1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Page table handling routines for radix page table. 4 * 5 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation. 6 */ 7 8 #define pr_fmt(fmt) "radix-mmu: " fmt 9 10 #include <linux/io.h> 11 #include <linux/kernel.h> 12 #include <linux/sched/mm.h> 13 #include <linux/memblock.h> 14 #include <linux/of.h> 15 #include <linux/of_fdt.h> 16 #include <linux/mm.h> 17 #include <linux/hugetlb.h> 18 #include <linux/string_helpers.h> 19 #include <linux/memory.h> 20 #include <linux/kfence.h> 21 22 #include <asm/pgalloc.h> 23 #include <asm/mmu_context.h> 24 #include <asm/dma.h> 25 #include <asm/machdep.h> 26 #include <asm/mmu.h> 27 #include <asm/firmware.h> 28 #include <asm/powernv.h> 29 #include <asm/sections.h> 30 #include <asm/smp.h> 31 #include <asm/trace.h> 32 #include <asm/uaccess.h> 33 #include <asm/ultravisor.h> 34 #include <asm/set_memory.h> 35 #include <asm/kfence.h> 36 37 #include <trace/events/thp.h> 38 39 #include <mm/mmu_decl.h> 40 41 unsigned int mmu_base_pid; 42 43 static __ref void *early_alloc_pgtable(unsigned long size, int nid, 44 unsigned long region_start, unsigned long region_end) 45 { 46 phys_addr_t min_addr = MEMBLOCK_LOW_LIMIT; 47 phys_addr_t max_addr = MEMBLOCK_ALLOC_ANYWHERE; 48 void *ptr; 49 50 if (region_start) 51 min_addr = region_start; 52 if (region_end) 53 max_addr = region_end; 54 55 ptr = memblock_alloc_try_nid(size, size, min_addr, max_addr, nid); 56 57 if (!ptr) 58 panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa max_addr=%pa\n", 59 __func__, size, size, nid, &min_addr, &max_addr); 60 61 return ptr; 62 } 63 64 /* 65 * When allocating pud or pmd pointers, we allocate a complete page 66 * of PAGE_SIZE rather than PUD_TABLE_SIZE or PMD_TABLE_SIZE. This 67 * is to ensure that the page obtained from the memblock allocator 68 * can be completely used as page table page and can be freed 69 * correctly when the page table entries are removed. 70 */ 71 static int early_map_kernel_page(unsigned long ea, unsigned long pa, 72 pgprot_t flags, 73 unsigned int map_page_size, 74 int nid, 75 unsigned long region_start, unsigned long region_end) 76 { 77 unsigned long pfn = pa >> PAGE_SHIFT; 78 pgd_t *pgdp; 79 p4d_t *p4dp; 80 pud_t *pudp; 81 pmd_t *pmdp; 82 pte_t *ptep; 83 84 pgdp = pgd_offset_k(ea); 85 p4dp = p4d_offset(pgdp, ea); 86 if (p4d_none(*p4dp)) { 87 pudp = early_alloc_pgtable(PAGE_SIZE, nid, 88 region_start, region_end); 89 p4d_populate(&init_mm, p4dp, pudp); 90 } 91 pudp = pud_offset(p4dp, ea); 92 if (map_page_size == PUD_SIZE) { 93 ptep = (pte_t *)pudp; 94 goto set_the_pte; 95 } 96 if (pud_none(*pudp)) { 97 pmdp = early_alloc_pgtable(PAGE_SIZE, nid, region_start, 98 region_end); 99 pud_populate(&init_mm, pudp, pmdp); 100 } 101 pmdp = pmd_offset(pudp, ea); 102 if (map_page_size == PMD_SIZE) { 103 ptep = pmdp_ptep(pmdp); 104 goto set_the_pte; 105 } 106 if (!pmd_present(*pmdp)) { 107 ptep = early_alloc_pgtable(PAGE_SIZE, nid, 108 region_start, region_end); 109 pmd_populate_kernel(&init_mm, pmdp, ptep); 110 } 111 ptep = pte_offset_kernel(pmdp, ea); 112 113 set_the_pte: 114 set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags)); 115 asm volatile("ptesync": : :"memory"); 116 return 0; 117 } 118 119 /* 120 * nid, region_start, and region_end are hints to try to place the page 121 * table memory in the same node or region. 122 */ 123 static int __map_kernel_page(unsigned long ea, unsigned long pa, 124 pgprot_t flags, 125 unsigned int map_page_size, 126 int nid, 127 unsigned long region_start, unsigned long region_end) 128 { 129 unsigned long pfn = pa >> PAGE_SHIFT; 130 pgd_t *pgdp; 131 p4d_t *p4dp; 132 pud_t *pudp; 133 pmd_t *pmdp; 134 pte_t *ptep; 135 /* 136 * Make sure task size is correct as per the max adddr 137 */ 138 BUILD_BUG_ON(TASK_SIZE_USER64 > RADIX_PGTABLE_RANGE); 139 140 #ifdef CONFIG_PPC_64K_PAGES 141 BUILD_BUG_ON(RADIX_KERN_MAP_SIZE != (1UL << MAX_EA_BITS_PER_CONTEXT)); 142 #endif 143 144 if (unlikely(!slab_is_available())) 145 return early_map_kernel_page(ea, pa, flags, map_page_size, 146 nid, region_start, region_end); 147 148 /* 149 * Should make page table allocation functions be able to take a 150 * node, so we can place kernel page tables on the right nodes after 151 * boot. 152 */ 153 pgdp = pgd_offset_k(ea); 154 p4dp = p4d_offset(pgdp, ea); 155 pudp = pud_alloc(&init_mm, p4dp, ea); 156 if (!pudp) 157 return -ENOMEM; 158 if (map_page_size == PUD_SIZE) { 159 ptep = (pte_t *)pudp; 160 goto set_the_pte; 161 } 162 pmdp = pmd_alloc(&init_mm, pudp, ea); 163 if (!pmdp) 164 return -ENOMEM; 165 if (map_page_size == PMD_SIZE) { 166 ptep = pmdp_ptep(pmdp); 167 goto set_the_pte; 168 } 169 ptep = pte_alloc_kernel(pmdp, ea); 170 if (!ptep) 171 return -ENOMEM; 172 173 set_the_pte: 174 set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags)); 175 asm volatile("ptesync": : :"memory"); 176 return 0; 177 } 178 179 int radix__map_kernel_page(unsigned long ea, unsigned long pa, 180 pgprot_t flags, 181 unsigned int map_page_size) 182 { 183 return __map_kernel_page(ea, pa, flags, map_page_size, -1, 0, 0); 184 } 185 186 #ifdef CONFIG_STRICT_KERNEL_RWX 187 static void radix__change_memory_range(unsigned long start, unsigned long end, 188 unsigned long clear) 189 { 190 unsigned long idx; 191 pgd_t *pgdp; 192 p4d_t *p4dp; 193 pud_t *pudp; 194 pmd_t *pmdp; 195 pte_t *ptep; 196 197 start = ALIGN_DOWN(start, PAGE_SIZE); 198 end = PAGE_ALIGN(end); // aligns up 199 200 pr_debug("Changing flags on range %lx-%lx removing 0x%lx\n", 201 start, end, clear); 202 203 for (idx = start; idx < end; idx += PAGE_SIZE) { 204 pgdp = pgd_offset_k(idx); 205 p4dp = p4d_offset(pgdp, idx); 206 pudp = pud_alloc(&init_mm, p4dp, idx); 207 if (!pudp) 208 continue; 209 if (pud_leaf(*pudp)) { 210 ptep = (pte_t *)pudp; 