~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/powerpc/perf/core-book3s.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-or-later
  2 /*
  3  * Performance event support - powerpc architecture code
  4  *
  5  * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
  6  */
  7 #include <linux/kernel.h>
  8 #include <linux/sched.h>
  9 #include <linux/sched/clock.h>
 10 #include <linux/perf_event.h>
 11 #include <linux/percpu.h>
 12 #include <linux/hardirq.h>
 13 #include <linux/uaccess.h>
 14 #include <asm/reg.h>
 15 #include <asm/pmc.h>
 16 #include <asm/machdep.h>
 17 #include <asm/firmware.h>
 18 #include <asm/ptrace.h>
 19 #include <asm/code-patching.h>
 20 #include <asm/hw_irq.h>
 21 #include <asm/interrupt.h>
 22 
 23 #ifdef CONFIG_PPC64
 24 #include "internal.h"
 25 #endif
 26 
 27 #define BHRB_MAX_ENTRIES        32
 28 #define BHRB_TARGET             0x0000000000000002
 29 #define BHRB_PREDICTION         0x0000000000000001
 30 #define BHRB_EA                 0xFFFFFFFFFFFFFFFCUL
 31 
 32 struct cpu_hw_events {
 33         int n_events;
 34         int n_percpu;
 35         int disabled;
 36         int n_added;
 37         int n_limited;
 38         u8  pmcs_enabled;
 39         struct perf_event *event[MAX_HWEVENTS];
 40         u64 events[MAX_HWEVENTS];
 41         unsigned int flags[MAX_HWEVENTS];
 42         struct mmcr_regs mmcr;
 43         struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
 44         u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS];
 45         u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
 46         unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
 47         unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
 48 
 49         unsigned int txn_flags;
 50         int n_txn_start;
 51 
 52         /* BHRB bits */
 53         u64                             bhrb_filter;    /* BHRB HW branch filter */
 54         unsigned int                    bhrb_users;
 55         void                            *bhrb_context;
 56         struct  perf_branch_stack       bhrb_stack;
 57         struct  perf_branch_entry       bhrb_entries[BHRB_MAX_ENTRIES];
 58         u64                             ic_init;
 59 
 60         /* Store the PMC values */
 61         unsigned long pmcs[MAX_HWEVENTS];
 62 };
 63 
 64 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
 65 
 66 static struct power_pmu *ppmu;
 67 
 68 /*
 69  * Normally, to ignore kernel events we set the FCS (freeze counters
 70  * in supervisor mode) bit in MMCR0, but if the kernel runs with the
 71  * hypervisor bit set in the MSR, or if we are running on a processor
 72  * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
 73  * then we need to use the FCHV bit to ignore kernel events.
 74  */
 75 static unsigned int freeze_events_kernel = MMCR0_FCS;
 76 
 77 /*
 78  * 32-bit doesn't have MMCRA but does have an MMCR2,
 79  * and a few other names are different.
 80  * Also 32-bit doesn't have MMCR3, SIER2 and SIER3.
 81  * Define them as zero knowing that any code path accessing
 82  * these registers (via mtspr/mfspr) are done under ppmu flag
 83  * check for PPMU_ARCH_31 and we will not enter that code path
 84  * for 32-bit.
 85  */
 86 #ifdef CONFIG_PPC32
 87 
 88 #define MMCR0_FCHV              0
 89 #define MMCR0_PMCjCE            MMCR0_PMCnCE
 90 #define MMCR0_FC56              0
 91 #define MMCR0_PMAO              0
 92 #define MMCR0_EBE               0
 93 #define MMCR0_BHRBA             0
 94 #define MMCR0_PMCC              0
 95 #define MMCR0_PMCC_U6           0
 96 
 97 #define SPRN_MMCRA              SPRN_MMCR2
 98 #define SPRN_MMCR3              0
 99 #define SPRN_SIER2              0
100 #define SPRN_SIER3              0
101 #define MMCRA_SAMPLE_ENABLE     0
102 #define MMCRA_BHRB_DISABLE     0
103 #define MMCR0_PMCCEXT           0
104 
105 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
106 {
107         return 0;
108 }
109 static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp) { }
110 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
111 {
112         return 0;
113 }
114 static inline void perf_read_regs(struct pt_regs *regs)
115 {
116         regs->result = 0;
117 }
118 
119 static inline int siar_valid(struct pt_regs *regs)
120 {
121         return 1;
122 }
123 
124 static bool is_ebb_event(struct perf_event *event) { return false; }
125 static int ebb_event_check(struct perf_event *event) { return 0; }
126 static void ebb_event_add(struct perf_event *event) { }
127 static void ebb_switch_out(unsigned long mmcr0) { }
128 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
129 {
130         return cpuhw->mmcr.mmcr0;
131 }
132 
133 static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
134 static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
135 static void power_pmu_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in) {}
136 static inline void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw) {}
137 static void pmao_restore_workaround(bool ebb) { }
138 #endif /* CONFIG_PPC32 */
139 
140 bool is_sier_available(void)
141 {
142         if (!ppmu)
143                 return false;
144 
145         if (ppmu->flags & PPMU_HAS_SIER)
146                 return true;
147 
148         return false;
149 }
150 
151 /*
152  * Return PMC value corresponding to the
153  * index passed.
154  */
155 unsigned long get_pmcs_ext_regs(int idx)
156 {
157         struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
158 
159         return cpuhw->pmcs[idx];
160 }
161 
162 static bool regs_use_siar(struct pt_regs *regs)
163 {
164         /*
165          * When we take a performance monitor exception the regs are setup
166          * using perf_read_regs() which overloads some fields, in particular
167          * regs->result to tell us whether to use SIAR.
168          *
169          * However if the regs are from another exception, eg. a syscall, then
170          * they have not been setup using perf_read_regs() and so regs->result
171          * is something random.
172          */
173         return ((TRAP(regs) == INTERRUPT_PERFMON) && regs->result);
174 }
175 
176 /*
177  * Things that are specific to 64-bit implementations.
178  */
179 #ifdef CONFIG_PPC64
180 
181 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
182 {
183         unsigned long mmcra = regs->dsisr;
184 
185         if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
186                 unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
187                 if (slot > 1)
188                         return 4 * (slot - 1);
189         }
190 
191         return 0;
192 }
193 
194 /*
195  * The user wants a data address recorded.
196  * If we're not doing instruction sampling, give them the SDAR
197  * (sampled data address).  If we are doing instruction sampling, then
198  * only give them the SDAR if it corresponds to the instruction
199  * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
200  * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
201  */
202 static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp)
203 {
204         unsigned long mmcra = regs->dsisr;
205         bool sdar_valid;
206 
207         if (ppmu->flags & PPMU_HAS_SIER)
208                 sdar_valid = regs->dar & SIER_SDAR_VALID;
209         else {
210                 unsigned long sdsync;
211 
212                 if (ppmu->flags & PPMU_SIAR_VALID)
213                         sdsync = POWER7P_MMCRA_SDAR_VALID;
214                 else if (ppmu->flags & PPMU_ALT_SIPR)
215                         sdsync = POWER6_MMCRA_SDSYNC;
216                 else if (ppmu->flags & PPMU_NO_SIAR)
217                         sdsync = MMCRA_SAMPLE_ENABLE;
218                 else
219                         sdsync = MMCRA_SDSYNC;
220 
221                 sdar_valid = mmcra & sdsync;
222         }
223 
224         if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
225                 *addrp = mfspr(SPRN_SDAR);
226 
227         if (is_kernel_addr(mfspr(SPRN_SDAR)) && event->attr.exclude_kernel)
228                 *addrp = 0;
229 }
230 
231 static bool regs_sihv(struct pt_regs *regs)
232 {
233         unsigned long sihv = MMCRA_SIHV;
234 
235         if (ppmu->flags & PPMU_HAS_SIER)
236                 return !!(regs->dar & SIER_SIHV);
237 
238         if (ppmu->flags & PPMU_ALT_SIPR)
239                 sihv = POWER6_MMCRA_SIHV;
240 
241         return !!(regs->dsisr & sihv);
242 }
243 
244 static bool regs_sipr(struct pt_regs *regs)
245 {
246         unsigned long sipr = MMCRA_SIPR;
247 
248         if (ppmu->flags & PPMU_HAS_SIER)
249                 return !!(regs->dar & SIER_SIPR);
250 
251         if (ppmu->flags & PPMU_ALT_SIPR)
252                 sipr = POWER6_MMCRA_SIPR;
253 
254         return !!(regs->dsisr & sipr);
255 }
256 
257 static inline u32 perf_flags_from_msr(struct pt_regs *regs)
258 {
259         if (user_mode(regs))
260                 return PERF_RECORD_MISC_USER;
261         if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
262                 return PERF_RECORD_MISC_HYPERVISOR;
263         return PERF_RECORD_MISC_KERNEL;
264 }
265 
266 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
267 {
268         bool use_siar = regs_use_siar(regs);
269         unsigned long siar;
270         unsigned long addr;
271 
272         if (!use_siar)
273                 return perf_flags_from_msr(regs);
274 
275         /*
276          * If we don't have flags in MMCRA, rather than using
277          * the MSR, we intuit the flags from the address in
278          * SIAR which should give slightly more reliable
279          * results
280          */
281         if (ppmu->flags & PPMU_NO_SIPR) {
282                 siar = mfspr(SPRN_SIAR);
283                 if (is_kernel_addr(siar))
284                         return PERF_RECORD_MISC_KERNEL;
285                 return PERF_RECORD_MISC_USER;
286         }
287 
288         /* PR has priority over HV, so order below is important */
289         if (regs_sipr(regs)) {
290                 if (!(ppmu->flags & PPMU_P10))
291                         return PERF_RECORD_MISC_USER;
292         } else if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
293                 return PERF_RECORD_MISC_HYPERVISOR;
294 
295         /*
296          * Check the address in SIAR to identify the
297          * privilege levels since the SIER[MSR_HV, MSR_PR]
298          * bits are not set correctly in power10 sometimes
299          */
300         if (ppmu->flags & PPMU_P10) {
301                 siar = mfspr(SPRN_SIAR);
302                 addr = siar ? siar : regs->nip;
303                 if (!is_kernel_addr(addr))
304                         return PERF_RECORD_MISC_USER;
305         }
306 
307         return PERF_RECORD_MISC_KERNEL;
308 }
309 
310 /*
311  * Overload regs->dsisr to store MMCRA so we only need to read it once
312  * on each interrupt.
313  * Overload regs->dar to store SIER if we have it.
314  * Overload regs->result to specify whether we should use the MSR (result
315  * is zero) or the SIAR (result is non zero).
316  */
317 static inline void perf_read_regs(struct pt_regs *regs)
318 {
319         unsigned long mmcra = mfspr(SPRN_MMCRA);
320         int marked = mmcra & MMCRA_SAMPLE_ENABLE;
321         int use_siar;
322 
323         regs->dsisr = mmcra;
324 
325         if (ppmu->flags & PPMU_HAS_SIER)
326                 regs->dar = mfspr(SPRN_SIER);
327 
328         /*
329          * If this isn't a PMU exception (eg a software event) the SIAR is
330          * not valid. Use pt_regs.
331          *
332          * If it is a marked event use the SIAR.
333          *
334          * If the PMU doesn't update the SIAR for non marked events use
335          * pt_regs.
336          *
337          * If regs is a kernel interrupt, always use SIAR. Some PMUs have an
338          * issue with regs_sipr not being in synch with SIAR in interrupt entry
339          * and return sequences, which can result in regs_sipr being true for
340          * kernel interrupts and SIAR, which has the effect of causing samples
341          * to pile up at mtmsrd MSR[EE] 0->1 or pending irq replay around
342          * interrupt entry/exit.
