~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/powerpc/mm/book3s64/slice.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-or-later
  2 /*
  3  * address space "slices" (meta-segments) support
  4  *
  5  * Copyright (C) 2007 Benjamin Herrenschmidt, IBM Corporation.
  6  *
  7  * Based on hugetlb implementation
  8  *
  9  * Copyright (C) 2003 David Gibson, IBM Corporation.
 10  */
 11 
 12 #undef DEBUG
 13 
 14 #include <linux/kernel.h>
 15 #include <linux/mm.h>
 16 #include <linux/pagemap.h>
 17 #include <linux/err.h>
 18 #include <linux/spinlock.h>
 19 #include <linux/export.h>
 20 #include <linux/hugetlb.h>
 21 #include <linux/sched/mm.h>
 22 #include <linux/security.h>
 23 #include <asm/mman.h>
 24 #include <asm/mmu.h>
 25 #include <asm/copro.h>
 26 #include <asm/hugetlb.h>
 27 #include <asm/mmu_context.h>
 28 
 29 static DEFINE_SPINLOCK(slice_convert_lock);
 30 
 31 #ifdef DEBUG
 32 int _slice_debug = 1;
 33 
 34 static void slice_print_mask(const char *label, const struct slice_mask *mask)
 35 {
 36         if (!_slice_debug)
 37                 return;
 38         pr_devel("%s low_slice: %*pbl\n", label,
 39                         (int)SLICE_NUM_LOW, &mask->low_slices);
 40         pr_devel("%s high_slice: %*pbl\n", label,
 41                         (int)SLICE_NUM_HIGH, mask->high_slices);
 42 }
 43 
 44 #define slice_dbg(fmt...) do { if (_slice_debug) pr_devel(fmt); } while (0)
 45 
 46 #else
 47 
 48 static void slice_print_mask(const char *label, const struct slice_mask *mask) {}
 49 #define slice_dbg(fmt...)
 50 
 51 #endif
 52 
 53 static inline notrace bool slice_addr_is_low(unsigned long addr)
 54 {
 55         u64 tmp = (u64)addr;
 56 
 57         return tmp < SLICE_LOW_TOP;
 58 }
 59 
 60 static void slice_range_to_mask(unsigned long start, unsigned long len,
 61                                 struct slice_mask *ret)
 62 {
 63         unsigned long end = start + len - 1;
 64 
 65         ret->low_slices = 0;
 66         if (SLICE_NUM_HIGH)
 67                 bitmap_zero(ret->high_slices, SLICE_NUM_HIGH);
 68 
 69         if (slice_addr_is_low(start)) {
 70                 unsigned long mend = min(end,
 71                                          (unsigned long)(SLICE_LOW_TOP - 1));
 72 
 73                 ret->low_slices = (1u << (GET_LOW_SLICE_INDEX(mend) + 1))
 74                         - (1u << GET_LOW_SLICE_INDEX(start));
 75         }
 76 
 77         if (SLICE_NUM_HIGH && !slice_addr_is_low(end)) {
 78                 unsigned long start_index = GET_HIGH_SLICE_INDEX(start);
 79                 unsigned long align_end = ALIGN(end, (1UL << SLICE_HIGH_SHIFT));
 80                 unsigned long count = GET_HIGH_SLICE_INDEX(align_end) - start_index;
 81 
 82                 bitmap_set(ret->high_slices, start_index, count);
 83         }
 84 }
 85 
 86 static int slice_area_is_free(struct mm_struct *mm, unsigned long addr,
 87                               unsigned long len)
 88 {
 89         struct vm_area_struct *vma;
 90 
 91         if ((mm_ctx_slb_addr_limit(&mm->context) - len) < addr)
 92                 return 0;
 93         vma = find_vma(mm, addr);
 94         return (!vma || (addr + len) <= vm_start_gap(vma));
 95 }
 96 
 97 static int slice_low_has_vma(struct mm_struct *mm, unsigned long slice)
 98 {
 99         return !slice_area_is_free(mm, slice << SLICE_LOW_SHIFT,
100                                    1ul << SLICE_LOW_SHIFT);
101 }
102 
103 static int slice_high_has_vma(struct mm_struct *mm, unsigned long slice)
104 {
105         unsigned long start = slice << SLICE_HIGH_SHIFT;
