1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * PowerPC64 port by Mike Corrigan and Dave Engebretsen 4 * {mikejc|engebret}@us.ibm.com 5 * 6 * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com> 7 * 8 * SMP scalability work: 9 * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM 10 * 11 * Module name: htab.c 12 * 13 * Description: 14 * PowerPC Hashed Page Table functions 15 */ 16 17 #undef DEBUG 18 #undef DEBUG_LOW 19 20 #define pr_fmt(fmt) "hash-mmu: " fmt 21 #include <linux/spinlock.h> 22 #include <linux/errno.h> 23 #include <linux/sched/mm.h> 24 #include <linux/proc_fs.h> 25 #include <linux/stat.h> 26 #include <linux/sysctl.h> 27 #include <linux/export.h> 28 #include <linux/ctype.h> 29 #include <linux/cache.h> 30 #include <linux/init.h> 31 #include <linux/signal.h> 32 #include <linux/memblock.h> 33 #include <linux/context_tracking.h> 34 #include <linux/libfdt.h> 35 #include <linux/pkeys.h> 36 #include <linux/hugetlb.h> 37 #include <linux/cpu.h> 38 #include <linux/pgtable.h> 39 #include <linux/debugfs.h> 40 #include <linux/random.h> 41 #include <linux/elf-randomize.h> 42 #include <linux/of_fdt.h> 43 44 #include <asm/interrupt.h> 45 #include <asm/processor.h> 46 #include <asm/mmu.h> 47 #include <asm/mmu_context.h> 48 #include <asm/page.h> 49 #include <asm/types.h> 50 #include <linux/uaccess.h> 51 #include <asm/machdep.h> 52 #include <asm/io.h> 53 #include <asm/eeh.h> 54 #include <asm/tlb.h> 55 #include <asm/cacheflush.h> 56 #include <asm/cputable.h> 57 #include <asm/sections.h> 58 #include <asm/copro.h> 59 #include <asm/udbg.h> 60 #include <asm/code-patching.h> 61 #include <asm/fadump.h> 62 #include <asm/firmware.h> 63 #include <asm/tm.h> 64 #include <asm/trace.h> 65 #include <asm/ps3.h> 66 #include <asm/pte-walk.h> 67 #include <asm/asm-prototypes.h> 68 #include <asm/ultravisor.h> 69 70 #include <mm/mmu_decl.h> 71 72 #include "internal.h" 73 74 75 #ifdef DEBUG 76 #define DBG(fmt...) udbg_printf(fmt) 77 #else 78 #define DBG(fmt...) 79 #endif 80 81 #ifdef DEBUG_LOW 82 #define DBG_LOW(fmt...) udbg_printf(fmt) 83 #else 84 #define DBG_LOW(fmt...) 85 #endif 86 87 #define KB (1024) 88 #define MB (1024*KB) 89 #define GB (1024L*MB) 90 91 /* 92 * Note: pte --> Linux PTE 93 * HPTE --> PowerPC Hashed Page Table Entry 94 * 95 * Execution context: 96 * htab_initialize is called with the MMU off (of course), but 97 * the kernel has been copied down to zero so it can directly 98 * reference global data. At this point it is very difficult 99 * to print debug info. 100 * 101 */ 102 103 static unsigned long _SDR1; 104 105 u8 hpte_page_sizes[1 << LP_BITS]; 106 EXPORT_SYMBOL_GPL(hpte_page_sizes); 107 108 struct hash_pte *htab_address; 109 unsigned long htab_size_bytes; 110 unsigned long htab_hash_mask; 111 EXPORT_SYMBOL_GPL(htab_hash_mask); 112 int mmu_linear_psize = MMU_PAGE_4K; 113 EXPORT_SYMBOL_GPL(mmu_linear_psize); 114 int mmu_virtual_psize = MMU_PAGE_4K; 115 int mmu_vmalloc_psize = MMU_PAGE_4K; 116 EXPORT_SYMBOL_GPL(mmu_vmalloc_psize); 117 int mmu_io_psize = MMU_PAGE_4K; 118 int mmu_kernel_ssize = MMU_SEGSIZE_256M; 119 EXPORT_SYMBOL_GPL(mmu_kernel_ssize); 120 int mmu_highuser_ssize = MMU_SEGSIZE_256M; 121 u16 mmu_slb_size = 64; 122 EXPORT_SYMBOL_GPL(mmu_slb_size); 123 #ifdef CONFIG_PPC_64K_PAGES 124 int mmu_ci_restrictions; 125 #endif 126 static u8 *linear_map_hash_slots; 127 static unsigned long linear_map_hash_count; 128 struct mmu_hash_ops mmu_hash_ops; 129 EXPORT_SYMBOL(mmu_hash_ops); 130 131 /* 132 * These are definitions of page sizes arrays to be used when none 133 * is provided by the firmware. 134 */ 135 136 /* 137 * Fallback (4k pages only) 138 */ 139 static struct mmu_psize_def mmu_psize_defaults[] = { 140 [MMU_PAGE_4K] = { 141 .shift = 12, 142 .sllp = 0, 143 .penc = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1}, 144 .avpnm = 0, 145 .tlbiel = 0, 146 }, 147 }; 148 149 /* 150 * POWER4, GPUL, POWER5 151 * 152 * Support for 16Mb large pages 153 */ 154 static struct mmu_psize_def mmu_psize_defaults_gp[] = { 155 [MMU_PAGE_4K] = { 156 .shift = 12, 157 .sllp = 0, 158 .penc = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1}, 159 .avpnm = 0, 160 .tlbiel = 1, 161 }, 162 [MMU_PAGE_16M] = { 163 .shift = 24, 164 .sllp = SLB_VSID_L, 165 .penc = {[0 ... MMU_PAGE_16M - 1] = -1, [MMU_PAGE_16M] = 0, 166 [MMU_PAGE_16M + 1 ... MMU_PAGE_COUNT - 1] = -1 }, 167 .avpnm = 0x1UL, 168 .tlbiel = 0, 169 }, 170 }; 171 172 static inline void tlbiel_hash_set_isa206(unsigned int set, unsigned int is) 173 { 174 unsigned long rb; 175 176 rb = (set << PPC_BITLSHIFT(51)) | (is << PPC_BITLSHIFT(53)); 177 178 asm volatile("tlbiel %0" : : "r" (rb)); 179 } 180 181 /* 182 * tlbiel instruction for hash, set invalidation 183 * i.e., r=1 and is=01 or is=10 or is=11 184 */ 185 static __always_inline void tlbiel_hash_set_isa300(unsigned int set, unsigned int is, 186 unsigned int pid, 187 unsigned int ric, unsigned int prs) 188 { 189 unsigned long rb; 190 unsigned long rs; 191 unsigned int r = 0; /* hash format */ 192 193 rb = (set << PPC_BITLSHIFT(51)) | (is << PPC_BITLSHIFT(53)); 194 rs = ((unsigned long)pid << PPC_BITLSHIFT(31)); 195 196 asm volatile(PPC_TLBIEL(%0, %1, %2, %3, %4) 197 : : "r"(rb), "r"(rs), "i"(ric), "i"(prs), "i"(r) 198 : "memory"); 199 } 200 201 202 static void tlbiel_all_isa206(unsigned int num_sets, unsigned int is) 203 { 204 unsigned int set; 205 206 asm volatile("ptesync": : :"memory"); 207 208 for (set = 0; set < num_sets; set++) 209 tlbiel_hash_set_isa206(set, is); 210 211 ppc_after_tlbiel_barrier(); 212 } 213 214 static void tlbiel_all_isa300(unsigned int num_sets, unsigned int is) 215 { 216 unsigned int set; 217 218 asm volatile("ptesync": : :"memory"); 219 220 /* 221 * Flush the partition table cache if this is HV mode. 222 */ 223 if (early_cpu_has_feature(CPU_FTR_HVMODE)) 224 tlbiel_hash_set_isa300(0, is, 0, 2, 0); 225 226 /* 227 * Now invalidate the process table cache. UPRT=0 HPT modes (what 228 * current hardware implements) do not use the process table, but 229 * add the flushes anyway. 230 * 231 * From ISA v3.0B p. 1078: 232 * The following forms are invalid. 233 * * PRS=1, R=0, and RIC!=2 (The only process-scoped 234 * HPT caching is of the Process Table.) 235 */ 236 tlbiel_hash_set_isa300(0, is, 0, 2, 1); 237 238 /* 239 * Then flush the sets of the TLB proper. Hash mode uses 240 * partition scoped TLB translations, which may be flushed 241 * in !HV mode. 242 */ 243 for (set = 0; set < num_sets; set++) 244 tlbiel_hash_set_isa300(set, is, 0, 0, 0); 245 246 ppc_after_tlbiel_barrier(); 247 248 asm volatile(PPC_ISA_3_0_INVALIDATE_ERAT "; isync" : : :"memory"); 249 } 250 251 void hash__tlbiel_all(unsigned int action) 252 { 253 unsigned int is; 254 255 switch (action) { 256 case TLB_INVAL_SCOPE_GLOBAL: 257 is = 3; 258 break; 259 case TLB_INVAL_SCOPE_LPID: 260 is = 2; 261 break; 262 default: 263 BUG(); 264 } 265 266 if (early_cpu_has_feature(CPU_FTR_ARCH_300)) 267 tlbiel_all_isa300(POWER9_TLB_SETS_HASH, is); 268 else if (early_cpu_has_feature(CPU_FTR_ARCH_207S)) 269 tlbiel_all_isa206(POWER8_TLB_SETS, is); 270 else if (early_cpu_has_feature(CPU_FTR_ARCH_206)) 271 tlbiel_all_isa206(POWER7_TLB_SETS, is); 272 else 273 WARN(1, "%s called on pre-POWER7 CPU\n", __func__); 274 } 275 276 /* 277 * 'R' and 'C' update notes: 278 * - Under pHyp or KVM, the updatepp path will not set C, thus it *will* 279 * create writeable HPTEs without C set, because the hcall H_PROTECT 280 * that we use in that case will not update C 281 * - The above is however not a problem, because we also don't do that 282 * fancy "no flush" variant of eviction and we use H_REMOVE which will 283 * do the right thing and thus we don't have the race I described earlier 284 * 285 * - Under bare metal, we do have the race, so we need R and C set 286 * - We make sure R is always set and never lost 287 * - C is _PAGE_DIRTY, and *should* always be set for a writeable mapping 288 */ 289 unsigned long htab_convert_pte_flags(unsigned long pteflags, unsigned long flags) 290 { 291 unsigned long rflags = 0; 292 293 /* _PAGE_EXEC -> NOEXEC */ 294 if ((pteflags & _PAGE_EXEC) == 0) 295 rflags |= HPTE_R_N; 296 /* 297 * PPP bits: 298 * Linux uses slb key 0 for kernel and 1 for user. 299 * kernel RW areas are mapped with PPP=0b000 300 * User area is mapped with PPP=0b010 for read/write 301 * or PPP=0b011 for read-only (including writeable but clean pages). 302 */ 303 if (pteflags & _PAGE_PRIVILEGED) { 304 /* 305 * Kernel read only mapped with ppp bits 0b110 306 */ 307 if (!(pteflags & _PAGE_WRITE)) { 308 if (mmu_has_feature(MMU_FTR_KERNEL_RO)) 309 rflags |= (HPTE_R_PP0 | 0x2); 310 else 311 rflags |= 0x3; 312 } 313 VM_WARN_ONCE(!