343          *
344          * If the PMU has HV/PR flags then check to see if they
345          * place the exception in userspace. If so, use pt_regs. In
346          * continuous sampling mode the SIAR and the PMU exception are
347          * not synchronised, so they may be many instructions apart.
348          * This can result in confusing backtraces. We still want
349          * hypervisor samples as well as samples in the kernel with
350          * interrupts off hence the userspace check.
351          */
352         if (TRAP(regs) != INTERRUPT_PERFMON)
353                 use_siar = 0;
354         else if ((ppmu->flags & PPMU_NO_SIAR))
355                 use_siar = 0;
356         else if (marked)
357                 use_siar = 1;
358         else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
359                 use_siar = 0;
360         else if (!user_mode(regs))
361                 use_siar = 1;
362         else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
363                 use_siar = 0;
364         else
365                 use_siar = 1;
366 
367         regs->result = use_siar;
368 }
369 
370 /*
371  * On processors like P7+ that have the SIAR-Valid bit, marked instructions
372  * must be sampled only if the SIAR-valid bit is set.
373  *
374  * For unmarked instructions and for processors that don't have the SIAR-Valid
375  * bit, assume that SIAR is valid.
376  */
377 static inline int siar_valid(struct pt_regs *regs)
378 {
379         unsigned long mmcra = regs->dsisr;
380         int marked = mmcra & MMCRA_SAMPLE_ENABLE;
381 
382         if (marked) {
383                 /*
384                  * SIER[SIAR_VALID] is not set for some
385                  * marked events on power10 DD1, so drop
386                  * the check for SIER[SIAR_VALID] and return true.
387                  */
388                 if (ppmu->flags & PPMU_P10_DD1)
389                         return 0x1;
390                 else if (ppmu->flags & PPMU_HAS_SIER)
391                         return regs->dar & SIER_SIAR_VALID;
392 
393                 if (ppmu->flags & PPMU_SIAR_VALID)
394                         return mmcra & POWER7P_MMCRA_SIAR_VALID;
395         }
396 
397         return 1;
398 }
399 
400 
401 /* Reset all possible BHRB entries */
402 static void power_pmu_bhrb_reset(void)
403 {
404         asm volatile(PPC_CLRBHRB);
405 }
406 
407 static void power_pmu_bhrb_enable(struct perf_event *event)
408 {
409         struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
410 
411         if (!ppmu->bhrb_nr)
412                 return;
413 
414         /* Clear BHRB if we changed task context to avoid data leaks */
415         if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
416                 power_pmu_bhrb_reset();
417                 cpuhw->bhrb_context = event->ctx;
418         }
419         cpuhw->bhrb_users++;
420         perf_sched_cb_inc(event->pmu);
421 }
422 
423 static void power_pmu_bhrb_disable(struct perf_event *event)
424 {
425         struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
426 
427         if (!ppmu->bhrb_nr)
428                 return;
429 
430         WARN_ON_ONCE(!cpuhw->bhrb_users);
431         cpuhw->bhrb_users--;
432         perf_sched_cb_dec(event->pmu);
433 
434         if (!cpuhw->disabled && !cpuhw->bhrb_users) {
435                 /* BHRB cannot be turned off when other
436                  * events are active on the PMU.
437                  */
438 
439                 /* avoid stale pointer */
440                 cpuhw->bhrb_context = NULL;
441         }
442 }
443 
444 /* Called from ctxsw to prevent one process's branch entries to
445  * mingle with the other process's entries during context switch.
446  */
447 static void power_pmu_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in)
448 {
449         if (!ppmu->bhrb_nr)
450                 return;
451 
452         if (sched_in)
453                 power_pmu_bhrb_reset();
454 }
455 /* Calculate the to address for a branch */
456 static __u64 power_pmu_bhrb_to(u64 addr)
457 {
458         unsigned int instr;
459         __u64 target;
460 
461         if (is_kernel_addr(addr)) {
462                 if (copy_from_kernel_nofault(&instr, (void *)addr,
463                                 sizeof(instr)))
464                         return 0;
465 
466                 return branch_target(&instr);
467         }
468 
469         /* Userspace: need copy instruction here then translate it */
470         if (copy_from_user_nofault(&instr, (unsigned int __user *)addr,
471                         sizeof(instr)))
472                 return 0;
473 
474         target = branch_target(&instr);
475         if ((!target) || (instr & BRANCH_ABSOLUTE))
476                 return target;
477 
478         /* Translate relative branch target from kernel to user address */
479         return target - (unsigned long)&instr + addr;
480 }
481 
482 /* Processing BHRB entries */
483 static void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw)
484 {
485         u64 val;
486         u64 addr;
487         int r_index, u_index, pred;
488 
489         r_index = 0;
490         u_index = 0;
491         while (r_index < ppmu->bhrb_nr) {
492                 /* Assembly read function */
493                 val = read_bhrb(r_index++);
494                 if (!val)
495                         /* Terminal marker: End of valid BHRB entries */
496                         break;
497                 else {
498                         addr = val & BHRB_EA;
499                         pred = val & BHRB_PREDICTION;
500 
501                         if (!addr)
502                                 /* invalid entry */
503                                 continue;
504 
505                         /*
506                          * BHRB rolling buffer could very much contain the kernel
507                          * addresses at this point. Check the privileges before
508                          * exporting it to userspace (avoid exposure of regions
509                          * where we could have speculative execution)
510                          * Incase of ISA v3.1, BHRB will capture only user-space
511                          * addresses, hence include a check before filtering code
512                          */
513                         if (!(ppmu->flags & PPMU_ARCH_31) &&
514                             is_kernel_addr(addr) && event->attr.exclude_kernel)
515                                 continue;
516 
517                         /* Branches are read most recent first (ie. mfbhrb 0 is
518                          * the most recent branch).
519                          * There are two types of valid entries:
520                          * 1) a target entry which is the to address of a
521                          *    computed goto like a blr,bctr,btar.  The next
522                          *    entry read from the bhrb will be branch
523                          *    corresponding to this target (ie. the actual
524                          *    blr/bctr/btar instruction).
525                          * 2) a from address which is an actual branch.  If a
526                          *    target entry proceeds this, then this is the
527                          *    matching branch for that target.  If this is not
528                          *    following a target entry, then this is a branch
529                          *    where the target is given as an immediate field
530                          *    in the instruction (ie. an i or b form branch).
531                          *    In this case we need to read the instruction from
532                          *    memory to determine the target/to address.
533                          */
534 
535                         if (val & BHRB_TARGET) {
536                                 /* Target branches use two entries
537                                  * (ie. computed gotos/XL form)
538                                  */
539                                 cpuhw->bhrb_entries[u_index].to = addr;
540                                 cpuhw->bhrb_entries[u_index].mispred = pred;
541                                 cpuhw->bhrb_entries[u_index].predicted = ~pred;
542 
543                                 /* Get from address in next entry */
544                                 val = read_bhrb(r_index++);
545                                 addr = val & BHRB_EA;
546                                 if (val & BHRB_TARGET) {
547                                         /* Shouldn't have two targets in a
548                                            row.. Reset index and try again */
549                                         r_index--;
550                                         addr = 0;
551                                 }
552                                 cpuhw->bhrb_entries[u_index].from = addr;
553                         } else {
554                                 /* Branches to immediate field 
555                                    (ie I or B form) */
556                                 cpuhw->bhrb_entries[u_index].from = addr;
557                                 cpuhw->bhrb_entries[u_index].to =
558                                         power_pmu_bhrb_to(addr);
559                                 cpuhw->bhrb_entries[u_index].mispred = pred;
560                                 cpuhw->bhrb_entries[u_index].predicted = ~pred;
561                         }
562                         u_index++;
563 
564                 }
565         }
566         cpuhw->bhrb_stack.nr = u_index;
567         cpuhw->bhrb_stack.hw_idx = -1ULL;
568         return;
569 }
570 
571 static bool is_ebb_event(struct perf_event *event)
572 {
573         /*
574          * This could be a per-PMU callback, but we'd rather avoid the cost. We
575          * check that the PMU supports EBB, meaning those that don't can still
576          * use bit 63 of the event code for something else if they wish.
577          */
578         return (ppmu->flags & PPMU_ARCH_207S) &&
579                ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
580 }
581 
582 static int ebb_event_check(struct perf_event *event)
583 {
584         struct perf_event *leader = event->group_leader;
585 
586         /* Event and group leader must agree on EBB */
587         if (is_ebb_event(leader) != is_ebb_event(event))
588                 return -EINVAL;
589 
590         if (is_ebb_event(event)) {
591                 if (!(event->attach_state & PERF_ATTACH_TASK))
592                         return -EINVAL;
593 
594                 if (!leader->attr.pinned || !leader->attr.exclusive)
595                         return -EINVAL;
596 
597                 if (event->attr.freq ||
598                     event->attr.inherit ||
599                     event->attr.sample_type ||
600                     event->attr.sample_period ||
601                     event->attr.enable_on_exec)
602                         return -EINVAL;
603         }
604 
605         return 0;
606 }
607 
608 static void ebb_event_add(struct perf_event *event)
609 {
610         if (!is_ebb_event(event) || current->thread.used_ebb)
611                 return;
612 
613         /*
614          * IFF this is the first time we've added an EBB event, set
615          * PMXE in the user MMCR0 so we can detect when it's cleared by
616          * userspace. We need this so that we can context switch while
617          * userspace is in the EBB handler (where PMXE is 0).
618          */
619         current->thread.used_ebb = 1;
620         current->thread.mmcr0 |= MMCR0_PMXE;
621 }
622 
623 static void ebb_switch_out(unsigned long mmcr0)
624 {
625         if (!(mmcr0 & MMCR0_EBE))
626                 return;
627 
628         current->thread.siar  = mfspr(SPRN_SIAR);
629         current->thread.sier  = mfspr(SPRN_SIER);
630         current->thread.sdar  = mfspr(SPRN_SDAR);
631         current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
632         current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
633         if (ppmu->flags & PPMU_ARCH_31) {
634                 current->thread.mmcr3 = mfspr(SPRN_MMCR3);
635                 current->thread.sier2 = mfspr(SPRN_SIER2);
636                 current->thread.sier3 = mfspr(SPRN_SIER3);
637         }
638 }
639 
640 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
641 {
642         unsigned long mmcr0 = cpuhw->mmcr.mmcr0;
643 
644         if (!ebb)
645                 goto out;
646 
647         /* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
648         mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6;
649 
650         /*
651          * Add any bits from the user MMCR0, FC or PMAO. This is compatible
652          * with pmao_restore_workaround() because we may add PMAO but we never
653          * clear it here.
654          */
655         mmcr0 |= current->thread.mmcr0;
656 
657         /*
658          * Be careful not to set PMXE if userspace had it cleared. This is also
659          * compatible with pmao_restore_workaround() because it has already
660          * cleared PMXE and we leave PMAO alone.
661          */
662         if (!(current->thread.mmcr0 & MMCR0_PMXE))
663                 mmcr0 &= ~MMCR0_PMXE;
664 
665         mtspr(SPRN_SIAR, current->thread.siar);
666         mtspr(SPRN_SIER, current->thread.sier);
667         mtspr(SPRN_SDAR, current->thread.sdar);
668 
669         /*
670          * Merge the kernel & user values of MMCR2. The semantics we implement
671          * are that the user MMCR2 can set bits, ie. cause counters to freeze,
672          * but not clear bits. If a task wants to be able to clear bits, ie.