211 goto update_the_pte; 212 } 213 pmdp = pmd_alloc(&init_mm, pudp, idx); 214 if (!pmdp) 215 continue; 216 if (pmd_leaf(*pmdp)) { 217 ptep = pmdp_ptep(pmdp); 218 goto update_the_pte; 219 } 220 ptep = pte_alloc_kernel(pmdp, idx); 221 if (!ptep) 222 continue; 223 update_the_pte: 224 radix__pte_update(&init_mm, idx, ptep, clear, 0, 0); 225 } 226 227 radix__flush_tlb_kernel_range(start, end); 228 } 229 230 void radix__mark_rodata_ro(void) 231 { 232 unsigned long start, end; 233 234 start = (unsigned long)_stext; 235 end = (unsigned long)__end_rodata; 236 237 radix__change_memory_range(start, end, _PAGE_WRITE); 238 239 for (start = PAGE_OFFSET; start < (unsigned long)_stext; start += PAGE_SIZE) { 240 end = start + PAGE_SIZE; 241 if (overlaps_interrupt_vector_text(start, end)) 242 radix__change_memory_range(start, end, _PAGE_WRITE); 243 else 244 break; 245 } 246 } 247 248 void radix__mark_initmem_nx(void) 249 { 250 unsigned long start = (unsigned long)__init_begin; 251 unsigned long end = (unsigned long)__init_end; 252 253 radix__change_memory_range(start, end, _PAGE_EXEC); 254 } 255 #endif /* CONFIG_STRICT_KERNEL_RWX */ 256 257 static inline void __meminit 258 print_mapping(unsigned long start, unsigned long end, unsigned long size, bool exec) 259 { 260 char buf[10]; 261 262 if (end <= start) 263 return; 264 265 string_get_size(size, 1, STRING_UNITS_2, buf, sizeof(buf)); 266 267 pr_info("Mapped 0x%016lx-0x%016lx with %s pages%s\n", start, end, buf, 268 exec ? " (exec)" : ""); 269 } 270 271 static unsigned long next_boundary(unsigned long addr, unsigned long end) 272 { 273 #ifdef CONFIG_STRICT_KERNEL_RWX 274 unsigned long stext_phys; 275 276 stext_phys = __pa_symbol(_stext); 277 278 // Relocatable kernel running at non-zero real address 279 if (stext_phys != 0) { 280 // The end of interrupts code at zero is a rodata boundary 281 unsigned long end_intr = __pa_symbol(__end_interrupts) - stext_phys; 282 if (addr < end_intr) 283 return end_intr; 284 285 // Start of relocated kernel text is a rodata boundary 286 if (addr < stext_phys) 287 return stext_phys; 288 } 289 290 if (addr < __pa_symbol(__srwx_boundary)) 291 return __pa_symbol(__srwx_boundary); 292 #endif 293 return end; 294 } 295 296 static int __meminit create_physical_mapping(unsigned long start, 297 unsigned long end, 298 int nid, pgprot_t _prot, 299 unsigned long mapping_sz_limit) 300 { 301 unsigned long vaddr, addr, mapping_size = 0; 302 bool prev_exec, exec = false; 303 pgprot_t prot; 304 int psize; 305 unsigned long max_mapping_size = memory_block_size; 306 307 if (mapping_sz_limit < max_mapping_size) 308 max_mapping_size = mapping_sz_limit; 309 310 if (debug_pagealloc_enabled()) 311 max_mapping_size = PAGE_SIZE; 312 313 start = ALIGN(start, PAGE_SIZE); 314 end = ALIGN_DOWN(end, PAGE_SIZE); 315 for (addr = start; addr < end; addr += mapping_size) { 316 unsigned long gap, previous_size; 317 int rc; 318 319 gap = next_boundary(addr, end) - addr; 320 if (gap > max_mapping_size) 321 gap = max_mapping_size; 322 previous_size = mapping_size; 323 prev_exec = exec; 324 325 if (IS_ALIGNED(addr, PUD_SIZE) && gap >= PUD_SIZE && 326 mmu_psize_defs[MMU_PAGE_1G].shift) { 327 mapping_size = PUD_SIZE; 328 psize = MMU_PAGE_1G; 329 } else if (IS_ALIGNED(addr, PMD_SIZE) && gap >= PMD_SIZE && 330 mmu_psize_defs[MMU_PAGE_2M].shift) { 331 mapping_size = PMD_SIZE; 332 psize = MMU_PAGE_2M; 333 } else { 334 mapping_size = PAGE_SIZE; 335 psize = mmu_virtual_psize; 336 } 337 338 vaddr = (unsigned long)__va(addr); 339 340 if (overlaps_kernel_text(vaddr, vaddr + mapping_size) || 341 overlaps_interrupt_vector_text(vaddr, vaddr + mapping_size)) { 342 prot = PAGE_KERNEL_X; 343 exec = true; 344 } else { 345 prot = _prot; 346 exec = false; 347 } 348 349 if (mapping_size != previous_size || exec != prev_exec) { 350 print_mapping(start, addr, previous_size, prev_exec); 351 start = addr; 352 } 353 354 rc = __map_kernel_page(vaddr, addr, prot, mapping_size, nid, start, end); 355 if (rc) 356 return rc; 357 358 update_page_count(psize, 1); 359 } 360 361 print_mapping(start, addr, mapping_size, exec); 362 return 0; 363 } 364 365 #ifdef CONFIG_KFENCE 366 static bool __ro_after_init kfence_early_init = !!CONFIG_KFENCE_SAMPLE_INTERVAL; 367 368 static int __init parse_kfence_early_init(char *arg) 369 { 370 int val; 371 372 if (get_option(&arg, &val)) 373 kfence_early_init = !!val; 374 return 0; 375 } 376 early_param("kfence.sample_interval", parse_kfence_early_init); 377 378 static inline phys_addr_t alloc_kfence_pool(void) 379 { 380 phys_addr_t kfence_pool; 381 382 /* 383 * TODO: Support to enable KFENCE after bootup depends on the ability to 384 * split page table mappings. As such support is not currently 385 * implemented for radix pagetables, support enabling KFENCE 386 * only at system startup for now. 387 * 388 * After support for splitting mappings is available on radix, 389 * alloc_kfence_pool() & map_kfence_pool() can be dropped and 390 * mapping for __kfence_pool memory can be 391 * split during arch_kfence_init_pool(). 392 */ 393 if (!kfence_early_init) 394 goto no_kfence; 395 396 kfence_pool = memblock_phys_alloc(KFENCE_POOL_SIZE, PAGE_SIZE); 397 if (!kfence_pool) 398 goto no_kfence; 399 400 memblock_mark_nomap(kfence_pool, KFENCE_POOL_SIZE); 401 return kfence_pool; 402 403 no_kfence: 404 disable_kfence(); 405 return 0; 406 } 407 408 static inline void map_kfence_pool(phys_addr_t kfence_pool) 409 { 410 if (!kfence_pool) 411 return; 412 413 if (create_physical_mapping(kfence_pool, kfence_pool + KFENCE_POOL_SIZE, 414 -1, PAGE_KERNEL, PAGE_SIZE)) 415 goto err; 416 417 memblock_clear_nomap(kfence_pool, KFENCE_POOL_SIZE); 418 __kfence_pool = __va(kfence_pool); 419 return; 420 421 err: 422 memblock_phys_free(kfence_pool, KFENCE_POOL_SIZE); 423 disable_kfence(); 424 } 425 #else 426 static inline phys_addr_t alloc_kfence_pool(void) { return 0; } 427 static inline void map_kfence_pool(phys_addr_t kfence_pool) { } 428 #endif 429 430 static void __init radix_init_pgtable(void) 431 { 432 phys_addr_t kfence_pool; 433 unsigned long rts_field; 434 phys_addr_t start, end; 435 u64 i; 436 437 /* We don't support slb for radix */ 438 slb_set_size(0); 439 440 kfence_pool = alloc_kfence_pool(); 441 442 /* 443 * Create the linear mapping 444 */ 445 for_each_mem_range(i, &start, &end) { 446 /* 447 * The memblock allocator is up at this point, so the 448 * page tables will be allocated within the range. No 449 * need or a node (which we don't have yet). 