1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * In-Memory Collection (IMC) Performance Monitor counter support. 4 * 5 * Copyright (C) 2017 Madhavan Srinivasan, IBM Corporation. 6 * (C) 2017 Anju T Sudhakar, IBM Corporation. 7 * (C) 2017 Hemant K Shaw, IBM Corporation. 8 */ 9 #include <linux/of.h> 10 #include <linux/perf_event.h> 11 #include <linux/slab.h> 12 #include <asm/opal.h> 13 #include <asm/imc-pmu.h> 14 #include <asm/cputhreads.h> 15 #include <asm/smp.h> 16 #include <linux/string.h> 17 #include <linux/spinlock.h> 18 19 /* Nest IMC data structures and variables */ 20 21 /* 22 * Used to avoid races in counting the nest-pmu units during hotplug 23 * register and unregister 24 */ 25 static DEFINE_MUTEX(nest_init_lock); 26 static DEFINE_PER_CPU(struct imc_pmu_ref *, local_nest_imc_refc); 27 static struct imc_pmu **per_nest_pmu_arr; 28 static cpumask_t nest_imc_cpumask; 29 static struct imc_pmu_ref *nest_imc_refc; 30 static int nest_pmus; 31 32 /* Core IMC data structures and variables */ 33 34 static cpumask_t core_imc_cpumask; 35 static struct imc_pmu_ref *core_imc_refc; 36 static struct imc_pmu *core_imc_pmu; 37 38 /* Thread IMC data structures and variables */ 39 40 static DEFINE_PER_CPU(u64 *, thread_imc_mem); 41 static struct imc_pmu *thread_imc_pmu; 42 static int thread_imc_mem_size; 43 44 /* Trace IMC data structures */ 45 static DEFINE_PER_CPU(u64 *, trace_imc_mem); 46 static struct imc_pmu_ref *trace_imc_refc; 47 static int trace_imc_mem_size; 48 49 /* 50 * Global data structure used to avoid races between thread, 51 * core and trace-imc 52 */ 53 static struct imc_pmu_ref imc_global_refc = { 54 .lock = __SPIN_LOCK_UNLOCKED(imc_global_refc.lock), 55 .id = 0, 56 .refc = 0, 57 }; 58 59 static struct imc_pmu *imc_event_to_pmu(struct perf_event *event) 60 { 61 return container_of(event->pmu, struct imc_pmu, pmu); 62 } 63 64 PMU_FORMAT_ATTR(event, "config:0-61"); 65 PMU_FORMAT_ATTR(offset, "config:0-31"); 66 PMU_FORMAT_ATTR(rvalue, "config:32"); 67 PMU_FORMAT_ATTR(mode, "config:33-40"); 68 static struct attribute *imc_format_attrs[] = { 69 &format_attr_event.attr, 70 &format_attr_offset.attr, 71 &format_attr_rvalue.attr, 72 &format_attr_mode.attr, 73 NULL, 74 }; 75 76 static const struct attribute_group imc_format_group = { 77 .name = "format", 78 .attrs = imc_format_attrs, 79 }; 80 81 /* Format attribute for imc trace-mode */ 82 PMU_FORMAT_ATTR(cpmc_reserved, "config:0-19"); 83 PMU_FORMAT_ATTR(cpmc_event, "config:20-27"); 84 PMU_FORMAT_ATTR(cpmc_samplesel, "config:28-29"); 85 PMU_FORMAT_ATTR(cpmc_load, "config:30-61"); 86 static struct attribute *trace_imc_format_attrs[] = { 87 &format_attr_event.attr, 88 &format_attr_cpmc_reserved.attr, 89 &format_attr_cpmc_event.attr, 90 &format_attr_cpmc_samplesel.attr, 91 &format_attr_cpmc_load.attr, 92 NULL, 93 }; 94 95 static const struct attribute_group trace_imc_format_group = { 96 .name = "format", 97 .attrs = trace_imc_format_attrs, 98 }; 99 100 /* Get the cpumask printed to a buffer "buf" */ 101 static ssize_t imc_pmu_cpumask_get_attr(struct device *dev, 102 struct device_attribute *attr, 103 char *buf) 104 { 105 struct pmu *pmu = dev_get_drvdata(dev); 106 struct imc_pmu *imc_pmu = container_of(pmu, struct imc_pmu, pmu); 107 cpumask_t *active_mask; 108 109 switch(imc_pmu->domain){ 110 case IMC_DOMAIN_NEST: 111 active_mask = &nest_imc_cpumask; 112 break; 113 case IMC_DOMAIN_CORE: 114 active_mask = &core_imc_cpumask; 115 break; 116 default: 117 return 0; 118 } 119 120 return cpumap_print_to_pagebuf(true, buf, active_mask); 121 } 122 123 static DEVICE_ATTR(cpumask, S_IRUGO, imc_pmu_cpumask_get_attr, NULL); 124 125 static struct attribute *imc_pmu_cpumask_attrs[] = { 126 &dev_attr_cpumask.attr, 127 NULL, 128 }; 129 130 static const struct attribute_group imc_pmu_cpumask_attr_group = { 131 .attrs = imc_pmu_cpumask_attrs, 132 }; 133 134 /* device_str_attr_create : Populate event "name" and string "str" in attribute */ 135 static struct attribute *device_str_attr_create(const char *name, const char *str) 136 { 137 struct perf_pmu_events_attr *attr; 138 139 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 140 if (!attr) 141 return NULL; 142 sysfs_attr_init(&attr->attr.attr); 143 144 attr->event_str = str; 145 attr->attr.attr.name = name; 146 attr->attr.attr.mode = 0444; 147 attr->attr.show = perf_event_sysfs_show; 148 149 return &attr->attr.attr; 150 } 151 152 static int imc_parse_event(struct device_node *np, const char *scale, 153 const char *unit, const char *prefix, 154 u32 base, struct imc_events *event) 155 { 156 const char *s; 157 u32 reg; 158 159 if (of_property_read_u32(np, "reg", ®)) 160 goto error; 161 /* Add the base_reg value to the "reg" */ 162 event->value = base + reg; 163 164 if (of_property_read_string(np, "event-name", &s)) 165 goto error; 166 167 event->name = kasprintf(GFP_KERNEL, "%s%s", prefix, s); 168 if (!event->name) 169 goto error; 170 171 if (of_property_read_string(np, "scale", &s)) 172 s = scale; 173 174 if (s) { 175 event->scale = kstrdup(s, GFP_KERNEL); 176 if (!event->scale) 177 goto error; 178 } 179 180 if (of_property_read_string(np, "unit", &s)) 181 s = unit; 182 183 if (s) { 184 event->unit = kstrdup(s, GFP_KERNEL); 185 if (!event->unit) 186 goto error; 187 } 188 189 return 0; 190 error: 191 kfree(event->unit); 192 kfree(event->scale); 193 kfree(event->name); 194 return -EINVAL; 195 } 196 197 /* 198 * imc_free_events: Function to cleanup the events list, having 199 * "nr_entries". 200 */ 201 static void imc_free_events(struct imc_events *events, int nr_entries) 202 { 203 int i; 204 205 /* Nothing to clean, return */ 206 if (!events) 207 return; 208 for (i = 0; i < nr_entries; i++) { 209 kfree(events[i].unit); 210 kfree(events[i].scale); 211 kfree(events[i].name); 212 } 213 214 kfree(events); 215 } 216 217 /* 218 * update_events_in_group: Update the "events" information in an attr_group 219 * and assign the attr_group to the pmu "pmu". 