SLB_VSID_LP_01;
1959                 info->sps[i].enc[0].page_shift = 16;
1960                 info->sps[i].enc[0].pte_enc = 1;
1961                 ++i;
1962         }
1963 
1964         /* Standard 16M large page size segment */
1965         info->sps[i].page_shift = 24;
1966         info->sps[i].slb_enc = SLB_VSID_L;
1967         info->sps[i].enc[0].page_shift = 24;
1968         info->sps[i].enc[0].pte_enc = 0;
1969 
1970         return 0;
1971 }
1972 
1973 static int kvm_configure_mmu_pr(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
1974 {
1975         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1976                 return -ENODEV;
1977         /* Require flags and process table base and size to all be zero. */
1978         if (cfg->flags || cfg->process_table)
1979                 return -EINVAL;
1980         return 0;
1981 }
1982 
1983 #else
1984 static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
1985                                          struct kvm_ppc_smmu_info *info)
1986 {
1987         /* We should not get called */
1988         BUG();
1989         return 0;
1990 }
1991 #endif /* CONFIG_PPC64 */
1992 
1993 static unsigned int kvm_global_user_count = 0;
1994 static DEFINE_SPINLOCK(kvm_global_user_count_lock);
1995 
1996 static int kvmppc_core_init_vm_pr(struct kvm *kvm)
1997 {
1998         mutex_init(&kvm->arch.hpt_mutex);
1999 
2000 #ifdef CONFIG_PPC_BOOK3S_64
2001         /* Start out with the default set of hcalls enabled */
2002         kvmppc_pr_init_default_hcalls(kvm);
2003 #endif
2004 
2005         if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
2006                 spin_lock(&kvm_global_user_count_lock);
2007                 if (++kvm_global_user_count == 1)
2008                         pseries_disable_reloc_on_exc();
2009                 spin_unlock(&kvm_global_user_count_lock);
2010         }
2011         return 0;
2012 }
2013 
2014 static void kvmppc_core_destroy_vm_pr(struct kvm *kvm)
2015 {
2016 #ifdef CONFIG_PPC64
2017         WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
2018 #endif
2019 
2020         if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
2021                 spin_lock(&kvm_global_user_count_lock);
2022                 BUG_ON(kvm_global_user_count == 0);
2023                 if (--kvm_global_user_count == 0)
2024                         pseries_enable_reloc_on_exc();
2025                 spin_unlock(&kvm_global_user_count_lock);
2026         }
2027 }
2028 
2029 static int kvmppc_core_check_processor_compat_pr(void)
2030 {
2031         /*
2032          * PR KVM can work on POWER9 inside a guest partition
2033          * running in HPT mode.  It can't work if we are using
2034          * radix translation (because radix provides no way for
2035          * a process to have unique translations in quadrant 3).
2036          */
2037         if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
2038                 return -EIO;
2039         return 0;
2040 }
2041 
2042 static int kvm_arch_vm_ioctl_pr(struct file *filp,
2043                                 unsigned int ioctl, unsigned long arg)
2044 {
2045         return -ENOTTY;
2046 }
2047 
2048 static struct kvmppc_ops kvm_ops_pr = {
2049         .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_pr,
2050         .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_pr,
2051         .get_one_reg = kvmppc_get_one_reg_pr,
2052         .set_one_reg = kvmppc_set_one_reg_pr,
2053         .vcpu_load   = kvmppc_core_vcpu_load_pr,
2054         .vcpu_put    = kvmppc_core_vcpu_put_pr,
2055         .inject_interrupt = kvmppc_inject_interrupt_pr,
2056         .set_msr     = kvmppc_set_msr_pr,
2057         .vcpu_run    = kvmppc_vcpu_run_pr,
2058         .vcpu_create = kvmppc_core_vcpu_create_pr,
2059         .vcpu_free   = kvmppc_core_vcpu_free_pr,
2060         .check_requests = kvmppc_core_check_requests_pr,
2061         .get_dirty_log = kvm_vm_ioctl_get_dirty_log_pr,
2062         .flush_memslot = kvmppc_core_flush_memslot_pr,
2063         .prepare_memory_region = kvmppc_core_prepare_memory_region_pr,
2064         .commit_memory_region = kvmppc_core_commit_memory_region_pr,
2065         .unmap_gfn_range = kvm_unmap_gfn_range_pr,
2066         .age_gfn  = kvm_age_gfn_pr,
2067         .test_age_gfn = kvm_test_age_gfn_pr,
2068         .free_memslot = kvmppc_core_free_memslot_pr,
2069         .init_vm = kvmppc_core_init_vm_pr,
2070         .destroy_vm = kvmppc_core_destroy_vm_pr,
2071         .get_smmu_info = kvm_vm_ioctl_get_smmu_info_pr,
2072         .emulate_op = kvmppc_core_emulate_op_pr,
2073         .emulate_mtspr = kvmppc_core_emulate_mtspr_pr,
2074         .emulate_mfspr = kvmppc_core_emulate_mfspr_pr,
2075         .fast_vcpu_kick = kvm_vcpu_kick,
2076         .arch_vm_ioctl  = kvm_arch_vm_ioctl_pr,
2077 #ifdef CONFIG_PPC_BOOK3S_64
2078         .hcall_implemented = kvmppc_hcall_impl_pr,
2079         .configure_mmu = kvm_configure_mmu_pr,
2080 #endif
2081         .giveup_ext = kvmppc_giveup_ext,
2082 };
2083 
2084 
2085 int kvmppc_book3s_init_pr(void)
2086 {
2087         int r;
2088 
2089         r = kvmppc_core_check_processor_compat_pr();
2090         if (r < 0)
2091                 return r;
2092 
2093         kvm_ops_pr.owner = THIS_MODULE;
2094         kvmppc_pr_ops = &kvm_ops_pr;
2095 
2096         r = kvmppc_mmu_hpte_sysinit();
2097         return r;
2098 }
2099 
2100 void kvmppc_book3s_exit_pr(void)
2101 {
2102         kvmppc_pr_ops = NULL;
2103         kvmppc_mmu_hpte_sysexit();
2104 }
2105 
2106 /*
2107  * We only support separate modules for book3s 64
2108  */
2109 #ifdef CONFIG_PPC_BOOK3S_64
2110 
2111 module_init(kvmppc_book3s_init_pr);
2112 module_exit(kvmppc_book3s_exit_pr);
2113 
2114 MODULE_DESCRIPTION("KVM on Book3S without using hypervisor mode");
2115 MODULE_LICENSE("GPL");
2116 MODULE_ALIAS_MISCDEV(KVM_MINOR);
2117 MODULE_ALIAS("devname:kvm");
2118 #endif
2119 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php