106         unsigned long end = start + (1ul << SLICE_HIGH_SHIFT);
107 
108         /* Hack, so that each addresses is controlled by exactly one
109          * of the high or low area bitmaps, the first high area starts
110          * at 4GB, not 0 */
111         if (start == 0)
112                 start = (unsigned long)SLICE_LOW_TOP;
113 
114         return !slice_area_is_free(mm, start, end - start);
115 }
116 
117 static void slice_mask_for_free(struct mm_struct *mm, struct slice_mask *ret,
118                                 unsigned long high_limit)
119 {
120         unsigned long i;
121 
122         ret->low_slices = 0;
123         if (SLICE_NUM_HIGH)
124                 bitmap_zero(ret->high_slices, SLICE_NUM_HIGH);
125 
126         for (i = 0; i < SLICE_NUM_LOW; i++)
127                 if (!slice_low_has_vma(mm, i))
128                         ret->low_slices |= 1u << i;
129 
130         if (slice_addr_is_low(high_limit - 1))
131                 return;
132 
133         for (i = 0; i < GET_HIGH_SLICE_INDEX(high_limit); i++)
134                 if (!slice_high_has_vma(mm, i))
135                         __set_bit(i, ret->high_slices);
136 }
137 
138 static bool slice_check_range_fits(struct mm_struct *mm,
139                            const struct slice_mask *available,
140                            unsigned long start, unsigned long len)
141 {
142         unsigned long end = start + len - 1;
143         u64 low_slices = 0;
144 
145         if (slice_addr_is_low(start)) {
146                 unsigned long mend = min(end,
147                                          (unsigned long)(SLICE_LOW_TOP - 1));
148 
149                 low_slices = (1u << (GET_LOW_SLICE_INDEX(mend) + 1))
150                                 - (1u << GET_LOW_SLICE_INDEX(start));
151         }
152         if ((low_slices & available->low_slices) != low_slices)
153                 return false;
154 
155         if (SLICE_NUM_HIGH && !slice_addr_is_low(end)) {
156                 unsigned long start_index = GET_HIGH_SLICE_INDEX(start);
157                 unsigned long align_end = ALIGN(end, (1UL << SLICE_HIGH_SHIFT));
158                 unsigned long count = GET_HIGH_SLICE_INDEX(align_end) - start_index;
159                 unsigned long i;
160 
161                 for (i = start_index; i < start_index + count; i++) {
162                         if (!test_bit(i, available->high_slices))
163                                 return false;
164                 }
165         }
166 
167         return true;
168 }
169 
170 static void slice_flush_segments(void *parm)
171 {
172 #ifdef CONFIG_PPC64
173         struct mm_struct *mm = parm;
174         unsigned long flags;
175 
176         if (mm != current->active_mm)
177                 return;
178 
179         copy_mm_to_paca(current->active_mm);
180 
181         local_irq_save(flags);
182         slb_flush_and_restore_bolted();
183         local_irq_restore(flags);
184 #endif
185 }
186 
187 static void slice_convert(struct mm_struct *mm,
188                                 const struct slice_mask *mask, int psize)
189 {
190         int index, mask_index;
191         /* Write the new slice psize bits */
192         unsigned char *hpsizes, *lpsizes;
193         struct slice_mask *psize_mask, *old_mask;
194         unsigned long i, flags;
195         int old_psize;
196 
197         slice_dbg("slice_convert(mm=%p, psize=%d)\n", mm, psize);
198         slice_print_mask(" mask", mask);
199 
200         psize_mask = slice_mask_for_size(&mm->context, psize);
201 
202         /* We need to use a spinlock here to protect against
203          * concurrent 64k -> 4k demotion ...
