~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/powerpc/kvm/e500.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * Copyright (C) 2008-2011 Freescale Semiconductor, Inc. All rights reserved.
  4  *
  5  * Author: Yu Liu, <yu.liu@freescale.com>
  6  *
  7  * Description:
  8  * This file is derived from arch/powerpc/kvm/44x.c,
  9  * by Hollis Blanchard <hollisb@us.ibm.com>.
 10  */
 11 
 12 #include <linux/kvm_host.h>
 13 #include <linux/slab.h>
 14 #include <linux/err.h>
 15 #include <linux/export.h>
 16 #include <linux/module.h>
 17 #include <linux/miscdevice.h>
 18 
 19 #include <asm/reg.h>
 20 #include <asm/cputable.h>
 21 #include <asm/kvm_ppc.h>
 22 
 23 #include "../mm/mmu_decl.h"
 24 #include "booke.h"
 25 #include "e500.h"
 26 
 27 struct id {
 28         unsigned long val;
 29         struct id **pentry;
 30 };
 31 
 32 #define NUM_TIDS 256
 33 
 34 /*
 35  * This table provide mappings from:
 36  * (guestAS,guestTID,guestPR) --> ID of physical cpu
 37  * guestAS      [0..1]
 38  * guestTID     [0..255]
 39  * guestPR      [0..1]
 40  * ID           [1..255]
 41  * Each vcpu keeps one vcpu_id_table.
 42  */
 43 struct vcpu_id_table {
 44         struct id id[2][NUM_TIDS][2];
 45 };
 46 
 47 /*
 48  * This table provide reversed mappings of vcpu_id_table:
 49  * ID --> address of vcpu_id_table item.
 50  * Each physical core has one pcpu_id_table.
 51  */
 52 struct pcpu_id_table {
 53         struct id *entry[NUM_TIDS];
 54 };
 55 
 56 static DEFINE_PER_CPU(struct pcpu_id_table, pcpu_sids);
 57 
 58 /* This variable keeps last used shadow ID on local core.
 59  * The valid range of shadow ID is [1..255] */
 60 static DEFINE_PER_CPU(unsigned long, pcpu_last_used_sid);
 61 
 62 /*
 63  * Allocate a free shadow id and setup a valid sid mapping in given entry.
 64  * A mapping is only valid when vcpu_id_table and pcpu_id_table are match.
 65  *
 66  * The caller must have preemption disabled, and keep it that way until
 67  * it has finished with the returned shadow id (either written into the
 68  * TLB or arch.shadow_pid, or discarded).
 69  */
 70 static inline int local_sid_setup_one(struct id *entry)
 71 {
 72         unsigned long sid;
 73         int ret = -1;
 74 
 75         sid = __this_cpu_inc_return(pcpu_last_used_sid);
 76         if (sid < NUM_TIDS) {
 77                 __this_cpu_write(pcpu_sids.entry[sid], entry);
 78                 entry->val = sid;
 79                 entry->pentry = this_cpu_ptr(&pcpu_sids.entry[sid]);
 80                 ret = sid;
 81         }
 82 
 83         /*
 84          * If sid == NUM_TIDS, we've run out of sids.  We return -1, and
 85          * the caller will invalidate everything and start over.
 86          *
 87          * sid > NUM_TIDS indicates a race, which we disable preemption to
 88          * avoid.
 89          */
 90         WARN_ON(sid > NUM_TIDS);
 91 
 92         return ret;
 93 }
 94 
 95 /*
 96  * Check if given entry contain a valid shadow id mapping.
 97  * An ID mapping is considered valid only if
 98  * both vcpu and pcpu know this mapping.
 99  *
100  * The caller must have preemption disabled, and keep it that way until
101  * it has finished with the returned shadow id (either written into the
102  * TLB or arch.shadow_pid, or discarded).
103  */
104 static inline int local_sid_lookup(struct id *entry)
105 {
106         if (entry && entry->val != 0 &&
107             __this_cpu_read(pcpu_sids.entry[entry->val]) == entry &&
108             entry->pentry == this_cpu_ptr(&pcpu_sids.entry[entry->val]))
109                 return entry->val;
110         return -1;
111 }
112 
113 /* Invalidate all id mappings on local core -- call with preempt disabled */
114 static inline void local_sid_destroy_all(void)
115 {
116         __this_cpu_write(pcpu_last_used_sid, 0);
117         memset(this_cpu_ptr(&pcpu_sids), 0, sizeof(pcpu_sids));
118 }
119 
120 static void *kvmppc_e500_id_table_alloc(struct kvmppc_vcpu_e500 *vcpu_e500)
121 {
122         vcpu_e500->idt = kzalloc(sizeof(struct vcpu_id_table), GFP_KERNEL);
123         return vcpu_e500->idt;
124 }
125 
126 static void kvmppc_e500_id_table_free(struct kvmppc_vcpu_e500 *vcpu_e500)
127 {
128         kfree(vcpu_e500->idt);
129         vcpu_e500->idt = NULL;
130 }
131 
132 /* Map guest pid to shadow.