220 */ 221 static int update_events_in_group(struct device_node *node, struct imc_pmu *pmu) 222 { 223 struct attribute_group *attr_group; 224 struct attribute **attrs, *dev_str; 225 struct device_node *np, *pmu_events; 226 u32 handle, base_reg; 227 int i = 0, j = 0, ct, ret; 228 const char *prefix, *g_scale, *g_unit; 229 const char *ev_val_str, *ev_scale_str, *ev_unit_str; 230 231 if (!of_property_read_u32(node, "events", &handle)) 232 pmu_events = of_find_node_by_phandle(handle); 233 else 234 return 0; 235 236 /* Did not find any node with a given phandle */ 237 if (!pmu_events) 238 return 0; 239 240 /* Get a count of number of child nodes */ 241 ct = of_get_child_count(pmu_events); 242 243 /* Get the event prefix */ 244 if (of_property_read_string(node, "events-prefix", &prefix)) { 245 of_node_put(pmu_events); 246 return 0; 247 } 248 249 /* Get a global unit and scale data if available */ 250 if (of_property_read_string(node, "scale", &g_scale)) 251 g_scale = NULL; 252 253 if (of_property_read_string(node, "unit", &g_unit)) 254 g_unit = NULL; 255 256 /* "reg" property gives out the base offset of the counters data */ 257 of_property_read_u32(node, "reg", &base_reg); 258 259 /* Allocate memory for the events */ 260 pmu->events = kcalloc(ct, sizeof(struct imc_events), GFP_KERNEL); 261 if (!pmu->events) { 262 of_node_put(pmu_events); 263 return -ENOMEM; 264 } 265 266 ct = 0; 267 /* Parse the events and update the struct */ 268 for_each_child_of_node(pmu_events, np) { 269 ret = imc_parse_event(np, g_scale, g_unit, prefix, base_reg, &pmu->events[ct]); 270 if (!ret) 271 ct++; 272 } 273 274 of_node_put(pmu_events); 275 276 /* Allocate memory for attribute group */ 277 attr_group = kzalloc(sizeof(*attr_group), GFP_KERNEL); 278 if (!attr_group) { 279 imc_free_events(pmu->events, ct); 280 return -ENOMEM; 281 } 282 283 /* 284 * Allocate memory for attributes. 285 * Since we have count of events for this pmu, we also allocate 286 * memory for the scale and unit attribute for now. 287 * "ct" has the total event structs added from the events-parent node. 288 * So allocate three times the "ct" (this includes event, event_scale and 289 * event_unit). 290 */ 291 attrs = kcalloc(((ct * 3) + 1), sizeof(struct attribute *), GFP_KERNEL); 292 if (!attrs) { 293 kfree(attr_group); 294 imc_free_events(pmu->events, ct); 295 return -ENOMEM; 296 } 297 298 attr_group->name = "events"; 299 attr_group->attrs = attrs; 300 do { 301 ev_val_str = kasprintf(GFP_KERNEL, "event=0x%x", pmu->events[i].value); 302 if (!ev_val_str) 303 continue; 304 dev_str = device_str_attr_create(pmu->events[i].name, ev_val_str); 305 if (!dev_str) 306 continue; 307 308 attrs[j++] = dev_str; 309 if (pmu->events[i].scale) { 310 ev_scale_str = kasprintf(GFP_KERNEL, "%s.scale", pmu->events[i].name); 311 if (!ev_scale_str) 312 continue; 313 dev_str = device_str_attr_create(ev_scale_str, pmu->events[i].scale); 314 if (!dev_str) 315 continue; 316 317 attrs[j++] = dev_str; 318 } 319 320 if (pmu->events[i].unit) { 321 ev_unit_str = kasprintf(GFP_KERNEL, "%s.unit", pmu->events[i].name); 322 if (!ev_unit_str) 323 continue; 324 dev_str = device_str_attr_create(ev_unit_str, pmu->events[i].unit); 325 if (!dev_str) 326 continue; 327 328 attrs[j++] = dev_str; 329 } 330 } while (++i < ct); 331 332 /* Save the event attribute */ 333 pmu->attr_groups[IMC_EVENT_ATTR] = attr_group; 334 335 return 0; 336 } 337 338 /* get_nest_pmu_ref: Return the imc_pmu_ref struct for the given node */ 339 static struct imc_pmu_ref *get_nest_pmu_ref(int cpu) 340 { 341 return per_cpu(local_nest_imc_refc, cpu); 342 } 343 344 static void nest_change_cpu_context(int old_cpu, int new_cpu) 345 { 346 struct imc_pmu **pn = per_nest_pmu_arr; 347 348 if (old_cpu < 0 || new_cpu < 0) 349 return; 350 351 while (*pn) { 352 perf_pmu_migrate_context(&(*pn)->pmu, old_cpu, new_cpu); 353 pn++; 354 } 355 } 356 357 static int ppc_nest_imc_cpu_offline(unsigned int cpu) 358 { 359 int nid, target = -1; 360 const struct cpumask *l_cpumask; 361 struct imc_pmu_ref *ref; 362 363 /* 364 * Check in the designated list for this cpu. Dont bother 365 * if not one of them. 366 */ 367 if (!cpumask_test_and_clear_cpu(cpu, &nest_imc_cpumask)) 368 return 0; 369 370 /* 371 * Check whether nest_imc is registered. We could end up here if the 372 * cpuhotplug callback registration fails. i.e, callback invokes the 373 * offline path for all successfully registered nodes. At this stage, 374 * nest_imc pmu will not be registered and we should return here. 375 * 376 * We return with a zero since this is not an offline failure. And 377 * cpuhp_setup_state() returns the actual failure reason to the caller, 378 * which in turn will call the cleanup routine. 379 */ 380 if (!nest_pmus) 381 return 0; 382 383 /* 384 * Now that this cpu is one of the designated, 385 * find a next cpu a) which is online and b) in same chip. 386 */ 387 nid = cpu_to_node(cpu); 388 l_cpumask = cpumask_of_node(nid); 389 target = cpumask_last(l_cpumask); 390 391 /* 392 * If this(target) is the last cpu in the cpumask for this chip, 393 * check for any possible online cpu in the chip. 394 */ 395 if (unlikely(target == cpu)) 396 target = cpumask_any_but(l_cpumask, cpu); 397 398 /* 399 * Update the cpumask with the target cpu and 400 * migrate the context if needed 401 */ 402 if (target >= 0 && target < nr_cpu_ids) { 403 cpumask_set_cpu(target, &nest_imc_cpumask); 404 nest_change_cpu_context(cpu, target); 405 } else { 406 opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST, 407 get_hard_smp_processor_id(cpu)); 408 /* 409 * If this is the last cpu in this chip then, skip the reference 410 * count lock and make the reference count on this chip zero. 411 */ 412 ref = get_nest_pmu_ref(cpu); 413 if (!ref) 414 return -EINVAL; 415 416 ref->refc = 0; 417 } 418 return 0; 419 } 420 421 static int ppc_nest_imc_cpu_online(unsigned int cpu) 422 { 423 const struct cpumask *l_cpumask; 424 static struct cpumask tmp_mask; 425 int res; 426 427 /* Get the cpumask of this node */ 428 l_cpumask = cpumask_of_node(cpu_to_node(cpu)); 429 430 /* 431 * If this is not the first online CPU on this node, then 432 * just return. 433 */ 434 if (cpumask_and(&tmp_mask, l_cpumask, &nest_imc_cpumask)) 435 return 0; 436 437 /* 438 * If this is the first online cpu on this node 439 * disable the nest counters by making an OPAL call. 440 */ 441 res = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST, 442 get_hard_smp_processor_id(cpu)); 443 if (res) 444 return res; 445 446 /* Make this CPU the designated target for counter collection */ 447 cpumask_set_cpu(cpu, &nest_imc_cpumask); 448 return 0; 449 } 450 451 static int nest_pmu_cpumask_init(void) 452 { 453 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE, 454 "perf/powerpc/imc:online", 455 ppc_nest_imc_cpu_online, 456 ppc_nest_imc_cpu_offline); 457 } 458 459 static void nest_imc_counters_release(struct perf_event *event) 460 { 461 int rc, node_id; 462 struct imc_pmu_ref *ref; 463 464 if (event->cpu < 0) 465 return; 466 467 node_id = cpu_to_node(event->cpu); 468 469 /* 470 * See if we need to disable the nest PMU. 471 * If no events are currently in use, then we have to take a 472 * lock to ensure that we don't race with another task doing 473 * enable or disable the nest counters. 