204          */
205         spin_lock_irqsave(&slice_convert_lock, flags);
206 
207         lpsizes = mm_ctx_low_slices(&mm->context);
208         for (i = 0; i < SLICE_NUM_LOW; i++) {
209                 if (!(mask->low_slices & (1u << i)))
210                         continue;
211 
212                 mask_index = i & 0x1;
213                 index = i >> 1;
214 
215                 /* Update the slice_mask */
216                 old_psize = (lpsizes[index] >> (mask_index * 4)) & 0xf;
217                 old_mask = slice_mask_for_size(&mm->context, old_psize);
218                 old_mask->low_slices &= ~(1u << i);
219                 psize_mask->low_slices |= 1u << i;
220 
221                 /* Update the sizes array */
222                 lpsizes[index] = (lpsizes[index] & ~(0xf << (mask_index * 4))) |
223                                 (((unsigned long)psize) << (mask_index * 4));
224         }
225 
226         hpsizes = mm_ctx_high_slices(&mm->context);
227         for (i = 0; i < GET_HIGH_SLICE_INDEX(mm_ctx_slb_addr_limit(&mm->context)); i++) {
228                 if (!test_bit(i, mask->high_slices))
229                         continue;
230 
231                 mask_index = i & 0x1;
232                 index = i >> 1;
233 
234                 /* Update the slice_mask */
235                 old_psize = (hpsizes[index] >> (mask_index * 4)) & 0xf;
236                 old_mask = slice_mask_for_size(&mm->context, old_psize);
237                 __clear_bit(i, old_mask->high_slices);
238                 __set_bit(i, psize_mask->high_slices);
239 
240                 /* Update the sizes array */
241                 hpsizes[index] = (hpsizes[index] & ~(0xf << (mask_index * 4))) |
242                                 (((unsigned long)psize) << (mask_index * 4));
243         }
244 
245         slice_dbg(" lsps=%lx, hsps=%lx\n",
246                   (unsigned long)mm_ctx_low_slices(&mm->context),
247                   (unsigned long)mm_ctx_high_slices(&mm->context));
248 
249         spin_unlock_irqrestore(&slice_convert_lock, flags);
250 
251         copro_flush_all_slbs(mm);
252 }
253 
254 /*
255  * Compute which slice addr is part of;
256  * set *boundary_addr to the start or end boundary of that slice
257  * (depending on 'end' parameter);
258  * return boolean indicating if the slice is marked as available in the
259  * 'available' slice_mark.
260  */
261 static bool slice_scan_available(unsigned long addr,
262                                  const struct slice_mask *available,
263                                  int end, unsigned long *boundary_addr)
264 {
265         unsigned long slice;
266         if (slice_addr_is_low(addr)) {
267                 slice = GET_LOW_SLICE_INDEX(addr);
268                 *boundary_addr = (slice + end) << SLICE_LOW_SHIFT;
269                 return !!(available->low_slices & (1u << slice));
270         } else {
271                 slice = GET_HIGH_SLICE_INDEX(addr);
272                 *boundary_addr = (slice + end) ?
273                         ((slice + end) << SLICE_HIGH_SHIFT) : SLICE_LOW_TOP;
274                 return !!test_bit(slice, available->high_slices);
275         }
276 }
277 
278 static unsigned long slice_find_area_bottomup(struct mm_struct *mm,
279                                               unsigned long addr, unsigned long len,
280                                               const struct slice_mask *available,
281                                               int psize, unsigned long high_limit)
282 {
283         int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT);
284         unsigned long found, next_end;
285         struct vm_unmapped_area_info info = {
286                 .length = len,
287                 .align_mask = PAGE_MASK & ((1ul << pshift) - 1),
288         };
289         /*
290          * Check till the allow max value for this mmap request
291          */
292         while (addr < high_limit) {
293                 info.low_limit = addr;
294                 if (!slice_scan_available(addr, available, 1, &addr))
295                         continue;
296 
297  next_slice:
298                 /*
299                  * At this point [info.low_limit; addr) covers
300                  * available slices only and ends at a slice boundary.