133  * We use PID to keep shadow of current guest non-zero PID,
134  * and use PID1 to keep shadow of guest zero PID.
135  * So that guest tlbe with TID=0 can be accessed at any time */
136 static void kvmppc_e500_recalc_shadow_pid(struct kvmppc_vcpu_e500 *vcpu_e500)
137 {
138         preempt_disable();
139         vcpu_e500->vcpu.arch.shadow_pid = kvmppc_e500_get_sid(vcpu_e500,
140                         get_cur_as(&vcpu_e500->vcpu),
141                         get_cur_pid(&vcpu_e500->vcpu),
142                         get_cur_pr(&vcpu_e500->vcpu), 1);
143         vcpu_e500->vcpu.arch.shadow_pid1 = kvmppc_e500_get_sid(vcpu_e500,
144                         get_cur_as(&vcpu_e500->vcpu), 0,
145                         get_cur_pr(&vcpu_e500->vcpu), 1);
146         preempt_enable();
147 }
148 
149 /* Invalidate all mappings on vcpu */
150 static void kvmppc_e500_id_table_reset_all(struct kvmppc_vcpu_e500 *vcpu_e500)
151 {
152         memset(vcpu_e500->idt, 0, sizeof(struct vcpu_id_table));
153 
154         /* Update shadow pid when mappings are changed */
155         kvmppc_e500_recalc_shadow_pid(vcpu_e500);
156 }
157 
158 /* Invalidate one ID mapping on vcpu */
159 static inline void kvmppc_e500_id_table_reset_one(
160                                struct kvmppc_vcpu_e500 *vcpu_e500,
161                                int as, int pid, int pr)
162 {
163         struct vcpu_id_table *idt = vcpu_e500->idt;
164 
165         BUG_ON(as >= 2);
166         BUG_ON(pid >= NUM_TIDS);
167         BUG_ON(pr >= 2);
168 
169         idt->id[as][pid][pr].val = 0;
170         idt->id[as][pid][pr].pentry = NULL;
171 
172         /* Update shadow pid when mappings are changed */
173         kvmppc_e500_recalc_shadow_pid(vcpu_e500);
174 }
175 
176 /*
177  * Map guest (vcpu,AS,ID,PR) to physical core shadow id.
178  * This function first lookup if a valid mapping exists,
179  * if not, then creates a new one.
180  *
181  * The caller must have preemption disabled, and keep it that way until
182  * it has finished with the returned shadow id (either written into the
183  * TLB or arch.shadow_pid, or discarded).
184  */
185 unsigned int kvmppc_e500_get_sid(struct kvmppc_vcpu_e500 *vcpu_e500,
186                                  unsigned int as, unsigned int gid,
187                                  unsigned int pr, int avoid_recursion)
188 {
189         struct vcpu_id_table *idt = vcpu_e500->idt;
190         int sid;
191 
192         BUG_ON(as >= 2);
193         BUG_ON(gid >= NUM_TIDS);
194         BUG_ON(pr >= 2);
195 
196         sid = local_sid_lookup(&idt->id[as][gid][pr]);
197 
198         while (sid <= 0) {
199                 /* No mapping yet */
200                 sid = local_sid_setup_one(&idt->id[as][gid][pr]);
201                 if (sid <= 0) {
202                         _tlbil_all();
203                         local_sid_destroy_all();
204                 }
205 
206                 /* Update shadow pid when mappings are changed */
207                 if (!avoid_recursion)
208                         kvmppc_e500_recalc_shadow_pid(vcpu_e500);
209         }
210 
211         return sid;
212 }
213 
214 unsigned int kvmppc_e500_get_tlb_stid(struct kvm_vcpu *vcpu,
215                                       struct kvm_book3e_206_tlb_entry *gtlbe)
216 {
217         return kvmppc_e500_get_sid(to_e500(vcpu), get_tlb_ts(gtlbe),
218                                    get_tlb_tid(gtlbe), get_cur_pr(vcpu), 0);
219 }
220 
221 void kvmppc_set_pid(struct kvm_vcpu *vcpu, u32 pid)
222 {
223         struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
224 
225         if (vcpu->arch.pid != pid) {
226                 vcpu_e500->pid[0] = vcpu->arch.pid = pid;
227                 kvmppc_e500_recalc_shadow_pid(vcpu_e500);
228         }
229 }
230 
231 /* gtlbe must not be mapped by more than one host tlbe */
232 void kvmppc_e500_tlbil_one(struct kvmppc_vcpu_e500 *vcpu_e500,
233                            struct kvm_book3e_206_tlb_entry *gtlbe)
234 {
235         struct vcpu_id_table *idt = vcpu_e500->idt;
236         unsigned int pr, tid, ts;
237         int pid;
238         u32 val, eaddr;
239         unsigned long flags;
240 
241         ts = get_tlb_ts(gtlbe);
242         tid = get_tlb_tid(gtlbe);
243 
244         preempt_disable();
245 
246         /* One guest ID may be mapped to two shadow IDs */
247         for (pr = 0; pr < 2; pr++) {
248                 /*
249                  * The shadow PID can have a valid mapping on at most one
250                  * host CPU.  In the common case, it will be valid on this
251                  * CPU, in which case we do a local invalidation of the
252                  * specific address.