673          * unfreeze counters, it should not set exclude_xxx in its events and
674          * instead manage the MMCR2 entirely by itself.
675          */
676         mtspr(SPRN_MMCR2, cpuhw->mmcr.mmcr2 | current->thread.mmcr2);
677 
678         if (ppmu->flags & PPMU_ARCH_31) {
679                 mtspr(SPRN_MMCR3, current->thread.mmcr3);
680                 mtspr(SPRN_SIER2, current->thread.sier2);
681                 mtspr(SPRN_SIER3, current->thread.sier3);
682         }
683 out:
684         return mmcr0;
685 }
686 
687 static void pmao_restore_workaround(bool ebb)
688 {
689         unsigned pmcs[6];
690 
691         if (!cpu_has_feature(CPU_FTR_PMAO_BUG))
692                 return;
693 
694         /*
695          * On POWER8E there is a hardware defect which affects the PMU context
696          * switch logic, ie. power_pmu_disable/enable().
697          *
698          * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
699          * by the hardware. Sometime later the actual PMU exception is
700          * delivered.
701          *
702          * If we context switch, or simply disable/enable, the PMU prior to the
703          * exception arriving, the exception will be lost when we clear PMAO.
704          *
705          * When we reenable the PMU, we will write the saved MMCR0 with PMAO
706          * set, and this _should_ generate an exception. However because of the
707          * defect no exception is generated when we write PMAO, and we get
708          * stuck with no counters counting but no exception delivered.
709          *
710          * The workaround is to detect this case and tweak the hardware to
711          * create another pending PMU exception.
712          *
713          * We do that by setting up PMC6 (cycles) for an imminent overflow and
714          * enabling the PMU. That causes a new exception to be generated in the
715          * chip, but we don't take it yet because we have interrupts hard
716          * disabled. We then write back the PMU state as we want it to be seen
717          * by the exception handler. When we reenable interrupts the exception
718          * handler will be called and see the correct state.
719          *
720          * The logic is the same for EBB, except that the exception is gated by
721          * us having interrupts hard disabled as well as the fact that we are
722          * not in userspace. The exception is finally delivered when we return
723          * to userspace.
724          */
725 
726         /* Only if PMAO is set and PMAO_SYNC is clear */
727         if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO)
728                 return;
729 
730         /* If we're doing EBB, only if BESCR[GE] is set */
731         if (ebb && !(current->thread.bescr & BESCR_GE))
732                 return;
733 
734         /*
735          * We are already soft-disabled in power_pmu_enable(). We need to hard
736          * disable to actually prevent the PMU exception from firing.
737          */
738         hard_irq_disable();
739 
740         /*
741          * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
742          * Using read/write_pmc() in a for loop adds 12 function calls and
743          * almost doubles our code size.
744          */
745         pmcs[0] = mfspr(SPRN_PMC1);
746         pmcs[1] = mfspr(SPRN_PMC2);
747         pmcs[2] = mfspr(SPRN_PMC3);
748         pmcs[3] = mfspr(SPRN_PMC4);
749         pmcs[4] = mfspr(SPRN_PMC5);
750         pmcs[5] = mfspr(SPRN_PMC6);
751 
752         /* Ensure all freeze bits are unset */
753         mtspr(SPRN_MMCR2, 0);
754 
755         /* Set up PMC6 to overflow in one cycle */
756         mtspr(SPRN_PMC6, 0x7FFFFFFE);
757 
758         /* Enable exceptions and unfreeze PMC6 */
759         mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO);
760 
761         /* Now we need to refreeze and restore the PMCs */
762         mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO);
763 
764         mtspr(SPRN_PMC1, pmcs[0]);
765         mtspr(SPRN_PMC2, pmcs[1]);
766         mtspr(SPRN_PMC3, pmcs[2]);
767         mtspr(SPRN_PMC4, pmcs[3]);
768         mtspr(SPRN_PMC5, pmcs[4]);
769         mtspr(SPRN_PMC6, pmcs[5]);
770 }
771 
772 /*
773  * If the perf subsystem wants performance monitor interrupts as soon as
774  * possible (e.g., to sample the instruction address and stack chain),
775  * this should return true. The IRQ masking code can then enable MSR[EE]
776  * in some places (e.g., interrupt handlers) that allows PMI interrupts
777  * through to improve accuracy of profiles, at the cost of some performance.
778  *
779  * The PMU counters can be enabled by other means (e.g., sysfs raw SPR
780  * access), but in that case there is no need for prompt PMI handling.
781  *
782  * This currently returns true if any perf counter is being used. It
783  * could possibly return false if only events are being counted rather than
784  * samples being taken, but for now this is good enough.
785  */
786 bool power_pmu_wants_prompt_pmi(void)
787 {
788         struct cpu_hw_events *cpuhw;
789 
790         /*
791          * This could simply test local_paca->pmcregs_in_use if that were not
792          * under ifdef KVM.
793          */
794         if (!ppmu)
795                 return false;
796 
797         cpuhw = this_cpu_ptr(&cpu_hw_events);
798         return cpuhw->n_events;
799 }
800 #endif /* CONFIG_PPC64 */
801 
802 static void perf_event_interrupt(struct pt_regs *regs);
803 
804 /*
805  * Read one performance monitor counter (PMC).
806  */
807 static unsigned long read_pmc(int idx)
808 {
809         unsigned long val;
810 
811         switch (idx) {
812         case 1:
813                 val = mfspr(SPRN_PMC1);
814                 break;
815         case 2:
816                 val = mfspr(SPRN_PMC2);
817                 break;
818         case 3:
819                 val = mfspr(SPRN_PMC3);
820                 break;
821         case 4:
822                 val = mfspr(SPRN_PMC4);
823                 break;
824         case 5:
825                 val = mfspr(SPRN_PMC5);
826                 break;
827         case 6:
828                 val = mfspr(SPRN_PMC6);
829                 break;
830 #ifdef CONFIG_PPC64
831         case 7:
832                 val = mfspr(SPRN_PMC7);
833                 break;
834         case 8:
835                 val = mfspr(SPRN_PMC8);
836                 break;
837 #endif /* CONFIG_PPC64 */
838         default:
839                 printk(KERN_ERR "oops trying to read PMC%d\n", idx);
840                 val = 0;
841         }
842         return val;
843 }
844 
845 /*
846  * Write one PMC.
847  */
848 static void write_pmc(int idx, unsigned long val)
849 {
850         switch (idx) {
851         case 1:
852                 mtspr(SPRN_PMC1, val);
853                 break;
854         case 2:
855                 mtspr(SPRN_PMC2, val);
856                 break;
857         case 3:
858                 mtspr(SPRN_PMC3, val);
859                 break;
860         case 4:
861                 mtspr(SPRN_PMC4, val);
862                 break;
863         case 5:
864                 mtspr(SPRN_PMC5, val);
865                 break;
866         case 6:
867                 mtspr(SPRN_PMC6, val);
868                 break;
869 #ifdef CONFIG_PPC64
870         case 7:
871                 mtspr(SPRN_PMC7, val);
872                 break;
873         case 8:
874                 mtspr(SPRN_PMC8, val);
875                 break;
876 #endif /* CONFIG_PPC64 */
877         default:
878                 printk(KERN_ERR "oops trying to write PMC%d\n", idx);
879         }
880 }
881 
882 static int any_pmc_overflown(struct cpu_hw_events *cpuhw)
883 {
884         int i, idx;
885 
886         for (i = 0; i < cpuhw->n_events; i++) {
887                 idx = cpuhw->event[i]->hw.idx;
888                 if ((idx) && ((int)read_pmc(idx) < 0))
889                         return idx;
890         }
891 
892         return 0;
893 }
894 
895 /* Called from sysrq_handle_showregs() */
896 void perf_event_print_debug(void)
897 {
898         unsigned long sdar, sier, flags;
899         u32 pmcs[MAX_HWEVENTS];
900         int i;
901 
902         if (!ppmu) {
903                 pr_info("Performance monitor hardware not registered.\n");
904                 return;
905         }
906 
907         if (!ppmu->n_counter)
908                 return;
909 
910         local_irq_save(flags);
911 
912         pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
913                  smp_processor_id(), ppmu->name, ppmu->n_counter);
914 
915         for (i = 0; i < ppmu->n_counter; i++)
916                 pmcs[i] = read_pmc(i + 1);
917 
918         for (; i < MAX_HWEVENTS; i++)
919                 pmcs[i] = 0xdeadbeef;
920 
921         pr_info("PMC1:  %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
922                  pmcs[0], pmcs[1], pmcs[2], pmcs[3]);
923 
924         if (ppmu->n_counter > 4)
925                 pr_info("PMC5:  %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
926                          pmcs[4], pmcs[5], pmcs[6], pmcs[7]);
927 
928         pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
929                 mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));
930 
931         sdar = sier = 0;
932 #ifdef CONFIG_PPC64
933         sdar = mfspr(SPRN_SDAR);
934 
935         if (ppmu->flags & PPMU_HAS_SIER)
936                 sier = mfspr(SPRN_SIER);
937 
938         if (ppmu->flags & PPMU_ARCH_207S) {
939                 pr_info("MMCR2: %016lx EBBHR: %016lx\n",
940                         mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
941                 pr_info("EBBRR: %016lx BESCR: %016lx\n",
942                         mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
943         }
944 
945         if (ppmu->flags & PPMU_ARCH_31) {
946                 pr_info("MMCR3: %016lx SIER2: %016lx SIER3: %016lx\n",
947                         mfspr(SPRN_MMCR3), mfspr(SPRN_SIER2), mfspr(SPRN_SIER3));
948         }
949 #endif
950         pr_info("SIAR:  %016lx SDAR:  %016lx SIER:  %016lx\n",
951                 mfspr(SPRN_SIAR), sdar, sier);
952 
953         local_irq_restore(flags);
954 }
955 
956 /*
957  * Check if a set of events can all go on the PMU at once.
958  * If they can't, this will look at alternative codes for the events
959  * and see if any combination of alternative codes is feasible.
960  * The feasible set is returned in event_id[].
961  */
962 static int power_check_constraints(struct cpu_hw_events *cpuhw,
963                                    u64 event_id[], unsigned int cflags[],
964                                    int n_ev, struct perf_event **event)
965 {
966         unsigned long mask, value, nv;
967         unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
968         int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
969         int i, j;
970         unsigned long addf = ppmu->add_fields;
971         unsigned long tadd = ppmu->test_adder;
972         unsigned long grp_mask = ppmu->group_constraint_mask;
973         unsigned long grp_val = ppmu->group_constraint_val;
974 
975         if (n_ev > ppmu->n_counter)
976                 return -1;
977 
978         /* First see if the events will go on as-is */
979         for (i = 0; i < n_ev; ++i) {
980                 if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
981                     && !ppmu->limited_pmc_event(event_id[i])) {
982                         ppmu->get_alternatives(event_id[i], cflags[i],
983                                                cpuhw->alternatives[i]);
984                         event_id[i] = cpuhw->alternatives[i][0];
985                 }
986                 if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
987                                          &cpuhw->avalues[i][0], event[i]->attr.config1))
988                         return -1;
989         }
990         value = mask = 0;
991         for (i = 0; i < n_ev; ++i) {
992                 nv = (value | cpuhw->avalues[i][0]) +
993                         (value & cpuhw->avalues[i][0] & addf);
994 
995                 if (((((nv + tadd) ^ value) & mask) & (~grp_mask)) != 0)
996                         break;
997 
998                 if (((((nv + tadd) ^ cpuhw->avalues[i][0]) & cpuhw->amasks[i][0])
999                         & (~grp_mask)) != 0)
1000                         break;
1001 
1002                 value = nv;
1003                 mask |= cpuhw->amasks[i][0];
1004         }
1005         if (i == n_ev) {
1006                 if ((value & mask & grp_mask) != (mask & grp_val))
1007                         return -1;
1008                 else
1009                         return 0;       /* all OK */
1010         }
1011 
1012         /* doesn't work, gather alternatives... */
1013         if (!ppmu->get_alternatives)
1014                 return -1;
1015         for (i = 0; i < n_ev; ++i) {
1016                 choice[i] = 0;
1017                 n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
1018                                                   cpuhw->alternatives[i]);
1019                 for (j = 1; j < n_alt[i]; ++j)
1020                         ppmu->get_constraint(cpuhw->alternatives[i][j],
1021                                              &cpuhw->amasks[i][j],
1022                                              &cpuhw->avalues[i][j],
1023                                              event[i]->attr.config1);
1024         }
1025 
1026         /* enumerate all possibilities and see if any will work */
1027         i = 0;
1028         j = -1;
1029         value = mask = nv = 0;
1030         while (i < n_ev) {
1031                 if (j >= 0) {
1032                         /* we're backtracking, restore context */
1033                         value = svalues[i];
1034                         mask = smasks[i];
1035                         j = choice[i];
1036                 }
1037                 /*
1038                  * See if any alternative k for event_id i,
1039                  * where k > j, will satisfy the constraints.