(pteflags & _PAGE_RWX), "no-access mapping request"); 314 } else { 315 if (pteflags & _PAGE_RWX) 316 rflags |= 0x2; 317 /* 318 * We should never hit this in normal fault handling because 319 * a permission check (check_pte_access()) will bubble this 320 * to higher level linux handler even for PAGE_NONE. 321 */ 322 VM_WARN_ONCE(!(pteflags & _PAGE_RWX), "no-access mapping request"); 323 if (!((pteflags & _PAGE_WRITE) && (pteflags & _PAGE_DIRTY))) 324 rflags |= 0x1; 325 } 326 /* 327 * We can't allow hardware to update hpte bits. Hence always 328 * set 'R' bit and set 'C' if it is a write fault 329 */ 330 rflags |= HPTE_R_R; 331 332 if (pteflags & _PAGE_DIRTY) 333 rflags |= HPTE_R_C; 334 /* 335 * Add in WIG bits 336 */ 337 338 if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_TOLERANT) 339 rflags |= HPTE_R_I; 340 else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT) 341 rflags |= (HPTE_R_I | HPTE_R_G); 342 else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_SAO) 343 rflags |= (HPTE_R_W | HPTE_R_I | HPTE_R_M); 344 else 345 /* 346 * Add memory coherence if cache inhibited is not set 347 */ 348 rflags |= HPTE_R_M; 349 350 rflags |= pte_to_hpte_pkey_bits(pteflags, flags); 351 return rflags; 352 } 353 354 int htab_bolt_mapping(unsigned long vstart, unsigned long vend, 355 unsigned long pstart, unsigned long prot, 356 int psize, int ssize) 357 { 358 unsigned long vaddr, paddr; 359 unsigned int step, shift; 360 int ret = 0; 361 362 shift = mmu_psize_defs[psize].shift; 363 step = 1 << shift; 364 365 prot = htab_convert_pte_flags(prot, HPTE_USE_KERNEL_KEY); 366 367 DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n", 368 vstart, vend, pstart, prot, psize, ssize); 369 370 /* Carefully map only the possible range */ 371 vaddr = ALIGN(vstart, step); 372 paddr = ALIGN(pstart, step); 373 vend = ALIGN_DOWN(vend, step); 374 375 for (; vaddr < vend; vaddr += step, paddr += step) { 376 unsigned long hash, hpteg; 377 unsigned long vsid = get_kernel_vsid(vaddr, ssize); 378 unsigned long vpn = hpt_vpn(vaddr, vsid, ssize); 379 unsigned long tprot = prot; 380 bool secondary_hash = false; 381 382 /* 383 * If we hit a bad address return error. 384 */ 385 if (!vsid) 386 return -1; 387 /* Make kernel text executable */ 388 if (overlaps_kernel_text(vaddr, vaddr + step)) 389 tprot &= ~HPTE_R_N; 390 391 /* 392 * If relocatable, check if it overlaps interrupt vectors that 393 * are copied down to real 0. For relocatable kernel 394 * (e.g. kdump case) we copy interrupt vectors down to real 395 * address 0. Mark that region as executable. This is 396 * because on p8 system with relocation on exception feature 397 * enabled, exceptions are raised with MMU (IR=DR=1) ON. Hence 398 * in order to execute the interrupt handlers in virtual 399 * mode the vector region need to be marked as executable. 400 */ 401 if ((PHYSICAL_START > MEMORY_START) && 402 overlaps_interrupt_vector_text(vaddr, vaddr + step)) 403 tprot &= ~HPTE_R_N; 404 405 hash = hpt_hash(vpn, shift, ssize); 406 hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP); 407 408 BUG_ON(!mmu_hash_ops.hpte_insert); 409 repeat: 410 ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot, 411 HPTE_V_BOLTED, psize, psize, 412 ssize); 413 if (ret == -1) { 414 /* 415 * Try to keep bolted entries in primary. 416 * Remove non bolted entries and try insert again 417 */ 418 ret = mmu_hash_ops.hpte_remove(hpteg); 419 if (ret != -1) 420 ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot, 421 HPTE_V_BOLTED, psize, psize, 422 ssize); 423 if (ret == -1 && !secondary_hash) { 424 secondary_hash = true; 425 hpteg = ((~hash & htab_hash_mask) * HPTES_PER_GROUP); 426 goto repeat; 427 } 428 } 429 430 if (ret < 0) 431 break; 432 433 cond_resched(); 434 if (debug_pagealloc_enabled_or_kfence() && 435 (paddr >> PAGE_SHIFT) < linear_map_hash_count) 436 linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80; 437 } 438 return ret < 0 ? ret : 0; 439 } 440 441 int htab_remove_mapping(unsigned long vstart, unsigned long vend, 442 int psize, int ssize) 443 { 444 unsigned long vaddr, time_limit; 445 unsigned int step, shift; 446 int rc; 447 int ret = 0; 448 449 shift = mmu_psize_defs[psize].shift; 450 step = 1 << shift; 451 452 if (!mmu_hash_ops.hpte_removebolted) 453 return -ENODEV; 454 455 /* Unmap the full range specificied */ 456 vaddr = ALIGN_DOWN(vstart, step); 457 time_limit = jiffies + HZ; 458 459 for (;vaddr < vend; vaddr += step) { 460 rc = mmu_hash_ops.hpte_removebolted(vaddr, psize, ssize); 461 462 /* 463 * For large number of mappings introduce a cond_resched() 464 * to prevent softlockup warnings. 465 */ 466 if (time_after(jiffies, time_limit)) { 467 cond_resched(); 468 time_limit = jiffies + HZ; 469 } 470 if (rc == -ENOENT) { 471 ret = -ENOENT; 472 continue; 473 } 474 if (rc < 0) 475 return rc; 476 } 477 478 return ret; 479 } 480 481 static bool disable_1tb_segments __ro_after_init; 482 483 static int __init parse_disable_1tb_segments(char *p) 484 { 485 disable_1tb_segments = true; 486 return 0; 487 } 488 early_param("disable_1tb_segments", parse_disable_1tb_segments); 489 490 bool stress_hpt_enabled __initdata; 491 492 static int __init parse_stress_hpt(char *p) 493 { 494 stress_hpt_enabled = true; 495 return 0; 496 } 497 early_param("stress_hpt", parse_stress_hpt); 498 499 __ro_after_init DEFINE_STATIC_KEY_FALSE(stress_hpt_key); 500 501 /* 502 * per-CPU array allocated if we enable stress_hpt. 503 */ 504 #define STRESS_MAX_GROUPS 16 505 struct stress_hpt_struct { 506 unsigned long last_group[STRESS_MAX_GROUPS]; 507 }; 508 509 static inline int stress_nr_groups(void) 510 { 511 /* 512 * LPAR H_REMOVE flushes TLB, so need some number > 1 of entries 513 * to allow practical forward progress. Bare metal returns 1, which 514 * seems to help uncover more bugs. 515 */ 516 if (firmware_has_feature(FW_FEATURE_LPAR)) 517 return STRESS_MAX_GROUPS; 518 else 519 return 1; 520 } 521 522 static struct stress_hpt_struct *stress_hpt_struct; 523 524 static int __init htab_dt_scan_seg_sizes(unsigned long node, 525 const char *uname, int depth, 526 void *data) 527 { 528 const char *type = of_get_flat_dt_prop(node, "device_type", NULL); 529 const __be32 *prop; 530 int size = 0; 531 532 /* We are scanning "cpu" nodes only */ 533 if (type == NULL || strcmp(type, "cpu") != 0) 534 return 0; 535 536 prop = of_get_flat_dt_prop(node, "ibm,processor-segment-sizes", &size); 537 if (prop == NULL) 538 return 0; 539 for (; size >= 4; size -= 4, ++prop) { 540 if (be32_to_cpu(prop[0]) == 40) { 541 DBG("1T segment support detected\n"); 542 543 if (disable_1tb_segments) { 544 DBG("1T segments disabled by command line\n"); 545 break; 546 } 547 548 cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT; 549 return 1; 550 } 551 } 552 cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B; 553 return 0; 554 } 555 556 static int __init get_idx_from_shift(unsigned int shift) 557 { 558 int idx = -1; 559 560 switch (shift) { 561 case 0xc: 562 idx = MMU_PAGE_4K; 563 break; 564 case 0x10: 565 idx = MMU_PAGE_64K; 566 break; 567 case 0x14: 568 idx = MMU_PAGE_1M; 569 break; 570 case 0x18: 571 idx = MMU_PAGE_16M; 572 break; 573 case 0x22: 574 idx = MMU_PAGE_16G; 575 break; 576 } 577 return idx; 578 } 579 580 static int __init htab_dt_scan_page_sizes(unsigned long node, 581 const char *uname, int depth, 582 void *data) 583 { 584 const char *type = of_get_flat_dt_prop(node, "device_type", NULL); 585 const __be32 *prop; 586 int size = 0; 587 588 /* We are scanning "cpu" nodes only */ 589 if (type == NULL || strcmp(type, "cpu") != 0) 590 return 0; 591 592 prop = of_get_flat_dt_prop(node, "ibm,segment-page-sizes", &size); 593 if (!prop) 594 return 0; 595 596 pr_info("Page sizes from device-tree:\n"); 597 size /= 4; 598 cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE); 599 while(size > 0) { 600 unsigned int base_shift = be32_to_cpu(prop[0]); 601 unsigned int slbenc = be32_to_cpu(prop[1]); 602 unsigned int lpnum = be32_to_cpu(prop[2]); 603 struct mmu_psize_def *def; 604 int idx, base_idx; 605 606 size -= 3; prop += 3; 607 base_idx = get_idx_from_shift(base_shift); 608 if (base_idx < 0) { 609 /* skip the pte encoding also */ 610 prop += lpnum * 2; size -= lpnum * 2; 611 continue; 612 } 613 def = &mmu_psize_defs[base_idx]; 614 if (base_idx == MMU_PAGE_16M) 615 cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE; 616 617 def->shift = base_shift; 618 if (base_shift <= 23) 619 def->avpnm = 0; 620 else 621 def->avpnm = (1 << (base_shift - 23)) - 1; 622 def->sllp = slbenc; 623 /* 624 * We don't know for sure what's up with tlbiel, so 625 * for now we only set it for 4K and 64K pages 626 */ 627 if (base_idx == MMU_PAGE_4K || base_idx == MMU_PAGE_64K) 628 def->tlbiel = 1; 629 else 630 def->tlbiel = 0; 631 632 while (size > 0 && lpnum) { 633 unsigned int shift = be32_to_cpu(prop[0]); 634 int penc = be32_to_cpu(prop[1]); 635 636 prop += 2; size -= 2; 637 lpnum--; 638 639 idx = get_idx_from_shift(shift); 640 if (idx < 0) 641 continue; 642 643 if (penc == -1) 644 pr_err("Invalid penc for base_shift=%d " 645 "shift=%d\n", base_shift, shift); 646 647 def->penc[idx] = penc; 648 pr_info("base_shift=%d: shift=%d, sllp=0x%04lx," 649 " avpnm=0x%08lx, tlbiel=%d, penc=%d\n", 650 base_shift, shift, def->sllp, 651 def->avpnm, def->tlbiel, def->penc[idx]); 652 } 653 } 654 655 return 1; 656 } 657 658 #ifdef CONFIG_HUGETLB_PAGE 659 /* 660 * Scan for 16G memory blocks that have been set aside for huge pages 661 * and reserve those blocks for 16G huge pages. 