301                  * Check if we need to reduce the range, or if we can
302                  * extend it to cover the next available slice.
303                  */
304                 if (addr >= high_limit)
305                         addr = high_limit;
306                 else if (slice_scan_available(addr, available, 1, &next_end)) {
307                         addr = next_end;
308                         goto next_slice;
309                 }
310                 info.high_limit = addr;
311 
312                 found = vm_unmapped_area(&info);
313                 if (!(found & ~PAGE_MASK))
314                         return found;
315         }
316 
317         return -ENOMEM;
318 }
319 
320 static unsigned long slice_find_area_topdown(struct mm_struct *mm,
321                                              unsigned long addr, unsigned long len,
322                                              const struct slice_mask *available,
323                                              int psize, unsigned long high_limit)
324 {
325         int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT);
326         unsigned long found, prev;
327         struct vm_unmapped_area_info info = {
328                 .flags = VM_UNMAPPED_AREA_TOPDOWN,
329                 .length = len,
330                 .align_mask = PAGE_MASK & ((1ul << pshift) - 1),
331         };
332         unsigned long min_addr = max(PAGE_SIZE, mmap_min_addr);
333 
334         /*
335          * If we are trying to allocate above DEFAULT_MAP_WINDOW
336          * Add the different to the mmap_base.
337          * Only for that request for which high_limit is above
338          * DEFAULT_MAP_WINDOW we should apply this.
339          */
340         if (high_limit > DEFAULT_MAP_WINDOW)
341                 addr += mm_ctx_slb_addr_limit(&mm->context) - DEFAULT_MAP_WINDOW;
342 
343         while (addr > min_addr) {
344                 info.high_limit = addr;
345                 if (!slice_scan_available(addr - 1, available, 0, &addr))
346                         continue;
347 
348  prev_slice:
349                 /*
350                  * At this point [addr; info.high_limit) covers
351                  * available slices only and starts at a slice boundary.
352                  * Check if we need to reduce the range, or if we can
353                  * extend it to cover the previous available slice.
354                  */
355                 if (addr < min_addr)
356                         addr = min_addr;
357                 else if (slice_scan_available(addr - 1, available, 0, &prev)) {
358                         addr = prev;
359                         goto prev_slice;
360                 }
361                 info.low_limit = addr;
362 
363                 found = vm_unmapped_area(&info);
364                 if (!(found & ~PAGE_MASK))
365                         return found;
366         }
367 
368         /*
369          * A failed mmap() very likely causes application failure,
370          * so fall back to the bottom-up function here. This scenario
371          * can happen with large stack limits and large mmap()
372          * allocations.
373          */
374         return slice_find_area_bottomup(mm, TASK_UNMAPPED_BASE, len, available, psize, high_limit);
375 }
376 
377 
378 static unsigned long slice_find_area(struct mm_struct *mm, unsigned long len,
379                                      const struct slice_mask *mask, int psize,
380                                      int topdown, unsigned long high_limit)
381 {
382         if (topdown)
383                 return slice_find_area_topdown(mm, mm->mmap_base, len, mask, psize, high_limit);
384         else
385                 return slice_find_area_bottomup(mm, mm->mmap_base, len, mask, psize, high_limit);
386 }
387 
388 static inline void slice_copy_mask(struct slice_mask *dst,
389                                         const struct slice_mask *src)
390 {
391         dst->low_slices = src->low_slices;
392         if (!SLICE_NUM_HIGH)
393                 return;
394         bitmap_copy(dst->high_slices, src->high_slices, SLICE_NUM_HIGH);
395 }
396 
397 static inline void slice_or_mask(struct slice_mask *dst,
398                                         const struct slice_mask *src1,
399                                         const struct slice_mask *src2)
400 {
401         dst->low_slices = src1->low_slices | src2->low_slices;