1040                  */
1041                 while (++j < n_alt[i]) {
1042                         nv = (value | cpuhw->avalues[i][j]) +
1043                                 (value & cpuhw->avalues[i][j] & addf);
1044                         if ((((nv + tadd) ^ value) & mask) == 0 &&
1045                             (((nv + tadd) ^ cpuhw->avalues[i][j])
1046                              & cpuhw->amasks[i][j]) == 0)
1047                                 break;
1048                 }
1049                 if (j >= n_alt[i]) {
1050                         /*
1051                          * No feasible alternative, backtrack
1052                          * to event_id i-1 and continue enumerating its
1053                          * alternatives from where we got up to.
1054                          */
1055                         if (--i < 0)
1056                                 return -1;
1057                 } else {
1058                         /*
1059                          * Found a feasible alternative for event_id i,
1060                          * remember where we got up to with this event_id,
1061                          * go on to the next event_id, and start with
1062                          * the first alternative for it.
1063                          */
1064                         choice[i] = j;
1065                         svalues[i] = value;
1066                         smasks[i] = mask;
1067                         value = nv;
1068                         mask |= cpuhw->amasks[i][j];
1069                         ++i;
1070                         j = -1;
1071                 }
1072         }
1073 
1074         /* OK, we have a feasible combination, tell the caller the solution */
1075         for (i = 0; i < n_ev; ++i)
1076                 event_id[i] = cpuhw->alternatives[i][choice[i]];
1077         return 0;
1078 }
1079 
1080 /*
1081  * Check if newly-added events have consistent settings for
1082  * exclude_{user,kernel,hv} with each other and any previously
1083  * added events.
1084  */
1085 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
1086                           int n_prev, int n_new)
1087 {
1088         int eu = 0, ek = 0, eh = 0;
1089         int i, n, first;
1090         struct perf_event *event;
1091 
1092         /*
1093          * If the PMU we're on supports per event exclude settings then we
1094          * don't need to do any of this logic. NB. This assumes no PMU has both
1095          * per event exclude and limited PMCs.
1096          */
1097         if (ppmu->flags & PPMU_ARCH_207S)
1098                 return 0;
1099 
1100         n = n_prev + n_new;
1101         if (n <= 1)
1102                 return 0;
1103 
1104         first = 1;
1105         for (i = 0; i < n; ++i) {
1106                 if (cflags[i] & PPMU_LIMITED_PMC_OK) {
1107                         cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
1108                         continue;
1109                 }
1110                 event = ctrs[i];
1111                 if (first) {
1112                         eu = event->attr.exclude_user;
1113                         ek = event->attr.exclude_kernel;
1114                         eh = event->attr.exclude_hv;
1115                         first = 0;
1116                 } else if (event->attr.exclude_user != eu ||
1117                            event->attr.exclude_kernel != ek ||
1118                            event->attr.exclude_hv != eh) {
1119                         return -EAGAIN;
1120                 }
1121         }
1122 
1123         if (eu || ek || eh)
1124                 for (i = 0; i < n; ++i)
1125                         if (cflags[i] & PPMU_LIMITED_PMC_OK)
1126                                 cflags[i] |= PPMU_LIMITED_PMC_REQD;
1127 
1128         return 0;
1129 }
1130 
1131 static u64 check_and_compute_delta(u64 prev, u64 val)
1132 {
1133         u64 delta = (val - prev) & 0xfffffffful;
1134 
1135         /*
1136          * POWER7 can roll back counter values, if the new value is smaller
1137          * than the previous value it will cause the delta and the counter to
1138          * have bogus values unless we rolled a counter over.  If a counter is
1139          * rolled back, it will be smaller, but within 256, which is the maximum
1140          * number of events to rollback at once.  If we detect a rollback
1141          * return 0.  This can lead to a small lack of precision in the
1142          * counters.
1143          */
1144         if (prev > val && (prev - val) < 256)
1145                 delta = 0;
1146 
1147         return delta;
1148 }
1149 
1150 static void power_pmu_read(struct perf_event *event)
1151 {
1152         s64 val, delta, prev;
1153 
1154         if (event->hw.state & PERF_HES_STOPPED)
1155                 return;
1156 
1157         if (!event->hw.idx)
1158                 return;
1159 
1160         if (is_ebb_event(event)) {
1161                 val = read_pmc(event->hw.idx);
1162                 local64_set(&event->hw.prev_count, val);
1163                 return;
1164         }
1165 
1166         /*
1167          * Performance monitor interrupts come even when interrupts
1168          * are soft-disabled, as long as interrupts are hard-enabled.
1169          * Therefore we treat them like NMIs.
1170          */
1171         do {
1172                 prev = local64_read(&event->hw.prev_count);
1173                 barrier();
1174                 val = read_pmc(event->hw.idx);
1175                 delta = check_and_compute_delta(prev, val);
1176                 if (!delta)
1177                         return;
1178         } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
1179 
1180         local64_add(delta, &event->count);
1181 
1182         /*
1183          * A number of places program the PMC with (0x80000000 - period_left).
1184          * We never want period_left to be less than 1 because we will program
1185          * the PMC with a value >= 0x800000000 and an edge detected PMC will
1186          * roll around to 0 before taking an exception. We have seen this
1187          * on POWER8.
1188          *
1189          * To fix this, clamp the minimum value of period_left to 1.
1190          */
1191         do {
1192                 prev = local64_read(&event->hw.period_left);
1193                 val = prev - delta;
1194                 if (val < 1)
1195                         val = 1;
1196         } while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev);
1197 }
1198 
1199 /*
1200  * On some machines, PMC5 and PMC6 can't be written, don't respect
1201  * the freeze conditions, and don't generate interrupts.  This tells
1202  * us if `event' is using such a PMC.
1203  */
1204 static int is_limited_pmc(int pmcnum)
1205 {
1206         return (ppmu->flags & PPMU_LIMITED_PMC5_6)
1207                 && (pmcnum == 5 || pmcnum == 6);
1208 }
1209 
1210 static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
1211                                     unsigned long pmc5, unsigned long pmc6)
1212 {
1213         struct perf_event *event;
1214         u64 val, prev, delta;
1215         int i;
1216 
1217         for (i = 0; i < cpuhw->n_limited; ++i) {
1218                 event = cpuhw->limited_counter[i];
1219                 if (!event->hw.idx)
1220                         continue;
1221                 val = (event->hw.idx == 5) ? pmc5 : pmc6;
1222                 prev = local64_read(&event->hw.prev_count);
1223                 event->hw.idx = 0;
1224                 delta = check_and_compute_delta(prev, val);
1225                 if (delta)
1226                         local64_add(delta, &event->count);
1227         }
1228 }
1229 
1230 static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
1231                                   unsigned long pmc5, unsigned long pmc6)
1232 {
1233         struct perf_event *event;
1234         u64 val, prev;
1235         int i;
1236 
1237         for (i = 0; i < cpuhw->n_limited; ++i) {
1238                 event = cpuhw->limited_counter[i];
1239                 event->hw.idx = cpuhw->limited_hwidx[i];
1240                 val = (event->hw.idx == 5) ? pmc5 : pmc6;
1241                 prev = local64_read(&event->hw.prev_count);
1242                 if (check_and_compute_delta(prev, val))
1243                         local64_set(&event->hw.prev_count, val);
1244                 perf_event_update_userpage(event);
1245         }
1246 }
1247 
1248 /*
1249  * Since limited events don't respect the freeze conditions, we
1250  * have to read them immediately after freezing or unfreezing the
1251  * other events.  We try to keep the values from the limited
1252  * events as consistent as possible by keeping the delay (in
1253  * cycles and instructions) between freezing/unfreezing and reading
1254  * the limited events as small and consistent as possible.
1255  * Therefore, if any limited events are in use, we read them
1256  * both, and always in the same order, to minimize variability,
1257  * and do it inside the same asm that writes MMCR0.
1258  */
1259 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
1260 {
1261         unsigned long pmc5, pmc6;
1262 
1263         if (!cpuhw->n_limited) {
1264                 mtspr(SPRN_MMCR0, mmcr0);
1265                 return;
1266         }
1267 
1268         /*
1269          * Write MMCR0, then read PMC5 and PMC6 immediately.
1270          * To ensure we don't get a performance monitor interrupt
1271          * between writing MMCR0 and freezing/thawing the limited
1272          * events, we first write MMCR0 with the event overflow
1273          * interrupt enable bits turned off.
1274          */
1275         asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
1276                      : "=&r" (pmc5), "=&r" (pmc6)
1277                      : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
1278                        "i" (SPRN_MMCR0),
1279                        "i" (SPRN_PMC5), "i" (SPRN_PMC6));
1280 
1281         if (mmcr0 & MMCR0_FC)
1282                 freeze_limited_counters(cpuhw, pmc5, pmc6);
1283         else
1284                 thaw_limited_counters(cpuhw, pmc5, pmc6);
1285 
1286         /*
1287          * Write the full MMCR0 including the event overflow interrupt
1288          * enable bits, if necessary.
1289          */
1290         if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
1291                 mtspr(SPRN_MMCR0, mmcr0);
1292 }
1293 
1294 /*
1295  * Disable all events to prevent PMU interrupts and to allow
1296  * events to be added or removed.
1297  */
1298 static void power_pmu_disable(struct pmu *pmu)
1299 {
1300         struct cpu_hw_events *cpuhw;
1301         unsigned long flags, mmcr0, val, mmcra;
1302 
1303         if (!ppmu)
1304                 return;
1305         local_irq_save(flags);
1306         cpuhw = this_cpu_ptr(&cpu_hw_events);
1307 
1308         if (!cpuhw->disabled) {
1309                 /*
1310                  * Check if we ever enabled the PMU on this cpu.
1311                  */
1312                 if (!cpuhw->pmcs_enabled) {
1313                         ppc_enable_pmcs();
1314                         cpuhw->pmcs_enabled = 1;
1315                 }
1316 
1317                 /*
1318                  * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
1319                  * Also clear PMXE to disable PMI's getting triggered in some
1320                  * corner cases during PMU disable.