450 */ 451 452 if (end >= RADIX_VMALLOC_START) { 453 pr_warn("Outside the supported range\n"); 454 continue; 455 } 456 457 WARN_ON(create_physical_mapping(start, end, 458 -1, PAGE_KERNEL, ~0UL)); 459 } 460 461 map_kfence_pool(kfence_pool); 462 463 if (!cpu_has_feature(CPU_FTR_HVMODE) && 464 cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG)) { 465 /* 466 * Older versions of KVM on these machines prefer if the 467 * guest only uses the low 19 PID bits. 468 */ 469 mmu_pid_bits = 19; 470 } 471 mmu_base_pid = 1; 472 473 /* 474 * Allocate Partition table and process table for the 475 * host. 476 */ 477 BUG_ON(PRTB_SIZE_SHIFT > 36); 478 process_tb = early_alloc_pgtable(1UL << PRTB_SIZE_SHIFT, -1, 0, 0); 479 /* 480 * Fill in the process table. 481 */ 482 rts_field = radix__get_tree_size(); 483 process_tb->prtb0 = cpu_to_be64(rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE); 484 485 /* 486 * The init_mm context is given the first available (non-zero) PID, 487 * which is the "guard PID" and contains no page table. PIDR should 488 * never be set to zero because that duplicates the kernel address 489 * space at the 0x0... offset (quadrant 0)! 490 * 491 * An arbitrary PID that may later be allocated by the PID allocator 492 * for userspace processes must not be used either, because that 493 * would cause stale user mappings for that PID on CPUs outside of 494 * the TLB invalidation scheme (because it won't be in mm_cpumask). 495 * 496 * So permanently carve out one PID for the purpose of a guard PID. 497 */ 498 init_mm.context.id = mmu_base_pid; 499 mmu_base_pid++; 500 } 501 502 static void __init radix_init_partition_table(void) 503 { 504 unsigned long rts_field, dw0, dw1; 505 506 mmu_partition_table_init(); 507 rts_field = radix__get_tree_size(); 508 dw0 = rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE | PATB_HR; 509 dw1 = __pa(process_tb) | (PRTB_SIZE_SHIFT - 12) | PATB_GR; 510 mmu_partition_table_set_entry(0, dw0, dw1, false); 511 512 pr_info("Initializing Radix MMU\n"); 513 } 514 515 static int __init get_idx_from_shift(unsigned int shift) 516 { 517 int idx = -1; 518 519 switch (shift) { 520 case 0xc: 521 idx = MMU_PAGE_4K; 522 break; 523 case 0x10: 524 idx = MMU_PAGE_64K; 525 break; 526 case 0x15: 527 idx = MMU_PAGE_2M; 528 break; 529 case 0x1e: 530 idx = MMU_PAGE_1G; 531 break; 532 } 533 return idx; 534 } 535 536 static int __init radix_dt_scan_page_sizes(unsigned long node, 537 const char *uname, int depth, 538 void *data) 539 { 540 int size = 0; 541 int shift, idx; 542 unsigned int ap; 543 const __be32 *prop; 544 const char *type = of_get_flat_dt_prop(node, "device_type", NULL); 545 546 /* We are scanning "cpu" nodes only */ 547 if (type == NULL || strcmp(type, "cpu") != 0) 548 return 0; 549 550 /* Grab page size encodings */ 551 prop = of_get_flat_dt_prop(node, "ibm,processor-radix-AP-encodings", &size); 552 if (!prop) 553 return 0; 554 555 pr_info("Page sizes from device-tree:\n"); 556 for (; size >= 4; size -= 4, ++prop) { 557 558 struct mmu_psize_def *def; 559 560 /* top 3 bit is AP encoding */ 561 shift = be32_to_cpu(prop[0]) & ~(0xe << 28); 562 ap = be32_to_cpu(prop[0]) >> 29; 563 pr_info("Page size shift = %d AP=0x%x\n", shift, ap); 564 565 idx = get_idx_from_shift(shift); 566 if (idx < 0) 567 continue; 568 569 def = &mmu_psize_defs[idx]; 570 def->shift = shift; 571 def->ap = ap; 572 def->h_rpt_pgsize = psize_to_rpti_pgsize(idx); 573 } 574 575 /* needed ? */ 576 cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B; 577 return 1; 578 } 579 580 void __init radix__early_init_devtree(void) 581 { 582 int rc; 583 584 /* 585 * Try to find the available page sizes in the device-tree 586 */ 587 rc = of_scan_flat_dt(radix_dt_scan_page_sizes, NULL); 588 if (!rc) { 589 /* 590 * No page size details found in device tree. 591 * Let's assume we have page 4k and 64k support 592 */ 593 mmu_psize_defs[MMU_PAGE_4K].shift = 12; 594 mmu_psize_defs[MMU_PAGE_4K].ap = 0x0; 595 mmu_psize_defs[MMU_PAGE_4K].h_rpt_pgsize = 596 psize_to_rpti_pgsize(MMU_PAGE_4K); 597 598 mmu_psize_defs[MMU_PAGE_64K].shift = 16; 599 mmu_psize_defs[MMU_PAGE_64K].ap = 0x5; 600 mmu_psize_defs[MMU_PAGE_64K].h_rpt_pgsize = 601 psize_to_rpti_pgsize(MMU_PAGE_64K); 602 } 603 return; 604 } 605 606 void __init radix__early_init_mmu(void) 607 { 608 unsigned long lpcr; 609 610 #ifdef CONFIG_PPC_64S_HASH_MMU 611 #ifdef CONFIG_PPC_64K_PAGES 612 /* PAGE_SIZE mappings */ 613 mmu_virtual_psize = MMU_PAGE_64K; 614 #else 615 mmu_virtual_psize = MMU_PAGE_4K; 616 #endif 617 #endif 618 /* 619 * initialize page table size 620 */ 621 __pte_index_size = RADIX_PTE_INDEX_SIZE; 622 __pmd_index_size = RADIX_PMD_INDEX_SIZE; 623 __pud_index_size = RADIX_PUD_INDEX_SIZE; 624 __pgd_index_size = RADIX_PGD_INDEX_SIZE; 625 __pud_cache_index = RADIX_PUD_INDEX_SIZE; 626 __pte_table_size = RADIX_PTE_TABLE_SIZE; 627 __pmd_table_size = RADIX_PMD_TABLE_SIZE; 628 __pud_table_size = RADIX_PUD_TABLE_SIZE; 629 __pgd_table_size = RADIX_PGD_TABLE_SIZE; 630 631 __pmd_val_bits = RADIX_PMD_VAL_BITS; 632 __pud_val_bits = RADIX_PUD_VAL_BITS; 633 __pgd_val_bits = RADIX_PGD_VAL_BITS; 634 635 __kernel_virt_start = RADIX_KERN_VIRT_START; 636 __vmalloc_start = RADIX_VMALLOC_START; 637 __vmalloc_end = RADIX_VMALLOC_END; 638 __kernel_io_start = RADIX_KERN_IO_START; 639 __kernel_io_end = RADIX_KERN_IO_END; 640 vmemmap = (struct page *)RADIX_VMEMMAP_START; 641 ioremap_bot = IOREMAP_BASE; 642 643 #ifdef CONFIG_PCI 644 pci_io_base = ISA_IO_BASE; 645 #endif 646 __pte_frag_nr = RADIX_PTE_FRAG_NR; 647 __pte_frag_size_shift = RADIX_PTE_FRAG_SIZE_SHIFT; 648 __pmd_frag_nr = RADIX_PMD_FRAG_NR; 649 __pmd_frag_size_shift = RADIX_PMD_FRAG_SIZE_SHIFT; 650 651 radix_init_pgtable(); 652 653 if (!firmware_has_feature(FW_FEATURE_LPAR)) { 654 lpcr = mfspr(SPRN_LPCR); 655 mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR); 656 radix_init_partition_table(); 657 } else { 658 radix_init_pseries(); 659 } 660 661 memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE); 662 663 /* Switch to the guard PID before turning on MMU */ 664 radix__switch_mmu_context(NULL, &init_mm); 665 tlbiel_all(); 666 } 667 668 void radix__early_init_mmu_secondary(void) 669 { 670 unsigned long lpcr; 671 /* 672 * update partition table control register and UPRT 673 */ 674 if (!firmware_has_feature(FW_FEATURE_LPAR)) { 675 lpcr = mfspr(SPRN_LPCR); 676 mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR); 677 678 set_ptcr_when_no_uv(__pa(partition_tb) | 679 (PATB_SIZE_SHIFT - 12)); 680 } 681 682 radix__switch_mmu_context(NULL, &init_mm); 683 tlbiel_all(); 684 685 /* Make sure userspace can't change the AMR */ 686 mtspr(SPRN_UAMOR, 0); 687 } 688 689 /* Called during kexec sequence with MMU off */ 690 notrace void radix__mmu_cleanup_all(void) 691 { 692 unsigned long lpcr; 693 694 if (!firmware_has_feature(FW_FEATURE_LPAR)) { 695 lpcr = mfspr(SPRN_LPCR); 696 mtspr(SPRN_LPCR, lpcr & ~LPCR_UPRT); 697 set_ptcr_when_no_uv(0); 698 powernv_set_nmmu_ptcr(0); 699 radix__flush_tlb_all(); 700 } 701 } 702 703 #ifdef CONFIG_MEMORY_HOTPLUG 704 static void free_pte_table(pte_t *pte_start, pmd_t *pmd) 705 { 706 pte_t *pte; 707 int i; 708 709 for (i = 0; i < PTRS_PER_PTE; i++) { 710 pte = pte_start + i; 711 if (!pte_none(*pte)) 712 return; 713 } 714 715 pte_free_kernel(&init_mm, pte_start); 716 pmd_clear(pmd); 717 } 718 719 static void free_pmd_table(pmd_t *pmd_start, pud_t *pud) 720 { 721 pmd_t *pmd; 722 int i; 723 724 for (i = 0; i < PTRS_PER_PMD; i++) { 725 pmd = pmd_start + i; 726 if (!pmd_none(*pmd)) 727 return; 728 } 729 730 pmd_free(&init_mm, pmd_start); 731 pud_clear(pud); 732 } 733 734 static void free_pud_table(pud_t *pud_start, p4d_t *p4d) 735 { 736 pud_t *pud; 737 int i; 738 739 for (i = 0; i < PTRS_PER_PUD; i++) { 740 pud = pud_start + i; 741 if (!pud_none(*pud)) 742 return; 743 } 744 745 pud_free(&init_mm, pud_start); 746 p4d_clear(p4d); 747 } 748 749 #ifdef CONFIG_SPARSEMEM_VMEMMAP 750 static bool __meminit vmemmap_pmd_is_unused(unsigned long addr, unsigned long end) 751 { 752 unsigned long start = ALIGN_DOWN(addr, PMD_SIZE); 753 754 return !vmemmap_populated(start, PMD_SIZE); 755 } 756 757 static bool __meminit vmemmap_page_is_unused(unsigned long addr, unsigned long end) 758 { 759 unsigned long start = ALIGN_DOWN(addr, PAGE_SIZE); 760 761 return !vmemmap_populated(start, PAGE_SIZE); 762 763 } 764 #endif 765 766 static void __meminit free_vmemmap_pages(struct page *page, 767 struct vmem_altmap *altmap, 768 int order) 769 { 770 unsigned int nr_pages = 1 << order; 771 772 if (altmap) { 773 unsigned long alt_start, alt_end; 774 unsigned long base_pfn = page_to_pfn(page); 775 776 /* 777 * with 2M vmemmap mmaping we can have things setup 778 * such that even though atlmap is specified we never 779 * used altmap. 780 */ 781 alt_start = altmap->base_pfn; 782 alt_end = altmap->base_pfn + altmap->reserve + altmap->free; 783 784 if (base_pfn >= alt_start && base_pfn < alt_end) { 785 vmem_altmap_free(altmap, nr_pages); 786 return; 787 } 788 } 789 790 if (PageReserved(page)) { 791 /* allocated from memblock */ 792 while (nr_pages--) 793 free_reserved_page(page++); 794 } else 795 free_pages((unsigned long)page_address(page), order); 796 } 797 798 static void __meminit remove_pte_table(pte_t *pte_start, unsigned long addr, 799 unsigned long end, bool direct, 800 struct vmem_altmap *altmap) 801 { 802 unsigned long next, pages = 0; 803 pte_t *pte; 804 805 pte = pte_start + pte_index(addr); 806 for (; addr < end; addr = next, pte++) { 807 next = (addr + PAGE_SIZE) & PAGE_MASK; 808 if (next > end) 809 next = end; 810 811 if (!pte_present(*pte)) 812 continue; 813 814 if (PAGE_ALIGNED(addr) && PAGE_ALIGNED(next)) { 815 if (!direct) 816 free_vmemmap_pages(pte_page(*pte), altmap, 0); 817 pte_clear(&init_mm, addr, pte); 818 pages++; 819 } 820 #ifdef CONFIG_SPARSEMEM_VMEMMAP 821 else if (!direct && vmemmap_page_is_unused(addr, next)) { 822 free_vmemmap_pages(pte_page(*pte), altmap, 0); 823 pte_clear(&init_mm, addr, pte); 824 } 825 #endif 826 } 827 if (direct) 828 update_page_count(mmu_virtual_psize, -pages); 829 } 830 831 static void __meminit remove_pmd_table(pmd_t *pmd_start, unsigned long addr, 832 unsigned long end, bool direct, 833 struct vmem_altmap *altmap) 834 { 835 unsigned long next, pages = 0; 836 pte_t *pte_base; 837 pmd_t *pmd; 838 839 pmd = pmd_start + pmd_index(addr); 840 for (; addr < end; addr = next, pmd++) { 841 next = pmd_addr_end(addr, end); 842 843 if (!pmd_present(*pmd)) 844 continue; 845 846 if (pmd_leaf(*pmd)) { 847 if (IS_ALIGNED(addr, PMD_SIZE) && 848 IS_ALIGNED(next, PMD_SIZE)) { 849 if (!direct) 850 free_vmemmap_pages(pmd_page(*pmd), altmap, get_order(PMD_SIZE)); 851 pte_clear(&init_mm, addr, (pte_t *)pmd); 852 pages++; 853 } 854 #ifdef CONFIG_SPARSEMEM_VMEMMAP 855 else if (!direct && vmemmap_pmd_is_unused(addr, next)) { 856 