402         if (!SLICE_NUM_HIGH)
403                 return;
404         bitmap_or(dst->high_slices, src1->high_slices, src2->high_slices, SLICE_NUM_HIGH);
405 }
406 
407 static inline void slice_andnot_mask(struct slice_mask *dst,
408                                         const struct slice_mask *src1,
409                                         const struct slice_mask *src2)
410 {
411         dst->low_slices = src1->low_slices & ~src2->low_slices;
412         if (!SLICE_NUM_HIGH)
413                 return;
414         bitmap_andnot(dst->high_slices, src1->high_slices, src2->high_slices, SLICE_NUM_HIGH);
415 }
416 
417 #ifdef CONFIG_PPC_64K_PAGES
418 #define MMU_PAGE_BASE   MMU_PAGE_64K
419 #else
420 #define MMU_PAGE_BASE   MMU_PAGE_4K
421 #endif
422 
423 unsigned long slice_get_unmapped_area(unsigned long addr, unsigned long len,
424                                       unsigned long flags, unsigned int psize,
425                                       int topdown)
426 {
427         struct slice_mask good_mask;
428         struct slice_mask potential_mask;
429         const struct slice_mask *maskp;
430         const struct slice_mask *compat_maskp = NULL;
431         int fixed = (flags & MAP_FIXED);
432         int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT);
433         unsigned long page_size = 1UL << pshift;
434         struct mm_struct *mm = current->mm;
435         unsigned long newaddr;
436         unsigned long high_limit;
437 
438         high_limit = DEFAULT_MAP_WINDOW;
439         if (addr >= high_limit || (fixed && (addr + len > high_limit)))
440                 high_limit = TASK_SIZE;
441 
442         if (len > high_limit)
443                 return -ENOMEM;
444         if (len & (page_size - 1))
445                 return -EINVAL;
446         if (fixed) {
447                 if (addr & (page_size - 1))
448                         return -EINVAL;
449                 if (addr > high_limit - len)
450                         return -ENOMEM;
451         }
452 
453         if (high_limit > mm_ctx_slb_addr_limit(&mm->context)) {
454                 /*
455                  * Increasing the slb_addr_limit does not require
456                  * slice mask cache to be recalculated because it should
457                  * be already initialised beyond the old address limit.
458                  */
459                 mm_ctx_set_slb_addr_limit(&mm->context, high_limit);
460 
461                 on_each_cpu(slice_flush_segments, mm, 1);
462         }
463 
464         /* Sanity checks */
465         BUG_ON(mm->task_size == 0);
466         BUG_ON(mm_ctx_slb_addr_limit(&mm->context) == 0);
467         VM_BUG_ON(radix_enabled());
468 
469         slice_dbg("slice_get_unmapped_area(mm=%p, psize=%d...\n", mm, psize);
470         slice_dbg(" addr=%lx, len=%lx, flags=%lx, topdown=%d\n",
471                   addr, len, flags, topdown);
472 
473         /* If hint, make sure it matches our alignment restrictions */
474         if (!fixed && addr) {
475                 addr = ALIGN(addr, page_size);
476                 slice_dbg(" aligned addr=%lx\n", addr);
477                 /* Ignore hint if it's too large or overlaps a VMA */
478                 if (addr > high_limit - len || addr < mmap_min_addr ||
479                     !slice_area_is_free(mm, addr, len))
480                         addr = 0;
481         }
482 
483         /* First make up a "good" mask of slices that have the right size
484          * already
485          */
486         maskp = slice_mask_for_size(&mm->context, psize);
487 
488         /*
489          * Here "good" means slices that are already the right page size,
490          * "compat" means slices that have a compatible page size (i.e.
491          * 4k in a 64k pagesize kernel), and "free" means slices without
492          * any VMAs.
493          *
494          * If MAP_FIXED:
495          *      check if fits in good | compat => OK
496          *      check if fits in good | compat | free => convert free
497          *      else bad
498          * If have hint:
499          *      check if hint fits in good => OK
500          *      check if hint fits in good | free => convert free
501          * Otherwise:
502          *      search in good, found => OK
503          *      search in good | free, found => convert free
504          *      search in good | compat | free, found => convert free.