253                  *
254                  * If the shadow PID is not valid on the current host CPU,
255                  * we invalidate the entire shadow PID.
256                  */
257                 pid = local_sid_lookup(&idt->id[ts][tid][pr]);
258                 if (pid <= 0) {
259                         kvmppc_e500_id_table_reset_one(vcpu_e500, ts, tid, pr);
260                         continue;
261                 }
262 
263                 /*
264                  * The guest is invalidating a 4K entry which is in a PID
265                  * that has a valid shadow mapping on this host CPU.  We
266                  * search host TLB to invalidate it's shadow TLB entry,
267                  * similar to __tlbil_va except that we need to look in AS1.
268                  */
269                 val = (pid << MAS6_SPID_SHIFT) | MAS6_SAS;
270                 eaddr = get_tlb_eaddr(gtlbe);
271 
272                 local_irq_save(flags);
273 
274                 mtspr(SPRN_MAS6, val);
275                 asm volatile("tlbsx 0, %[eaddr]" : : [eaddr] "r" (eaddr));
276                 val = mfspr(SPRN_MAS1);
277                 if (val & MAS1_VALID) {
278                         mtspr(SPRN_MAS1, val & ~MAS1_VALID);
279                         asm volatile("tlbwe");
280                 }
281 
282                 local_irq_restore(flags);
283         }
284 
285         preempt_enable();
286 }
287 
288 void kvmppc_e500_tlbil_all(struct kvmppc_vcpu_e500 *vcpu_e500)
289 {
290         kvmppc_e500_id_table_reset_all(vcpu_e500);
291 }
292 
293 void kvmppc_mmu_msr_notify(struct kvm_vcpu *vcpu, u32 old_msr)
294 {
295         /* Recalc shadow pid since MSR changes */
296         kvmppc_e500_recalc_shadow_pid(to_e500(vcpu));
297 }
298 
299 static void kvmppc_core_vcpu_load_e500(struct kvm_vcpu *vcpu, int cpu)
300 {
301         kvmppc_booke_vcpu_load(vcpu, cpu);
302 
303         /* Shadow PID may be expired on local core */
304         kvmppc_e500_recalc_shadow_pid(to_e500(vcpu));
305 }
306 
307 static void kvmppc_core_vcpu_put_e500(struct kvm_vcpu *vcpu)
308 {
309 #ifdef CONFIG_SPE
310         if (vcpu->arch.shadow_msr & MSR_SPE)
311                 kvmppc_vcpu_disable_spe(vcpu);
312 #endif
313 
314         kvmppc_booke_vcpu_put(vcpu);
315 }
316 
317 static int kvmppc_e500_check_processor_compat(void)
318 {
319         int r;
320 
321         if (strcmp(cur_cpu_spec->cpu_name, "e500v2") == 0)
322                 r = 0;
323         else
324                 r = -ENOTSUPP;
325 
326         return r;
327 }
328 
329 static void kvmppc_e500_tlb_setup(struct kvmppc_vcpu_e500 *vcpu_e500)
330 {
331         struct kvm_book3e_206_tlb_entry *tlbe;
332 
333         /* Insert large initial mapping for guest. */
334         tlbe = get_entry(vcpu_e500, 1, 0);
335         tlbe->mas1 = MAS1_VALID | MAS1_TSIZE(BOOK3E_PAGESZ_256M);
336         tlbe->mas2 = 0;
337         tlbe->mas7_3 = E500_TLB_SUPER_PERM_MASK;
338 
339         /* 4K map for serial output. Used by kernel wrapper. */
340         tlbe = get_entry(vcpu_e500, 1, 1);
341         tlbe->mas1 = MAS1_VALID | MAS1_TSIZE(BOOK3E_PAGESZ_4K);
342         tlbe->mas2 = (0xe0004500 & 0xFFFFF000) | MAS2_I | MAS2_G;
343         tlbe->mas7_3 = (0xe0004500 & 0xFFFFF000) | E500_TLB_SUPER_PERM_MASK;
344 }
345 
346 int kvmppc_core_vcpu_setup(struct kvm_vcpu *vcpu)
347 {
348         struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
349 
350         kvmppc_e500_tlb_setup(vcpu_e500);
351 
352         /* Registers init */
353         vcpu->arch.pvr = mfspr(SPRN_PVR);
354         vcpu_e500->svr = mfspr(SPRN_SVR);
355 
356         vcpu->arch.cpu_type = KVM_CPU_E500V2;