662 */ 663 static int __init htab_dt_scan_hugepage_blocks(unsigned long node, 664 const char *uname, int depth, 665 void *data) { 666 const char *type = of_get_flat_dt_prop(node, "device_type", NULL); 667 const __be64 *addr_prop; 668 const __be32 *page_count_prop; 669 unsigned int expected_pages; 670 long unsigned int phys_addr; 671 long unsigned int block_size; 672 673 /* We are scanning "memory" nodes only */ 674 if (type == NULL || strcmp(type, "memory") != 0) 675 return 0; 676 677 /* 678 * This property is the log base 2 of the number of virtual pages that 679 * will represent this memory block. 680 */ 681 page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL); 682 if (page_count_prop == NULL) 683 return 0; 684 expected_pages = (1 << be32_to_cpu(page_count_prop[0])); 685 addr_prop = of_get_flat_dt_prop(node, "reg", NULL); 686 if (addr_prop == NULL) 687 return 0; 688 phys_addr = be64_to_cpu(addr_prop[0]); 689 block_size = be64_to_cpu(addr_prop[1]); 690 if (block_size != (16 * GB)) 691 return 0; 692 printk(KERN_INFO "Huge page(16GB) memory: " 693 "addr = 0x%lX size = 0x%lX pages = %d\n", 694 phys_addr, block_size, expected_pages); 695 if (phys_addr + block_size * expected_pages <= memblock_end_of_DRAM()) { 696 memblock_reserve(phys_addr, block_size * expected_pages); 697 pseries_add_gpage(phys_addr, block_size, expected_pages); 698 } 699 return 0; 700 } 701 #endif /* CONFIG_HUGETLB_PAGE */ 702 703 static void __init mmu_psize_set_default_penc(void) 704 { 705 int bpsize, apsize; 706 for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++) 707 for (apsize = 0; apsize < MMU_PAGE_COUNT; apsize++) 708 mmu_psize_defs[bpsize].penc[apsize] = -1; 709 } 710 711 #ifdef CONFIG_PPC_64K_PAGES 712 713 static bool __init might_have_hea(void) 714 { 715 /* 716 * The HEA ethernet adapter requires awareness of the 717 * GX bus. Without that awareness we can easily assume 718 * we will never see an HEA ethernet device. 719 */ 720 #ifdef CONFIG_IBMEBUS 721 return !cpu_has_feature(CPU_FTR_ARCH_207S) && 722 firmware_has_feature(FW_FEATURE_SPLPAR); 723 #else 724 return false; 725 #endif 726 } 727 728 #endif /* #ifdef CONFIG_PPC_64K_PAGES */ 729 730 static void __init htab_scan_page_sizes(void) 731 { 732 int rc; 733 734 /* se the invalid penc to -1 */ 735 mmu_psize_set_default_penc(); 736 737 /* Default to 4K pages only */ 738 memcpy(mmu_psize_defs, mmu_psize_defaults, 739 sizeof(mmu_psize_defaults)); 740 741 /* 742 * Try to find the available page sizes in the device-tree 743 */ 744 rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL); 745 if (rc == 0 && early_mmu_has_feature(MMU_FTR_16M_PAGE)) { 746 /* 747 * Nothing in the device-tree, but the CPU supports 16M pages, 748 * so let's fallback on a known size list for 16M capable CPUs. 749 */ 750 memcpy(mmu_psize_defs, mmu_psize_defaults_gp, 751 sizeof(mmu_psize_defaults_gp)); 752 } 753 754 #ifdef CONFIG_HUGETLB_PAGE 755 if (!hugetlb_disabled && !early_radix_enabled() ) { 756 /* Reserve 16G huge page memory sections for huge pages */ 757 of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL); 758 } 759 #endif /* CONFIG_HUGETLB_PAGE */ 760 } 761 762 /* 763 * Fill in the hpte_page_sizes[] array. 764 * We go through the mmu_psize_defs[] array looking for all the 765 * supported base/actual page size combinations. Each combination 766 * has a unique pagesize encoding (penc) value in the low bits of 767 * the LP field of the HPTE. For actual page sizes less than 1MB, 768 * some of the upper LP bits are used for RPN bits, meaning that 769 * we need to fill in several entries in hpte_page_sizes[]. 770 * 771 * In diagrammatic form, with r = RPN bits and z = page size bits: 772 * PTE LP actual page size 773 * rrrr rrrz >=8KB 774 * rrrr rrzz >=16KB 775 * rrrr rzzz >=32KB 776 * rrrr zzzz >=64KB 777 * ... 778 * 779 * The zzzz bits are implementation-specific but are chosen so that 780 * no encoding for a larger page size uses the same value in its 781 * low-order N bits as the encoding for the 2^(12+N) byte page size 782 * (if it exists). 783 */ 784 static void __init init_hpte_page_sizes(void) 785 { 786 long int ap, bp; 787 long int shift, penc; 788 789 for (bp = 0; bp < MMU_PAGE_COUNT; ++bp) { 790 if (!mmu_psize_defs[bp].shift) 791 continue; /* not a supported page size */ 792 for (ap = bp; ap < MMU_PAGE_COUNT; ++ap) { 793 penc = mmu_psize_defs[bp].penc[ap]; 794 if (penc == -1 || !mmu_psize_defs[ap].shift) 795 continue; 796 shift = mmu_psize_defs[ap].shift - LP_SHIFT; 797 if (shift <= 0) 798 continue; /* should never happen */ 799 /* 800 * For page sizes less than 1MB, this loop 801 * replicates the entry for all possible values 802 * of the rrrr bits. 803 */ 804 while (penc < (1 << LP_BITS)) { 805 hpte_page_sizes[penc] = (ap << 4) | bp; 806 penc += 1 << shift; 807 } 808 } 809 } 810 } 811 812 static void __init htab_init_page_sizes(void) 813 { 814 bool aligned = true; 815 init_hpte_page_sizes(); 816 817 if (!debug_pagealloc_enabled_or_kfence()) { 818 /* 819 * Pick a size for the linear mapping. Currently, we only 820 * support 16M, 1M and 4K which is the default 821 */ 822 if (IS_ENABLED(CONFIG_STRICT_KERNEL_RWX) && 823 (unsigned long)_stext % 0x1000000) { 824 if (mmu_psize_defs[MMU_PAGE_16M].shift) 825 pr_warn("Kernel not 16M aligned, disabling 16M linear map alignment\n"); 826 aligned = false; 827 } 828 829 if (mmu_psize_defs[MMU_PAGE_16M].shift && aligned) 830 mmu_linear_psize = MMU_PAGE_16M; 831 else if (mmu_psize_defs[MMU_PAGE_1M].shift) 832 mmu_linear_psize = MMU_PAGE_1M; 833 } 834 835 #ifdef CONFIG_PPC_64K_PAGES 836 /* 837 * Pick a size for the ordinary pages. Default is 4K, we support 838 * 64K for user mappings and vmalloc if supported by the processor. 839 * We only use 64k for ioremap if the processor 840 * (and firmware) support cache-inhibited large pages. 841 * If not, we use 4k and set mmu_ci_restrictions so that 842 * hash_page knows to switch processes that use cache-inhibited 843 * mappings to 4k pages. 844 */ 845 if (mmu_psize_defs[MMU_PAGE_64K].shift) { 846 mmu_virtual_psize = MMU_PAGE_64K; 847 mmu_vmalloc_psize = MMU_PAGE_64K; 848 if (mmu_linear_psize == MMU_PAGE_4K) 849 mmu_linear_psize = MMU_PAGE_64K; 850 if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) { 851 /* 852 * When running on pSeries using 64k pages for ioremap 853 * would stop us accessing the HEA ethernet. So if we 854 * have the chance of ever seeing one, stay at 4k. 855 */ 856 if (!might_have_hea()) 857 mmu_io_psize = MMU_PAGE_64K; 858 } else 859 mmu_ci_restrictions = 1; 860 } 861 #endif /* CONFIG_PPC_64K_PAGES */ 862 863 #ifdef CONFIG_SPARSEMEM_VMEMMAP 864 /* 865 * We try to use 16M pages for vmemmap if that is supported 866 * and we have at least 1G of RAM at boot 867 */ 868 if (mmu_psize_defs[MMU_PAGE_16M].shift && 869 memblock_phys_mem_size() >= 0x40000000) 870 mmu_vmemmap_psize = MMU_PAGE_16M; 871 else 872 mmu_vmemmap_psize = mmu_virtual_psize; 873 #endif /* CONFIG_SPARSEMEM_VMEMMAP */ 874 875 printk(KERN_DEBUG "Page orders: linear mapping = %d, " 876 "virtual = %d, io = %d" 877 #ifdef CONFIG_SPARSEMEM_VMEMMAP 878 ", vmemmap = %d" 879 #endif 880 "\n", 881 mmu_psize_defs[mmu_linear_psize].shift, 882 mmu_psize_defs[mmu_virtual_psize].shift, 883 mmu_psize_defs[mmu_io_psize].shift 884 #ifdef CONFIG_SPARSEMEM_VMEMMAP 885 ,mmu_psize_defs[mmu_vmemmap_psize].shift 886 #endif 887 ); 888 } 889 890 static int __init htab_dt_scan_pftsize(unsigned long node, 891 const char *uname, int depth, 892 void *data) 893 { 894 const char *type = of_get_flat_dt_prop(node, "device_type", NULL); 895 const __be32 *prop; 896 897 /* We are scanning "cpu" nodes only */ 898 if (type == NULL || strcmp(type, "cpu") != 0) 899 return 0; 900 901 prop = of_get_flat_dt_prop(node, "ibm,pft-size", NULL); 902 if (prop != NULL) { 903 /* pft_size[0] is the NUMA CEC cookie */ 904 ppc64_pft_size = be32_to_cpu(prop[1]); 905 return 1; 906 } 907 return 0; 908 } 909 910 unsigned htab_shift_for_mem_size(unsigned long mem_size) 911 { 912 unsigned memshift = __ilog2(mem_size); 913 unsigned pshift = mmu_psize_defs[mmu_virtual_psize].shift; 914 unsigned pteg_shift; 915 916 /* round mem_size up to next power of 2 */ 917 if ((1UL << memshift) < mem_size) 918 memshift += 1; 919 920 /* aim for 2 pages / pteg */ 921 pteg_shift = memshift - (pshift + 1); 922 923 /* 924 * 2^11 PTEGS of 128 bytes each, ie. 2^18 bytes is the minimum htab 925 * size permitted by the architecture. 