1321                  */
1322                 val  = mmcr0 = mfspr(SPRN_MMCR0);
1323                 val |= MMCR0_FC;
1324                 val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO |
1325                          MMCR0_PMXE | MMCR0_FC56);
1326                 /* Set mmcr0 PMCCEXT for p10 */
1327                 if (ppmu->flags & PPMU_ARCH_31)
1328                         val |= MMCR0_PMCCEXT;
1329 
1330                 /*
1331                  * The barrier is to make sure the mtspr has been
1332                  * executed and the PMU has frozen the events etc.
1333                  * before we return.
1334                  */
1335                 write_mmcr0(cpuhw, val);
1336                 mb();
1337                 isync();
1338 
1339                 /*
1340                  * Some corner cases could clear the PMU counter overflow
1341                  * while a masked PMI is pending. One such case is when
1342                  * a PMI happens during interrupt replay and perf counter
1343                  * values are cleared by PMU callbacks before replay.
1344                  *
1345                  * Disable the interrupt by clearing the paca bit for PMI
1346                  * since we are disabling the PMU now. Otherwise provide a
1347                  * warning if there is PMI pending, but no counter is found
1348                  * overflown.
1349                  *
1350                  * Since power_pmu_disable runs under local_irq_save, it
1351                  * could happen that code hits a PMC overflow without PMI
1352                  * pending in paca. Hence only clear PMI pending if it was
1353                  * set.
1354                  *
1355                  * If a PMI is pending, then MSR[EE] must be disabled (because
1356                  * the masked PMI handler disabling EE). So it is safe to
1357                  * call clear_pmi_irq_pending().
1358                  */
1359                 if (pmi_irq_pending())
1360                         clear_pmi_irq_pending();
1361 
1362                 val = mmcra = cpuhw->mmcr.mmcra;
1363 
1364                 /*
1365                  * Disable instruction sampling if it was enabled
1366                  */
1367                 val &= ~MMCRA_SAMPLE_ENABLE;
1368 
1369                 /* Disable BHRB via mmcra (BHRBRD) for p10 */
1370                 if (ppmu->flags & PPMU_ARCH_31)
1371                         val |= MMCRA_BHRB_DISABLE;
1372 
1373                 /*
1374                  * Write SPRN_MMCRA if mmcra has either disabled
1375                  * instruction sampling or BHRB.
1376                  */
1377                 if (val != mmcra) {
1378                         mtspr(SPRN_MMCRA, val);
1379                         mb();
1380                         isync();
1381                 }
1382 
1383                 cpuhw->disabled = 1;
1384                 cpuhw->n_added = 0;
1385 
1386                 ebb_switch_out(mmcr0);
1387 
1388 #ifdef CONFIG_PPC64
1389                 /*
1390                  * These are readable by userspace, may contain kernel
1391                  * addresses and are not switched by context switch, so clear
1392                  * them now to avoid leaking anything to userspace in general
1393                  * including to another process.
1394                  */
1395                 if (ppmu->flags & PPMU_ARCH_207S) {
1396                         mtspr(SPRN_SDAR, 0);
1397                         mtspr(SPRN_SIAR, 0);
1398                 }
1399 #endif
1400         }
1401 
1402         local_irq_restore(flags);
1403 }
1404 
1405 /*
1406  * Re-enable all events if disable == 0.
1407  * If we were previously disabled and events were added, then
1408  * put the new config on the PMU.
1409  */
1410 static void power_pmu_enable(struct pmu *pmu)
1411 {
1412         struct perf_event *event;
1413         struct cpu_hw_events *cpuhw;
1414         unsigned long flags;
1415         long i;
1416         unsigned long val, mmcr0;
1417         s64 left;
1418         unsigned int hwc_index[MAX_HWEVENTS];
1419         int n_lim;
1420         int idx;
1421         bool ebb;
1422 
1423         if (!ppmu)
1424                 return;
1425         local_irq_save(flags);
1426 
1427         cpuhw = this_cpu_ptr(&cpu_hw_events);
1428         if (!cpuhw->disabled)
1429                 goto out;
1430 
1431         if (cpuhw->n_events == 0) {
1432                 ppc_set_pmu_inuse(0);
1433                 goto out;
1434         }
1435 
1436         cpuhw->disabled = 0;
1437 
1438         /*
1439          * EBB requires an exclusive group and all events must have the EBB
1440          * flag set, or not set, so we can just check a single event. Also we
1441          * know we have at least one event.
1442          */
1443         ebb = is_ebb_event(cpuhw->event[0]);
1444 
1445         /*
1446          * If we didn't change anything, or only removed events,
1447          * no need to recalculate MMCR* settings and reset the PMCs.
1448          * Just reenable the PMU with the current MMCR* settings
1449          * (possibly updated for removal of events).
1450          */
1451         if (!cpuhw->n_added) {
1452                 /*
1453                  * If there is any active event with an overflown PMC
1454                  * value, set back PACA_IRQ_PMI which would have been
1455                  * cleared in power_pmu_disable().
1456                  */
1457                 hard_irq_disable();
1458                 if (any_pmc_overflown(cpuhw))
1459                         set_pmi_irq_pending();
1460 
1461                 mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra & ~MMCRA_SAMPLE_ENABLE);
1462                 mtspr(SPRN_MMCR1, cpuhw->mmcr.mmcr1);
1463                 if (ppmu->flags & PPMU_ARCH_31)
1464                         mtspr(SPRN_MMCR3, cpuhw->mmcr.mmcr3);
1465                 goto out_enable;
1466         }
1467 
1468         /*
1469          * Clear all MMCR settings and recompute them for the new set of events.
1470          */
1471         memset(&cpuhw->mmcr, 0, sizeof(cpuhw->mmcr));
1472 
1473         if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
1474                                &cpuhw->mmcr, cpuhw->event, ppmu->flags)) {
1475                 /* shouldn't ever get here */
1476                 printk(KERN_ERR "oops compute_mmcr failed\n");
1477                 goto out;
1478         }
1479 
1480         if (!(ppmu->flags & PPMU_ARCH_207S)) {
1481                 /*
1482                  * Add in MMCR0 freeze bits corresponding to the attr.exclude_*
1483                  * bits for the first event. We have already checked that all
1484                  * events have the same value for these bits as the first event.
1485                  */
1486                 event = cpuhw->event[0];
1487                 if (event->attr.exclude_user)
1488                         cpuhw->mmcr.mmcr0 |= MMCR0_FCP;
1489                 if (event->attr.exclude_kernel)
1490                         cpuhw->mmcr.mmcr0 |= freeze_events_kernel;
1491                 if (event->attr.exclude_hv)
1492                         cpuhw->mmcr.mmcr0 |= MMCR0_FCHV;
1493         }
1494 
1495         /*
1496          * Write the new configuration to MMCR* with the freeze
1497          * bit set and set the hardware events to their initial values.
1498          * Then unfreeze the events.
1499          */
1500         ppc_set_pmu_inuse(1);
1501         mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra & ~MMCRA_SAMPLE_ENABLE);
1502         mtspr(SPRN_MMCR1, cpuhw->mmcr.mmcr1);
1503         mtspr(SPRN_MMCR0, (cpuhw->mmcr.mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
1504                                 | MMCR0_FC);
1505         if (ppmu->flags & PPMU_ARCH_207S)
1506                 mtspr(SPRN_MMCR2, cpuhw->mmcr.mmcr2);
1507 
1508         if (ppmu->flags & PPMU_ARCH_31)
1509                 mtspr(SPRN_MMCR3, cpuhw->mmcr.mmcr3);
1510 
1511         /*
1512          * Read off any pre-existing events that need to move
1513          * to another PMC.
1514          */
1515         for (i = 0; i < cpuhw->n_events; ++i) {
1516                 event = cpuhw->event[i];
1517                 if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
1518                         power_pmu_read(event);
1519                         write_pmc(event->hw.idx, 0);
1520                         event->hw.idx = 0;
1521                 }
1522         }
1523 
1524         /*
1525          * Initialize the PMCs for all the new and moved events.
1526          */
1527         cpuhw->n_limited = n_lim = 0;
1528         for (i = 0; i < cpuhw->n_events; ++i) {
1529                 event = cpuhw->event[i];
1530                 if (event->hw.idx)
1531                         continue;
1532                 idx = hwc_index[i] + 1;
1533                 if (is_limited_pmc(idx)) {
1534                         cpuhw->limited_counter[n_lim] = event;
1535                         cpuhw->limited_hwidx[n_lim] = idx;
1536                         ++n_lim;
1537                         continue;
1538                 }
1539 
1540                 if (ebb)
1541                         val = local64_read(&event->hw.prev_count);
1542                 else {
1543                         val = 0;
1544                         if (event->hw.sample_period) {
1545                                 left = local64_read(&event->hw.period_left);
1546                                 if (left < 0x80000000L)
1547                                         val = 0x80000000L - left;
1548                         }
1549                         local64_set(&event->hw.prev_count, val);
1550                 }
1551 
1552                 event->hw.idx = idx;
1553                 if (event->hw.state & PERF_HES_STOPPED)
1554                         val = 0;
1555                 write_pmc(idx, val);
1556 
1557                 perf_event_update_userpage(event);
1558         }
1559         cpuhw->n_limited = n_lim;
1560         cpuhw->mmcr.mmcr0 |= MMCR0_PMXE | MMCR0_FCECE;
1561 
1562  out_enable:
1563         pmao_restore_workaround(ebb);
1564 
1565         mmcr0 = ebb_switch_in(ebb, cpuhw);
1566 
1567         mb();
1568         if (cpuhw->bhrb_users)
1569                 ppmu->config_bhrb(cpuhw->bhrb_filter);
1570 
1571         write_mmcr0(cpuhw, mmcr0);
1572 
1573         /*
1574          * Enable instruction sampling if necessary
1575          */
1576         if (cpuhw->mmcr.mmcra & MMCRA_SAMPLE_ENABLE) {
1577                 mb();
1578                 mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra);
1579         }
1580 
1581  out:
1582 
1583         local_irq_restore(flags);
1584 }
1585 
1586 static int collect_events(struct perf_event *group, int max_count,
1587                           struct perf_event *ctrs[], u64 *events,
1588                           unsigned int *flags)
1589 {
1590         int n = 0;
1591         struct perf_event *event;
1592 
1593         if (group->pmu->task_ctx_nr == perf_hw_context) {
1594                 if (n >= max_count)
1595                         return -1;
1596                 ctrs[n] = group;
1597                 flags[n] = group->hw.event_base;
1598                 events[n++] = group->hw.config;
1599         }
1600         for_each_sibling_event(event, group) {
1601                 if (event->pmu->task_ctx_nr == perf_hw_context &&
1602                     event->state != PERF_EVENT_STATE_OFF) {
1603                         if (n >= max_count)
1604                                 return -1;
1605                         ctrs[n] = event;
1606                         flags[n] = event->hw.event_base;
1607                         events[n++] = event->hw.config;
1608                 }
1609         }
1610         return n;
1611 }
1612 
1613 /*
1614  * Add an event to the PMU.
1615  * If all events are not already frozen, then we disable and
1616  * re-enable the PMU in order to get hw_perf_enable to do the
1617  * actual work of reconfiguring the PMU.
1618  */
1619 static int power_pmu_add(struct perf_event *event, int ef_flags)
1620 {
1621         struct cpu_hw_events *cpuhw;
1622         unsigned long flags;
1623         int n0;
1624         int ret = -EAGAIN;
1625 
1626         local_irq_save(flags);
1627         perf_pmu_disable(event->pmu);
1628 
1629         /*
1630          * Add the event to the list (if there is room)
1631          * and check whether the total set is still feasible.