357 
358         return 0;
359 }
360 
361 static int kvmppc_core_get_sregs_e500(struct kvm_vcpu *vcpu,
362                                       struct kvm_sregs *sregs)
363 {
364         struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
365 
366         sregs->u.e.features |= KVM_SREGS_E_ARCH206_MMU | KVM_SREGS_E_SPE |
367                                KVM_SREGS_E_PM;
368         sregs->u.e.impl_id = KVM_SREGS_E_IMPL_FSL;
369 
370         sregs->u.e.impl.fsl.features = 0;
371         sregs->u.e.impl.fsl.svr = vcpu_e500->svr;
372         sregs->u.e.impl.fsl.hid0 = vcpu_e500->hid0;
373         sregs->u.e.impl.fsl.mcar = vcpu_e500->mcar;
374 
375         sregs->u.e.ivor_high[0] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_UNAVAIL];
376         sregs->u.e.ivor_high[1] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_DATA];
377         sregs->u.e.ivor_high[2] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_ROUND];
378         sregs->u.e.ivor_high[3] =
379                 vcpu->arch.ivor[BOOKE_IRQPRIO_PERFORMANCE_MONITOR];
380 
381         kvmppc_get_sregs_ivor(vcpu, sregs);
382         kvmppc_get_sregs_e500_tlb(vcpu, sregs);
383         return 0;
384 }
385 
386 static int kvmppc_core_set_sregs_e500(struct kvm_vcpu *vcpu,
387                                       struct kvm_sregs *sregs)
388 {
389         struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
390         int ret;
391 
392         if (sregs->u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
393                 vcpu_e500->svr = sregs->u.e.impl.fsl.svr;
394                 vcpu_e500->hid0 = sregs->u.e.impl.fsl.hid0;
395                 vcpu_e500->mcar = sregs->u.e.impl.fsl.mcar;
396         }
397 
398         ret = kvmppc_set_sregs_e500_tlb(vcpu, sregs);
399         if (ret < 0)
400                 return ret;
401 
402         if (!(sregs->u.e.features & KVM_SREGS_E_IVOR))
403                 return 0;
404 
405         if (sregs->u.e.features & KVM_SREGS_E_SPE) {
406                 vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_UNAVAIL] =
407                         sregs->u.e.ivor_high[0];
408                 vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_DATA] =
409                         sregs->u.e.ivor_high[1];
410                 vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_ROUND] =
411                         sregs->u.e.ivor_high[2];
412         }
413 
414         if (sregs->u.e.features & KVM_SREGS_E_PM) {
415                 vcpu->arch.ivor[BOOKE_IRQPRIO_PERFORMANCE_MONITOR] =
416                         sregs->u.e.ivor_high[3];
417         }
418 
419         return kvmppc_set_sregs_ivor(vcpu, sregs);
420 }
421 
422 static int kvmppc_get_one_reg_e500(struct kvm_vcpu *vcpu, u64 id,
423                                    union kvmppc_one_reg *val)
424 {
425         int r = kvmppc_get_one_reg_e500_tlb(vcpu, id, val);
426         return r;
427 }
428 
429 static int kvmppc_set_one_reg_e500(struct kvm_vcpu *vcpu, u64 id,
430                                    union kvmppc_one_reg *val)
431 {
432         int r = kvmppc_get_one_reg_e500_tlb(vcpu, id, val);
433         return r;
434 }
435 
436 static int kvmppc_core_vcpu_create_e500(struct kvm_vcpu *vcpu)
437 {
438         struct kvmppc_vcpu_e500 *vcpu_e500;
439         int err;
440 
441         BUILD_BUG_ON(offsetof(struct kvmppc_vcpu_e500, vcpu) != 0);
442         vcpu_e500 = to_e500(vcpu);
443 
444         if (kvmppc_e500_id_table_alloc(vcpu_e500) == NULL)
445                 return -ENOMEM;
446 
447         err = kvmppc_e500_tlb_init(vcpu_e500);
448         if (err)