926 */ 927 return max(pteg_shift + 7, 18U); 928 } 929 930 static unsigned long __init htab_get_table_size(void) 931 { 932 /* 933 * If hash size isn't already provided by the platform, we try to 934 * retrieve it from the device-tree. If it's not there neither, we 935 * calculate it now based on the total RAM size 936 */ 937 if (ppc64_pft_size == 0) 938 of_scan_flat_dt(htab_dt_scan_pftsize, NULL); 939 if (ppc64_pft_size) 940 return 1UL << ppc64_pft_size; 941 942 return 1UL << htab_shift_for_mem_size(memblock_phys_mem_size()); 943 } 944 945 #ifdef CONFIG_MEMORY_HOTPLUG 946 static int resize_hpt_for_hotplug(unsigned long new_mem_size) 947 { 948 unsigned target_hpt_shift; 949 950 if (!mmu_hash_ops.resize_hpt) 951 return 0; 952 953 target_hpt_shift = htab_shift_for_mem_size(new_mem_size); 954 955 /* 956 * To avoid lots of HPT resizes if memory size is fluctuating 957 * across a boundary, we deliberately have some hysterisis 958 * here: we immediately increase the HPT size if the target 959 * shift exceeds the current shift, but we won't attempt to 960 * reduce unless the target shift is at least 2 below the 961 * current shift 962 */ 963 if (target_hpt_shift > ppc64_pft_size || 964 target_hpt_shift < ppc64_pft_size - 1) 965 return mmu_hash_ops.resize_hpt(target_hpt_shift); 966 967 return 0; 968 } 969 970 int hash__create_section_mapping(unsigned long start, unsigned long end, 971 int nid, pgprot_t prot) 972 { 973 int rc; 974 975 if (end >= H_VMALLOC_START) { 976 pr_warn("Outside the supported range\n"); 977 return -1; 978 } 979 980 resize_hpt_for_hotplug(memblock_phys_mem_size()); 981 982 rc = htab_bolt_mapping(start, end, __pa(start), 983 pgprot_val(prot), mmu_linear_psize, 984 mmu_kernel_ssize); 985 986 if (rc < 0) { 987 int rc2 = htab_remove_mapping(start, end, mmu_linear_psize, 988 mmu_kernel_ssize); 989 BUG_ON(rc2 && (rc2 != -ENOENT)); 990 } 991 return rc; 992 } 993 994 int hash__remove_section_mapping(unsigned long start, unsigned long end) 995 { 996 int rc = htab_remove_mapping(start, end, mmu_linear_psize, 997 mmu_kernel_ssize); 998 999 if (resize_hpt_for_hotplug(memblock_phys_mem_size()) == -ENOSPC) 1000 pr_warn("Hash collision while resizing HPT\n"); 1001 1002 return rc; 1003 } 1004 #endif /* CONFIG_MEMORY_HOTPLUG */ 1005 1006 static void __init hash_init_partition_table(phys_addr_t hash_table, 1007 unsigned long htab_size) 1008 { 1009 mmu_partition_table_init(); 1010 1011 /* 1012 * PS field (VRMA page size) is not used for LPID 0, hence set to 0. 1013 * For now, UPRT is 0 and we have no segment table. 1014 */ 1015 htab_size = __ilog2(htab_size) - 18; 1016 mmu_partition_table_set_entry(0, hash_table | htab_size, 0, false); 1017 pr_info("Partition table %p\n", partition_tb); 1018 } 1019 1020 void hpt_clear_stress(void); 1021 static struct timer_list stress_hpt_timer; 1022 static void stress_hpt_timer_fn(struct timer_list *timer) 1023 { 1024 int next_cpu; 1025 1026 hpt_clear_stress(); 1027 if (!firmware_has_feature(FW_FEATURE_LPAR)) 1028 tlbiel_all(); 1029 1030 next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask); 1031 if (next_cpu >= nr_cpu_ids) 1032 next_cpu = cpumask_first(cpu_online_mask); 1033 stress_hpt_timer.expires = jiffies + msecs_to_jiffies(10); 1034 add_timer_on(&stress_hpt_timer, next_cpu); 1035 } 1036 1037 static void __init htab_initialize(void) 1038 { 1039 unsigned long table; 1040 unsigned long pteg_count; 1041 unsigned long prot; 1042 phys_addr_t base = 0, size = 0, end; 1043 u64 i; 1044 1045 DBG(" -> htab_initialize()\n"); 1046 1047 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) { 1048 mmu_kernel_ssize = MMU_SEGSIZE_1T; 1049 mmu_highuser_ssize = MMU_SEGSIZE_1T; 1050 printk(KERN_INFO "Using 1TB segments\n"); 1051 } 1052 1053 if (stress_slb_enabled) 1054 static_branch_enable(&stress_slb_key); 1055 1056 if (stress_hpt_enabled) { 1057 unsigned long tmp; 1058 static_branch_enable(&stress_hpt_key); 1059 // Too early to use nr_cpu_ids, so use NR_CPUS 1060 tmp = memblock_phys_alloc_range(sizeof(struct stress_hpt_struct) * NR_CPUS, 1061 __alignof__(struct stress_hpt_struct), 1062 0, MEMBLOCK_ALLOC_ANYWHERE); 1063 memset((void *)tmp, 0xff, sizeof(struct stress_hpt_struct) * NR_CPUS); 1064 stress_hpt_struct = __va(tmp); 1065 1066 timer_setup(&stress_hpt_timer, stress_hpt_timer_fn, 0); 1067 stress_hpt_timer.expires = jiffies + msecs_to_jiffies(10); 1068 add_timer(&stress_hpt_timer); 1069 } 1070 1071 /* 1072 * Calculate the required size of the htab. We want the number of 1073 * PTEGs to equal one half the number of real pages. 1074 */ 1075 htab_size_bytes = htab_get_table_size(); 1076 pteg_count = htab_size_bytes >> 7; 1077 1078 htab_hash_mask = pteg_count - 1; 1079 1080 if (firmware_has_feature(FW_FEATURE_LPAR) || 1081 firmware_has_feature(FW_FEATURE_PS3_LV1)) { 1082 /* Using a hypervisor which owns the htab */ 1083 htab_address = NULL; 1084 _SDR1 = 0; 1085 #ifdef CONFIG_FA_DUMP 1086 /* 1087 * If firmware assisted dump is active firmware preserves 1088 * the contents of htab along with entire partition memory. 1089 * Clear the htab if firmware assisted dump is active so 1090 * that we dont end up using old mappings. 1091 */ 1092 if (is_fadump_active() && mmu_hash_ops.hpte_clear_all) 1093 mmu_hash_ops.hpte_clear_all(); 1094 #endif 1095 } else { 1096 unsigned long limit = MEMBLOCK_ALLOC_ANYWHERE; 1097 1098 #ifdef CONFIG_PPC_CELL 1099 /* 1100 * Cell may require the hash table down low when using the 1101 * Axon IOMMU in order to fit the dynamic region over it, see 1102 * comments in cell/iommu.c 1103 */ 1104 if (fdt_subnode_offset(initial_boot_params, 0, "axon") > 0) { 1105 limit = 0x80000000; 1106 pr_info("Hash table forced below 2G for Axon IOMMU\n"); 1107 } 1108 #endif /* CONFIG_PPC_CELL */ 1109 1110 table = memblock_phys_alloc_range(htab_size_bytes, 1111 htab_size_bytes, 1112 0, limit); 1113 if (!table) 1114 panic("ERROR: Failed to allocate %pa bytes below %pa\n", 1115 &htab_size_bytes, &limit); 1116 1117 DBG("Hash table allocated at %lx, size: %lx\n", table, 1118 htab_size_bytes); 1119 1120 htab_address = __va(table); 1121 1122 /* htab absolute addr + encoded htabsize */ 1123 _SDR1 = table + __ilog2(htab_size_bytes) - 18; 1124 1125 /* Initialize the HPT with no entries */ 1126 memset((void *)table, 0, htab_size_bytes); 1127 1128 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 1129 /* Set SDR1 */ 1130 mtspr(SPRN_SDR1, _SDR1); 1131 else 1132 hash_init_partition_table(table, htab_size_bytes); 1133 } 1134 1135 prot = pgprot_val(PAGE_KERNEL); 1136 1137 if (debug_pagealloc_enabled_or_kfence()) { 1138 linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT; 1139 linear_map_hash_slots = memblock_alloc_try_nid( 1140 linear_map_hash_count, 1, MEMBLOCK_LOW_LIMIT, 1141 ppc64_rma_size, NUMA_NO_NODE); 1142 if (!linear_map_hash_slots) 1143 panic("%s: Failed to allocate %lu bytes max_addr=%pa\n", 1144 __func__, linear_map_hash_count, &ppc64_rma_size); 1145 } 1146 1147 /* create bolted the linear mapping in the hash table */ 1148 for_each_mem_range(i, &base, &end) { 1149 size = end - base; 1150 base = (unsigned long)__va(base); 1151 1152 DBG("creating mapping for region: %lx..%lx (prot: %lx)\n", 1153 base, size, prot); 1154 1155 if ((base + size) >= H_VMALLOC_START) { 1156 pr_warn("Outside the supported range\n"); 1157 continue; 1158 } 1159 1160 BUG_ON(htab_bolt_mapping(base, base + size, __pa(base), 1161 prot, mmu_linear_psize, mmu_kernel_ssize)); 1162 } 1163 memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE); 1164 1165 /* 1166 * If we have a memory_limit and we've allocated TCEs then we need to 1167 * explicitly map the TCE area at the top of RAM. We also cope with the 1168 * case that the TCEs start below memory_limit. 1169 * tce_alloc_start/end are 16MB aligned so the mapping should work 1170 * for either 4K or 16MB pages. 