505          */
506 
507         /*
508          * If we support combo pages, we can allow 64k pages in 4k slices
509          * The mask copies could be avoided in most cases here if we had
510          * a pointer to good mask for the next code to use.
511          */
512         if (IS_ENABLED(CONFIG_PPC_64K_PAGES) && psize == MMU_PAGE_64K) {
513                 compat_maskp = slice_mask_for_size(&mm->context, MMU_PAGE_4K);
514                 if (fixed)
515                         slice_or_mask(&good_mask, maskp, compat_maskp);
516                 else
517                         slice_copy_mask(&good_mask, maskp);
518         } else {
519                 slice_copy_mask(&good_mask, maskp);
520         }
521 
522         slice_print_mask(" good_mask", &good_mask);
523         if (compat_maskp)
524                 slice_print_mask(" compat_mask", compat_maskp);
525 
526         /* First check hint if it's valid or if we have MAP_FIXED */
527         if (addr != 0 || fixed) {
528                 /* Check if we fit in the good mask. If we do, we just return,
529                  * nothing else to do
530                  */
531                 if (slice_check_range_fits(mm, &good_mask, addr, len)) {
532                         slice_dbg(" fits good !\n");
533                         newaddr = addr;
534                         goto return_addr;
535                 }
536         } else {
537                 /* Now let's see if we can find something in the existing
538                  * slices for that size
539                  */
540                 newaddr = slice_find_area(mm, len, &good_mask,
541                                           psize, topdown, high_limit);
542                 if (newaddr != -ENOMEM) {
543                         /* Found within the good mask, we don't have to setup,
544                          * we thus return directly
545                          */
546                         slice_dbg(" found area at 0x%lx\n", newaddr);
547                         goto return_addr;
548                 }
549         }
550         /*
551          * We don't fit in the good mask, check what other slices are
552          * empty and thus can be converted
553          */
554         slice_mask_for_free(mm, &potential_mask, high_limit);
555         slice_or_mask(&potential_mask, &potential_mask, &good_mask);
556         slice_print_mask(" potential", &potential_mask);
557 
558         if (addr != 0 || fixed) {
559                 if (slice_check_range_fits(mm, &potential_mask, addr, len)) {
560                         slice_dbg(" fits potential !\n");
561                         newaddr = addr;
562                         goto convert;
563                 }
564         }
565 
566         /* If we have MAP_FIXED and failed the above steps, then error out */
567         if (fixed)
568                 return -EBUSY;
569 
570         slice_dbg(" search...\n");
571 
572         /* If we had a hint that didn't work out, see if we can fit
573          * anywhere in the good area.
574          */
575         if (addr) {
576                 newaddr = slice_find_area(mm, len, &good_mask,
577                                           psize, topdown, high_limit);
578                 if (newaddr != -ENOMEM) {
579                         slice_dbg(" found area at 0x%lx\n", newaddr);
580                         goto return_addr;
581                 }
582         }
583 
584         /* Now let's see if we can find something in the existing slices
585          * for that size plus free slices
586          */
587         newaddr = slice_find_area(mm, len, &potential_mask,
588                                   psize, topdown, high_limit);
589 
590         if (IS_ENABLED(CONFIG_PPC_64K_PAGES) && newaddr == -ENOMEM &&
591             psize == MMU_PAGE_64K) {
592                 /* retry the search with 4k-page slices included */
593                 slice_or_mask(&potential_mask, &potential_mask, compat_maskp);
594                 newaddr = slice_find_area(mm, len, &potential_mask,
595                                           psize, topdown, high_limit);
596         }
597 
598         if (newaddr == -ENOMEM)
599                 return -ENOMEM;
600 
601         slice_range_to_mask(newaddr, len, &potential_mask);
602         slice_dbg(" found potential area at 0x%lx\n", newaddr);
603         slice_print_mask(" mask", &potential_mask);
604 
605  convert:
606         /*
607          * Try to allocate the context before we do slice convert
608          * so that we handle the context allocation failure gracefully.