474 */ 475 ref = get_nest_pmu_ref(event->cpu); 476 if (!ref) 477 return; 478 479 /* Take the lock for this node and then decrement the reference count */ 480 spin_lock(&ref->lock); 481 if (ref->refc == 0) { 482 /* 483 * The scenario where this is true is, when perf session is 484 * started, followed by offlining of all cpus in a given node. 485 * 486 * In the cpuhotplug offline path, ppc_nest_imc_cpu_offline() 487 * function set the ref->count to zero, if the cpu which is 488 * about to offline is the last cpu in a given node and make 489 * an OPAL call to disable the engine in that node. 490 * 491 */ 492 spin_unlock(&ref->lock); 493 return; 494 } 495 ref->refc--; 496 if (ref->refc == 0) { 497 rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST, 498 get_hard_smp_processor_id(event->cpu)); 499 if (rc) { 500 spin_unlock(&ref->lock); 501 pr_err("nest-imc: Unable to stop the counters for core %d\n", node_id); 502 return; 503 } 504 } else if (ref->refc < 0) { 505 WARN(1, "nest-imc: Invalid event reference count\n"); 506 ref->refc = 0; 507 } 508 spin_unlock(&ref->lock); 509 } 510 511 static int nest_imc_event_init(struct perf_event *event) 512 { 513 int chip_id, rc, node_id; 514 u32 l_config, config = event->attr.config; 515 struct imc_mem_info *pcni; 516 struct imc_pmu *pmu; 517 struct imc_pmu_ref *ref; 518 bool flag = false; 519 520 if (event->attr.type != event->pmu->type) 521 return -ENOENT; 522 523 /* Sampling not supported */ 524 if (event->hw.sample_period) 525 return -EINVAL; 526 527 if (event->cpu < 0) 528 return -EINVAL; 529 530 pmu = imc_event_to_pmu(event); 531 532 /* Sanity check for config (event offset) */ 533 if ((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size) 534 return -EINVAL; 535 536 /* 537 * Nest HW counter memory resides in a per-chip reserve-memory (HOMER). 538 * Get the base memory address for this cpu. 539 */ 540 chip_id = cpu_to_chip_id(event->cpu); 541 542 /* Return, if chip_id is not valid */ 543 if (chip_id < 0) 544 return -ENODEV; 545 546 pcni = pmu->mem_info; 547 do { 548 if (pcni->id == chip_id) { 549 flag = true; 550 break; 551 } 552 pcni++; 553 } while (pcni->vbase); 554 555 if (!flag) 556 return -ENODEV; 557 558 /* 559 * Add the event offset to the base address. 560 */ 561 l_config = config & IMC_EVENT_OFFSET_MASK; 562 event->hw.event_base = (u64)pcni->vbase + l_config; 563 node_id = cpu_to_node(event->cpu); 564 565 /* 566 * Get the imc_pmu_ref struct for this node. 567 * Take the lock and then increment the count of nest pmu events inited. 568 */ 569 ref = get_nest_pmu_ref(event->cpu); 570 if (!ref) 571 return -EINVAL; 572 573 spin_lock(&ref->lock); 574 if (ref->refc == 0) { 575 rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_NEST, 576 get_hard_smp_processor_id(event->cpu)); 577 if (rc) { 578 spin_unlock(&ref->lock); 579 pr_err("nest-imc: Unable to start the counters for node %d\n", 580 node_id); 581 return rc; 582 } 583 } 584 ++ref->refc; 585 spin_unlock(&ref->lock); 586 587 event->destroy = nest_imc_counters_release; 588 return 0; 589 } 590 591 /* 592 * core_imc_mem_init : Initializes memory for the current core. 593 * 594 * Uses alloc_pages_node() and uses the returned address as an argument to 595 * an opal call to configure the pdbar. The address sent as an argument is 596 * converted to physical address before the opal call is made. This is the 597 * base address at which the core imc counters are populated. 598 */ 599 static int core_imc_mem_init(int cpu, int size) 600 { 601 int nid, rc = 0, core_id = (cpu / threads_per_core); 602 struct imc_mem_info *mem_info; 603 struct page *page; 604 605 /* 606 * alloc_pages_node() will allocate memory for core in the 607 * local node only. 608 */ 609 nid = cpu_to_node(cpu); 610 mem_info = &core_imc_pmu->mem_info[core_id]; 611 mem_info->id = core_id; 612 613 /* We need only vbase for core counters */ 614 page = alloc_pages_node(nid, 615 GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE | 616 __GFP_NOWARN, get_order(size)); 617 if (!page) 618 return -ENOMEM; 619 mem_info->vbase = page_address(page); 620 621 core_imc_refc[core_id].id = core_id; 622 spin_lock_init(&core_imc_refc[core_id].lock); 623 624 rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_CORE, 625 __pa((void *)mem_info->vbase), 626 get_hard_smp_processor_id(cpu)); 627 if (rc) { 628 free_pages((u64)mem_info->vbase, get_order(size)); 629 mem_info->vbase = NULL; 630 } 631 632 return rc; 633 } 634 635 static bool is_core_imc_mem_inited(int cpu) 636 { 637 struct imc_mem_info *mem_info; 638 int core_id = (cpu / threads_per_core); 639 640 mem_info = &core_imc_pmu->mem_info[core_id]; 641 if (!mem_info->vbase) 642 return false; 643 644 return true; 645 } 646 647 static int ppc_core_imc_cpu_online(unsigned int cpu) 648 { 649 const struct cpumask *l_cpumask; 650 static struct cpumask tmp_mask; 651 int ret = 0; 652 653 /* Get the cpumask for this core */ 654 l_cpumask = cpu_sibling_mask(cpu); 655 656 /* If a cpu for this core is already set, then, don't do anything */ 657 if (cpumask_and(&tmp_mask, l_cpumask, &core_imc_cpumask)) 658 return 0; 659 660 if (!is_core_imc_mem_inited(cpu)) { 661 ret = core_imc_mem_init(cpu, core_imc_pmu->counter_mem_size); 662 if (ret) { 663 pr_info("core_imc memory allocation for cpu %d failed\n", cpu); 664 return ret; 665 } 666 } 667 668 /* set the cpu in the mask */ 669 cpumask_set_cpu(cpu, &core_imc_cpumask); 670 return 0; 671 } 672 673 static int ppc_core_imc_cpu_offline(unsigned int cpu) 674 { 675 unsigned int core_id; 676 int ncpu; 677 struct imc_pmu_ref *ref; 678 679 /* 680 * clear this cpu out of the mask, if not present in the mask, 681 * don't bother doing anything. 682 */ 683 if (!cpumask_test_and_clear_cpu(cpu, &core_imc_cpumask)) 684 return 0; 685 686 /* 687 * Check whether core_imc is registered. We could end up here 688 * if the cpuhotplug callback registration fails. i.e, callback 689 * invokes the offline path for all successfully registered cpus. 690 * At this stage, core_imc pmu will not be registered and we 691 * should return here. 692 * 693 * We return with a zero since this is not an offline failure. 694 * And cpuhp_setup_state() returns the actual failure reason 695 * to the caller, which inturn will call the cleanup routine. 