1171 */ 1172 if (tce_alloc_start) { 1173 tce_alloc_start = (unsigned long)__va(tce_alloc_start); 1174 tce_alloc_end = (unsigned long)__va(tce_alloc_end); 1175 1176 if (base + size >= tce_alloc_start) 1177 tce_alloc_start = base + size + 1; 1178 1179 BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end, 1180 __pa(tce_alloc_start), prot, 1181 mmu_linear_psize, mmu_kernel_ssize)); 1182 } 1183 1184 1185 DBG(" <- htab_initialize()\n"); 1186 } 1187 #undef KB 1188 #undef MB 1189 1190 void __init hash__early_init_devtree(void) 1191 { 1192 /* Initialize segment sizes */ 1193 of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL); 1194 1195 /* Initialize page sizes */ 1196 htab_scan_page_sizes(); 1197 } 1198 1199 static struct hash_mm_context init_hash_mm_context; 1200 void __init hash__early_init_mmu(void) 1201 { 1202 #ifndef CONFIG_PPC_64K_PAGES 1203 /* 1204 * We have code in __hash_page_4K() and elsewhere, which assumes it can 1205 * do the following: 1206 * new_pte |= (slot << H_PAGE_F_GIX_SHIFT) & (H_PAGE_F_SECOND | H_PAGE_F_GIX); 1207 * 1208 * Where the slot number is between 0-15, and values of 8-15 indicate 1209 * the secondary bucket. For that code to work H_PAGE_F_SECOND and 1210 * H_PAGE_F_GIX must occupy four contiguous bits in the PTE, and 1211 * H_PAGE_F_SECOND must be placed above H_PAGE_F_GIX. Assert that here 1212 * with a BUILD_BUG_ON(). 1213 */ 1214 BUILD_BUG_ON(H_PAGE_F_SECOND != (1ul << (H_PAGE_F_GIX_SHIFT + 3))); 1215 #endif /* CONFIG_PPC_64K_PAGES */ 1216 1217 htab_init_page_sizes(); 1218 1219 /* 1220 * initialize page table size 1221 */ 1222 __pte_frag_nr = H_PTE_FRAG_NR; 1223 __pte_frag_size_shift = H_PTE_FRAG_SIZE_SHIFT; 1224 __pmd_frag_nr = H_PMD_FRAG_NR; 1225 __pmd_frag_size_shift = H_PMD_FRAG_SIZE_SHIFT; 1226 1227 __pte_index_size = H_PTE_INDEX_SIZE; 1228 __pmd_index_size = H_PMD_INDEX_SIZE; 1229 __pud_index_size = H_PUD_INDEX_SIZE; 1230 __pgd_index_size = H_PGD_INDEX_SIZE; 1231 __pud_cache_index = H_PUD_CACHE_INDEX; 1232 __pte_table_size = H_PTE_TABLE_SIZE; 1233 __pmd_table_size = H_PMD_TABLE_SIZE; 1234 __pud_table_size = H_PUD_TABLE_SIZE; 1235 __pgd_table_size = H_PGD_TABLE_SIZE; 1236 __pmd_val_bits = HASH_PMD_VAL_BITS; 1237 __pud_val_bits = HASH_PUD_VAL_BITS; 1238 __pgd_val_bits = HASH_PGD_VAL_BITS; 1239 1240 __kernel_virt_start = H_KERN_VIRT_START; 1241 __vmalloc_start = H_VMALLOC_START; 1242 __vmalloc_end = H_VMALLOC_END; 1243 __kernel_io_start = H_KERN_IO_START; 1244 __kernel_io_end = H_KERN_IO_END; 1245 vmemmap = (struct page *)H_VMEMMAP_START; 1246 ioremap_bot = IOREMAP_BASE; 1247 1248 #ifdef CONFIG_PCI 1249 pci_io_base = ISA_IO_BASE; 1250 #endif 1251 1252 /* Select appropriate backend */ 1253 if (firmware_has_feature(FW_FEATURE_PS3_LV1)) 1254 ps3_early_mm_init(); 1255 else if (firmware_has_feature(FW_FEATURE_LPAR)) 1256 hpte_init_pseries(); 1257 else if (IS_ENABLED(CONFIG_PPC_HASH_MMU_NATIVE)) 1258 hpte_init_native(); 1259 1260 if (!mmu_hash_ops.hpte_insert) 1261 panic("hash__early_init_mmu: No MMU hash ops defined!\n"); 1262 1263 /* 1264 * Initialize the MMU Hash table and create the linear mapping 1265 * of memory. Has to be done before SLB initialization as this is 1266 * currently where the page size encoding is obtained. 1267 */ 1268 htab_initialize(); 1269 1270 init_mm.context.hash_context = &init_hash_mm_context; 1271 mm_ctx_set_slb_addr_limit(&init_mm.context, SLB_ADDR_LIMIT_DEFAULT); 1272 1273 pr_info("Initializing hash mmu with SLB\n"); 1274 /* Initialize SLB management */ 1275 slb_initialize(); 1276 1277 if (cpu_has_feature(CPU_FTR_ARCH_206) 1278 && cpu_has_feature(CPU_FTR_HVMODE)) 1279 tlbiel_all(); 1280 } 1281 1282 #ifdef CONFIG_SMP 1283 void hash__early_init_mmu_secondary(void) 1284 { 1285 /* Initialize hash table for that CPU */ 1286 if (!firmware_has_feature(FW_FEATURE_LPAR)) { 1287 1288 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 1289 mtspr(SPRN_SDR1, _SDR1); 1290 else 1291 set_ptcr_when_no_uv(__pa(partition_tb) | 1292 (PATB_SIZE_SHIFT - 12)); 1293 } 1294 /* Initialize SLB */ 1295 slb_initialize(); 1296 1297 if (cpu_has_feature(CPU_FTR_ARCH_206) 1298 && cpu_has_feature(CPU_FTR_HVMODE)) 1299 tlbiel_all(); 1300 1301 #ifdef CONFIG_PPC_MEM_KEYS 1302 if (mmu_has_feature(MMU_FTR_PKEY)) 1303 mtspr(SPRN_UAMOR, default_uamor); 1304 #endif 1305 } 1306 #endif /* CONFIG_SMP */ 1307 1308 /* 1309 * Called by asm hashtable.S for doing lazy icache flush 1310 */ 1311 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap) 1312 { 1313 struct folio *folio; 1314 1315 if (!pfn_valid(pte_pfn(pte))) 1316 return pp; 1317 1318 folio = page_folio(pte_page(pte)); 1319 1320 /* page is dirty */ 1321 if (!test_bit(PG_dcache_clean, &folio->flags) && 1322 !folio_test_reserved(folio)) { 1323 if (trap == INTERRUPT_INST_STORAGE) { 1324 flush_dcache_icache_folio(folio); 1325 set_bit(PG_dcache_clean, &folio->flags); 1326 } else 1327 pp |= HPTE_R_N; 1328 } 1329 return pp; 1330 } 1331 1332 static unsigned int get_paca_psize(unsigned long addr) 1333 { 1334 unsigned char *psizes; 1335 unsigned long index, mask_index; 1336 1337 if (addr < SLICE_LOW_TOP) { 1338 psizes = get_paca()->mm_ctx_low_slices_psize; 1339 index = GET_LOW_SLICE_INDEX(addr); 1340 } else { 1341 psizes = get_paca()->mm_ctx_high_slices_psize; 1342 index = GET_HIGH_SLICE_INDEX(addr); 1343 } 1344 mask_index = index & 0x1; 1345 return (psizes[index >> 1] >> (mask_index * 4)) & 0xF; 1346 } 1347 1348 1349 /* 1350 * Demote a segment to using 4k pages. 1351 * For now this makes the whole process use 4k pages. 1352 */ 1353 #ifdef CONFIG_PPC_64K_PAGES 1354 void demote_segment_4k(struct mm_struct *mm, unsigned long addr) 1355 { 1356 if (get_slice_psize(mm, addr) == MMU_PAGE_4K) 1357 return; 1358 slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K); 1359 copro_flush_all_slbs(mm); 1360 if ((get_paca_psize(addr) != MMU_PAGE_4K) && (current->mm == mm)) { 1361 1362 copy_mm_to_paca(mm); 1363 slb_flush_and_restore_bolted(); 1364 } 1365 } 1366 #endif /* CONFIG_PPC_64K_PAGES */ 1367 1368 #ifdef CONFIG_PPC_SUBPAGE_PROT 1369 /* 1370 * This looks up a 2-bit protection code for a 4k subpage of a 64k page. 1371 * Userspace sets the subpage permissions using the subpage_prot system call. 1372 * 1373 * Result is 0: full permissions, _PAGE_RW: read-only, 1374 * _PAGE_RWX: no access. 1375 */ 1376 static int subpage_protection(struct mm_struct *mm, unsigned long ea) 1377 { 1378 struct subpage_prot_table *spt = mm_ctx_subpage_prot(&mm->context); 1379 u32 spp = 0; 1380 u32 **sbpm, *sbpp; 1381 1382 if (!spt) 1383 return 0; 1384 1385 if (ea >= spt->maxaddr) 1386 return 0; 1387 if (ea < 0x100000000UL) { 1388 /* addresses below 4GB use spt->low_prot */ 1389 sbpm = spt->low_prot; 1390 } else { 1391 sbpm = spt->protptrs[ea >> SBP_L3_SHIFT]; 1392 if (!sbpm) 1393 return 0; 1394 } 1395 sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)]; 1396 if (!sbpp) 1397 return 0; 1398 spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)]; 1399 1400 /* extract 2-bit bitfield for this 4k subpage */ 1401 spp >>= 30 - 2 * ((ea >> 12) & 0xf); 1402 1403 /* 1404 * 0 -> full permission 1405 * 1 -> Read only 1406 * 2 -> no access. 1407 * We return the flag that need to be cleared. 1408 */ 1409 spp = ((spp & 2) ? _PAGE_RWX : 0) | ((spp & 1) ? _PAGE_WRITE : 0); 1410 return spp; 1411 } 1412 1413 #else /* CONFIG_PPC_SUBPAGE_PROT */ 1414 static inline int subpage_protection(struct mm_struct *mm, unsigned long ea) 1415 { 1416 return 0; 1417 } 1418 #endif 1419 1420 void hash_failure_debug(unsigned long ea, unsigned long access, 1421 unsigned long vsid, unsigned long trap, 1422 int ssize, int psize, int lpsize, unsigned long pte) 1423 { 1424 if (!printk_ratelimit()) 1425 return; 1426 pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n", 1427 ea, access, current->comm); 1428 pr_info(" trap=0x%lx vsid=0x%lx ssize=%d base psize=%d psize %d pte=0x%lx\n", 1429 trap, vsid, ssize, psize, lpsize, pte); 1430 } 1431 1432 static void check_paca_psize(unsigned long ea, struct mm_struct *mm, 1433 int psize, bool user_region) 1434 { 1435 if (user_region) { 1436 if (psize != get_paca_psize(ea)) { 1437 copy_mm_to_paca(mm); 1438 slb_flush_and_restore_bolted(); 1439 } 1440 } else if (get_paca()->vmalloc_sllp != 1441 mmu_psize_defs[mmu_vmalloc_psize].sllp) { 1442 get_paca()->vmalloc_sllp = 1443 mmu_psize_defs[mmu_vmalloc_psize].sllp; 1444 slb_vmalloc_update(); 1445 } 1446 } 1447 1448 /* 1449 * Result code is: 1450 * 0 - handled 1451 * 1 - normal page fault 1452 * -1 - critical hash insertion error 1453 * -2 - access not permitted by subpage protection mechanism 1454 */ 1455 int hash_page_mm(struct mm_struct *mm, unsigned long ea, 1456 unsigned long access, unsigned long trap, 1457 unsigned long flags) 1458 { 1459 bool is_thp; 1460 pgd_t *pgdir; 1461 unsigned long vsid; 1462 pte_t *ptep; 1463 unsigned hugeshift; 1464 int rc, user_region = 0; 1465 int psize, ssize; 1466 1467 DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n", 1468 ea, access, trap); 1469 trace_hash_fault(ea, access, trap); 1470 1471 /* Get region & vsid */ 1472 switch (get_region_id(ea)) { 1473 case USER_REGION_ID: 1474 user_region = 1; 1475 if (! mm) { 1476 DBG_LOW(" user region with no mm !