free_vmemmap_pages(pmd_page(*pmd), altmap, get_order(PMD_SIZE)); 857 pte_clear(&init_mm, addr, (pte_t *)pmd); 858 } 859 #endif 860 continue; 861 } 862 863 pte_base = (pte_t *)pmd_page_vaddr(*pmd); 864 remove_pte_table(pte_base, addr, next, direct, altmap); 865 free_pte_table(pte_base, pmd); 866 } 867 if (direct) 868 update_page_count(MMU_PAGE_2M, -pages); 869 } 870 871 static void __meminit remove_pud_table(pud_t *pud_start, unsigned long addr, 872 unsigned long end, bool direct, 873 struct vmem_altmap *altmap) 874 { 875 unsigned long next, pages = 0; 876 pmd_t *pmd_base; 877 pud_t *pud; 878 879 pud = pud_start + pud_index(addr); 880 for (; addr < end; addr = next, pud++) { 881 next = pud_addr_end(addr, end); 882 883 if (!pud_present(*pud)) 884 continue; 885 886 if (pud_leaf(*pud)) { 887 if (!IS_ALIGNED(addr, PUD_SIZE) || 888 !IS_ALIGNED(next, PUD_SIZE)) { 889 WARN_ONCE(1, "%s: unaligned range\n", __func__); 890 continue; 891 } 892 pte_clear(&init_mm, addr, (pte_t *)pud); 893 pages++; 894 continue; 895 } 896 897 pmd_base = pud_pgtable(*pud); 898 remove_pmd_table(pmd_base, addr, next, direct, altmap); 899 free_pmd_table(pmd_base, pud); 900 } 901 if (direct) 902 update_page_count(MMU_PAGE_1G, -pages); 903 } 904 905 static void __meminit 906 remove_pagetable(unsigned long start, unsigned long end, bool direct, 907 struct vmem_altmap *altmap) 908 { 909 unsigned long addr, next; 910 pud_t *pud_base; 911 pgd_t *pgd; 912 p4d_t *p4d; 913 914 spin_lock(&init_mm.page_table_lock); 915 916 for (addr = start; addr < end; addr = next) { 917 next = pgd_addr_end(addr, end); 918 919 pgd = pgd_offset_k(addr); 920 p4d = p4d_offset(pgd, addr); 921 if (!p4d_present(*p4d)) 922 continue; 923 924 if (p4d_leaf(*p4d)) { 925 if (!IS_ALIGNED(addr, P4D_SIZE) || 926 !IS_ALIGNED(next, P4D_SIZE)) { 927 WARN_ONCE(1, "%s: unaligned range\n", __func__); 928 continue; 929 } 930 931 pte_clear(&init_mm, addr, (pte_t *)pgd); 932 continue; 933 } 934 935 pud_base = p4d_pgtable(*p4d); 936 remove_pud_table(pud_base, addr, next, direct, altmap); 937 free_pud_table(pud_base, p4d); 938 } 939 940 spin_unlock(&init_mm.page_table_lock); 941 radix__flush_tlb_kernel_range(start, end); 942 } 943 944 int __meminit radix__create_section_mapping(unsigned long start, 945 unsigned long end, int nid, 946 pgprot_t prot) 947 { 948 if (end >= RADIX_VMALLOC_START) { 949 pr_warn("Outside the supported range\n"); 950 return -1; 951 } 952 953 return create_physical_mapping(__pa(start), __pa(end), 954 nid, prot, ~0UL); 955 } 956 957 int __meminit radix__remove_section_mapping(unsigned long start, unsigned long end) 958 { 959 remove_pagetable(start, end, true, NULL); 960 return 0; 961 } 962 #endif /* CONFIG_MEMORY_HOTPLUG */ 963 964 #ifdef CONFIG_SPARSEMEM_VMEMMAP 965 static int __map_kernel_page_nid(unsigned long ea, unsigned long pa, 966 pgprot_t flags, unsigned int map_page_size, 967 int nid) 968 { 969 return __map_kernel_page(ea, pa, flags, map_page_size, nid, 0, 0); 970 } 971 972 int __meminit radix__vmemmap_create_mapping(unsigned long start, 973 unsigned long page_size, 974 unsigned long phys) 975 { 976 /* Create a PTE encoding */ 977 int nid = early_pfn_to_nid(phys >> PAGE_SHIFT); 978 int ret; 979 980 if ((start + page_size) >= RADIX_VMEMMAP_END) { 981 pr_warn("Outside the supported range\n"); 982 return -1; 983 } 984 985 ret = __map_kernel_page_nid(start, phys, PAGE_KERNEL, page_size, nid); 986 BUG_ON(ret); 987 988 return 0; 989 } 990 991 992 bool vmemmap_can_optimize(struct vmem_altmap *altmap, struct dev_pagemap *pgmap) 993 { 994 if (radix_enabled()) 995 return __vmemmap_can_optimize(altmap, pgmap); 996 997 return false; 998 } 999 1000 int __meminit vmemmap_check_pmd(pmd_t *pmdp, int node, 1001 unsigned long addr, unsigned long next) 1002 { 1003 int large = pmd_leaf(*pmdp); 1004 1005 if (large) 1006 vmemmap_verify(pmdp_ptep(pmdp), node, addr, next); 1007 1008 return large; 1009 } 1010 1011 void __meminit vmemmap_set_pmd(pmd_t *pmdp, void *p, int node, 1012 unsigned long addr, unsigned long next) 1013 { 1014 pte_t entry; 1015 pte_t *ptep = pmdp_ptep(pmdp); 1016 1017 VM_BUG_ON(!IS_ALIGNED(addr, PMD_SIZE)); 1018 entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL); 1019 set_pte_at(&init_mm, addr, ptep, entry); 1020 asm volatile("ptesync": : :"memory"); 1021 1022 vmemmap_verify(ptep, node, addr, next); 1023 } 1024 1025 static pte_t * __meminit radix__vmemmap_pte_populate(pmd_t *pmdp, unsigned long addr, 1026 int node, 1027 struct vmem_altmap *altmap, 1028 struct page *reuse) 1029 { 1030 pte_t *pte = pte_offset_kernel(pmdp, addr); 1031 1032 if (pte_none(*pte)) { 1033 pte_t entry; 1034 void *p; 1035 1036 if (!reuse) { 1037 /* 1038 * make sure we don't create altmap mappings 1039 * covering things outside the device. 1040 */ 1041 if (altmap && altmap_cross_boundary(altmap, addr, PAGE_SIZE)) 1042 altmap = NULL; 1043 1044 p = vmemmap_alloc_block_buf(PAGE_SIZE, node, altmap); 1045 if (!p && altmap) 1046 p = vmemmap_alloc_block_buf(PAGE_SIZE, node, NULL); 1047 if (!p) 1048 return NULL; 1049 pr_debug("PAGE_SIZE vmemmap mapping\n"); 1050 } else { 1051 /* 1052 * When a PTE/PMD entry is freed from the init_mm 1053 * there's a free_pages() call to this page allocated 1054 * above. Thus this get_page() is paired with the 1055 * put_page_testzero() on the freeing path. 1056 * This can only called by certain ZONE_DEVICE path, 1057 * and through vmemmap_populate_compound_pages() when 1058 * slab is available. 