696 */ 697 if (!core_imc_pmu->pmu.event_init) 698 return 0; 699 700 /* Find any online cpu in that core except the current "cpu" */ 701 ncpu = cpumask_last(cpu_sibling_mask(cpu)); 702 703 if (unlikely(ncpu == cpu)) 704 ncpu = cpumask_any_but(cpu_sibling_mask(cpu), cpu); 705 706 if (ncpu >= 0 && ncpu < nr_cpu_ids) { 707 cpumask_set_cpu(ncpu, &core_imc_cpumask); 708 perf_pmu_migrate_context(&core_imc_pmu->pmu, cpu, ncpu); 709 } else { 710 /* 711 * If this is the last cpu in this core then skip taking reference 712 * count lock for this core and directly zero "refc" for this core. 713 */ 714 opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE, 715 get_hard_smp_processor_id(cpu)); 716 core_id = cpu / threads_per_core; 717 ref = &core_imc_refc[core_id]; 718 if (!ref) 719 return -EINVAL; 720 721 ref->refc = 0; 722 /* 723 * Reduce the global reference count, if this is the 724 * last cpu in this core and core-imc event running 725 * in this cpu. 726 */ 727 spin_lock(&imc_global_refc.lock); 728 if (imc_global_refc.id == IMC_DOMAIN_CORE) 729 imc_global_refc.refc--; 730 731 spin_unlock(&imc_global_refc.lock); 732 } 733 return 0; 734 } 735 736 static int core_imc_pmu_cpumask_init(void) 737 { 738 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE, 739 "perf/powerpc/imc_core:online", 740 ppc_core_imc_cpu_online, 741 ppc_core_imc_cpu_offline); 742 } 743 744 static void reset_global_refc(struct perf_event *event) 745 { 746 spin_lock(&imc_global_refc.lock); 747 imc_global_refc.refc--; 748 749 /* 750 * If no other thread is running any 751 * event for this domain(thread/core/trace), 752 * set the global id to zero. 753 */ 754 if (imc_global_refc.refc <= 0) { 755 imc_global_refc.refc = 0; 756 imc_global_refc.id = 0; 757 } 758 spin_unlock(&imc_global_refc.lock); 759 } 760 761 static void core_imc_counters_release(struct perf_event *event) 762 { 763 int rc, core_id; 764 struct imc_pmu_ref *ref; 765 766 if (event->cpu < 0) 767 return; 768 /* 769 * See if we need to disable the IMC PMU. 770 * If no events are currently in use, then we have to take a 771 * lock to ensure that we don't race with another task doing 772 * enable or disable the core counters. 773 */ 774 core_id = event->cpu / threads_per_core; 775 776 /* Take the lock and decrement the refernce count for this core */ 777 ref = &core_imc_refc[core_id]; 778 if (!ref) 779 return; 780 781 spin_lock(&ref->lock); 782 if (ref->refc == 0) { 783 /* 784 * The scenario where this is true is, when perf session is 785 * started, followed by offlining of all cpus in a given core. 786 * 787 * In the cpuhotplug offline path, ppc_core_imc_cpu_offline() 788 * function set the ref->count to zero, if the cpu which is 789 * about to offline is the last cpu in a given core and make 790 * an OPAL call to disable the engine in that core. 791 * 792 */ 793 spin_unlock(&ref->lock); 794 return; 795 } 796 ref->refc--; 797 if (ref->refc == 0) { 798 rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE, 799 get_hard_smp_processor_id(event->cpu)); 800 if (rc) { 801 spin_unlock(&ref->lock); 802 pr_err("IMC: Unable to stop the counters for core %d\n", core_id); 803 return; 804 } 805 } else if (ref->refc < 0) { 806 WARN(1, "core-imc: Invalid event reference count\n"); 807 ref->refc = 0; 808 } 809 spin_unlock(&ref->lock); 810 811 reset_global_refc(event); 812 } 813 814 static int core_imc_event_init(struct perf_event *event) 815 { 816 int core_id, rc; 817 u64 config = event->attr.config; 818 struct imc_mem_info *pcmi; 819 struct imc_pmu *pmu; 820 struct imc_pmu_ref *ref; 821 822 if (event->attr.type != event->pmu->type) 823 return -ENOENT; 824 825 /* Sampling not supported */ 826 if (event->hw.sample_period) 827 return -EINVAL; 828 829 if (event->cpu < 0) 830 return -EINVAL; 831 832 event->hw.idx = -1; 833 pmu = imc_event_to_pmu(event); 834 835 /* Sanity check for config (event offset) */ 836 if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size)) 837 return -EINVAL; 838 839 if (!is_core_imc_mem_inited(event->cpu)) 840 return -ENODEV; 841 842 core_id = event->cpu / threads_per_core; 843 pcmi = &core_imc_pmu->mem_info[core_id]; 844 if ((!pcmi->vbase)) 845 return -ENODEV; 846 847 ref = &core_imc_refc[core_id]; 848 if (!ref) 849 return -EINVAL; 850 851 /* 852 * Core pmu units are enabled only when it is used. 853 * See if this is triggered for the first time. 854 * If yes, take the lock and enable the core counters. 855 * If not, just increment the count in core_imc_refc struct. 856 */ 857 spin_lock(&ref->lock); 858 if (ref->refc == 0) { 859 rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE, 860 get_hard_smp_processor_id(event->cpu)); 861 if (rc) { 862 spin_unlock(&ref->lock); 863 pr_err("core-imc: Unable to start the counters for core %d\n", 864 core_id); 865 return rc; 866 } 867 } 868 ++ref->refc; 869 spin_unlock(&ref->lock); 870 871 /* 872 * Since the system can run either in accumulation or trace-mode 873 * of IMC at a time, core-imc events are allowed only if no other 874 * trace/thread imc events are enabled/monitored. 875 * 876 * Take the global lock, and check the refc.id 877 * to know whether any other trace/thread imc 878 * events are running. 879 */ 880 spin_lock(&imc_global_refc.lock); 881 if (imc_global_refc.id == 0 || imc_global_refc.id == IMC_DOMAIN_CORE) { 882 /* 883 * No other trace/thread imc events are running in 884 * the system, so set the refc.id to core-imc. 885 */ 886 imc_global_refc.id = IMC_DOMAIN_CORE; 887 imc_global_refc.refc++; 888 } else { 889 spin_unlock(&imc_global_refc.lock); 890 return -EBUSY; 891 } 892 spin_unlock(&imc_global_refc.lock); 893 894 event->hw.event_base = (u64)pcmi->vbase + (config & IMC_EVENT_OFFSET_MASK); 895 event->destroy = core_imc_counters_release; 896 return 0; 897 } 898 899 /* 900 * Allocates a page of memory for each of the online cpus, and load 901 * LDBAR with 0. 902 * The physical base address of the page allocated for a cpu will be 903 * written to the LDBAR for that cpu, when the thread-imc event 904 * is added. 905 * 906 * LDBAR Register Layout: 907 * 908 * 0 4 8 12 16 20 24 28 909 * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | 910 * | | [ ] [ Counter Address [8:50] 911 * | * Mode | 912 * | * PB Scope 913 * * Enable/Disable 914 * 915 * 32 36 40 44 48 52 56 60 916 * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | 917 * Counter Address [8:50] ] 918 * 919 */ 920 static int thread_imc_mem_alloc(int cpu_id, int size) 921 { 922 u64 *local_mem = per_cpu(thread_imc_mem, cpu_id); 923 int nid = cpu_to_node(cpu_id); 924 925 if (!local_mem) { 926 struct page *page; 927 /* 928 * This case could happen only once at start, since we dont 929 * free the memory in cpu offline path. 930 */ 931 page = alloc_pages_node(nid, 932 GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE | 933 __GFP_NOWARN, get_order(size)); 934 if (!page) 935 return -ENOMEM; 936 local_mem = page_address(page); 937 938 per_cpu(thread_imc_mem, cpu_id) = local_mem; 939 } 940 941 mtspr(SPRN_LDBAR, 0); 942 return 0; 943 } 944 945 static int ppc_thread_imc_cpu_online(unsigned int cpu) 946 { 947 return thread_imc_mem_alloc(cpu, thread_imc_mem_size); 948 } 949 950 static int ppc_thread_imc_cpu_offline(unsigned int cpu) 951 { 952 /* 953 * Set the bit 0 of LDBAR to zero. 954 * 955 * If bit 0 of LDBAR is unset, it will stop posting 956 * the counter data to memory. 