\n"); 1477 rc = 1; 1478 goto bail; 1479 } 1480 psize = get_slice_psize(mm, ea); 1481 ssize = user_segment_size(ea); 1482 vsid = get_user_vsid(&mm->context, ea, ssize); 1483 break; 1484 case VMALLOC_REGION_ID: 1485 vsid = get_kernel_vsid(ea, mmu_kernel_ssize); 1486 psize = mmu_vmalloc_psize; 1487 ssize = mmu_kernel_ssize; 1488 flags |= HPTE_USE_KERNEL_KEY; 1489 break; 1490 1491 case IO_REGION_ID: 1492 vsid = get_kernel_vsid(ea, mmu_kernel_ssize); 1493 psize = mmu_io_psize; 1494 ssize = mmu_kernel_ssize; 1495 flags |= HPTE_USE_KERNEL_KEY; 1496 break; 1497 default: 1498 /* 1499 * Not a valid range 1500 * Send the problem up to do_page_fault() 1501 */ 1502 rc = 1; 1503 goto bail; 1504 } 1505 DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid); 1506 1507 /* Bad address. */ 1508 if (!vsid) { 1509 DBG_LOW("Bad address!\n"); 1510 rc = 1; 1511 goto bail; 1512 } 1513 /* Get pgdir */ 1514 pgdir = mm->pgd; 1515 if (pgdir == NULL) { 1516 rc = 1; 1517 goto bail; 1518 } 1519 1520 /* Check CPU locality */ 1521 if (user_region && mm_is_thread_local(mm)) 1522 flags |= HPTE_LOCAL_UPDATE; 1523 1524 #ifndef CONFIG_PPC_64K_PAGES 1525 /* 1526 * If we use 4K pages and our psize is not 4K, then we might 1527 * be hitting a special driver mapping, and need to align the 1528 * address before we fetch the PTE. 1529 * 1530 * It could also be a hugepage mapping, in which case this is 1531 * not necessary, but it's not harmful, either. 1532 */ 1533 if (psize != MMU_PAGE_4K) 1534 ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1); 1535 #endif /* CONFIG_PPC_64K_PAGES */ 1536 1537 /* Get PTE and page size from page tables */ 1538 ptep = find_linux_pte(pgdir, ea, &is_thp, &hugeshift); 1539 if (ptep == NULL || !pte_present(*ptep)) { 1540 DBG_LOW(" no PTE !\n"); 1541 rc = 1; 1542 goto bail; 1543 } 1544 1545 if (IS_ENABLED(CONFIG_PPC_4K_PAGES) && !radix_enabled()) { 1546 if (hugeshift == PMD_SHIFT && psize == MMU_PAGE_16M) 1547 hugeshift = mmu_psize_defs[MMU_PAGE_16M].shift; 1548 if (hugeshift == PUD_SHIFT && psize == MMU_PAGE_16G) 1549 hugeshift = mmu_psize_defs[MMU_PAGE_16G].shift; 1550 } 1551 1552 /* 1553 * Add _PAGE_PRESENT to the required access perm. If there are parallel 1554 * updates to the pte that can possibly clear _PAGE_PTE, catch that too. 1555 * 1556 * We can safely use the return pte address in rest of the function 1557 * because we do set H_PAGE_BUSY which prevents further updates to pte 1558 * from generic code. 1559 */ 1560 access |= _PAGE_PRESENT | _PAGE_PTE; 1561 1562 /* 1563 * Pre-check access permissions (will be re-checked atomically 1564 * in __hash_page_XX but this pre-check is a fast path 1565 */ 1566 if (!check_pte_access(access, pte_val(*ptep))) { 1567 DBG_LOW(" no access !\n"); 1568 rc = 1; 1569 goto bail; 1570 } 1571 1572 if (hugeshift) { 1573 if (is_thp) 1574 rc = __hash_page_thp(ea, access, vsid, (pmd_t *)ptep, 1575 trap, flags, ssize, psize); 1576 #ifdef CONFIG_HUGETLB_PAGE 1577 else 1578 rc = __hash_page_huge(ea, access, vsid, ptep, trap, 1579 flags, ssize, hugeshift, psize); 1580 #else 1581 else { 1582 /* 1583 * if we have hugeshift, and is not transhuge with 1584 * hugetlb disabled, something is really wrong. 1585 */ 1586 rc = 1; 1587 WARN_ON(1); 1588 } 1589 #endif 1590 if (current->mm == mm) 1591 check_paca_psize(ea, mm, psize, user_region); 1592 1593 goto bail; 1594 } 1595 1596 #ifndef CONFIG_PPC_64K_PAGES 1597 DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep)); 1598 #else 1599 DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep), 1600 pte_val(*(ptep + PTRS_PER_PTE))); 1601 #endif 1602 /* Do actual hashing */ 1603 #ifdef CONFIG_PPC_64K_PAGES 1604 /* If H_PAGE_4K_PFN is set, make sure this is a 4k segment */ 1605 if ((pte_val(*ptep) & H_PAGE_4K_PFN) && psize == MMU_PAGE_64K) { 1606 demote_segment_4k(mm, ea); 1607 psize = MMU_PAGE_4K; 1608 } 1609 1610 /* 1611 * If this PTE is non-cacheable and we have restrictions on 1612 * using non cacheable large pages, then we switch to 4k 1613 */ 1614 if (mmu_ci_restrictions && psize == MMU_PAGE_64K && pte_ci(*ptep)) { 1615 if (user_region) { 1616 demote_segment_4k(mm, ea); 1617 psize = MMU_PAGE_4K; 1618 } else if (ea < VMALLOC_END) { 1619 /* 1620 * some driver did a non-cacheable mapping 1621 * in vmalloc space, so switch vmalloc 1622 * to 4k pages 1623 */ 1624 printk(KERN_ALERT "Reducing vmalloc segment " 1625 "to 4kB pages because of " 1626 "non-cacheable mapping\n"); 1627 psize = mmu_vmalloc_psize = MMU_PAGE_4K; 1628 copro_flush_all_slbs(mm); 1629 } 1630 } 1631 1632 #endif /* CONFIG_PPC_64K_PAGES */ 1633 1634 if (current->mm == mm) 1635 check_paca_psize(ea, mm, psize, user_region); 1636 1637 #ifdef CONFIG_PPC_64K_PAGES 1638 if (psize == MMU_PAGE_64K) 1639 rc = __hash_page_64K(ea, access, vsid, ptep, trap, 1640 flags, ssize); 1641 else 1642 #endif /* CONFIG_PPC_64K_PAGES */ 1643 { 1644 int spp = subpage_protection(mm, ea); 1645 if (access & spp) 1646 rc = -2; 1647 else 1648 rc = __hash_page_4K(ea, access, vsid, ptep, trap, 1649 flags, ssize, spp); 1650 } 1651 1652 /* 1653 * Dump some info in case of hash insertion failure, they should 1654 * never happen so it is really useful to know if/when they do 1655 */ 1656 if (rc == -1) 1657 hash_failure_debug(ea, access, vsid, trap, ssize, psize, 1658 psize, pte_val(*ptep)); 1659 #ifndef CONFIG_PPC_64K_PAGES 1660 DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep)); 1661 #else 1662 DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep), 1663 pte_val(*(ptep + PTRS_PER_PTE))); 1664 #endif 1665 DBG_LOW(" -> rc=%d\n", rc); 1666 1667 bail: 1668 return rc; 1669 } 1670 EXPORT_SYMBOL_GPL(hash_page_mm); 1671 1672 int hash_page(unsigned long ea, unsigned long access, unsigned long trap, 1673 unsigned long dsisr) 1674 { 1675 unsigned long flags = 0; 1676 struct mm_struct *mm = current->mm; 1677 1678 if ((get_region_id(ea) == VMALLOC_REGION_ID) || 1679 (get_region_id(ea) == IO_REGION_ID)) 1680 mm = &init_mm; 1681 1682 if (dsisr & DSISR_NOHPTE) 1683 flags |= HPTE_NOHPTE_UPDATE; 1684 1685 return hash_page_mm(mm, ea, access, trap, flags); 1686 } 1687 EXPORT_SYMBOL_GPL(hash_page); 1688 1689 DEFINE_INTERRUPT_HANDLER(do_hash_fault) 1690 { 1691 unsigned long ea = regs->dar; 1692 unsigned long dsisr = regs->dsisr; 1693 unsigned long access = _PAGE_PRESENT | _PAGE_READ; 1694 unsigned long flags = 0; 1695 struct mm_struct *mm; 1696 unsigned int region_id; 1697 long err; 1698 1699 if (unlikely(dsisr & (DSISR_BAD_FAULT_64S | DSISR_KEYFAULT))) { 1700 hash__do_page_fault(regs); 1701 return; 1702 } 1703 1704 region_id = get_region_id(ea); 1705 if ((region_id == VMALLOC_REGION_ID) || (region_id == IO_REGION_ID)) 1706 mm = &init_mm; 1707 else 1708 mm = current->mm; 1709 1710 if (dsisr & DSISR_NOHPTE) 1711 flags |= HPTE_NOHPTE_UPDATE; 1712 1713 if (dsisr & DSISR_ISSTORE) 1714 access |= _PAGE_WRITE; 1715 /* 1716 * We set _PAGE_PRIVILEGED only when 1717 * kernel mode access kernel space. 1718 * 1719 * _PAGE_PRIVILEGED is NOT set 1720 * 1) when kernel mode access user space 1721 * 2) user space access kernel space. 