1632          */
1633         cpuhw = this_cpu_ptr(&cpu_hw_events);
1634         n0 = cpuhw->n_events;
1635         if (n0 >= ppmu->n_counter)
1636                 goto out;
1637         cpuhw->event[n0] = event;
1638         cpuhw->events[n0] = event->hw.config;
1639         cpuhw->flags[n0] = event->hw.event_base;
1640 
1641         /*
1642          * This event may have been disabled/stopped in record_and_restart()
1643          * because we exceeded the ->event_limit. If re-starting the event,
1644          * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
1645          * notification is re-enabled.
1646          */
1647         if (!(ef_flags & PERF_EF_START))
1648                 event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1649         else
1650                 event->hw.state = 0;
1651 
1652         /*
1653          * If group events scheduling transaction was started,
1654          * skip the schedulability test here, it will be performed
1655          * at commit time(->commit_txn) as a whole
1656          */
1657         if (cpuhw->txn_flags & PERF_PMU_TXN_ADD)
1658                 goto nocheck;
1659 
1660         if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
1661                 goto out;
1662         if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1, cpuhw->event))
1663                 goto out;
1664         event->hw.config = cpuhw->events[n0];
1665 
1666 nocheck:
1667         ebb_event_add(event);
1668 
1669         ++cpuhw->n_events;
1670         ++cpuhw->n_added;
1671 
1672         ret = 0;
1673  out:
1674         if (has_branch_stack(event)) {
1675                 u64 bhrb_filter = -1;
1676 
1677                 if (ppmu->bhrb_filter_map)
1678                         bhrb_filter = ppmu->bhrb_filter_map(
1679                                 event->attr.branch_sample_type);
1680 
1681                 if (bhrb_filter != -1) {
1682                         cpuhw->bhrb_filter = bhrb_filter;
1683                         power_pmu_bhrb_enable(event);
1684                 }
1685         }
1686 
1687         perf_pmu_enable(event->pmu);
1688         local_irq_restore(flags);
1689         return ret;
1690 }
1691 
1692 /*
1693  * Remove an event from the PMU.
1694  */
1695 static void power_pmu_del(struct perf_event *event, int ef_flags)
1696 {
1697         struct cpu_hw_events *cpuhw;
1698         long i;
1699         unsigned long flags;
1700 
1701         local_irq_save(flags);
1702         perf_pmu_disable(event->pmu);
1703 
1704         power_pmu_read(event);
1705 
1706         cpuhw = this_cpu_ptr(&cpu_hw_events);
1707         for (i = 0; i < cpuhw->n_events; ++i) {
1708                 if (event == cpuhw->event[i]) {
1709                         while (++i < cpuhw->n_events) {
1710                                 cpuhw->event[i-1] = cpuhw->event[i];
1711                                 cpuhw->events[i-1] = cpuhw->events[i];
1712                                 cpuhw->flags[i-1] = cpuhw->flags[i];
1713                         }
1714                         --cpuhw->n_events;
1715                         ppmu->disable_pmc(event->hw.idx - 1, &cpuhw->mmcr);
1716                         if (event->hw.idx) {
1717                                 write_pmc(event->hw.idx, 0);
1718                                 event->hw.idx = 0;
1719                         }
1720                         perf_event_update_userpage(event);
1721                         break;
1722                 }
1723         }
1724         for (i = 0; i < cpuhw->n_limited; ++i)
1725                 if (event == cpuhw->limited_counter[i])
1726                         break;
1727         if (i < cpuhw->n_limited) {
1728                 while (++i < cpuhw->n_limited) {
1729                         cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
1730                         cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
1731                 }
1732                 --cpuhw->n_limited;
1733         }
1734         if (cpuhw->n_events == 0) {
1735                 /* disable exceptions if no events are running */
1736                 cpuhw->mmcr.mmcr0 &= ~(MMCR0_PMXE | MMCR0_FCECE);
1737         }
1738 
1739         if (has_branch_stack(event))
1740                 power_pmu_bhrb_disable(event);
1741 
1742         perf_pmu_enable(event->pmu);
1743         local_irq_restore(flags);
1744 }
1745 
1746 /*
1747  * POWER-PMU does not support disabling individual counters, hence
1748  * program their cycle counter to their max value and ignore the interrupts.
1749  */
1750 
1751 static void power_pmu_start(struct perf_event *event, int ef_flags)
1752 {
1753         unsigned long flags;
1754         s64 left;
1755         unsigned long val;
1756 
1757         if (!event->hw.idx || !event->hw.sample_period)
1758                 return;
1759 
1760         if (!(event->hw.state & PERF_HES_STOPPED))
1761                 return;
1762 
1763         if (ef_flags & PERF_EF_RELOAD)
1764                 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1765 
1766         local_irq_save(flags);
1767         perf_pmu_disable(event->pmu);
1768 
1769         event->hw.state = 0;
1770         left = local64_read(&event->hw.period_left);
1771 
1772         val = 0;
1773         if (left < 0x80000000L)
1774                 val = 0x80000000L - left;
1775 
1776         write_pmc(event->hw.idx, val);
1777 
1778         perf_event_update_userpage(event);
1779         perf_pmu_enable(event->pmu);
1780         local_irq_restore(flags);
1781 }
1782 
1783 static void power_pmu_stop(struct perf_event *event, int ef_flags)
1784 {
1785         unsigned long flags;
1786 
1787         if (!event->hw.idx || !event->hw.sample_period)
1788                 return;
1789 
1790         if (event->hw.state & PERF_HES_STOPPED)
1791                 return;
1792 
1793         local_irq_save(flags);
1794         perf_pmu_disable(event->pmu);
1795 
1796         power_pmu_read(event);
1797         event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1798         write_pmc(event->hw.idx, 0);
1799 
1800         perf_event_update_userpage(event);
1801         perf_pmu_enable(event->pmu);
1802         local_irq_restore(flags);
1803 }
1804 
1805 /*
1806  * Start group events scheduling transaction
1807  * Set the flag to make pmu::enable() not perform the
1808  * schedulability test, it will be performed at commit time
1809  *
1810  * We only support PERF_PMU_TXN_ADD transactions. Save the
1811  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1812  * transactions.
1813  */
1814 static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1815 {
1816         struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1817 
1818         WARN_ON_ONCE(cpuhw->txn_flags);         /* txn already in flight */
1819 
1820         cpuhw->txn_flags = txn_flags;
1821         if (txn_flags & ~PERF_PMU_TXN_ADD)
1822                 return;
1823 
1824         perf_pmu_disable(pmu);
1825         cpuhw->n_txn_start = cpuhw->n_events;
1826 }
1827 
1828 /*
1829  * Stop group events scheduling transaction
1830  * Clear the flag and pmu::enable() will perform the
1831  * schedulability test.
1832  */
1833 static void power_pmu_cancel_txn(struct pmu *pmu)
1834 {
1835         struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1836         unsigned int txn_flags;
1837 
1838         WARN_ON_ONCE(!cpuhw->txn_flags);        /* no txn in flight */
1839 
1840         txn_flags = cpuhw->txn_flags;
1841         cpuhw->txn_flags = 0;
1842         if (txn_flags & ~PERF_PMU_TXN_ADD)
1843                 return;
1844 
1845         perf_pmu_enable(pmu);
1846 }
1847 
1848 /*
1849  * Commit group events scheduling transaction
1850  * Perform the group schedulability test as a whole
1851  * Return 0 if success
1852  */
1853 static int power_pmu_commit_txn(struct pmu *pmu)
1854 {
1855         struct cpu_hw_events *cpuhw;
1856         long i, n;
1857 
1858         if (!ppmu)
1859                 return -EAGAIN;
1860 
1861         cpuhw = this_cpu_ptr(&cpu_hw_events);
1862         WARN_ON_ONCE(!cpuhw->txn_flags);        /* no txn in flight */
1863 
1864         if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) {
1865                 cpuhw->txn_flags = 0;
1866                 return 0;
1867         }
1868 
1869         n = cpuhw->n_events;
1870         if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
1871                 return -EAGAIN;
1872         i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n, cpuhw->event);
1873         if (i < 0)
1874                 return -EAGAIN;
1875 
1876         for (i = cpuhw->n_txn_start; i < n; ++i)
1877                 cpuhw->event[i]->hw.config = cpuhw->events[i];
1878 
1879         cpuhw->txn_flags = 0;
1880         perf_pmu_enable(pmu);
1881         return 0;
1882 }
1883 
1884 /*
1885  * Return 1 if we might be able to put event on a limited PMC,
1886  * or 0 if not.
1887  * An event can only go on a limited PMC if it counts something
1888  * that a limited PMC can count, doesn't require interrupts, and
1889  * doesn't exclude any processor mode.
1890  */
1891 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1892                                  unsigned int flags)
1893 {
1894         int n;
1895         u64 alt[MAX_EVENT_ALTERNATIVES];
1896 
1897         if (event->attr.exclude_user
1898             || event->attr.exclude_kernel
1899             || event->attr.exclude_hv
1900             || event->attr.sample_period)
1901                 return 0;
1902 
1903         if (ppmu->limited_pmc_event(ev))
1904                 return 1;
1905 
1906         /*
1907          * The requested event_id isn't on a limited PMC already;
1908          * see if any alternative code goes on a limited PMC.
1909          */
1910         if (!ppmu->get_alternatives)
1911                 return 0;
1912 
1913         flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1914         n = ppmu->get_alternatives(ev, flags, alt);
1915 
1916         return n > 0;
1917 }
1918 
1919 /*
1920  * Find an alternative event_id that goes on a normal PMC, if possible,
1921  * and return the event_id code, or 0 if there is no such alternative.
1922  * (Note: event_id code 0 is "don't count" on all machines.)
1923  */
1924 static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1925 {
1926         u64 alt[MAX_EVENT_ALTERNATIVES];
1927         int n;
1928 
1929         flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1930         n = ppmu->get_alternatives(ev, flags, alt);
1931         if (!n)
1932                 return 0;
1933         return alt[0];
1934 }
1935 
1936 /* Number of perf_events counting hardware events */
1937 static atomic_t num_events;
1938 /* Used to avoid races in calling reserve/release_pmc_hardware */
1939 static DEFINE_MUTEX(pmc_reserve_mutex);
1940 
1941 /*
1942  * Release the PMU if this is the last perf_event.
1943  */
1944 static void hw_perf_event_destroy(struct perf_event *event)
1945 {
1946         if (!atomic_add_unless(&num_events, -1, 1)) {
1947                 mutex_lock(&pmc_reserve_mutex);
1948                 if (atomic_dec_return(&num_events) == 0)
1949                         release_pmc_hardware();
1950                 mutex_unlock(&pmc_reserve_mutex);
1951         }
1952 }
1953 
1954 /*
1955  * Translate a generic cache event_id config to a raw event_id code.