957 * For thread-imc, bit 0 of LDBAR will be set to 1 in the 958 * event_add function. So reset this bit here, to stop the updates 959 * to memory in the cpu_offline path. 960 */ 961 mtspr(SPRN_LDBAR, (mfspr(SPRN_LDBAR) & (~(1UL << 63)))); 962 963 /* Reduce the refc if thread-imc event running on this cpu */ 964 spin_lock(&imc_global_refc.lock); 965 if (imc_global_refc.id == IMC_DOMAIN_THREAD) 966 imc_global_refc.refc--; 967 spin_unlock(&imc_global_refc.lock); 968 969 return 0; 970 } 971 972 static int thread_imc_cpu_init(void) 973 { 974 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE, 975 "perf/powerpc/imc_thread:online", 976 ppc_thread_imc_cpu_online, 977 ppc_thread_imc_cpu_offline); 978 } 979 980 static int thread_imc_event_init(struct perf_event *event) 981 { 982 u32 config = event->attr.config; 983 struct task_struct *target; 984 struct imc_pmu *pmu; 985 986 if (event->attr.type != event->pmu->type) 987 return -ENOENT; 988 989 if (!perfmon_capable()) 990 return -EACCES; 991 992 /* Sampling not supported */ 993 if (event->hw.sample_period) 994 return -EINVAL; 995 996 event->hw.idx = -1; 997 pmu = imc_event_to_pmu(event); 998 999 /* Sanity check for config offset */ 1000 if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size)) 1001 return -EINVAL; 1002 1003 target = event->hw.target; 1004 if (!target) 1005 return -EINVAL; 1006 1007 spin_lock(&imc_global_refc.lock); 1008 /* 1009 * Check if any other trace/core imc events are running in the 1010 * system, if not set the global id to thread-imc. 1011 */ 1012 if (imc_global_refc.id == 0 || imc_global_refc.id == IMC_DOMAIN_THREAD) { 1013 imc_global_refc.id = IMC_DOMAIN_THREAD; 1014 imc_global_refc.refc++; 1015 } else { 1016 spin_unlock(&imc_global_refc.lock); 1017 return -EBUSY; 1018 } 1019 spin_unlock(&imc_global_refc.lock); 1020 1021 event->pmu->task_ctx_nr = perf_sw_context; 1022 event->destroy = reset_global_refc; 1023 return 0; 1024 } 1025 1026 static bool is_thread_imc_pmu(struct perf_event *event) 1027 { 1028 if (!strncmp(event->pmu->name, "thread_imc", strlen("thread_imc"))) 1029 return true; 1030 1031 return false; 1032 } 1033 1034 static __be64 *get_event_base_addr(struct perf_event *event) 1035 { 1036 u64 addr; 1037 1038 if (is_thread_imc_pmu(event)) { 1039 addr = (u64)per_cpu(thread_imc_mem, smp_processor_id()); 1040 return (__be64 *)(addr + (event->attr.config & IMC_EVENT_OFFSET_MASK)); 1041 } 1042 1043 return (__be64 *)event->hw.event_base; 1044 } 1045 1046 static void thread_imc_pmu_start_txn(struct pmu *pmu, 1047 unsigned int txn_flags) 1048 { 1049 if (txn_flags & ~PERF_PMU_TXN_ADD) 1050 return; 1051 perf_pmu_disable(pmu); 1052 } 1053 1054 static void thread_imc_pmu_cancel_txn(struct pmu *pmu) 1055 { 1056 perf_pmu_enable(pmu); 1057 } 1058 1059 static int thread_imc_pmu_commit_txn(struct pmu *pmu) 1060 { 1061 perf_pmu_enable(pmu); 1062 return 0; 1063 } 1064 1065 static u64 imc_read_counter(struct perf_event *event) 1066 { 1067 __be64 *addr; 1068 u64 data; 1069 1070 /* 1071 * In-Memory Collection (IMC) counters are free flowing counters. 1072 * So we take a snapshot of the counter value on enable and save it 1073 * to calculate the delta at later stage to present the event counter 1074 * value. 1075 */ 1076 addr = get_event_base_addr(event); 1077 data = be64_to_cpu(READ_ONCE(*addr)); 1078 local64_set(&event->hw.prev_count, data); 1079 1080 return data; 1081 } 1082 1083 static void imc_event_update(struct perf_event *event) 1084 { 1085 u64 counter_prev, counter_new, final_count; 1086 1087 counter_prev = local64_read(&event->hw.prev_count); 1088 counter_new = imc_read_counter(event); 1089 final_count = counter_new - counter_prev; 1090 1091 /* Update the delta to the event count */ 1092 local64_add(final_count, &event->count); 1093 } 1094 1095 static void imc_event_start(struct perf_event *event, int flags) 1096 { 1097 /* 1098 * In Memory Counters are free flowing counters. HW or the microcode 1099 * keeps adding to the counter offset in memory. To get event 1100 * counter value, we snapshot the value here and we calculate 1101 * delta at later point. 1102 */ 1103 imc_read_counter(event); 1104 } 1105 1106 static void imc_event_stop(struct perf_event *event, int flags) 1107 { 1108 /* 1109 * Take a snapshot and calculate the delta and update 1110 * the event counter values. 1111 */ 1112 imc_event_update(event); 1113 } 1114 1115 static int imc_event_add(struct perf_event *event, int flags) 1116 { 1117 if (flags & PERF_EF_START) 1118 imc_event_start(event, flags); 1119 1120 return 0; 1121 } 1122 1123 static int thread_imc_event_add(struct perf_event *event, int flags) 1124 { 1125 int core_id; 1126 struct imc_pmu_ref *ref; 1127 u64 ldbar_value, *local_mem = per_cpu(thread_imc_mem, smp_processor_id()); 1128 1129 if (flags & PERF_EF_START) 1130 imc_event_start(event, flags); 1131 1132 if (!is_core_imc_mem_inited(smp_processor_id())) 1133 return -EINVAL; 1134 1135 core_id = smp_processor_id() / threads_per_core; 1136 ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | THREAD_IMC_ENABLE; 1137 mtspr(SPRN_LDBAR, ldbar_value); 1138 1139 /* 1140 * imc pmus are enabled only when it is used. 1141 * See if this is triggered for the first time. 1142 * If yes, take the lock and enable the counters. 1143 * If not, just increment the count in ref count struct. 1144 */ 1145 ref = &core_imc_refc[core_id]; 1146 if (!ref) 1147 return -EINVAL; 1148 1149 spin_lock(&ref->lock); 1150 if (ref->refc == 0) { 1151 if (opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE, 1152 get_hard_smp_processor_id(smp_processor_id()))) { 1153 spin_unlock(&ref->lock); 1154 pr_err("thread-imc: Unable to start the counter\ 1155 for core %d\n", core_id); 1156 return -EINVAL; 1157 } 1158 } 1159 ++ref->refc; 1160 spin_unlock(&ref->lock); 1161 return 0; 1162 } 1163 1164 static void thread_imc_event_del(struct perf_event *event, int flags) 1165 { 1166 1167 int core_id; 1168 struct imc_pmu_ref *ref; 1169 1170 core_id = smp_processor_id() / threads_per_core; 1171 ref = &core_imc_refc[core_id]; 1172 if (!ref) { 1173 pr_debug("imc: Failed to get event reference count\n"); 1174 return; 1175 } 1176 1177 spin_lock(&ref->lock); 1178 ref->refc--; 1179 if (ref->refc == 0) { 1180 if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE, 1181 get_hard_smp_processor_id(smp_processor_id()))) { 1182 spin_unlock(&ref->lock); 1183 pr_err("thread-imc: Unable to stop the counters\ 1184 for core %d\n", core_id); 1185 return; 1186 } 1187 } else if (ref->refc < 0) { 1188 ref->refc = 0; 1189 } 1190 spin_unlock(&ref->lock); 1191 1192 /* Set bit 0 of LDBAR to zero, to stop posting updates to memory */ 1193 mtspr(SPRN_LDBAR, (mfspr(SPRN_LDBAR) & (~(1UL << 63)))); 1194 1195 /* 1196 * Take a snapshot and calculate the delta and update 1197 * the event counter values. 