1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * address space "slices" (meta-segments) support 4 * 5 * Copyright (C) 2007 Benjamin Herrenschmidt, IBM Corporation. 6 * 7 * Based on hugetlb implementation 8 * 9 * Copyright (C) 2003 David Gibson, IBM Corporation. 10 */ 11 12 #undef DEBUG 13 14 #include <linux/kernel.h> 15 #include <linux/mm.h> 16 #include <linux/pagemap.h> 17 #include <linux/err.h> 18 #include <linux/spinlock.h> 19 #include <linux/export.h> 20 #include <linux/hugetlb.h> 21 #include <linux/sched/mm.h> 22 #include <linux/security.h> 23 #include <asm/mman.h> 24 #include <asm/mmu.h> 25 #include <asm/copro.h> 26 #include <asm/hugetlb.h> 27 #include <asm/mmu_context.h> 28 29 static DEFINE_SPINLOCK(slice_convert_lock); 30 31 #ifdef DEBUG 32 int _slice_debug = 1; 33 34 static void slice_print_mask(const char *label, const struct slice_mask *mask) 35 { 36 if (!_slice_debug) 37 return; 38 pr_devel("%s low_slice: %*pbl\n", label, 39 (int)SLICE_NUM_LOW, &mask->low_slices); 40 pr_devel("%s high_slice: %*pbl\n", label, 41 (int)SLICE_NUM_HIGH, mask->high_slices); 42 } 43 44 #define slice_dbg(fmt...) do { if (_slice_debug) pr_devel(fmt); } while (0) 45 46 #else 47 48 static void slice_print_mask(const char *label, const struct slice_mask *mask) {} 49 #define slice_dbg(fmt...) 50 51 #endif 52 53 static inline notrace bool slice_addr_is_low(unsigned long addr) 54 { 55 u64 tmp = (u64)addr; 56 57 return tmp < SLICE_LOW_TOP; 58 } 59 60 static void slice_range_to_mask(unsigned long start, unsigned long len, 61 struct slice_mask *ret) 62 { 63 unsigned long end = start + len - 1; 64 65 ret->low_slices = 0; 66 if (SLICE_NUM_HIGH) 67 bitmap_zero(ret->high_slices, SLICE_NUM_HIGH); 68 69 if (slice_addr_is_low(start)) { 70 unsigned long mend = min(end, 71 (unsigned long)(SLICE_LOW_TOP - 1)); 72 73 ret->low_slices = (1u << (GET_LOW_SLICE_INDEX(mend) + 1)) 74 - (1u << GET_LOW_SLICE_INDEX(start)); 75 } 76 77 if (SLICE_NUM_HIGH && !slice_addr_is_low(end)) { 78 unsigned long start_index = GET_HIGH_SLICE_INDEX(start); 79 unsigned long align_end = ALIGN(end, (1UL << SLICE_HIGH_SHIFT)); 80 unsigned long count = GET_HIGH_SLICE_INDEX(align_end) - start_index; 81 82 bitmap_set(ret->high_slices, start_index, count); 83 } 84 } 85 86 static int slice_area_is_free(struct mm_struct *mm, unsigned long addr, 87 unsigned long len) 88 { 89 struct vm_area_struct *vma; 90 91 if ((mm_ctx_slb_addr_limit(&mm->context) - len) < addr) 92 return 0; 93 vma = find_vma(mm, addr); 94 return (!vma || (addr + len) <= vm_start_gap(vma)); 95 } 96 97 static int slice_low_has_vma(struct mm_struct *mm, unsigned long slice) 98 { 99 return !slice_area_is_free(mm, slice << SLICE_LOW_SHIFT, 100 1ul << SLICE_LOW_SHIFT); 101 } 102 103 static int slice_high_has_vma(struct mm_struct *mm, unsigned long slice) 104 { 105 unsigned long start = slice << SLICE_HIGH_SHIFT; 106 unsigned long end = start + (1ul << SLICE_HIGH_SHIFT); 107 108 /* Hack, so that each addresses is controlled by exactly one 109 * of the high or low area bitmaps, the first high area starts 110 * at 4GB, not 0 */ 111 if (start == 0) 112 start = (unsigned long)SLICE_LOW_TOP; 113 114 return !slice_area_is_free(mm, start, end - start); 115 } 116 117 static void slice_mask_for_free(struct mm_struct *mm, struct slice_mask *ret, 118 unsigned long high_limit) 119 { 120 unsigned long i; 121 122 ret->low_slices = 0; 123 if (SLICE_NUM_HIGH) 124 bitmap_zero(ret->high_slices, SLICE_NUM_HIGH); 125 126 for (i = 0; i < SLICE_NUM_LOW; i++) 127 if (!slice_low_has_vma(mm, i)) 128 ret->low_slices |= 1u << i; 129 130 if (slice_addr_is_low(high_limit - 1)) 131 return; 132 133 for (i = 0; i < GET_HIGH_SLICE_INDEX(high_limit); i++) 134 if (!slice_high_has_vma(mm, i)) 135 __set_bit(i, ret->high_slices); 136 } 137 138 static bool slice_check_range_fits(struct mm_struct *mm, 139 const struct slice_mask *available, 140 unsigned long start, unsigned long len) 141 { 142 unsigned long end = start + len - 1; 143 u64 low_slices = 0; 144 145 if (slice_addr_is_low(start)) { 146 unsigned long mend = min(end, 147 (unsigned long)(SLICE_LOW_TOP - 1)); 148 149 low_slices = (1u << (GET_LOW_SLICE_INDEX(mend) + 1)) 150 - (1u << GET_LOW_SLICE_INDEX(start)); 151 } 152 if ((low_slices & available->low_slices) != low_slices) 153 return false; 154 155 if (SLICE_NUM_HIGH && !slice_addr_is_low(end)) { 156 unsigned long start_index = GET_HIGH_SLICE_INDEX(start); 157 unsigned long align_end = ALIGN(end, (1UL << SLICE_HIGH_SHIFT)); 158 unsigned long count = GET_HIGH_SLICE_INDEX(align_end) - start_index; 159 unsigned long i; 160 161 for (i = start_index; i < start_index + count; i++) { 162 if (!test_bit(i, available->high_slices)) 163 return false; 164 } 165 } 166 167 return true; 168 } 169 170 static void slice_flush_segments(void *parm) 171 { 172 #ifdef CONFIG_PPC64 173 struct mm_struct *mm = parm; 174 unsigned long flags; 175 176 if (mm != current->active_mm) 177 return; 178 179 copy_mm_to_paca(current->active_mm); 180 181 local_irq_save(flags); 182 slb_flush_and_restore_bolted(); 183 local_irq_restore(flags); 184 #endif 185 } 186 187 static void slice_convert(struct mm_struct *mm, 188 const struct slice_mask *mask, int psize) 189 { 190 int index, mask_index; 191 /* Write the new slice psize bits */ 192 unsigned char *hpsizes, *lpsizes; 193 struct slice_mask *psize_mask, *old_mask; 194 unsigned long i, flags; 195 int old_psize; 196 197 slice_dbg("slice_convert(mm=%p, psize=%d)\n", mm, psize); 198 slice_print_mask(" mask", mask); 199 200 psize_mask = slice_mask_for_size(&mm->context, psize); 201 202 /* We need to use a spinlock here to protect against 203 * concurrent 64k -> 4k demotion ... 204 */ 205 spin_lock_irqsave(&slice_convert_lock, flags); 206 207 lpsizes = mm_ctx_low_slices(&mm->context); 208 for (i = 0; i < SLICE_NUM_LOW; i++) { 209 if (!(mask->low_slices & (1u << i))) 210 continue; 211 212 mask_index = i & 0x1; 213 index = i >> 1; 214 215 /* Update the slice_mask */ 216 old_psize = (lpsizes[index] >> (mask_index * 4)) & 0xf; 217 old_mask = slice_mask_for_size(&mm->context, old_psize); 218 old_mask->low_slices &= ~(1u << i); 219 psize_mask->low_slices |= 1u << i; 220 221 /* Update the sizes array */ 222 lpsizes[index] = (lpsizes[index] & ~(0xf << (mask_index * 4))) | 223 (((unsigned long)psize) << (mask_index * 4)); 224 } 225 226 hpsizes = mm_ctx_high_slices(&mm->context); 227 for (i = 0; i < GET_HIGH_SLICE_INDEX(mm_ctx_slb_addr_limit(&mm->context)); i++) { 228 if (!test_bit(i, mask->high_slices)) 229 continue; 230 231 mask_index = i & 0x1; 232 index = i >> 1; 233 234 /* Update the slice_mask */ 235 old_psize = (hpsizes[index] >> (mask_index * 4)) & 0xf; 236 old_mask = slice_mask_for_size(&mm->context, old_psize); 237 __clear_bit(i, old_mask->high_slices); 238 __set_bit(i, psize_mask->high_slices); 239 240 /* Update the sizes array */ 241 hpsizes[index] = (hpsizes[index] & ~(0xf << (mask_index * 4))) | 242 (((unsigned long)psize) << (mask_index * 4)); 243 } 244 245 slice_dbg(" lsps=%lx, hsps=%lx\n", 246 (unsigned long)mm_ctx_low_slices(&mm->context), 247 (unsigned long)mm_ctx_high_slices(&mm->context)); 