1059 */ 1060 get_page(reuse); 1061 p = page_to_virt(reuse); 1062 pr_debug("Tail page reuse vmemmap mapping\n"); 1063 } 1064 1065 VM_BUG_ON(!PAGE_ALIGNED(addr)); 1066 entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL); 1067 set_pte_at(&init_mm, addr, pte, entry); 1068 asm volatile("ptesync": : :"memory"); 1069 } 1070 return pte; 1071 } 1072 1073 static inline pud_t *vmemmap_pud_alloc(p4d_t *p4dp, int node, 1074 unsigned long address) 1075 { 1076 pud_t *pud; 1077 1078 /* All early vmemmap mapping to keep simple do it at PAGE_SIZE */ 1079 if (unlikely(p4d_none(*p4dp))) { 1080 if (unlikely(!slab_is_available())) { 1081 pud = early_alloc_pgtable(PAGE_SIZE, node, 0, 0); 1082 p4d_populate(&init_mm, p4dp, pud); 1083 /* go to the pud_offset */ 1084 } else 1085 return pud_alloc(&init_mm, p4dp, address); 1086 } 1087 return pud_offset(p4dp, address); 1088 } 1089 1090 static inline pmd_t *vmemmap_pmd_alloc(pud_t *pudp, int node, 1091 unsigned long address) 1092 { 1093 pmd_t *pmd; 1094 1095 /* All early vmemmap mapping to keep simple do it at PAGE_SIZE */ 1096 if (unlikely(pud_none(*pudp))) { 1097 if (unlikely(!slab_is_available())) { 1098 pmd = early_alloc_pgtable(PAGE_SIZE, node, 0, 0); 1099 pud_populate(&init_mm, pudp, pmd); 1100 } else 1101 return pmd_alloc(&init_mm, pudp, address); 1102 } 1103 return pmd_offset(pudp, address); 1104 } 1105 1106 static inline pte_t *vmemmap_pte_alloc(pmd_t *pmdp, int node, 1107 unsigned long address) 1108 { 1109 pte_t *pte; 1110 1111 /* All early vmemmap mapping to keep simple do it at PAGE_SIZE */ 1112 if (unlikely(pmd_none(*pmdp))) { 1113 if (unlikely(!slab_is_available())) { 1114 pte = early_alloc_pgtable(PAGE_SIZE, node, 0, 0); 1115 pmd_populate(&init_mm, pmdp, pte); 1116 } else 1117 return pte_alloc_kernel(pmdp, address); 1118 } 1119 return pte_offset_kernel(pmdp, address); 1120 } 1121 1122 1123 1124 int __meminit radix__vmemmap_populate(unsigned long start, unsigned long end, int node, 1125 struct vmem_altmap *altmap) 1126 { 1127 unsigned long addr; 1128 unsigned long next; 1129 pgd_t *pgd; 1130 p4d_t *p4d; 1131 pud_t *pud; 1132 pmd_t *pmd; 1133 pte_t *pte; 1134 1135 for (addr = start; addr < end; addr = next) { 1136 next = pmd_addr_end(addr, end); 1137 1138 pgd = pgd_offset_k(addr); 1139 p4d = p4d_offset(pgd, addr); 1140 pud = vmemmap_pud_alloc(p4d, node, addr); 1141 if (!pud) 1142 return -ENOMEM; 1143 pmd = vmemmap_pmd_alloc(pud, node, addr); 1144 if (!pmd) 1145 return -ENOMEM; 1146 1147 if (pmd_none(READ_ONCE(*pmd))) { 1148 void *p; 1149 1150 /* 1151 * keep it simple by checking addr PMD_SIZE alignment 1152 * and verifying the device boundary condition. 1153 * For us to use a pmd mapping, both addr and pfn should 1154 * be aligned. We skip if addr is not aligned and for 1155 * pfn we hope we have extra area in the altmap that 1156 * can help to find an aligned block. This can result 1157 * in altmap block allocation failures, in which case 1158 * we fallback to RAM for vmemmap allocation. 1159 */ 1160 if (altmap && (!IS_ALIGNED(addr, PMD_SIZE) || 1161 altmap_cross_boundary(altmap, addr, PMD_SIZE))) { 1162 /* 1163 * make sure we don't create altmap mappings 1164 * covering things outside the device. 1165 */ 1166 goto base_mapping; 1167 } 1168 1169 p = vmemmap_alloc_block_buf(PMD_SIZE, node, altmap); 1170 if (p) { 1171 vmemmap_set_pmd(pmd, p, node, addr, next); 1172 pr_debug("PMD_SIZE vmemmap mapping\n"); 1173 continue; 1174 } else if (altmap) { 1175 /* 1176 * A vmemmap block allocation can fail due to 1177 * alignment requirements and we trying to align 1178 * things aggressively there by running out of 1179 * space. Try base mapping on failure. 1180 */ 1181 goto base_mapping; 1182 } 1183 } else if (vmemmap_check_pmd(pmd, node, addr, next)) { 1184 /* 1185 * If a huge mapping exist due to early call to 1186 * vmemmap_populate, let's try to use that. 1187 */ 1188 continue; 1189 } 1190 base_mapping: 1191 /* 1192 * Not able allocate higher order memory to back memmap 1193 * or we found a pointer to pte page. Allocate base page 1194 * size vmemmap 1195 */ 1196 pte = vmemmap_pte_alloc(pmd, node, addr); 1197 if (!pte) 1198 return -ENOMEM; 1199 1200 pte = radix__vmemmap_pte_populate(pmd, addr, node, altmap, NULL); 1201 if (!pte) 1202 return -ENOMEM; 1203 1204 vmemmap_verify(pte, node, addr, addr + PAGE_SIZE); 1205 next = addr + PAGE_SIZE; 1206 } 1207 return 0; 1208 } 1209 1210 static pte_t * __meminit radix__vmemmap_populate_address(unsigned long addr, int node, 1211 struct vmem_altmap *altmap, 1212 struct page *reuse) 1213 { 1214 pgd_t *pgd; 1215 p4d_t *p4d; 1216 pud_t *pud; 1217 pmd_t *pmd; 1218 pte_t *pte; 1219 1220 pgd = pgd_offset_k(addr); 1221 p4d = p4d_offset(pgd, addr); 1222 pud = vmemmap_pud_alloc(p4d, node, addr); 1223 if (!pud) 1224 return NULL; 1225 pmd = vmemmap_pmd_alloc(pud, node, addr); 1226 if (!pmd) 1227 return NULL; 1228 if (pmd_leaf(*pmd)) 1229 /* 1230 * The second page is mapped as a hugepage due to a nearby request. 1231 * Force our mapping to page size without deduplication 1232 */ 1233 return NULL; 1234 pte = vmemmap_pte_alloc(pmd, node, addr); 1235 if (!pte) 1236 return NULL; 1237 radix__vmemmap_pte_populate(pmd, addr, node, NULL, NULL); 1238 vmemmap_verify(pte, node, addr, addr + PAGE_SIZE); 1239 1240 return pte; 1241 } 1242 1243 static pte_t * __meminit vmemmap_compound_tail_page(unsigned long addr, 1244 unsigned long pfn_offset, int node) 1245 { 1246 pgd_t *pgd; 1247 p4d_t *p4d; 1248 pud_t *pud; 1249 pmd_t *pmd; 1250 pte_t *pte; 1251 unsigned long map_addr; 1252 1253 /* the second vmemmap page which we use for duplication */ 1254 map_addr = addr - pfn_offset * sizeof(struct page) + PAGE_SIZE; 1255 pgd = pgd_offset_k(map_addr); 1256 p4d = p4d_offset(pgd, map_addr); 1257 pud = vmemmap_pud_alloc(p4d, node, map_addr); 1258 if (!pud) 1259 return NULL; 1260 pmd = vmemmap_pmd_alloc(pud, node, map_addr); 1261 if (!pmd) 1262 return NULL; 1263 if (pmd_leaf(*pmd)) 1264 /* 1265 * The second page is mapped as a hugepage due to a nearby request. 