1198 */ 1199 imc_event_update(event); 1200 } 1201 1202 /* 1203 * Allocate a page of memory for each cpu, and load LDBAR with 0. 1204 */ 1205 static int trace_imc_mem_alloc(int cpu_id, int size) 1206 { 1207 u64 *local_mem = per_cpu(trace_imc_mem, cpu_id); 1208 int phys_id = cpu_to_node(cpu_id), rc = 0; 1209 int core_id = (cpu_id / threads_per_core); 1210 1211 if (!local_mem) { 1212 struct page *page; 1213 1214 page = alloc_pages_node(phys_id, 1215 GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE | 1216 __GFP_NOWARN, get_order(size)); 1217 if (!page) 1218 return -ENOMEM; 1219 local_mem = page_address(page); 1220 per_cpu(trace_imc_mem, cpu_id) = local_mem; 1221 1222 /* Initialise the counters for trace mode */ 1223 rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_TRACE, __pa((void *)local_mem), 1224 get_hard_smp_processor_id(cpu_id)); 1225 if (rc) { 1226 pr_info("IMC:opal init failed for trace imc\n"); 1227 return rc; 1228 } 1229 } 1230 1231 trace_imc_refc[core_id].id = core_id; 1232 spin_lock_init(&trace_imc_refc[core_id].lock); 1233 1234 mtspr(SPRN_LDBAR, 0); 1235 return 0; 1236 } 1237 1238 static int ppc_trace_imc_cpu_online(unsigned int cpu) 1239 { 1240 return trace_imc_mem_alloc(cpu, trace_imc_mem_size); 1241 } 1242 1243 static int ppc_trace_imc_cpu_offline(unsigned int cpu) 1244 { 1245 /* 1246 * No need to set bit 0 of LDBAR to zero, as 1247 * it is set to zero for imc trace-mode 1248 * 1249 * Reduce the refc if any trace-imc event running 1250 * on this cpu. 1251 */ 1252 spin_lock(&imc_global_refc.lock); 1253 if (imc_global_refc.id == IMC_DOMAIN_TRACE) 1254 imc_global_refc.refc--; 1255 spin_unlock(&imc_global_refc.lock); 1256 1257 return 0; 1258 } 1259 1260 static int trace_imc_cpu_init(void) 1261 { 1262 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_TRACE_IMC_ONLINE, 1263 "perf/powerpc/imc_trace:online", 1264 ppc_trace_imc_cpu_online, 1265 ppc_trace_imc_cpu_offline); 1266 } 1267 1268 static u64 get_trace_imc_event_base_addr(void) 1269 { 1270 return (u64)per_cpu(trace_imc_mem, smp_processor_id()); 1271 } 1272 1273 /* 1274 * Function to parse trace-imc data obtained 1275 * and to prepare the perf sample. 1276 */ 1277 static int trace_imc_prepare_sample(struct trace_imc_data *mem, 1278 struct perf_sample_data *data, 1279 u64 *prev_tb, 1280 struct perf_event_header *header, 1281 struct perf_event *event) 1282 { 1283 /* Sanity checks for a valid record */ 1284 if (be64_to_cpu(READ_ONCE(mem->tb1)) > *prev_tb) 1285 *prev_tb = be64_to_cpu(READ_ONCE(mem->tb1)); 1286 else 1287 return -EINVAL; 1288 1289 if ((be64_to_cpu(READ_ONCE(mem->tb1)) & IMC_TRACE_RECORD_TB1_MASK) != 1290 be64_to_cpu(READ_ONCE(mem->tb2))) 1291 return -EINVAL; 1292 1293 /* Prepare perf sample */ 1294 data->ip = be64_to_cpu(READ_ONCE(mem->ip)); 1295 data->period = event->hw.last_period; 1296 1297 header->type = PERF_RECORD_SAMPLE; 1298 header->size = sizeof(*header) + event->header_size; 1299 header->misc = 0; 1300 1301 if (cpu_has_feature(CPU_FTR_ARCH_31)) { 1302 switch (IMC_TRACE_RECORD_VAL_HVPR(be64_to_cpu(READ_ONCE(mem->val)))) { 1303 case 0:/* when MSR HV and PR not set in the trace-record */ 1304 header->misc |= PERF_RECORD_MISC_GUEST_KERNEL; 1305 break; 1306 case 1: /* MSR HV is 0 and PR is 1 */ 1307 header->misc |= PERF_RECORD_MISC_GUEST_USER; 1308 break; 1309 case 2: /* MSR HV is 1 and PR is 0 */ 1310 header->misc |= PERF_RECORD_MISC_KERNEL; 1311 break; 1312 case 3: /* MSR HV is 1 and PR is 1 */ 1313 header->misc |= PERF_RECORD_MISC_USER; 1314 break; 1315 default: 1316 pr_info("IMC: Unable to set the flag based on MSR bits\n"); 1317 break; 1318 } 1319 } else { 1320 if (is_kernel_addr(data->ip)) 1321 header->misc |= PERF_RECORD_MISC_KERNEL; 1322 else 1323 header->misc |= PERF_RECORD_MISC_USER; 1324 } 1325 perf_event_header__init_id(header, data, event); 1326 1327 return 0; 1328 } 1329 1330 static void dump_trace_imc_data(struct perf_event *event) 1331 { 1332 struct trace_imc_data *mem; 1333 int i, ret; 1334 u64 prev_tb = 0; 1335 1336 mem = (struct trace_imc_data *)get_trace_imc_event_base_addr(); 1337 for (i = 0; i < (trace_imc_mem_size / sizeof(struct trace_imc_data)); 1338 i++, mem++) { 1339 struct perf_sample_data data; 1340 struct perf_event_header header; 1341 1342 ret = trace_imc_prepare_sample(mem, &data, &prev_tb, &header, event); 1343 if (ret) /* Exit, if not a valid record */ 1344 break; 1345 else { 1346 /* If this is a valid record, create the sample */ 1347 struct perf_output_handle handle; 1348 1349 if (perf_output_begin(&handle, &data, event, header.size)) 1350 return; 1351 1352 perf_output_sample(&handle, &header, &data, event); 1353 perf_output_end(&handle); 1354 } 1355 } 1356 } 1357 1358 static int trace_imc_event_add(struct perf_event *event, int flags) 1359 { 1360 int core_id = smp_processor_id() / threads_per_core; 1361 struct imc_pmu_ref *ref = NULL; 1362 u64 local_mem, ldbar_value; 1363 1364 /* Set trace-imc bit in ldbar and load ldbar with per-thread memory address */ 1365 local_mem = get_trace_imc_event_base_addr(); 1366 ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | TRACE_IMC_ENABLE; 1367 1368 /* trace-imc reference count */ 1369 if (trace_imc_refc) 1370 ref = &trace_imc_refc[core_id]; 1371 if (!ref) { 1372 pr_debug("imc: Failed to get the event reference count\n"); 1373 return -EINVAL; 1374 } 1375 1376 mtspr(SPRN_LDBAR, ldbar_value); 1377 spin_lock(&ref->lock); 1378 if (ref->refc == 0) { 1379 if (opal_imc_counters_start(OPAL_IMC_COUNTERS_TRACE, 1380 get_hard_smp_processor_id(smp_processor_id()))) { 1381 spin_unlock(&ref->lock); 1382 pr_err("trace-imc: Unable to start the counters for core %d\n", core_id); 1383 return -EINVAL; 1384 } 1385 } 1386 ++ref->refc; 1387 spin_unlock(&ref->lock); 1388 return 0; 1389 } 1390 1391 static void trace_imc_event_read(struct perf_event *event) 1392 { 1393 return; 1394 } 1395 1396 static void trace_imc_event_stop(struct perf_event *event, int flags) 1397 { 1398 u64 local_mem = get_trace_imc_event_base_addr(); 1399 dump_trace_imc_data(event); 1400 memset((void *)local_mem, 0, sizeof(u64)); 1401 } 1402 1403 static void trace_imc_event_start(struct perf_event *event, int flags) 1404 { 1405 return; 1406 } 1407 1408 static void trace_imc_event_del(struct perf_event *event, int flags) 1409 { 1410 int core_id = smp_processor_id() / threads_per_core; 1411 struct imc_pmu_ref *ref = NULL; 1412 1413 if (trace_imc_refc) 1414 ref = &trace_imc_refc[core_id]; 1415 if (!ref) { 1416 pr_debug("imc: Failed to get event reference count\n"); 1417 return; 1418 } 1419 1420 spin_lock(&ref->lock); 1421 ref->refc--; 1422 if (ref->refc == 0) { 1423 if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_TRACE, 1424 get_hard_smp_processor_id(smp_processor_id()))) { 1425 spin_unlock(&ref->lock); 1426 pr_err("trace-imc: Unable to stop the counters for core %d\n", core_id); 1427 return; 1428 } 1429 } else if (ref->refc < 0) { 1430 ref->refc = 0; 1431 } 1432 spin_unlock(&ref->lock); 1433 1434 trace_imc_event_stop(event, flags); 1435 } 1436 1437 static int trace_imc_event_init(struct perf_event *event) 1438 { 1439 if (event->attr.type != event->pmu->type) 1440 return -ENOENT; 1441 1442 if (!perfmon_capable()) 1443 return -EACCES; 1444 1445 /* Return if this is a couting event */ 1446 if (event->attr.sample_period == 0) 1447 return -ENOENT; 1448 1449 /* 1450 * Take the global lock, and make sure 1451 * no other thread is running any core/thread imc 1452 * events 1453 */ 1454 spin_lock(&imc_global_refc.lock); 1455 if (imc_global_refc.id == 0 || imc_global_refc.id == IMC_DOMAIN_TRACE) { 1456 /* 1457 * No core/thread imc events are running in the 1458 * system, so set the refc.id to trace-imc. 1459 */ 1460 imc_global_refc.id = IMC_DOMAIN_TRACE; 1461 imc_global_refc.refc++; 1462 } else { 1463 spin_unlock(&imc_global_refc.lock); 1464 return -EBUSY; 1465 } 1466 spin_unlock(&imc_global_refc.lock); 1467 1468 event->hw.idx = -1; 1469 1470 /* 1471 * There can only be a single PMU for perf_hw_context events which is assigned to 1472 * core PMU. Hence use "perf_sw_context" for trace_imc. 1473 */ 1474 event->pmu->task_ctx_nr = perf_sw_context; 1475 event->destroy = reset_global_refc; 1476 return 0; 1477 } 1478 1479 /* update_pmu_ops : Populate the appropriate operations for "pmu" */ 1480 static int update_pmu_ops(struct imc_pmu *pmu) 1481 { 1482 pmu->pmu.task_ctx_nr = perf_invalid_context; 1483 pmu->pmu.add = imc_event_add; 1484 pmu->pmu.del = imc_event_stop; 1485 pmu->pmu.start = imc_event_start; 1486 pmu->pmu.stop = imc_event_stop; 1487 pmu->pmu.read = imc_event_update; 1488 pmu->pmu.attr_groups = pmu->attr_groups; 1489 pmu->pmu.capabilities = PERF_PMU_CAP_NO_EXCLUDE; 1490 pmu->attr_groups[IMC_FORMAT_ATTR] = &imc_format_group; 1491 1492 switch (pmu->domain) { 1493 case IMC_DOMAIN_NEST: 1494 pmu->pmu.event_init = nest_imc_event_init; 1495 pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group; 1496 break; 1497 case IMC_DOMAIN_CORE: 1498 pmu->pmu.event_init = core_imc_event_init; 1499 pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group; 1500 break; 1501 case IMC_DOMAIN_THREAD: 1502 pmu->pmu.event_init = thread_imc_event_init; 1503 pmu->pmu.add = thread_imc_event_add; 1504 pmu->pmu.del = thread_imc_event_del; 1505 pmu->pmu.start_txn = thread_imc_pmu_start_txn; 1506 pmu->pmu.cancel_txn = thread_imc_pmu_cancel_txn; 1507 pmu->pmu.commit_txn = thread_imc_pmu_commit_txn; 1508 break; 1509 case IMC_DOMAIN_TRACE: 1510 pmu->pmu.event_init = trace_imc_event_init; 1511 pmu->pmu.add = trace_imc_event_add; 1512 pmu->pmu.del = trace_imc_event_del; 1513 pmu->pmu.start = trace_imc_event_start; 1514 pmu->pmu.stop = trace_imc_event_stop; 1515 pmu->pmu.read = trace_imc_event_read; 1516 pmu->attr_groups[IMC_FORMAT_ATTR] = &trace_imc_format_group; 1517 break; 1518 default: 1519 break; 1520 } 1521 1522 return 0; 1523 } 1524 1525 /* init_nest_pmu_ref: Initialize the imc_pmu_ref struct for all the nodes */ 1526 static int init_nest_pmu_ref(void) 1527 { 1528 int nid, i, cpu; 1529 1530 nest_imc_refc = kcalloc(num_possible_nodes(), sizeof(*nest_imc_refc), 1531 GFP_KERNEL); 1532 1533 if (!nest_imc_refc) 1534 return -ENOMEM; 1535 1536 i = 0; 1537 for_each_node(nid) { 1538 /* 1539 * Take the lock to avoid races while tracking the number of 1540 * sessions using the chip's nest pmu units. 1541 */ 1542 spin_lock_init(&nest_imc_refc[i].lock); 1543 1544 /* 1545 * Loop to init the "id" with the node_id. Variable "i" initialized to 1546 * 0 and will be used as index to the array. "i" will not go off the 1547 * end of the array since the "for_each_node" loops for "N_POSSIBLE" 1548 * nodes only. 1549 */ 1550 nest_imc_refc[i++].id = nid; 1551 } 1552 1553 /* 1554 * Loop to init the per_cpu "local_nest_imc_refc" with the proper 1555 * "nest_imc_refc" index. This makes get_nest_pmu_ref() alot simple. 1556 */ 1557 for_each_possible_cpu(cpu) { 1558 nid = cpu_to_node(cpu); 1559 for (i = 0; i < num_possible_nodes(); i++) { 1560 if (nest_imc_refc[i].id == nid) { 1561 per_cpu(local_nest_imc_refc, cpu) = &nest_imc_refc[i]; 1562 break; 1563 } 1564 } 1565 } 1566 return 0; 1567 } 1568 1569 static void cleanup_all_core_imc_memory(void) 1570 { 1571 int i, nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core); 1572 struct imc_mem_info *ptr = core_imc_pmu->mem_info; 1573 int size = core_imc_pmu->counter_mem_size; 1574 1575 /* mem_info will never be NULL */ 1576 for (i = 0; i < nr_cores; i++) { 1577 if (ptr[i].vbase) 1578 free_pages((u64)ptr[i].vbase, get_order(size)); 1579 } 1580 1581 kfree(ptr); 1582 kfree(core_imc_refc); 1583 } 1584 1585 static void thread_imc_ldbar_disable(void *dummy) 1586 { 1587 /* 1588 * By setting 0th bit of LDBAR to zero, we disable thread-imc 1589 * updates to memory. 1590 */ 1591 mtspr(SPRN_LDBAR, (mfspr(SPRN_LDBAR) & (~(1UL << 63)))); 1592 } 1593 1594 void thread_imc_disable(void) 1595 { 1596 on_each_cpu(thread_imc_ldbar_disable, NULL, 1); 1597 } 1598 1599 static void cleanup_all_thread_imc_memory(void) 1600 { 1601 int i, order = get_order(thread_imc_mem_size); 1602 1603 for_each_online_cpu(i) { 1604 if (per_cpu(thread_imc_mem, i)) 1605 free_pages((u64)per_cpu(thread_imc_mem, i), order); 1606 1607 } 1608 } 1609 1610 static void cleanup_all_trace_imc_memory(void) 1611 { 1612 int i, order = get_order(trace_imc_mem_size); 1613 1614 for_each_online_cpu(i) { 1615 if (per_cpu(trace_imc_mem, i)) 1616 free_pages((u64)per_cpu(trace_imc_mem, i), order); 1617 1618 } 1619 kfree(trace_imc_refc); 1620 } 1621 1622 /* Function to free the attr_groups which are dynamically allocated */ 1623 static void imc_common_mem_free(struct imc_pmu *pmu_ptr) 1624 { 1625 if (pmu_ptr->attr_groups[IMC_EVENT_ATTR]) 1626 kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]->attrs); 1627 kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]); 1628 } 1629 1630 /* 1631 * Common function to unregister cpu hotplug callback and 1632 * free the memory. 