248 249 spin_unlock_irqrestore(&slice_convert_lock, flags); 250 251 copro_flush_all_slbs(mm); 252 } 253 254 /* 255 * Compute which slice addr is part of; 256 * set *boundary_addr to the start or end boundary of that slice 257 * (depending on 'end' parameter); 258 * return boolean indicating if the slice is marked as available in the 259 * 'available' slice_mark. 260 */ 261 static bool slice_scan_available(unsigned long addr, 262 const struct slice_mask *available, 263 int end, unsigned long *boundary_addr) 264 { 265 unsigned long slice; 266 if (slice_addr_is_low(addr)) { 267 slice = GET_LOW_SLICE_INDEX(addr); 268 *boundary_addr = (slice + end) << SLICE_LOW_SHIFT; 269 return !!(available->low_slices & (1u << slice)); 270 } else { 271 slice = GET_HIGH_SLICE_INDEX(addr); 272 *boundary_addr = (slice + end) ? 273 ((slice + end) << SLICE_HIGH_SHIFT) : SLICE_LOW_TOP; 274 return !!test_bit(slice, available->high_slices); 275 } 276 } 277 278 static unsigned long slice_find_area_bottomup(struct mm_struct *mm, 279 unsigned long addr, unsigned long len, 280 const struct slice_mask *available, 281 int psize, unsigned long high_limit) 282 { 283 int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT); 284 unsigned long found, next_end; 285 struct vm_unmapped_area_info info = { 286 .length = len, 287 .align_mask = PAGE_MASK & ((1ul << pshift) - 1), 288 }; 289 /* 290 * Check till the allow max value for this mmap request 291 */ 292 while (addr < high_limit) { 293 info.low_limit = addr; 294 if (!slice_scan_available(addr, available, 1, &addr)) 295 continue; 296 297 next_slice: 298 /* 299 * At this point [info.low_limit; addr) covers 300 * available slices only and ends at a slice boundary. 301 * Check if we need to reduce the range, or if we can 302 * extend it to cover the next available slice. 303 */ 304 if (addr >= high_limit) 305 addr = high_limit; 306 else if (slice_scan_available(addr, available, 1, &next_end)) { 307 addr = next_end; 308 goto next_slice; 309 } 310 info.high_limit = addr; 311 312 found = vm_unmapped_area(&info); 313 if (!(found & ~PAGE_MASK)) 314 return found; 315 } 316 317 return -ENOMEM; 318 } 319 320 static unsigned long slice_find_area_topdown(struct mm_struct *mm, 321 unsigned long addr, unsigned long len, 322 const struct slice_mask *available, 323 int psize, unsigned long high_limit) 324 { 325 int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT); 326 unsigned long found, prev; 327 struct vm_unmapped_area_info info = { 328 .flags = VM_UNMAPPED_AREA_TOPDOWN, 329 .length = len, 330 .align_mask = PAGE_MASK & ((1ul << pshift) - 1), 331 }; 332 unsigned long min_addr = max(PAGE_SIZE, mmap_min_addr); 333 334 /* 335 * If we are trying to allocate above DEFAULT_MAP_WINDOW 336 * Add the different to the mmap_base. 337 * Only for that request for which high_limit is above 338 * DEFAULT_MAP_WINDOW we should apply this. 339 */ 340 if (high_limit > DEFAULT_MAP_WINDOW) 341 addr += mm_ctx_slb_addr_limit(&mm->context) - DEFAULT_MAP_WINDOW; 342 343 while (addr > min_addr) { 344 info.high_limit = addr; 345 if (!slice_scan_available(addr - 1, available, 0, &addr)) 346 continue; 347 348 prev_slice: 349 /* 350 * At this point [addr; info.high_limit) covers 351 * available slices only and starts at a slice boundary. 352 * Check if we need to reduce the range, or if we can 353 * extend it to cover the previous available slice. 354 */ 355 if (addr < min_addr) 356 addr = min_addr; 357 else if (slice_scan_available(addr - 1, available, 0, &prev)) { 358 addr = prev; 359 goto prev_slice; 360 } 361 info.low_limit = addr; 362 363 found = vm_unmapped_area(&info); 364 if (!