1266 * Force our mapping to page size without deduplication 1267 */ 1268 return NULL; 1269 pte = vmemmap_pte_alloc(pmd, node, map_addr); 1270 if (!pte) 1271 return NULL; 1272 /* 1273 * Check if there exist a mapping to the left 1274 */ 1275 if (pte_none(*pte)) { 1276 /* 1277 * Populate the head page vmemmap page. 1278 * It can fall in different pmd, hence 1279 * vmemmap_populate_address() 1280 */ 1281 pte = radix__vmemmap_populate_address(map_addr - PAGE_SIZE, node, NULL, NULL); 1282 if (!pte) 1283 return NULL; 1284 /* 1285 * Populate the tail pages vmemmap page 1286 */ 1287 pte = radix__vmemmap_pte_populate(pmd, map_addr, node, NULL, NULL); 1288 if (!pte) 1289 return NULL; 1290 vmemmap_verify(pte, node, map_addr, map_addr + PAGE_SIZE); 1291 return pte; 1292 } 1293 return pte; 1294 } 1295 1296 int __meminit vmemmap_populate_compound_pages(unsigned long start_pfn, 1297 unsigned long start, 1298 unsigned long end, int node, 1299 struct dev_pagemap *pgmap) 1300 { 1301 /* 1302 * we want to map things as base page size mapping so that 1303 * we can save space in vmemmap. We could have huge mapping 1304 * covering out both edges. 1305 */ 1306 unsigned long addr; 1307 unsigned long addr_pfn = start_pfn; 1308 unsigned long next; 1309 pgd_t *pgd; 1310 p4d_t *p4d; 1311 pud_t *pud; 1312 pmd_t *pmd; 1313 pte_t *pte; 1314 1315 for (addr = start; addr < end; addr = next) { 1316 1317 pgd = pgd_offset_k(addr); 1318 p4d = p4d_offset(pgd, addr); 1319 pud = vmemmap_pud_alloc(p4d, node, addr); 1320 if (!pud) 1321 return -ENOMEM; 1322 pmd = vmemmap_pmd_alloc(pud, node, addr); 1323 if (!pmd) 1324 return -ENOMEM; 1325 1326 if (pmd_leaf(READ_ONCE(*pmd))) { 1327 /* existing huge mapping. Skip the range */ 1328 addr_pfn += (PMD_SIZE >> PAGE_SHIFT); 1329 next = pmd_addr_end(addr, end); 1330 continue; 1331 } 1332 pte = vmemmap_pte_alloc(pmd, node, addr); 1333 if (!pte) 1334 return -ENOMEM; 1335 if (!pte_none(*pte)) { 1336 /* 1337 * This could be because we already have a compound 1338 * page whose VMEMMAP_RESERVE_NR pages were mapped and 1339 * this request fall in those pages. 1340 */ 1341 addr_pfn += 1; 1342 next = addr + PAGE_SIZE; 1343 continue; 1344 } else { 1345 unsigned long nr_pages = pgmap_vmemmap_nr(pgmap); 1346 unsigned long pfn_offset = addr_pfn - ALIGN_DOWN(addr_pfn, nr_pages); 1347 pte_t *tail_page_pte; 1348 1349 /* 1350 * if the address is aligned to huge page size it is the 1351 * head mapping. 1352 */ 1353 if (pfn_offset == 0) { 1354 /* Populate the head page vmemmap page */ 1355 pte = radix__vmemmap_pte_populate(pmd, addr, node, NULL, NULL); 1356 if (!pte) 1357 return -ENOMEM; 1358 vmemmap_verify(pte, node, addr, addr + PAGE_SIZE); 1359 1360 /* 1361 * Populate the tail pages vmemmap page 1362 * It can fall in different pmd, hence 1363 * vmemmap_populate_address() 1364 */ 1365 pte = radix__vmemmap_populate_address(addr + PAGE_SIZE, node, NULL, NULL); 1366 if (!pte) 1367 return -ENOMEM; 1368 1369 addr_pfn += 2; 1370 next = addr + 2 * PAGE_SIZE; 1371 continue; 1372 } 1373 /* 1374 * get the 2nd mapping details 1375 * Also create it if that doesn't exist 1376 */ 1377 tail_page_pte = vmemmap_compound_tail_page(addr, pfn_offset, node); 1378 if (!tail_page_pte) { 1379 1380 pte = radix__vmemmap_pte_populate(pmd, addr, node, NULL, NULL); 1381 if (!pte) 1382 return -ENOMEM; 1383 vmemmap_verify(pte, node, addr, addr + PAGE_SIZE); 1384 1385 addr_pfn += 1; 1386 next = addr + PAGE_SIZE; 1387 continue; 1388 } 1389 1390 pte = radix__vmemmap_pte_populate(pmd, addr, node, NULL, pte_page(*tail_page_pte)); 1391 if (!pte) 1392 return -ENOMEM; 1393 vmemmap_verify(pte, node, addr, addr + PAGE_SIZE); 1394 1395 addr_pfn += 1; 1396 next = addr + PAGE_SIZE; 1397 continue; 1398 } 1399 } 1400 return 0; 1401 } 1402 1403 1404 #ifdef CONFIG_MEMORY_HOTPLUG 1405 void __meminit radix__vmemmap_remove_mapping(unsigned long start, unsigned long page_size) 1406 { 1407 remove_pagetable(start, start + page_size, true, NULL); 1408 } 1409 1410 void __ref radix__vmemmap_free(unsigned long start, unsigned long end, 1411 struct vmem_altmap *altmap) 1412 { 1413 remove_pagetable(start, end, false, altmap); 1414 } 1415 #endif 1416 #endif 1417 1418 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1419 1420 unsigned long radix__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, 1421 pmd_t *pmdp, unsigned long clr, 1422 unsigned long set) 1423 { 1424 unsigned long old; 1425 1426 #ifdef CONFIG_DEBUG_VM 1427 WARN_ON(!radix__pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp)); 1428 assert_spin_locked(pmd_lockptr(mm, pmdp)); 1429 #endif 1430 1431 old = radix__pte_update(mm, addr, pmdp_ptep(pmdp), clr, set, 1); 1432 trace_hugepage_update_pmd(addr, old, clr, set); 1433 1434 return old; 1435 } 1436 1437 unsigned long radix__pud_hugepage_update(struct mm_struct *mm, unsigned long addr, 1438 pud_t *pudp, unsigned long clr, 1439 unsigned long set) 1440 { 1441 unsigned long old; 1442 1443 #ifdef CONFIG_DEBUG_VM 1444 WARN_ON(!pud_devmap(*pudp)); 1445 assert_spin_locked(pud_lockptr(mm, pudp)); 1446 #endif 1447 1448 old = radix__pte_update(mm, addr, pudp_ptep(pudp), clr, set, 1); 1449 trace_hugepage_update_pud(addr, old, clr, set); 1450 1451 return old; 1452 } 1453 1454 pmd_t radix__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address, 1455 pmd_t *pmdp) 1456 1457 { 1458 pmd_t pmd; 1459 1460 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1461 VM_BUG_ON(radix__pmd_trans_huge(*pmdp)); 1462 VM_BUG_ON(pmd_devmap(*pmdp)); 1463 /* 1464 * khugepaged calls this for normal pmd 1465 */ 1466 pmd = *pmdp; 1467 pmd_clear(pmdp); 1468 1469 radix__flush_tlb_collapsed_pmd(vma->vm_mm, address); 1470 1471 return pmd; 1472 } 1473 1474 /* 1475 * For us pgtable_t is pte_t *. Inorder to save the deposisted 1476 * page table, we consider the allocated page table as a list 1477 * head. On withdraw we need to make sure we zero out the used 1478 * list_head memory area. 