1633 * TODO: Need to handle pmu unregistering, which will be 1634 * done in followup series. 1635 */ 1636 static void imc_common_cpuhp_mem_free(struct imc_pmu *pmu_ptr) 1637 { 1638 if (pmu_ptr->domain == IMC_DOMAIN_NEST) { 1639 mutex_lock(&nest_init_lock); 1640 if (nest_pmus == 1) { 1641 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE); 1642 kfree(nest_imc_refc); 1643 kfree(per_nest_pmu_arr); 1644 per_nest_pmu_arr = NULL; 1645 } 1646 1647 if (nest_pmus > 0) 1648 nest_pmus--; 1649 mutex_unlock(&nest_init_lock); 1650 } 1651 1652 /* Free core_imc memory */ 1653 if (pmu_ptr->domain == IMC_DOMAIN_CORE) { 1654 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE); 1655 cleanup_all_core_imc_memory(); 1656 } 1657 1658 /* Free thread_imc memory */ 1659 if (pmu_ptr->domain == IMC_DOMAIN_THREAD) { 1660 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE); 1661 cleanup_all_thread_imc_memory(); 1662 } 1663 1664 if (pmu_ptr->domain == IMC_DOMAIN_TRACE) { 1665 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_TRACE_IMC_ONLINE); 1666 cleanup_all_trace_imc_memory(); 1667 } 1668 } 1669 1670 /* 1671 * Function to unregister thread-imc if core-imc 1672 * is not registered. 1673 */ 1674 void unregister_thread_imc(void) 1675 { 1676 imc_common_cpuhp_mem_free(thread_imc_pmu); 1677 imc_common_mem_free(thread_imc_pmu); 1678 perf_pmu_unregister(&thread_imc_pmu->pmu); 1679 } 1680 1681 /* 1682 * imc_mem_init : Function to support memory allocation for core imc. 1683 */ 1684 static int imc_mem_init(struct imc_pmu *pmu_ptr, struct device_node *parent, 1685 int pmu_index) 1686 { 1687 const char *s; 1688 int nr_cores, cpu, res = -ENOMEM; 1689 1690 if (of_property_read_string(parent, "name", &s)) 1691 return -ENODEV; 1692 1693 switch (pmu_ptr->domain) { 1694 case IMC_DOMAIN_NEST: 1695 /* Update the pmu name */ 1696 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s_imc", "nest_", s); 1697 if (!pmu_ptr->pmu.name) 1698 goto err; 1699 1700 /* Needed for hotplug/migration */ 1701 if (!per_nest_pmu_arr) { 1702 per_nest_pmu_arr = kcalloc(get_max_nest_dev() + 1, 1703 sizeof(struct imc_pmu *), 1704 GFP_KERNEL); 1705 if (!per_nest_pmu_arr) 1706 goto err; 1707 } 1708 per_nest_pmu_arr[pmu_index] = pmu_ptr; 1709 break; 1710 case IMC_DOMAIN_CORE: 1711 /* Update the pmu name */ 1712 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc"); 1713 if (!pmu_ptr->pmu.name) 1714 goto err; 1715 1716 nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core); 1717 pmu_ptr->mem_info = kcalloc(nr_cores, sizeof(struct imc_mem_info), 1718 GFP_KERNEL); 1719 1720 if (!pmu_ptr->mem_info) 1721 goto err; 1722 1723 core_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref), 1724 GFP_KERNEL); 1725 1726 if (!core_imc_refc) { 1727 kfree(pmu_ptr->mem_info); 1728 goto err; 1729 } 1730 1731 core_imc_pmu = pmu_ptr; 1732 break; 1733 case IMC_DOMAIN_THREAD: 1734 /* Update the pmu name */ 1735 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc"); 1736 if (!pmu_ptr->pmu.name) 1737 goto err; 1738 1739 thread_imc_mem_size = pmu_ptr->counter_mem_size; 1740 for_each_online_cpu(cpu) { 1741 res = thread_imc_mem_alloc(cpu, pmu_ptr->counter_mem_size); 1742 if (res) { 1743 cleanup_all_thread_imc_memory(); 1744 goto err; 1745 } 1746 } 1747 1748 thread_imc_pmu = pmu_ptr; 1749 break; 1750 case IMC_DOMAIN_TRACE: 1751 /* Update the pmu name */ 1752 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc"); 1753 if (!pmu_ptr->pmu.name) 1754 return -ENOMEM; 1755 1756 nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core); 1757 trace_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref), 1758 GFP_KERNEL); 1759 if (!trace_imc_refc) 1760 return -ENOMEM; 1761 1762 trace_imc_mem_size = pmu_ptr->counter_mem_size; 1763 for_each_online_cpu(cpu) { 1764 res = trace_imc_mem_alloc(cpu, trace_imc_mem_size); 1765 if (res) { 1766 cleanup_all_trace_imc_memory(); 1767 goto err; 1768 } 1769 } 1770 break; 1771 default: 1772 return -EINVAL; 1773 } 1774 1775 return 0; 1776 err: 1777 return res; 1778 } 1779 1780 /* 1781 * init_imc_pmu : Setup and register the IMC pmu device. 1782 * 1783 * @parent: Device tree unit node 1784 * @pmu_ptr: memory allocated for this pmu 1785 * @pmu_idx: Count of nest pmc registered 1786 * 1787 * init_imc_pmu() setup pmu cpumask and registers for a cpu hotplug callback. 1788 * Handles failure cases and accordingly frees memory. 1789 */ 1790 int init_imc_pmu(struct device_node *parent, struct imc_pmu *pmu_ptr, int pmu_idx) 1791 { 1792 int ret; 1793 1794 ret = imc_mem_init(pmu_ptr, parent, pmu_idx); 1795 if (ret) 1796 goto err_free_mem; 1797 1798 switch (pmu_ptr->domain) { 1799 case IMC_DOMAIN_NEST: 1800 /* 1801 * Nest imc pmu need only one cpu per chip, we initialize the 1802 * cpumask for the first nest imc pmu and use the same for the 1803 * rest. To handle the cpuhotplug callback unregister, we track 1804 * the number of nest pmus in "nest_pmus". 1805 */ 1806 mutex_lock(&nest_init_lock); 1807 if (nest_pmus == 0) { 1808 ret = init_nest_pmu_ref(); 1809 if (ret) { 1810 mutex_unlock(&nest_init_lock); 1811 kfree(per_nest_pmu_arr); 1812 per_nest_pmu_arr = NULL; 1813 goto err_free_mem; 1814 } 1815 /* Register for cpu hotplug notification. */ 1816 ret = nest_pmu_cpumask_init(); 1817 if (ret) { 1818 mutex_unlock(&nest_init_lock); 1819 kfree(nest_imc_refc); 1820 kfree(per_nest_pmu_arr); 1821 per_nest_pmu_arr = NULL; 1822 goto err_free_mem; 1823 } 1824 } 1825 nest_pmus++; 1826 mutex_unlock(&nest_init_lock); 1827 break; 1828 case IMC_DOMAIN_CORE: 1829 ret = core_imc_pmu_cpumask_init(); 1830 if (ret) { 1831 cleanup_all_core_imc_memory(); 1832 goto err_free_mem; 1833 } 1834 1835 break; 1836 case IMC_DOMAIN_THREAD: 1837 ret = thread_imc_cpu_init(); 1838 if (ret) { 1839 cleanup_all_thread_imc_memory(); 1840 goto err_free_mem; 1841 } 1842 1843 break; 1844 case IMC_DOMAIN_TRACE: 1845 ret = trace_imc_cpu_init(); 1846 if (ret) { 1847 cleanup_all_trace_imc_memory(); 1848 goto err_free_mem; 1849 } 1850 1851 break; 1852 default: 1853 return -EINVAL; /* Unknown domain */ 1854 } 1855 1856 ret = update_events_in_group(parent, pmu_ptr); 1857 if (ret) 1858 goto err_free_cpuhp_mem; 1859 1860 ret = update_pmu_ops(pmu_ptr); 1861 if (ret) 1862 goto err_free_cpuhp_mem; 1863 1864 ret = perf_pmu_register(&pmu_ptr->pmu, pmu_ptr->pmu.name, -1); 1865 if (ret) 1866 goto err_free_cpuhp_mem; 1867 1868 pr_debug("%s performance monitor hardware support registered\n", 1869 pmu_ptr->pmu.name); 1870 1871 return 0; 1872 1873 err_free_cpuhp_mem: 1874 imc_common_cpuhp_mem_free(pmu_ptr); 1875 err_free_mem: 1876 imc_common_mem_free(pmu_ptr); 1877 return ret; 1878 } 1879
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.