(found & ~PAGE_MASK)) 365 return found; 366 } 367 368 /* 369 * A failed mmap() very likely causes application failure, 370 * so fall back to the bottom-up function here. This scenario 371 * can happen with large stack limits and large mmap() 372 * allocations. 373 */ 374 return slice_find_area_bottomup(mm, TASK_UNMAPPED_BASE, len, available, psize, high_limit); 375 } 376 377 378 static unsigned long slice_find_area(struct mm_struct *mm, unsigned long len, 379 const struct slice_mask *mask, int psize, 380 int topdown, unsigned long high_limit) 381 { 382 if (topdown) 383 return slice_find_area_topdown(mm, mm->mmap_base, len, mask, psize, high_limit); 384 else 385 return slice_find_area_bottomup(mm, mm->mmap_base, len, mask, psize, high_limit); 386 } 387 388 static inline void slice_copy_mask(struct slice_mask *dst, 389 const struct slice_mask *src) 390 { 391 dst->low_slices = src->low_slices; 392 if (!SLICE_NUM_HIGH) 393 return; 394 bitmap_copy(dst->high_slices, src->high_slices, SLICE_NUM_HIGH); 395 } 396 397 static inline void slice_or_mask(struct slice_mask *dst, 398 const struct slice_mask *src1, 399 const struct slice_mask *src2) 400 { 401 dst->low_slices = src1->low_slices | src2->low_slices; 402 if (!SLICE_NUM_HIGH) 403 return; 404 bitmap_or(dst->high_slices, src1->high_slices, src2->high_slices, SLICE_NUM_HIGH); 405 } 406 407 static inline void slice_andnot_mask(struct slice_mask *dst, 408 const struct slice_mask *src1, 409 const struct slice_mask *src2) 410 { 411 dst->low_slices = src1->low_slices & ~src2->low_slices; 412 if (!SLICE_NUM_HIGH) 413 return; 414 bitmap_andnot(dst->high_slices, src1->high_slices, src2->high_slices, SLICE_NUM_HIGH); 415 } 416 417 #ifdef CONFIG_PPC_64K_PAGES 418 #define MMU_PAGE_BASE MMU_PAGE_64K 419 #else 420 #define MMU_PAGE_BASE MMU_PAGE_4K 421 #endif 422 423 unsigned long slice_get_unmapped_area(unsigned long addr, unsigned long len, 424 unsigned long flags, unsigned int psize, 425 int topdown) 426 { 427 struct slice_mask good_mask; 428 struct slice_mask potential_mask; 429 const struct slice_mask *maskp; 430 const struct slice_mask *compat_maskp = NULL; 431 int fixed = (flags & MAP_FIXED); 432 int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT); 433 unsigned long page_size = 1UL << pshift; 434 struct mm_struct *mm = current->mm; 435 unsigned long newaddr; 436 unsigned long high_limit; 437 438 high_limit = DEFAULT_MAP_WINDOW; 439 if (addr >= high_limit || (fixed && (addr + len > high_limit))) 440 high_limit = TASK_SIZE; 441 442 if (len > high_limit) 443 return -ENOMEM; 444 if (len & (page_size - 1)) 445 return -EINVAL; 446 if (fixed) { 447 if (addr & (page_size - 1)) 448 return -EINVAL; 449 if (addr > high_limit - len) 450 return -ENOMEM; 451 } 452 453 if (high_limit > mm_ctx_slb_addr_limit(&mm->context)) { 454 /* 455 * Increasing the slb_addr_limit does not require 456 * slice mask cache to be recalculated because it should 457 * be already initialised beyond the old address limit. 458 */ 459 mm_ctx_set_slb_addr_limit(&mm->context, high_limit); 460 461 on_each_cpu(slice_flush_segments, mm, 1); 462 } 463 464 /* Sanity checks */ 465 BUG_ON(mm->task_size == 0); 466 BUG_ON(mm_ctx_slb_addr_limit(&mm->context) == 0); 467 VM_BUG_ON(radix_enabled()); 468 469 slice_dbg("slice_get_unmapped_area(mm=%p, psize=%d...