1479 */ 1480 void radix__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, 1481 pgtable_t pgtable) 1482 { 1483 struct list_head *lh = (struct list_head *) pgtable; 1484 1485 assert_spin_locked(pmd_lockptr(mm, pmdp)); 1486 1487 /* FIFO */ 1488 if (!pmd_huge_pte(mm, pmdp)) 1489 INIT_LIST_HEAD(lh); 1490 else 1491 list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp)); 1492 pmd_huge_pte(mm, pmdp) = pgtable; 1493 } 1494 1495 pgtable_t radix__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp) 1496 { 1497 pte_t *ptep; 1498 pgtable_t pgtable; 1499 struct list_head *lh; 1500 1501 assert_spin_locked(pmd_lockptr(mm, pmdp)); 1502 1503 /* FIFO */ 1504 pgtable = pmd_huge_pte(mm, pmdp); 1505 lh = (struct list_head *) pgtable; 1506 if (list_empty(lh)) 1507 pmd_huge_pte(mm, pmdp) = NULL; 1508 else { 1509 pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next; 1510 list_del(lh); 1511 } 1512 ptep = (pte_t *) pgtable; 1513 *ptep = __pte(0); 1514 ptep++; 1515 *ptep = __pte(0); 1516 return pgtable; 1517 } 1518 1519 pmd_t radix__pmdp_huge_get_and_clear(struct mm_struct *mm, 1520 unsigned long addr, pmd_t *pmdp) 1521 { 1522 pmd_t old_pmd; 1523 unsigned long old; 1524 1525 old = radix__pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0); 1526 old_pmd = __pmd(old); 1527 return old_pmd; 1528 } 1529 1530 pud_t radix__pudp_huge_get_and_clear(struct mm_struct *mm, 1531 unsigned long addr, pud_t *pudp) 1532 { 1533 pud_t old_pud; 1534 unsigned long old; 1535 1536 old = radix__pud_hugepage_update(mm, addr, pudp, ~0UL, 0); 1537 old_pud = __pud(old); 1538 return old_pud; 1539 } 1540 1541 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1542 1543 void radix__ptep_set_access_flags(struct vm_area_struct *vma, pte_t *ptep, 1544 pte_t entry, unsigned long address, int psize) 1545 { 1546 struct mm_struct *mm = vma->vm_mm; 1547 unsigned long set = pte_val(entry) & (_PAGE_DIRTY | _PAGE_SOFT_DIRTY | 1548 _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC); 1549 1550 unsigned long change = pte_val(entry) ^ pte_val(*ptep); 1551 /* 1552 * On POWER9, the NMMU is not able to relax PTE access permissions 1553 * for a translation with a TLB. The PTE must be invalidated, TLB 1554 * flushed before the new PTE is installed. 1555 * 1556 * This only needs to be done for radix, because hash translation does 1557 * flush when updating the linux pte (and we don't support NMMU 1558 * accelerators on HPT on POWER9 anyway XXX: do we?). 1559 * 1560 * POWER10 (and P9P) NMMU does behave as per ISA. 1561 */ 1562 if (!cpu_has_feature(CPU_FTR_ARCH_31) && (change & _PAGE_RW) && 1563 atomic_read(&mm->context.copros) > 0) { 1564 unsigned long old_pte, new_pte; 1565 1566 old_pte = __radix_pte_update(ptep, _PAGE_PRESENT, _PAGE_INVALID); 1567 new_pte = old_pte | set; 1568 radix__flush_tlb_page_psize(mm, address, psize); 1569 __radix_pte_update(ptep, _PAGE_INVALID, new_pte); 1570 } else { 1571 __radix_pte_update(ptep, 0, set); 1572 /* 1573 * Book3S does not require a TLB flush when relaxing access 1574 * restrictions when the address space (modulo the POWER9 nest 1575 * MMU issue above) because the MMU will reload the PTE after 1576 * taking an access fault, as defined by the architecture. See 1577 * "Setting a Reference or Change Bit or Upgrading Access 1578 * Authority (PTE Subject to Atomic Hardware Updates)" in 1579 * Power ISA Version 3.1B. 1580 */ 1581 } 1582 /* See ptesync comment in radix__set_pte_at */ 1583 } 1584 1585 void radix__ptep_modify_prot_commit(struct vm_area_struct *vma, 1586 unsigned long addr, pte_t *ptep, 1587 pte_t old_pte, pte_t pte) 1588 { 1589 struct mm_struct *mm = vma->vm_mm; 1590 1591 /* 1592 * POWER9 NMMU must flush the TLB after clearing the PTE before 1593 * installing a PTE with more relaxed access permissions, see 1594 * radix__ptep_set_access_flags. 1595 */ 1596 if (!cpu_has_feature(CPU_FTR_ARCH_31) && 1597 is_pte_rw_upgrade(pte_val(old_pte), pte_val(pte)) && 1598 (atomic_read(&mm->context.copros) > 0)) 1599 radix__flush_tlb_page(vma, addr); 1600 1601 set_pte_at(mm, addr, ptep, pte); 1602 } 1603 1604 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot) 1605 { 1606 pte_t *ptep = (pte_t *)pud; 1607 pte_t new_pud = pfn_pte(__phys_to_pfn(addr), prot); 1608 1609 if (!radix_enabled()) 1610 return 0; 1611 1612 set_pte_at(&init_mm, 0 /* radix unused */, ptep, new_pud); 1613 1614 return 1; 1615 } 1616 1617 int pud_clear_huge(pud_t *pud) 1618 { 1619 if (pud_leaf(*pud)) { 1620 pud_clear(pud); 1621 return 1; 1622 } 1623 1624 return 0; 1625 } 1626 1627 int pud_free_pmd_page(pud_t *pud, unsigned long addr) 1628 { 1629 pmd_t *pmd; 1630 int i; 1631 1632 pmd = pud_pgtable(*pud); 1633 pud_clear(pud); 1634 1635 flush_tlb_kernel_range(addr, addr + PUD_SIZE); 1636 1637 for (i = 0; i < PTRS_PER_PMD; i++) { 1638 if (!pmd_none(pmd[i])) { 1639 pte_t *pte; 1640 pte = (pte_t *)pmd_page_vaddr(pmd[i]); 1641 1642 pte_free_kernel(&init_mm, pte); 1643 } 1644 } 1645 1646 pmd_free(&init_mm, pmd); 1647 1648 return 1; 1649 } 1650 1651 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot) 1652 { 1653 pte_t *ptep = (pte_t *)pmd; 1654 pte_t new_pmd = pfn_pte(__phys_to_pfn(addr), prot); 1655 1656 if (!radix_enabled()) 1657 return 0; 1658 1659 set_pte_at(&init_mm, 0 /* radix unused */, ptep, new_pmd); 1660 1661 return 1; 1662 } 1663 1664 int pmd_clear_huge(pmd_t *pmd) 1665 { 1666 if (pmd_leaf(*pmd)) { 1667 pmd_clear(pmd); 1668 return 1; 1669 } 1670 1671 return 0; 1672 } 1673 1674 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr) 1675 { 1676 pte_t *pte; 1677 1678 pte = (pte_t *)pmd_page_vaddr(*pmd); 1679 pmd_clear(pmd); 1680 1681 flush_tlb_kernel_range(addr, addr + PMD_SIZE); 1682 1683 pte_free_kernel(&init_mm, pte); 1684 1685 return 1; 1686 } 1687
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.