609          */
610         if (need_extra_context(mm, newaddr)) {
611                 if (alloc_extended_context(mm, newaddr) < 0)
612                         return -ENOMEM;
613         }
614 
615         slice_andnot_mask(&potential_mask, &potential_mask, &good_mask);
616         if (compat_maskp && !fixed)
617                 slice_andnot_mask(&potential_mask, &potential_mask, compat_maskp);
618         if (potential_mask.low_slices ||
619                 (SLICE_NUM_HIGH &&
620                  !bitmap_empty(potential_mask.high_slices, SLICE_NUM_HIGH))) {
621                 slice_convert(mm, &potential_mask, psize);
622                 if (psize > MMU_PAGE_BASE)
623                         on_each_cpu(slice_flush_segments, mm, 1);
624         }
625         return newaddr;
626 
627 return_addr:
628         if (need_extra_context(mm, newaddr)) {
629                 if (alloc_extended_context(mm, newaddr) < 0)
630                         return -ENOMEM;
631         }
632         return newaddr;
633 }
634 EXPORT_SYMBOL_GPL(slice_get_unmapped_area);
635 
636 unsigned long arch_get_unmapped_area(struct file *filp,
637                                      unsigned long addr,
638                                      unsigned long len,
639                                      unsigned long pgoff,
640                                      unsigned long flags)
641 {
642         if (radix_enabled())
643                 return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
644 
645         return slice_get_unmapped_area(addr, len, flags,
646                                        mm_ctx_user_psize(&current->mm->context), 0);
647 }
648 
649 unsigned long arch_get_unmapped_area_topdown(struct file *filp,
650                                              const unsigned long addr0,
651                                              const unsigned long len,
652                                              const unsigned long pgoff,
653                                              const unsigned long flags)
654 {
655         if (radix_enabled())
656                 return generic_get_unmapped_area_topdown(filp, addr0, len, pgoff, flags);
657 
658         return slice_get_unmapped_area(addr0, len, flags,
659                                        mm_ctx_user_psize(&current->mm->context), 1);
660 }
661 
662 unsigned int notrace get_slice_psize(struct mm_struct *mm, unsigned long addr)
663 {
664         unsigned char *psizes;
665         int index, mask_index;
666 
667         VM_BUG_ON(radix_enabled());
668 
669         if (slice_addr_is_low(addr)) {
670                 psizes = mm_ctx_low_slices(&mm->context);
671                 index = GET_LOW_SLICE_INDEX(addr);
672         } else {
673                 psizes = mm_ctx_high_slices(&mm->context);
674                 index = GET_HIGH_SLICE_INDEX(addr);
675         }
676         mask_index = index & 0x1;
677         return (psizes[index >> 1] >> (mask_index * 4)) & 0xf;
678 }
679 EXPORT_SYMBOL_GPL(get_slice_psize);
680 
681 void slice_init_new_context_exec(struct mm_struct *mm)
682 {
683         unsigned char *hpsizes, *lpsizes;
684         struct slice_mask *mask;
685         unsigned int psize = mmu_virtual_psize;
686 
687         slice_dbg("slice_init_new_context_exec(mm=%p)\n", mm);
688 
689         /*
690          * In the case of exec, use the default limit. In the
691          * case of fork it is just inherited from the mm being
692          * duplicated.
693          */
694         mm_ctx_set_slb_addr_limit(&mm->context, SLB_ADDR_LIMIT_DEFAULT);
695         mm_ctx_set_user_psize(&mm->context, psize);
696 
697         /*
698          * Set all slice psizes to the default.
699          */
700         lpsizes = mm_ctx_low_slices(&mm->context);
701         memset(lpsizes, (psize << 4) | psize, SLICE_NUM_LOW >> 1);
702 
703         hpsizes = mm_ctx_high_slices(&mm->context);
704         memset(hpsizes, (psize << 4) | psize, SLICE_NUM_HIGH >> 1);
705 
706         /*
707          * Slice mask cache starts zeroed, fill the default size cache.