\n", mm, psize); 470 slice_dbg(" addr=%lx, len=%lx, flags=%lx, topdown=%d\n", 471 addr, len, flags, topdown); 472 473 /* If hint, make sure it matches our alignment restrictions */ 474 if (!fixed && addr) { 475 addr = ALIGN(addr, page_size); 476 slice_dbg(" aligned addr=%lx\n", addr); 477 /* Ignore hint if it's too large or overlaps a VMA */ 478 if (addr > high_limit - len || addr < mmap_min_addr || 479 !slice_area_is_free(mm, addr, len)) 480 addr = 0; 481 } 482 483 /* First make up a "good" mask of slices that have the right size 484 * already 485 */ 486 maskp = slice_mask_for_size(&mm->context, psize); 487 488 /* 489 * Here "good" means slices that are already the right page size, 490 * "compat" means slices that have a compatible page size (i.e. 491 * 4k in a 64k pagesize kernel), and "free" means slices without 492 * any VMAs. 493 * 494 * If MAP_FIXED: 495 * check if fits in good | compat => OK 496 * check if fits in good | compat | free => convert free 497 * else bad 498 * If have hint: 499 * check if hint fits in good => OK 500 * check if hint fits in good | free => convert free 501 * Otherwise: 502 * search in good, found => OK 503 * search in good | free, found => convert free 504 * search in good | compat | free, found => convert free. 505 */ 506 507 /* 508 * If we support combo pages, we can allow 64k pages in 4k slices 509 * The mask copies could be avoided in most cases here if we had 510 * a pointer to good mask for the next code to use. 511 */ 512 if (IS_ENABLED(CONFIG_PPC_64K_PAGES) && psize == MMU_PAGE_64K) { 513 compat_maskp = slice_mask_for_size(&mm->context, MMU_PAGE_4K); 514 if (fixed) 515 slice_or_mask(&good_mask, maskp, compat_maskp); 516 else 517 slice_copy_mask(&good_mask, maskp); 518 } else { 519 slice_copy_mask(&good_mask, maskp); 520 } 521 522 slice_print_mask(" good_mask", &good_mask); 523 if (compat_maskp) 524 slice_print_mask(" compat_mask", compat_maskp); 525 526 /* First check hint if it's valid or if we have MAP_FIXED */ 527 if (addr != 0 || fixed) { 528 /* Check if we fit in the good mask. If we do, we just return, 529 * nothing else to do 530 */ 531 if (slice_check_range_fits(mm, &good_mask, addr, len)) { 532 slice_dbg(" fits good !\n"); 533 newaddr = addr; 534 goto return_addr; 535 } 536 } else { 537 /* Now let's see if we can find something in the existing 538 * slices for that size 539 */ 540 newaddr = slice_find_area(mm, len, &good_mask, 541 psize, topdown, high_limit); 542 if (newaddr != -ENOMEM) { 543 /* Found within the good mask, we don't have to setup, 544 * we thus return directly 545 */ 546 slice_dbg(" found area at 0x%lx\n", newaddr); 547 goto return_addr; 548 } 549 } 550 /* 551 * We don't fit in the good mask, check what other slices are 552 * empty and thus can be converted 553 */ 554 slice_mask_for_free(mm, &potential_mask, high_limit); 555 slice_or_mask(&potential_mask, &potential_mask, &good_mask); 556 slice_print_mask(" potential", &potential_mask); 557 558 if (addr != 0 || fixed) { 559 if (slice_check_range_fits(mm, &potential_mask, addr, len)) { 560 slice_dbg(" fits potential !\n"); 561 newaddr = addr; 562 goto convert; 563 } 564 } 565 566 /* If we have MAP_FIXED and failed the above steps, then error out */ 567 if (fixed) 568 return -EBUSY; 569 570 slice_dbg(" search...