1956  */
1957 static int hw_perf_cache_event(u64 config, u64 *eventp)
1958 {
1959         unsigned long type, op, result;
1960         u64 ev;
1961 
1962         if (!ppmu->cache_events)
1963                 return -EINVAL;
1964 
1965         /* unpack config */
1966         type = config & 0xff;
1967         op = (config >> 8) & 0xff;
1968         result = (config >> 16) & 0xff;
1969 
1970         if (type >= PERF_COUNT_HW_CACHE_MAX ||
1971             op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1972             result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1973                 return -EINVAL;
1974 
1975         ev = (*ppmu->cache_events)[type][op][result];
1976         if (ev == 0)
1977                 return -EOPNOTSUPP;
1978         if (ev == -1)
1979                 return -EINVAL;
1980         *eventp = ev;
1981         return 0;
1982 }
1983 
1984 static bool is_event_blacklisted(u64 ev)
1985 {
1986         int i;
1987 
1988         for (i=0; i < ppmu->n_blacklist_ev; i++) {
1989                 if (ppmu->blacklist_ev[i] == ev)
1990                         return true;
1991         }
1992 
1993         return false;
1994 }
1995 
1996 static int power_pmu_event_init(struct perf_event *event)
1997 {
1998         u64 ev;
1999         unsigned long flags, irq_flags;
2000         struct perf_event *ctrs[MAX_HWEVENTS];
2001         u64 events[MAX_HWEVENTS];
2002         unsigned int cflags[MAX_HWEVENTS];
2003         int n;
2004         int err;
2005         struct cpu_hw_events *cpuhw;
2006 
2007         if (!ppmu)
2008                 return -ENOENT;
2009 
2010         if (has_branch_stack(event)) {
2011                 /* PMU has BHRB enabled */
2012                 if (!(ppmu->flags & PPMU_ARCH_207S))
2013                         return -EOPNOTSUPP;
2014         }
2015 
2016         switch (event->attr.type) {
2017         case PERF_TYPE_HARDWARE:
2018                 ev = event->attr.config;
2019                 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
2020                         return -EOPNOTSUPP;
2021 
2022                 if (ppmu->blacklist_ev && is_event_blacklisted(ev))
2023                         return -EINVAL;
2024                 ev = ppmu->generic_events[ev];
2025                 break;
2026         case PERF_TYPE_HW_CACHE:
2027                 err = hw_perf_cache_event(event->attr.config, &ev);
2028                 if (err)
2029                         return err;
2030 
2031                 if (ppmu->blacklist_ev && is_event_blacklisted(ev))
2032                         return -EINVAL;
2033                 break;
2034         case PERF_TYPE_RAW:
2035                 ev = event->attr.config;
2036 
2037                 if (ppmu->blacklist_ev && is_event_blacklisted(ev))
2038                         return -EINVAL;
2039                 break;
2040         default:
2041                 return -ENOENT;
2042         }
2043 
2044         /*
2045          * PMU config registers have fields that are
2046          * reserved and some specific values for bit fields are reserved.
2047          * For ex., MMCRA[61:62] is Random Sampling Mode (SM)
2048          * and value of 0b11 to this field is reserved.
2049          * Check for invalid values in attr.config.
2050          */
2051         if (ppmu->check_attr_config &&
2052             ppmu->check_attr_config(event))
2053                 return -EINVAL;
2054 
2055         event->hw.config_base = ev;
2056         event->hw.idx = 0;
2057 
2058         /*
2059          * If we are not running on a hypervisor, force the
2060          * exclude_hv bit to 0 so that we don't care what
2061          * the user set it to.
2062          */
2063         if (!firmware_has_feature(FW_FEATURE_LPAR))
2064                 event->attr.exclude_hv = 0;
2065 
2066         /*
2067          * If this is a per-task event, then we can use
2068          * PM_RUN_* events interchangeably with their non RUN_*
2069          * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
2070          * XXX we should check if the task is an idle task.
2071          */
2072         flags = 0;
2073         if (event->attach_state & PERF_ATTACH_TASK)
2074                 flags |= PPMU_ONLY_COUNT_RUN;
2075 
2076         /*
2077          * If this machine has limited events, check whether this
2078          * event_id could go on a limited event.
2079          */
2080         if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
2081                 if (can_go_on_limited_pmc(event, ev, flags)) {
2082                         flags |= PPMU_LIMITED_PMC_OK;
2083                 } else if (ppmu->limited_pmc_event(ev)) {
2084                         /*
2085                          * The requested event_id is on a limited PMC,
2086                          * but we can't use a limited PMC; see if any
2087                          * alternative goes on a normal PMC.
2088                          */
2089                         ev = normal_pmc_alternative(ev, flags);
2090                         if (!ev)
2091                                 return -EINVAL;
2092                 }
2093         }
2094 
2095         /* Extra checks for EBB */
2096         err = ebb_event_check(event);
2097         if (err)
2098                 return err;
2099 
2100         /*
2101          * If this is in a group, check if it can go on with all the
2102          * other hardware events in the group.  We assume the event
2103          * hasn't been linked into its leader's sibling list at this point.
2104          */
2105         n = 0;
2106         if (event->group_leader != event) {
2107                 n = collect_events(event->group_leader, ppmu->n_counter - 1,
2108                                    ctrs, events, cflags);
2109                 if (n < 0)
2110                         return -EINVAL;
2111         }
2112         events[n] = ev;
2113         ctrs[n] = event;
2114         cflags[n] = flags;
2115         if (check_excludes(ctrs, cflags, n, 1))
2116                 return -EINVAL;
2117 
2118         local_irq_save(irq_flags);
2119         cpuhw = this_cpu_ptr(&cpu_hw_events);
2120 
2121         err = power_check_constraints(cpuhw, events, cflags, n + 1, ctrs);
2122 
2123         if (has_branch_stack(event)) {
2124                 u64 bhrb_filter = -1;
2125 
2126                 /*
2127                  * Currently no PMU supports having multiple branch filters
2128                  * at the same time. Branch filters are set via MMCRA IFM[32:33]
2129                  * bits for Power8 and above. Return EOPNOTSUPP when multiple
2130                  * branch filters are requested in the event attr.
2131                  *
2132                  * When opening event via perf_event_open(), branch_sample_type
2133                  * gets adjusted in perf_copy_attr(). Kernel will automatically
2134                  * adjust the branch_sample_type based on the event modifier
2135                  * settings to include PERF_SAMPLE_BRANCH_PLM_ALL. Hence drop
2136                  * the check for PERF_SAMPLE_BRANCH_PLM_ALL.
2137                  */
2138                 if (hweight64(event->attr.branch_sample_type & ~PERF_SAMPLE_BRANCH_PLM_ALL) > 1) {
2139                         local_irq_restore(irq_flags);
2140                         return -EOPNOTSUPP;
2141                 }
2142 
2143                 if (ppmu->bhrb_filter_map)
2144                         bhrb_filter = ppmu->bhrb_filter_map(
2145                                         event->attr.branch_sample_type);
2146 
2147                 if (bhrb_filter == -1) {
2148                         local_irq_restore(irq_flags);
2149                         return -EOPNOTSUPP;
2150                 }
2151                 cpuhw->bhrb_filter = bhrb_filter;
2152         }
2153 
2154         local_irq_restore(irq_flags);
2155         if (err)
2156                 return -EINVAL;
2157 
2158         event->hw.config = events[n];
2159         event->hw.event_base = cflags[n];
2160         event->hw.last_period = event->hw.sample_period;
2161         local64_set(&event->hw.period_left, event->hw.last_period);
2162 
2163         /*
2164          * For EBB events we just context switch the PMC value, we don't do any
2165          * of the sample_period logic. We use hw.prev_count for this.
2166          */
2167         if (is_ebb_event(event))
2168                 local64_set(&event->hw.prev_count, 0);
2169 
2170         /*
2171          * See if we need to reserve the PMU.
2172          * If no events are currently in use, then we have to take a
2173          * mutex to ensure that we don't race with another task doing
2174          * reserve_pmc_hardware or release_pmc_hardware.
2175          */
2176         err = 0;
2177         if (!atomic_inc_not_zero(&num_events)) {
2178                 mutex_lock(&pmc_reserve_mutex);
2179                 if (atomic_read(&num_events) == 0 &&
2180                     reserve_pmc_hardware(perf_event_interrupt))
2181                         err = -EBUSY;
2182                 else
2183                         atomic_inc(&num_events);
2184                 mutex_unlock(&pmc_reserve_mutex);
2185         }
2186         event->destroy = hw_perf_event_destroy;
2187 
2188         return err;
2189 }
2190 
2191 static int power_pmu_event_idx(struct perf_event *event)
2192 {
2193         return event->hw.idx;
2194 }
2195 
2196 ssize_t power_events_sysfs_show(struct device *dev,
2197                                 struct device_attribute *attr, char *page)
2198 {
2199         struct perf_pmu_events_attr *pmu_attr;
2200 
2201         pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
2202 
2203         return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
2204 }
2205 
2206 static struct pmu power_pmu = {
2207         .pmu_enable     = power_pmu_enable,
2208         .pmu_disable    = power_pmu_disable,
2209         .event_init     = power_pmu_event_init,
2210         .add            = power_pmu_add,
2211         .del            = power_pmu_del,
2212         .start          = power_pmu_start,
2213         .stop           = power_pmu_stop,
2214         .read           = power_pmu_read,
2215         .start_txn      = power_pmu_start_txn,
2216         .cancel_txn     = power_pmu_cancel_txn,
2217         .commit_txn     = power_pmu_commit_txn,
2218         .event_idx      = power_pmu_event_idx,
2219         .sched_task     = power_pmu_sched_task,
2220 };
2221 
2222 #define PERF_SAMPLE_ADDR_TYPE  (PERF_SAMPLE_ADDR |              \
2223                                 PERF_SAMPLE_PHYS_ADDR |         \
2224                                 PERF_SAMPLE_DATA_PAGE_SIZE)
2225 /*
2226  * A counter has overflowed; update its count and record
2227  * things if requested.  Note that interrupts are hard-disabled
2228  * here so there is no possibility of being interrupted.
2229  */
2230 static void record_and_restart(struct perf_event *event, unsigned long val,
2231                                struct pt_regs *regs)
2232 {
2233         u64 period = event->hw.sample_period;
2234         s64 prev, delta, left;
2235         int record = 0;
2236 
2237         if (event->hw.state & PERF_HES_STOPPED) {
2238                 write_pmc(event->hw.idx, 0);
2239                 return;
2240         }
2241 
2242         /* we don't have to worry about interrupts here */
2243         prev = local64_read(&event->hw.prev_count);
2244         delta = check_and_compute_delta(prev, val);
2245         local64_add(delta, &event->count);
2246 
2247         /*
2248          * See if the total period for this event has expired,
2249          * and update for the next period.
2250          */
2251         val = 0;
2252         left = local64_read(&event->hw.period_left) - delta;
2253         if (delta == 0)
2254                 left++;
2255         if (period) {
2256                 if (left <= 0) {
2257                         left += period;
2258                         if (left <= 0)
2259                                 left = period;
2260 
2261                         /*
2262                          * If address is not requested in the sample via
2263                          * PERF_SAMPLE_IP, just record that sample irrespective
2264                          * of SIAR valid check.
2265                          */
2266                         if (event->attr.sample_type & PERF_SAMPLE_IP)
2267                                 record = siar_valid(regs);
2268                         else
2269                                 record = 1;
2270 
2271                         event->hw.last_period = event->hw.sample_period;
2272                 }
2273                 if (left < 0x80000000LL)
2274                         val = 0x80000000LL - left;
2275         }
2276 
2277         write_pmc(event->hw.idx, val);
2278         local64_set(&event->hw.prev_count, val);
2279         local64_set(&event->hw.period_left, left);
2280         perf_event_update_userpage(event);
2281 
2282         /*
2283          * Due to hardware limitation, sometimes SIAR could sample a kernel
2284          * address even when freeze on supervisor state (kernel) is set in
2285          * MMCR2. Check attr.exclude_kernel and address to drop the sample in
2286          * these cases.
2287          */
2288         if (event->attr.exclude_kernel &&
2289             (event->attr.sample_type & PERF_SAMPLE_IP) &&
2290             is_kernel_addr(mfspr(SPRN_SIAR)))
2291                 record = 0;
2292 
2293         /*
2294          * Finally record data if requested.