708          */
709         mask = slice_mask_for_size(&mm->context, psize);
710         mask->low_slices = ~0UL;
711         if (SLICE_NUM_HIGH)
712                 bitmap_fill(mask->high_slices, SLICE_NUM_HIGH);
713 }
714 
715 void slice_setup_new_exec(void)
716 {
717         struct mm_struct *mm = current->mm;
718 
719         slice_dbg("slice_setup_new_exec(mm=%p)\n", mm);
720 
721         if (!is_32bit_task())
722                 return;
723 
724         mm_ctx_set_slb_addr_limit(&mm->context, DEFAULT_MAP_WINDOW);
725 }
726 
727 void slice_set_range_psize(struct mm_struct *mm, unsigned long start,
728                            unsigned long len, unsigned int psize)
729 {
730         struct slice_mask mask;
731 
732         VM_BUG_ON(radix_enabled());
733 
734         slice_range_to_mask(start, len, &mask);
735         slice_convert(mm, &mask, psize);
736 }
737 
738 #ifdef CONFIG_HUGETLB_PAGE
739 /*
740  * is_hugepage_only_range() is used by generic code to verify whether
741  * a normal mmap mapping (non hugetlbfs) is valid on a given area.
742  *
743  * until the generic code provides a more generic hook and/or starts
744  * calling arch get_unmapped_area for MAP_FIXED (which our implementation
745  * here knows how to deal with), we hijack it to keep standard mappings
746  * away from us.
747  *
748  * because of that generic code limitation, MAP_FIXED mapping cannot
749  * "convert" back a slice with no VMAs to the standard page size, only
750  * get_unmapped_area() can. It would be possible to fix it here but I
751  * prefer working on fixing the generic code instead.
752  *
753  * WARNING: This will not work if hugetlbfs isn't enabled since the
754  * generic code will redefine that function as 0 in that. This is ok
755  * for now as we only use slices with hugetlbfs enabled. This should
756  * be fixed as the generic code gets fixed.
757  */
758 int slice_is_hugepage_only_range(struct mm_struct *mm, unsigned long addr,
759                            unsigned long len)
760 {
761         const struct slice_mask *maskp;
762         unsigned int psize = mm_ctx_user_psize(&mm->context);
763 
764         VM_BUG_ON(radix_enabled());
765 
766         maskp = slice_mask_for_size(&mm->context, psize);
767 
768         /* We need to account for 4k slices too */
769         if (IS_ENABLED(CONFIG_PPC_64K_PAGES) && psize == MMU_PAGE_64K) {
770                 const struct slice_mask *compat_maskp;
771                 struct slice_mask available;
772 
773                 compat_maskp = slice_mask_for_size(&mm->context, MMU_PAGE_4K);
774                 slice_or_mask(&available, maskp, compat_maskp);
775                 return !slice_check_range_fits(mm, &available, addr, len);
776         }
777 
778         return !slice_check_range_fits(mm, maskp, addr, len);
779 }
780 
781 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
782 {
783         /* With radix we don't use slice, so derive it from vma*/
784         if (radix_enabled())
785                 return vma_kernel_pagesize(vma);
786 
787         return 1UL << mmu_psize_to_shift(get_slice_psize(vma->vm_mm, vma->vm_start));
788 }
789 
790 static int file_to_psize(struct file *file)
791 {
792         struct hstate *hstate = hstate_file(file);
793         return shift_to_mmu_psize(huge_page_shift(hstate));
794 }
795 
796 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
797                                         unsigned long len, unsigned long pgoff,
798                                         unsigned long flags)
799 {
800         if (radix_enabled())
801                 return generic_hugetlb_get_unmapped_area(file, addr, len, pgoff, flags);
802 
803         return slice_get_unmapped_area(addr, len, flags, file_to_psize(file), 1);
804 }
805 #endif
806 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php