\n"); 571 572 /* If we had a hint that didn't work out, see if we can fit 573 * anywhere in the good area. 574 */ 575 if (addr) { 576 newaddr = slice_find_area(mm, len, &good_mask, 577 psize, topdown, high_limit); 578 if (newaddr != -ENOMEM) { 579 slice_dbg(" found area at 0x%lx\n", newaddr); 580 goto return_addr; 581 } 582 } 583 584 /* Now let's see if we can find something in the existing slices 585 * for that size plus free slices 586 */ 587 newaddr = slice_find_area(mm, len, &potential_mask, 588 psize, topdown, high_limit); 589 590 if (IS_ENABLED(CONFIG_PPC_64K_PAGES) && newaddr == -ENOMEM && 591 psize == MMU_PAGE_64K) { 592 /* retry the search with 4k-page slices included */ 593 slice_or_mask(&potential_mask, &potential_mask, compat_maskp); 594 newaddr = slice_find_area(mm, len, &potential_mask, 595 psize, topdown, high_limit); 596 } 597 598 if (newaddr == -ENOMEM) 599 return -ENOMEM; 600 601 slice_range_to_mask(newaddr, len, &potential_mask); 602 slice_dbg(" found potential area at 0x%lx\n", newaddr); 603 slice_print_mask(" mask", &potential_mask); 604 605 convert: 606 /* 607 * Try to allocate the context before we do slice convert 608 * so that we handle the context allocation failure gracefully. 609 */ 610 if (need_extra_context(mm, newaddr)) { 611 if (alloc_extended_context(mm, newaddr) < 0) 612 return -ENOMEM; 613 } 614 615 slice_andnot_mask(&potential_mask, &potential_mask, &good_mask); 616 if (compat_maskp && !fixed) 617 slice_andnot_mask(&potential_mask, &potential_mask, compat_maskp); 618 if (potential_mask.low_slices || 619 (SLICE_NUM_HIGH && 620 !bitmap_empty(potential_mask.high_slices, SLICE_NUM_HIGH))) { 621 slice_convert(mm, &potential_mask, psize); 622 if (psize > MMU_PAGE_BASE) 623 on_each_cpu(slice_flush_segments, mm, 1); 624 } 625 return newaddr; 626 627 return_addr: 628 if (need_extra_context(mm, newaddr)) { 629 if (alloc_extended_context(mm, newaddr) < 0) 630 return -ENOMEM; 631 } 632 return newaddr; 633 } 634 EXPORT_SYMBOL_GPL(slice_get_unmapped_area); 635 636 unsigned long arch_get_unmapped_area(struct file *filp, 637 unsigned long addr, 638 unsigned long len, 639 unsigned long pgoff, 640 unsigned long flags) 641 { 642 if (radix_enabled()) 643 return generic_get_unmapped_area(filp, addr, len, pgoff, flags); 644 645 return slice_get_unmapped_area(addr, len, flags, 646 mm_ctx_user_psize(¤t->mm->context), 0); 647 } 648 649 unsigned long arch_get_unmapped_area_topdown(struct file *filp, 650 const unsigned long addr0, 651 const unsigned long len, 652 const unsigned long pgoff, 653 const unsigned long flags) 654 { 655 if (radix_enabled()) 656 return generic_get_unmapped_area_topdown(filp, addr0, len, pgoff, flags); 657 658 return slice_get_unmapped_area(addr0, len, flags, 659 mm_ctx_user_psize(¤t->mm->context), 1); 660 } 661 662 unsigned int notrace get_slice_psize(struct mm_struct *mm, unsigned long addr) 663 { 664 unsigned char *psizes; 665 int index, mask_index; 666 667 VM_BUG_ON(radix_enabled()); 668 669 if (slice_addr_is_low(addr)) { 670 psizes = mm_ctx_low_slices(&mm->context); 671 index = GET_LOW_SLICE_INDEX(addr); 672 } else { 673 psizes = mm_ctx_high_slices(&mm->context); 674 index = GET_HIGH_SLICE_INDEX(addr); 675 } 676 mask_index = index & 0x1; 677 return (psizes[index >> 1] >> (mask_index * 4)) & 0xf; 678 } 679 EXPORT_SYMBOL_GPL(get_slice_psize); 680 681 void slice_init_new_context_exec(struct mm_struct *mm) 682 { 683 unsigned char *hpsizes, *lpsizes; 684 struct slice_mask *mask; 685 unsigned int psize = mmu_virtual_psize; 686 687 slice_dbg("slice_init_new_context_exec(mm=%p)\n", mm); 688 689 /* 690 * In the case of exec, use the default limit. In the 691 * case of fork it is just inherited from the mm being 692 * duplicated. 693 */ 694 mm_ctx_set_slb_addr_limit(&mm->context, SLB_ADDR_LIMIT_DEFAULT); 695 mm_ctx_set_user_psize(&mm->context, psize); 696 697 /* 698 * Set all slice psizes to the default. 