449                 goto uninit_id;
450 
451         vcpu->arch.shared = (void*)__get_free_page(GFP_KERNEL|__GFP_ZERO);
452         if (!vcpu->arch.shared) {
453                 err = -ENOMEM;
454                 goto uninit_tlb;
455         }
456 
457         return 0;
458 
459 uninit_tlb:
460         kvmppc_e500_tlb_uninit(vcpu_e500);
461 uninit_id:
462         kvmppc_e500_id_table_free(vcpu_e500);
463         return err;
464 }
465 
466 static void kvmppc_core_vcpu_free_e500(struct kvm_vcpu *vcpu)
467 {
468         struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
469 
470         free_page((unsigned long)vcpu->arch.shared);
471         kvmppc_e500_tlb_uninit(vcpu_e500);
472         kvmppc_e500_id_table_free(vcpu_e500);
473 }
474 
475 static int kvmppc_core_init_vm_e500(struct kvm *kvm)
476 {
477         return 0;
478 }
479 
480 static void kvmppc_core_destroy_vm_e500(struct kvm *kvm)
481 {
482 }
483 
484 static struct kvmppc_ops kvm_ops_e500 = {
485         .get_sregs = kvmppc_core_get_sregs_e500,
486         .set_sregs = kvmppc_core_set_sregs_e500,
487         .get_one_reg = kvmppc_get_one_reg_e500,
488         .set_one_reg = kvmppc_set_one_reg_e500,
489         .vcpu_load   = kvmppc_core_vcpu_load_e500,
490         .vcpu_put    = kvmppc_core_vcpu_put_e500,
491         .vcpu_create = kvmppc_core_vcpu_create_e500,
492         .vcpu_free   = kvmppc_core_vcpu_free_e500,
493         .init_vm = kvmppc_core_init_vm_e500,
494         .destroy_vm = kvmppc_core_destroy_vm_e500,
495         .emulate_op = kvmppc_core_emulate_op_e500,
496         .emulate_mtspr = kvmppc_core_emulate_mtspr_e500,
497         .emulate_mfspr = kvmppc_core_emulate_mfspr_e500,
498         .create_vcpu_debugfs = kvmppc_create_vcpu_debugfs_e500,
499 };
500 
501 static int __init kvmppc_e500_init(void)
502 {
503         int r, i;
504         unsigned long ivor[3];
505         /* Process remaining handlers above the generic first 16 */
506         unsigned long *handler = &kvmppc_booke_handler_addr[16];
507         unsigned long handler_len;
508         unsigned long max_ivor = 0;
509 
510         r = kvmppc_e500_check_processor_compat();
511         if (r)
512                 goto err_out;
513 
514         r = kvmppc_booke_init();
515         if (r)
516                 goto err_out;
517 
518         /* copy extra E500 exception handlers */
519         ivor[0] = mfspr(SPRN_IVOR32);
520         ivor[1] = mfspr(SPRN_IVOR33);
521         ivor[2] = mfspr(SPRN_IVOR34);
522         for (i = 0; i < 3; i++) {
523                 if (ivor[i] > ivor[max_ivor])
524                         max_ivor = i;
525 
526                 handler_len = handler[i + 1] - handler[i];
527                 memcpy((void *)kvmppc_booke_handlers + ivor[i],
528                        (void *)handler[i], handler_len);
529         }
530         handler_len = handler[max_ivor + 1] - handler[max_ivor];
531         flush_icache_range(kvmppc_booke_handlers, kvmppc_booke_handlers +
532                            ivor[max_ivor] + handler_len);
533 
534         r = kvm_init(sizeof(struct kvmppc_vcpu_e500), 0, THIS_MODULE);
535         if (r)
536                 goto err_out;
537         kvm_ops_e500.owner = THIS_MODULE;
538         kvmppc_pr_ops = &kvm_ops_e500;
539 
540 err_out:
541         return r;
542 }
543 
544 static void __exit kvmppc_e500_exit(void)
545 {
546         kvmppc_pr_ops = NULL;
547         kvmppc_booke_exit();
548 }
549 
550 module_init(kvmppc_e500_init);
551 module_exit(kvmppc_e500_exit);
552 MODULE_ALIAS_MISCDEV(KVM_MINOR);
553 MODULE_ALIAS("devname:kvm");
554 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php