2295          */
2296         if (record) {
2297                 struct perf_sample_data data;
2298 
2299                 perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
2300 
2301                 if (event->attr.sample_type & PERF_SAMPLE_ADDR_TYPE)
2302                         perf_get_data_addr(event, regs, &data.addr);
2303 
2304                 if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
2305                         struct cpu_hw_events *cpuhw;
2306                         cpuhw = this_cpu_ptr(&cpu_hw_events);
2307                         power_pmu_bhrb_read(event, cpuhw);
2308                         perf_sample_save_brstack(&data, event, &cpuhw->bhrb_stack, NULL);
2309                 }
2310 
2311                 if (event->attr.sample_type & PERF_SAMPLE_DATA_SRC &&
2312                                                 ppmu->get_mem_data_src) {
2313                         ppmu->get_mem_data_src(&data.data_src, ppmu->flags, regs);
2314                         data.sample_flags |= PERF_SAMPLE_DATA_SRC;
2315                 }
2316 
2317                 if (event->attr.sample_type & PERF_SAMPLE_WEIGHT_TYPE &&
2318                                                 ppmu->get_mem_weight) {
2319                         ppmu->get_mem_weight(&data.weight.full, event->attr.sample_type);
2320                         data.sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
2321                 }
2322                 if (perf_event_overflow(event, &data, regs))
2323                         power_pmu_stop(event, 0);
2324         } else if (period) {
2325                 /* Account for interrupt in case of invalid SIAR */
2326                 if (perf_event_account_interrupt(event))
2327                         power_pmu_stop(event, 0);
2328         }
2329 }
2330 
2331 /*
2332  * Called from generic code to get the misc flags (i.e. processor mode)
2333  * for an event_id.
2334  */
2335 unsigned long perf_misc_flags(struct pt_regs *regs)
2336 {
2337         u32 flags = perf_get_misc_flags(regs);
2338 
2339         if (flags)
2340                 return flags;
2341         return user_mode(regs) ? PERF_RECORD_MISC_USER :
2342                 PERF_RECORD_MISC_KERNEL;
2343 }
2344 
2345 /*
2346  * Called from generic code to get the instruction pointer
2347  * for an event_id.
2348  */
2349 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2350 {
2351         unsigned long siar = mfspr(SPRN_SIAR);
2352 
2353         if (regs_use_siar(regs) && siar_valid(regs) && siar)
2354                 return siar + perf_ip_adjust(regs);
2355         else
2356                 return regs->nip;
2357 }
2358 
2359 static bool pmc_overflow_power7(unsigned long val)
2360 {
2361         /*
2362          * Events on POWER7 can roll back if a speculative event doesn't
2363          * eventually complete. Unfortunately in some rare cases they will
2364          * raise a performance monitor exception. We need to catch this to
2365          * ensure we reset the PMC. In all cases the PMC will be 256 or less
2366          * cycles from overflow.
2367          *
2368          * We only do this if the first pass fails to find any overflowing
2369          * PMCs because a user might set a period of less than 256 and we
2370          * don't want to mistakenly reset them.
2371          */
2372         if ((0x80000000 - val) <= 256)
2373                 return true;
2374 
2375         return false;
2376 }
2377 
2378 static bool pmc_overflow(unsigned long val)
2379 {
2380         if ((int)val < 0)
2381                 return true;
2382 
2383         return false;
2384 }
2385 
2386 /*
2387  * Performance monitor interrupt stuff
2388  */
2389 static void __perf_event_interrupt(struct pt_regs *regs)
2390 {
2391         int i, j;
2392         struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
2393         struct perf_event *event;
2394         int found, active;
2395 
2396         if (cpuhw->n_limited)
2397                 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
2398                                         mfspr(SPRN_PMC6));
2399 
2400         perf_read_regs(regs);
2401 
2402         /* Read all the PMCs since we'll need them a bunch of times */
2403         for (i = 0; i < ppmu->n_counter; ++i)
2404                 cpuhw->pmcs[i] = read_pmc(i + 1);
2405 
2406         /* Try to find what caused the IRQ */
2407         found = 0;
2408         for (i = 0; i < ppmu->n_counter; ++i) {
2409                 if (!pmc_overflow(cpuhw->pmcs[i]))
2410                         continue;
2411                 if (is_limited_pmc(i + 1))
2412                         continue; /* these won't generate IRQs */
2413                 /*
2414                  * We've found one that's overflowed.  For active
2415                  * counters we need to log this.  For inactive
2416                  * counters, we need to reset it anyway
2417                  */
2418                 found = 1;
2419                 active = 0;
2420                 for (j = 0; j < cpuhw->n_events; ++j) {
2421                         event = cpuhw->event[j];
2422                         if (event->hw.idx == (i + 1)) {
2423                                 active = 1;
2424                                 record_and_restart(event, cpuhw->pmcs[i], regs);
2425                                 break;
2426                         }
2427                 }
2428 
2429                 /*
2430                  * Clear PACA_IRQ_PMI in case it was set by
2431                  * set_pmi_irq_pending() when PMU was enabled
2432                  * after accounting for interrupts.
2433                  */
2434                 clear_pmi_irq_pending();
2435 
2436                 if (!active)
2437                         /* reset non active counters that have overflowed */
2438                         write_pmc(i + 1, 0);
2439         }
2440         if (!found && pvr_version_is(PVR_POWER7)) {
2441                 /* check active counters for special buggy p7 overflow */
2442                 for (i = 0; i < cpuhw->n_events; ++i) {
2443                         event = cpuhw->event[i];
2444                         if (!event->hw.idx || is_limited_pmc(event->hw.idx))
2445                                 continue;
2446                         if (pmc_overflow_power7(cpuhw->pmcs[event->hw.idx - 1])) {
2447                                 /* event has overflowed in a buggy way*/
2448                                 found = 1;
2449                                 record_and_restart(event,
2450                                                    cpuhw->pmcs[event->hw.idx - 1],
2451                                                    regs);
2452                         }
2453                 }
2454         }
2455 
2456         /*
2457          * During system wide profiling or while specific CPU is monitored for an
2458          * event, some corner cases could cause PMC to overflow in idle path. This
2459          * will trigger a PMI after waking up from idle. Since counter values are _not_
2460          * saved/restored in idle path, can lead to below "Can't find PMC" message.
2461          */
2462         if (unlikely(!found) && !arch_irq_disabled_regs(regs))
2463                 printk_ratelimited(KERN_WARNING "Can't find PMC that caused IRQ\n");
2464 
2465         /*
2466          * Reset MMCR0 to its normal value.  This will set PMXE and
2467          * clear FC (freeze counters) and PMAO (perf mon alert occurred)
2468          * and thus allow interrupts to occur again.
2469          * XXX might want to use MSR.PM to keep the events frozen until
2470          * we get back out of this interrupt.
2471          */
2472         write_mmcr0(cpuhw, cpuhw->mmcr.mmcr0);
2473 
2474         /* Clear the cpuhw->pmcs */
2475         memset(&cpuhw->pmcs, 0, sizeof(cpuhw->pmcs));
2476 
2477 }
2478 
2479 static void perf_event_interrupt(struct pt_regs *regs)
2480 {
2481         u64 start_clock = sched_clock();
2482 
2483         __perf_event_interrupt(regs);
2484         perf_sample_event_took(sched_clock() - start_clock);
2485 }
2486 
2487 static int power_pmu_prepare_cpu(unsigned int cpu)
2488 {
2489         struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
2490 
2491         if (ppmu) {
2492                 memset(cpuhw, 0, sizeof(*cpuhw));
2493                 cpuhw->mmcr.mmcr0 = MMCR0_FC;
2494         }
2495         return 0;
2496 }
2497 
2498 static ssize_t pmu_name_show(struct device *cdev,
2499                 struct device_attribute *attr,
2500                 char *buf)
2501 {
2502         if (ppmu)
2503                 return sysfs_emit(buf, "%s", ppmu->name);
2504 
2505         return 0;
2506 }
2507 
2508 static DEVICE_ATTR_RO(pmu_name);
2509 
2510 static struct attribute *pmu_caps_attrs[] = {
2511         &dev_attr_pmu_name.attr,
2512         NULL
2513 };
2514 
2515 static const struct attribute_group pmu_caps_group = {
2516         .name  = "caps",
2517         .attrs = pmu_caps_attrs,
2518 };
2519 
2520 static const struct attribute_group *pmu_caps_groups[] = {
2521         &pmu_caps_group,
2522         NULL,
2523 };
2524 
2525 int __init register_power_pmu(struct power_pmu *pmu)
2526 {
2527         if (ppmu)
2528                 return -EBUSY;          /* something's already registered */
2529 
2530         ppmu = pmu;
2531         pr_info("%s performance monitor hardware support registered\n",
2532                 pmu->name);
2533 
2534         power_pmu.attr_groups = ppmu->attr_groups;
2535 
2536         if (ppmu->flags & PPMU_ARCH_207S)
2537                 power_pmu.attr_update = pmu_caps_groups;
2538 
2539         power_pmu.capabilities |= (ppmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS);
2540 
2541 #ifdef MSR_HV
2542         /*
2543          * Use FCHV to ignore kernel events if MSR.HV is set.
2544          */
2545         if (mfmsr() & MSR_HV)
2546                 freeze_events_kernel = MMCR0_FCHV;
2547 #endif /* CONFIG_PPC64 */
2548 
2549         perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
2550         cpuhp_setup_state(CPUHP_PERF_POWER, "perf/powerpc:prepare",
2551                           power_pmu_prepare_cpu, NULL);
2552         return 0;
2553 }
2554 
2555 #ifdef CONFIG_PPC64
2556 static bool pmu_override = false;
2557 static unsigned long pmu_override_val;
2558 static void do_pmu_override(void *data)
2559 {
2560         ppc_set_pmu_inuse(1);
2561         if (pmu_override_val)
2562                 mtspr(SPRN_MMCR1, pmu_override_val);
2563         mtspr(SPRN_MMCR0, mfspr(SPRN_MMCR0) & ~MMCR0_FC);
2564 }
2565 
2566 static int __init init_ppc64_pmu(void)
2567 {
2568         if (cpu_has_feature(CPU_FTR_HVMODE) && pmu_override) {
2569                 pr_warn("disabling perf due to pmu_override= command line option.\n");
2570                 on_each_cpu(do_pmu_override, NULL, 1);
2571                 return 0;
2572         }
2573 
2574         /* run through all the pmu drivers one at a time */
2575         if (!init_power5_pmu())
2576                 return 0;
2577         else if (!init_power5p_pmu())
2578                 return 0;
2579         else if (!init_power6_pmu())
2580                 return 0;
2581         else if (!init_power7_pmu())
2582                 return 0;
2583         else if (!init_power8_pmu())
2584                 return 0;
2585         else if (!init_power9_pmu())
2586                 return 0;
2587         else if (!init_power10_pmu())
2588                 return 0;
2589         else if (!init_power11_pmu())
2590                 return 0;
2591         else if (!init_ppc970_pmu())
2592                 return 0;
2593         else
2594                 return init_generic_compat_pmu();
2595 }
2596 early_initcall(init_ppc64_pmu);
2597 
2598 static int __init pmu_setup(char *str)
2599 {
2600         unsigned long val;
2601 
2602         if (!early_cpu_has_feature(CPU_FTR_HVMODE))
2603                 return 0;
2604 
2605         pmu_override = true;
2606 
2607         if (kstrtoul(str, 0, &val))
2608                 val = 0;
2609 
2610         pmu_override_val = val;
2611 
2612         return 1;
2613 }
2614 __setup("pmu_override=", pmu_setup);
2615 
2616 #endif
2617 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php