699 */ 700 lpsizes = mm_ctx_low_slices(&mm->context); 701 memset(lpsizes, (psize << 4) | psize, SLICE_NUM_LOW >> 1); 702 703 hpsizes = mm_ctx_high_slices(&mm->context); 704 memset(hpsizes, (psize << 4) | psize, SLICE_NUM_HIGH >> 1); 705 706 /* 707 * Slice mask cache starts zeroed, fill the default size cache. 708 */ 709 mask = slice_mask_for_size(&mm->context, psize); 710 mask->low_slices = ~0UL; 711 if (SLICE_NUM_HIGH) 712 bitmap_fill(mask->high_slices, SLICE_NUM_HIGH); 713 } 714 715 void slice_setup_new_exec(void) 716 { 717 struct mm_struct *mm = current->mm; 718 719 slice_dbg("slice_setup_new_exec(mm=%p)\n", mm); 720 721 if (!is_32bit_task()) 722 return; 723 724 mm_ctx_set_slb_addr_limit(&mm->context, DEFAULT_MAP_WINDOW); 725 } 726 727 void slice_set_range_psize(struct mm_struct *mm, unsigned long start, 728 unsigned long len, unsigned int psize) 729 { 730 struct slice_mask mask; 731 732 VM_BUG_ON(radix_enabled()); 733 734 slice_range_to_mask(start, len, &mask); 735 slice_convert(mm, &mask, psize); 736 } 737 738 #ifdef CONFIG_HUGETLB_PAGE 739 /* 740 * is_hugepage_only_range() is used by generic code to verify whether 741 * a normal mmap mapping (non hugetlbfs) is valid on a given area. 742 * 743 * until the generic code provides a more generic hook and/or starts 744 * calling arch get_unmapped_area for MAP_FIXED (which our implementation 745 * here knows how to deal with), we hijack it to keep standard mappings 746 * away from us. 747 * 748 * because of that generic code limitation, MAP_FIXED mapping cannot 749 * "convert" back a slice with no VMAs to the standard page size, only 750 * get_unmapped_area() can. It would be possible to fix it here but I 751 * prefer working on fixing the generic code instead. 752 * 753 * WARNING: This will not work if hugetlbfs isn't enabled since the 754 * generic code will redefine that function as 0 in that. This is ok 755 * for now as we only use slices with hugetlbfs enabled. This should 756 * be fixed as the generic code gets fixed. 757 */ 758 int slice_is_hugepage_only_range(struct mm_struct *mm, unsigned long addr, 759 unsigned long len) 760 { 761 const struct slice_mask *maskp; 762 unsigned int psize = mm_ctx_user_psize(&mm->context); 763 764 VM_BUG_ON(radix_enabled()); 765 766 maskp = slice_mask_for_size(&mm->context, psize); 767 768 /* We need to account for 4k slices too */ 769 if (IS_ENABLED(CONFIG_PPC_64K_PAGES) && psize == MMU_PAGE_64K) { 770 const struct slice_mask *compat_maskp; 771 struct slice_mask available; 772 773 compat_maskp = slice_mask_for_size(&mm->context, MMU_PAGE_4K); 774 slice_or_mask(&available, maskp, compat_maskp); 775 return !slice_check_range_fits(mm, &available, addr, len); 776 } 777 778 return !slice_check_range_fits(mm, maskp, addr, len); 779 } 780 781 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 782 { 783 /* With radix we don't use slice, so derive it from vma*/ 784 if (radix_enabled()) 785 return vma_kernel_pagesize(vma); 786 787 return 1UL << mmu_psize_to_shift(get_slice_psize(vma->vm_mm, vma->vm_start)); 788 } 789 790 static int file_to_psize(struct file *file) 791 { 792 struct hstate *hstate = hstate_file(file); 793 return shift_to_mmu_psize(huge_page_shift(hstate)); 794 } 795 796 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 797 unsigned long len, unsigned long pgoff, 798 unsigned long flags) 799 { 800 if (radix_enabled()) 801 return generic_hugetlb_get_unmapped_area(file, addr, len, pgoff, flags); 802 803 return slice_get_unmapped_area(addr, len, flags, file_to_psize(file), 1); 804 } 805 #endif 806
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.