1722 */ 1723 access |= _PAGE_PRIVILEGED; 1724 if (user_mode(regs) || (region_id == USER_REGION_ID)) 1725 access &= ~_PAGE_PRIVILEGED; 1726 1727 if (TRAP(regs) == INTERRUPT_INST_STORAGE) 1728 access |= _PAGE_EXEC; 1729 1730 err = hash_page_mm(mm, ea, access, TRAP(regs), flags); 1731 if (unlikely(err < 0)) { 1732 // failed to insert a hash PTE due to an hypervisor error 1733 if (user_mode(regs)) { 1734 if (IS_ENABLED(CONFIG_PPC_SUBPAGE_PROT) && err == -2) 1735 _exception(SIGSEGV, regs, SEGV_ACCERR, ea); 1736 else 1737 _exception(SIGBUS, regs, BUS_ADRERR, ea); 1738 } else { 1739 bad_page_fault(regs, SIGBUS); 1740 } 1741 err = 0; 1742 1743 } else if (err) { 1744 hash__do_page_fault(regs); 1745 } 1746 } 1747 1748 static bool should_hash_preload(struct mm_struct *mm, unsigned long ea) 1749 { 1750 int psize = get_slice_psize(mm, ea); 1751 1752 /* We only prefault standard pages for now */ 1753 if (unlikely(psize != mm_ctx_user_psize(&mm->context))) 1754 return false; 1755 1756 /* 1757 * Don't prefault if subpage protection is enabled for the EA. 1758 */ 1759 if (unlikely((psize == MMU_PAGE_4K) && subpage_protection(mm, ea))) 1760 return false; 1761 1762 return true; 1763 } 1764 1765 static void hash_preload(struct mm_struct *mm, pte_t *ptep, unsigned long ea, 1766 bool is_exec, unsigned long trap) 1767 { 1768 unsigned long vsid; 1769 pgd_t *pgdir; 1770 int rc, ssize, update_flags = 0; 1771 unsigned long access = _PAGE_PRESENT | _PAGE_READ | (is_exec ? _PAGE_EXEC : 0); 1772 unsigned long flags; 1773 1774 BUG_ON(get_region_id(ea) != USER_REGION_ID); 1775 1776 if (!should_hash_preload(mm, ea)) 1777 return; 1778 1779 DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx," 1780 " trap=%lx\n", mm, mm->pgd, ea, access, trap); 1781 1782 /* Get Linux PTE if available */ 1783 pgdir = mm->pgd; 1784 if (pgdir == NULL) 1785 return; 1786 1787 /* Get VSID */ 1788 ssize = user_segment_size(ea); 1789 vsid = get_user_vsid(&mm->context, ea, ssize); 1790 if (!vsid) 1791 return; 1792 1793 #ifdef CONFIG_PPC_64K_PAGES 1794 /* If either H_PAGE_4K_PFN or cache inhibited is set (and we are on 1795 * a 64K kernel), then we don't preload, hash_page() will take 1796 * care of it once we actually try to access the page. 1797 * That way we don't have to duplicate all of the logic for segment 1798 * page size demotion here 1799 * Called with PTL held, hence can be sure the value won't change in 1800 * between. 1801 */ 1802 if ((pte_val(*ptep) & H_PAGE_4K_PFN) || pte_ci(*ptep)) 1803 return; 1804 #endif /* CONFIG_PPC_64K_PAGES */ 1805 1806 /* 1807 * __hash_page_* must run with interrupts off, including PMI interrupts 1808 * off, as it sets the H_PAGE_BUSY bit. 1809 * 1810 * It's otherwise possible for perf interrupts to hit at any time and 1811 * may take a hash fault reading the user stack, which could take a 1812 * hash miss and deadlock on the same H_PAGE_BUSY bit. 1813 * 1814 * Interrupts must also be off for the duration of the 1815 * mm_is_thread_local test and update, to prevent preempt running the 1816 * mm on another CPU (XXX: this may be racy vs kthread_use_mm). 1817 */ 1818 powerpc_local_irq_pmu_save(flags); 1819 1820 /* Is that local to this CPU ? */ 1821 if (mm_is_thread_local(mm)) 1822 update_flags |= HPTE_LOCAL_UPDATE; 1823 1824 /* Hash it in */ 1825 #ifdef CONFIG_PPC_64K_PAGES 1826 if (mm_ctx_user_psize(&mm->context) == MMU_PAGE_64K) 1827 rc = __hash_page_64K(ea, access, vsid, ptep, trap, 1828 update_flags, ssize); 1829 else 1830 #endif /* CONFIG_PPC_64K_PAGES */ 1831 rc = __hash_page_4K(ea, access, vsid, ptep, trap, update_flags, 1832 ssize, subpage_protection(mm, ea)); 1833 1834 /* Dump some info in case of hash insertion failure, they should 1835 * never happen so it is really useful to know if/when they do 1836 */ 1837 if (rc == -1) 1838 hash_failure_debug(ea, access, vsid, trap, ssize, 1839 mm_ctx_user_psize(&mm->context), 1840 mm_ctx_user_psize(&mm->context), 1841 pte_val(*ptep)); 1842 1843 powerpc_local_irq_pmu_restore(flags); 1844 } 1845 1846 /* 1847 * This is called at the end of handling a user page fault, when the 1848 * fault has been handled by updating a PTE in the linux page tables. 1849 * We use it to preload an HPTE into the hash table corresponding to 1850 * the updated linux PTE. 1851 * 1852 * This must always be called with the pte lock held. 1853 */ 1854 void __update_mmu_cache(struct vm_area_struct *vma, unsigned long address, 1855 pte_t *ptep) 1856 { 1857 /* 1858 * We don't need to worry about _PAGE_PRESENT here because we are 1859 * called with either mm->page_table_lock held or ptl lock held 1860 */ 1861 unsigned long trap; 1862 bool is_exec; 1863 1864 /* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */ 1865 if (!pte_young(*ptep) || address >= TASK_SIZE) 1866 return; 1867 1868 /* 1869 * We try to figure out if we are coming from an instruction 1870 * access fault and pass that down to __hash_page so we avoid 1871 * double-faulting on execution of fresh text. We have to test 1872 * for regs NULL since init will get here first thing at boot. 1873 * 1874 * We also avoid filling the hash if not coming from a fault. 1875 */ 1876 1877 trap = current->thread.regs ? TRAP(current->thread.regs) : 0UL; 1878 switch (trap) { 1879 case 0x300: 1880 is_exec = false; 1881 break; 1882 case 0x400: 1883 is_exec = true; 1884 break; 1885 default: 1886 return; 1887 } 1888 1889 hash_preload(vma->vm_mm, ptep, address, is_exec, trap); 1890 } 1891 1892 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1893 static inline void tm_flush_hash_page(int local) 1894 { 1895 /* 1896 * Transactions are not aborted by tlbiel, only tlbie. Without, syncing a 1897 * page back to a block device w/PIO could pick up transactional data 1898 * (bad!) so we force an abort here. Before the sync the page will be 1899 * made read-only, which will flush_hash_page. BIG ISSUE here: if the 1900 * kernel uses a page from userspace without unmapping it first, it may 1901 * see the speculated version. 1902 */ 1903 if (local && cpu_has_feature(CPU_FTR_TM) && current->thread.regs && 1904 MSR_TM_ACTIVE(current->thread.regs->msr)) { 1905 tm_enable(); 1906 tm_abort(TM_CAUSE_TLBI); 1907 } 1908 } 1909 #else 1910 static inline void tm_flush_hash_page(int local) 1911 { 1912 } 1913 #endif 1914 1915 /* 1916 * Return the global hash slot, corresponding to the given PTE, which contains 1917 * the HPTE. 1918 */ 1919 unsigned long pte_get_hash_gslot(unsigned long vpn, unsigned long shift, 1920 int ssize, real_pte_t rpte, unsigned int subpg_index) 1921 { 1922 unsigned long hash, gslot, hidx; 1923 1924 hash = hpt_hash(vpn, shift, ssize); 1925 hidx = __rpte_to_hidx(rpte, subpg_index); 1926 if (hidx & _PTEIDX_SECONDARY) 1927 hash = ~hash; 1928 gslot = (hash & htab_hash_mask) * HPTES_PER_GROUP; 1929 gslot += hidx & _PTEIDX_GROUP_IX; 1930 return gslot; 1931 } 1932 1933 void flush_hash_page(unsigned long vpn, real_pte_t pte, int psize, int ssize, 1934 unsigned long flags) 1935 { 1936 unsigned long index, shift, gslot; 1937 int local = flags & HPTE_LOCAL_UPDATE; 1938 1939 DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn); 1940 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) { 1941 gslot = pte_get_hash_gslot(vpn, shift, ssize, pte, index); 1942 DBG_LOW(" sub %ld: gslot=%lx\n", index, gslot); 1943 /* 1944 * We use same base page size and actual psize, because we don't 1945 * use these functions for hugepage 1946 */ 1947 mmu_hash_ops.hpte_invalidate(gslot, vpn, psize, psize, 1948 ssize, local); 1949 } pte_iterate_hashed_end(); 1950 1951 tm_flush_hash_page(local); 1952 } 1953 1954 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1955 void flush_hash_hugepage(unsigned long vsid, unsigned long addr, 1956 pmd_t *pmdp, unsigned int psize, int ssize, 1957 unsigned long flags) 1958 { 1959 int i, max_hpte_count, valid; 1960 unsigned long s_addr; 1961 unsigned char *hpte_slot_array; 1962 unsigned long hidx, shift, vpn, hash, slot; 1963 int local = flags & HPTE_LOCAL_UPDATE; 1964 1965 s_addr = addr & HPAGE_PMD_MASK; 1966 hpte_slot_array = get_hpte_slot_array(pmdp); 1967 /* 1968 * IF we try to do a HUGE PTE update after a withdraw is done. 1969 * we will find the below NULL. This happens when we do 1970 * split_huge_pmd 1971 */ 1972 if (!hpte_slot_array) 1973 return; 1974 1975 if (mmu_hash_ops.hugepage_invalidate) { 1976 mmu_hash_ops.hugepage_invalidate(vsid, s_addr, hpte_slot_array, 1977 psize, ssize, local); 1978 goto tm_abort; 1979 } 1980 /* 1981 * No bluk hpte removal support, invalidate each entry 1982 */ 1983 shift = mmu_psize_defs[psize].shift; 1984 max_hpte_count = HPAGE_PMD_SIZE >> shift; 1985 for (i = 0; i < max_hpte_count; i++) { 1986 /* 1987 * 8 bits per each hpte entries 1988 * 000| [ secondary group (one bit) | hidx (3 bits) | valid bit] 1989 */ 1990 valid = hpte_valid(hpte_slot_array, i); 1991 if (!valid) 1992 continue; 1993 hidx = hpte_hash_index(hpte_slot_array, i); 1994 1995 /* get the vpn */ 1996 addr = s_addr + (i * (1ul << shift)); 1997 vpn = hpt_vpn(addr, vsid, ssize); 1998 hash = hpt_hash(vpn, shift, ssize); 1999 if (hidx & _PTEIDX_SECONDARY) 2000 hash = ~hash; 2001 2002 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP; 2003 slot += hidx & _PTEIDX_GROUP_IX; 2004 mmu_hash_ops.hpte_invalidate(slot, vpn, psize, 2005 MMU_PAGE_16M, ssize, local); 2006 } 2007 tm_abort: 2008 tm_flush_hash_page(local); 2009 } 2010 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2011 2012 void flush_hash_range(unsigned long number, int local) 2013 { 2014 if (mmu_hash_ops.flush_hash_range) 2015 mmu_hash_ops.flush_hash_range(number, local); 2016 else { 2017 int i; 2018 struct ppc64_tlb_batch *batch = 2019 this_cpu_ptr(&ppc64_tlb_batch); 2020 2021 for (i = 0; i < number; i++) 2022 flush_hash_page(batch->vpn[i], batch->pte[i], 2023 batch->psize, batch->ssize, local); 2024 } 2025 } 2026 2027 long hpte_insert_repeating(unsigned long hash, unsigned long vpn, 2028 unsigned long pa, unsigned long rflags, 2029 unsigned long vflags, int psize, int ssize) 2030 { 2031 unsigned long hpte_group; 2032 long slot; 2033 2034 repeat: 2035 hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP; 2036 2037 /* Insert into the hash table, primary slot */ 2038 slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags, vflags, 2039 psize, psize, ssize); 2040 2041 /* Primary is full, try the secondary */ 2042 if (unlikely(slot == -1)) { 2043 hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP; 2044 slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags, 2045 vflags | HPTE_V_SECONDARY, 2046 psize, psize, ssize); 2047 if (slot == -1) { 2048 if (mftb() & 0x1) 2049 hpte_group = (hash & htab_hash_mask) * 2050 HPTES_PER_GROUP; 2051 2052 mmu_hash_ops.hpte_remove(hpte_group); 2053 goto repeat; 2054 } 2055 } 2056 2057 return slot; 2058 } 2059 2060 void hpt_clear_stress(void) 2061 { 2062 int cpu = raw_smp_processor_id(); 2063 int g; 2064 2065 for (g = 0; g < stress_nr_groups(); g++) { 2066 unsigned long last_group; 2067 last_group = stress_hpt_struct[cpu].last_group[g]; 2068 2069 if (last_group != -1UL) { 2070 int i; 2071 for (i = 0; i < HPTES_PER_GROUP; i++) { 2072 if (mmu_hash_ops.hpte_remove(last_group) == -1) 2073 break; 2074 } 2075 stress_hpt_struct[cpu].last_group[g] = -1; 2076 } 2077 } 2078 } 2079 2080 void hpt_do_stress(unsigned long ea, unsigned long hpte_group) 2081 { 2082 unsigned long last_group; 2083 int cpu = raw_smp_processor_id(); 2084 2085 last_group = stress_hpt_struct[cpu].last_group[stress_nr_groups() - 1]; 2086 if (hpte_group == last_group) 2087 return; 2088 2089 if (last_group != -1UL) { 2090 int i; 2091 /* 2092 * Concurrent CPUs might be inserting into this group, so 2093 * give up after a number of iterations, to prevent a live 2094 * lock. 2095 */ 2096 for (i = 0; i < HPTES_PER_GROUP; i++) { 2097 if (mmu_hash_ops.hpte_remove(last_group) == -1) 2098 break; 2099 } 2100 stress_hpt_struct[cpu].last_group[stress_nr_groups() - 1] = -1; 2101 } 2102 2103 if (ea >= PAGE_OFFSET) { 2104 /* 2105 * We would really like to prefetch to get the TLB loaded, then 2106 * remove the PTE before returning from fault interrupt, to 2107 * increase the hash fault rate. 2108 * 2109 * Unfortunately QEMU TCG does not model the TLB in a way that 2110 * makes this possible, and systemsim (mambo) emulator does not 2111 * bring in TLBs with prefetches (although loads/stores do 2112 * work for non-CI PTEs). 2113 * 2114 * So remember this PTE and clear it on the next hash fault. 2115 */ 2116 memmove(&stress_hpt_struct[cpu].last_group[1], 2117 &stress_hpt_struct[cpu].last_group[0], 2118 (stress_nr_groups() - 1) * sizeof(unsigned long)); 2119 stress_hpt_struct[cpu].last_group[0] = hpte_group; 2120 } 2121 } 2122 2123 #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_KFENCE) 2124 static DEFINE_RAW_SPINLOCK(linear_map_hash_lock); 2125 2126 static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi) 2127 { 2128 unsigned long hash; 2129 unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize); 2130 unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize); 2131 unsigned long mode = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL), HPTE_USE_KERNEL_KEY); 2132 long ret; 2133 2134 hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize); 2135 2136 /* Don't create HPTE entries for bad address */ 2137 if (!vsid) 2138 return; 2139 2140 if (linear_map_hash_slots[lmi] & 0x80) 2141 return; 2142 2143 ret = hpte_insert_repeating(hash, vpn, __pa(vaddr), mode, 2144 HPTE_V_BOLTED, 2145 mmu_linear_psize, mmu_kernel_ssize); 2146 2147 BUG_ON (ret < 0); 2148 raw_spin_lock(&linear_map_hash_lock); 2149 BUG_ON(linear_map_hash_slots[lmi] & 0x80); 2150 linear_map_hash_slots[lmi] = ret | 0x80; 2151 raw_spin_unlock(&linear_map_hash_lock); 2152 } 2153 2154 static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi) 2155 { 2156 unsigned long hash, hidx, slot; 2157 unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize); 2158 unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize); 2159 2160 hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize); 2161 raw_spin_lock(&linear_map_hash_lock); 2162 if (!(linear_map_hash_slots[lmi] & 0x80)) { 2163 raw_spin_unlock(&linear_map_hash_lock); 2164 return; 2165 } 2166 hidx = linear_map_hash_slots[lmi] & 0x7f; 2167 linear_map_hash_slots[lmi] = 0; 2168 raw_spin_unlock(&linear_map_hash_lock); 2169 if (hidx & _PTEIDX_SECONDARY) 2170 hash = ~hash; 2171 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP; 2172 slot += hidx & _PTEIDX_GROUP_IX; 2173 mmu_hash_ops.hpte_invalidate(slot, vpn, mmu_linear_psize, 2174 mmu_linear_psize, 2175 mmu_kernel_ssize, 0); 2176 } 2177 2178 int hash__kernel_map_pages(struct page *page, int numpages, int enable) 2179 { 2180 unsigned long flags, vaddr, lmi; 2181 int i; 2182 2183 local_irq_save(flags); 2184 for (i = 0; i < numpages; i++, page++) { 2185 vaddr = (unsigned long)page_address(page); 2186 lmi = __pa(vaddr) >> PAGE_SHIFT; 2187 if (lmi >= linear_map_hash_count) 2188 continue; 2189 if (enable) 2190 kernel_map_linear_page(vaddr, lmi); 2191 else 2192 kernel_unmap_linear_page(vaddr, lmi); 2193 } 2194 local_irq_restore(flags); 2195 return 0; 2196 } 2197 #endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_KFENCE */ 2198 2199 void hash__setup_initial_memory_limit(phys_addr_t first_memblock_base, 2200 phys_addr_t first_memblock_size) 2201 { 2202 /* 2203 * We don't currently support the first MEMBLOCK not mapping 0 2204 * physical on those processors 2205 */ 2206 BUG_ON(first_memblock_base != 0); 2207 2208 /* 2209 * On virtualized systems the first entry is our RMA region aka VRMA, 2210 * non-virtualized 64-bit hash MMU systems don't have a limitation 2211 * on real mode access. 2212 * 2213 * For guests on platforms before POWER9, we clamp the it limit to 1G 2214 * to avoid some funky things such as RTAS bugs etc... 2215 * 2216 * On POWER9 we limit to 1TB in case the host erroneously told us that 2217 * the RMA was >1TB. Effective address bits 0:23 are treated as zero 2218 * (meaning the access is aliased to zero i.e. addr = addr % 1TB) 2219 * for virtual real mode addressing and so it doesn't make sense to 2220 * have an area larger than 1TB as it can't be addressed. 2221 */ 2222 if (!early_cpu_has_feature(CPU_FTR_HVMODE)) { 2223 ppc64_rma_size = first_memblock_size; 2224 if (!early_cpu_has_feature(CPU_FTR_ARCH_300)) 2225 ppc64_rma_size = min_t(u64, ppc64_rma_size, 0x40000000); 2226 else 2227 ppc64_rma_size = min_t(u64, ppc64_rma_size, 2228 1UL << SID_SHIFT_1T); 2229 2230 /* Finally limit subsequent allocations */ 2231 memblock_set_current_limit(ppc64_rma_size); 2232 } else { 2233 ppc64_rma_size = ULONG_MAX; 2234 } 2235 } 2236 2237 #ifdef CONFIG_DEBUG_FS 2238 2239 static int hpt_order_get(void *data, u64 *val) 2240 { 2241 *val = ppc64_pft_size; 2242 return 0; 2243 } 2244 2245 static int hpt_order_set(void *data, u64 val) 2246 { 2247 int ret; 2248 2249 if (!mmu_hash_ops.resize_hpt) 2250 return -ENODEV; 2251 2252 cpus_read_lock(); 2253 ret = mmu_hash_ops.resize_hpt(val); 2254 cpus_read_unlock(); 2255 2256 return ret; 2257 } 2258 2259 DEFINE_DEBUGFS_ATTRIBUTE(fops_hpt_order, hpt_order_get, hpt_order_set, "%llu\n"); 2260 2261 static int __init hash64_debugfs(void) 2262 { 2263 debugfs_create_file("hpt_order", 0600, arch_debugfs_dir, NULL, 2264 &fops_hpt_order); 2265 return 0; 2266 } 2267 machine_device_initcall(pseries, hash64_debugfs); 2268 #endif /* CONFIG_DEBUG_FS */ 2269 2270 void __init print_system_hash_info(void) 2271 { 2272 pr_info("ppc64_pft_size = 0x%llx\n", ppc64_pft_size); 2273 2274 if (htab_hash_mask) 2275 pr_info("htab_hash_mask = 0x%lx\n", htab_hash_mask); 2276 } 2277 2278 unsigned long arch_randomize_brk(struct mm_struct *mm) 2279 { 2280 /* 2281 * If we are using 1TB segments and we are allowed to randomise 2282 * the heap, we can put it above 1TB so it is backed by a 1TB 2283 * segment. Otherwise the heap will be in the bottom 1TB 2284 * which always uses 256MB segments and this may result in a 2285 * performance penalty. 2286 */ 2287 if (is_32bit_task()) 2288 return randomize_page(mm->brk, SZ_32M); 2289 else if (!radix_enabled() && mmu_highuser_ssize == MMU_SEGSIZE_1T) 2290 return randomize_page(max_t(unsigned long, mm->brk, SZ_1T), SZ_1G); 2291 else 2292 return randomize_page(mm->brk, SZ_1G); 2293 } 2294
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.