~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/powerpc/platforms/cell/spufs/backing_ops.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-or-later
  2 /* backing_ops.c - query/set operations on saved SPU context.
  3  *
  4  * Copyright (C) IBM 2005
  5  * Author: Mark Nutter <mnutter@us.ibm.com>
  6  *
  7  * These register operations allow SPUFS to operate on saved
  8  * SPU contexts rather than hardware.
  9  */
 10 
 11 #include <linux/errno.h>
 12 #include <linux/sched.h>
 13 #include <linux/kernel.h>
 14 #include <linux/mm.h>
 15 #include <linux/vmalloc.h>
 16 #include <linux/smp.h>
 17 #include <linux/stddef.h>
 18 #include <linux/unistd.h>
 19 #include <linux/poll.h>
 20 
 21 #include <asm/io.h>
 22 #include <asm/spu.h>
 23 #include <asm/spu_csa.h>
 24 #include <asm/spu_info.h>
 25 #include <asm/mmu_context.h>
 26 #include "spufs.h"
 27 
 28 /*
 29  * Reads/writes to various problem and priv2 registers require
 30  * state changes, i.e.  generate SPU events, modify channel
 31  * counts, etc.
 32  */
 33 
 34 static void gen_spu_event(struct spu_context *ctx, u32 event)
 35 {
 36         u64 ch0_cnt;
 37         u64 ch0_data;
 38         u64 ch1_data;
 39 
 40         ch0_cnt = ctx->csa.spu_chnlcnt_RW[0];
 41         ch0_data = ctx->csa.spu_chnldata_RW[0];
 42         ch1_data = ctx->csa.spu_chnldata_RW[1];
 43         ctx->csa.spu_chnldata_RW[0] |= event;
 44         if ((ch0_cnt == 0) && !(ch0_data & event) && (ch1_data & event)) {
 45                 ctx->csa.spu_chnlcnt_RW[0] = 1;
 46         }
 47 }
 48 
 49 static int spu_backing_mbox_read(struct spu_context *ctx, u32 * data)
 50 {
 51         u32 mbox_stat;
 52         int ret = 0;
 53 
 54         spin_lock(&ctx->csa.register_lock);
 55         mbox_stat = ctx->csa.prob.mb_stat_R;
 56         if (mbox_stat & 0x0000ff) {
 57                 /* Read the first available word.
 58                  * Implementation note: the depth
 59                  * of pu_mb_R is currently 1.
 60                  */
 61                 *data = ctx->csa.prob.pu_mb_R;
 62                 ctx->csa.prob.mb_stat_R &= ~(0x0000ff);
 63                 ctx->csa.spu_chnlcnt_RW[28] = 1;
 64                 gen_spu_event(ctx, MFC_PU_MAILBOX_AVAILABLE_EVENT);
 65                 ret = 4;
 66         }
 67         spin_unlock(&ctx->csa.register_lock);
 68         return ret;
 69 }
 70 
 71 static u32 spu_backing_mbox_stat_read(struct spu_context *ctx)
 72 {
 73         return ctx->csa.prob.mb_stat_R;
 74 }
 75 
 76 static __poll_t spu_backing_mbox_stat_poll(struct spu_context *ctx,
 77                                           __poll_t events)
 78 {
 79         __poll_t ret;
 80         u32 stat;
 81 
 82         ret = 0;
 83         spin_lock_irq(&ctx->csa.register_lock);
 84         stat = ctx->csa.prob.mb_stat_R;
 85 
 86         /* if the requested event is there, return the poll
 87            mask, otherwise enable the interrupt to get notified,
 88            but first mark any pending interrupts as done so
 89            we don't get woken up unnecessarily */
 90 
 91         if (events & (EPOLLIN | EPOLLRDNORM)) {
 92                 if (stat & 0xff0000)
 93                         ret |= EPOLLIN | EPOLLRDNORM;
 94                 else {
 95                         ctx->csa.priv1.int_stat_class2_RW &=
 96                                 ~CLASS2_MAILBOX_INTR;
 97                         ctx->csa.priv1.int_mask_class2_RW |=
 98                                 CLASS2_ENABLE_MAILBOX_INTR;
 99                 }
100         }
101         if (events & (EPOLLOUT | EPOLLWRNORM)) {
102                 if (stat & 0x00ff00)
103                         ret = EPOLLOUT | EPOLLWRNORM;
104                 else {
105                         ctx->csa.priv1.int_stat_class2_RW &=
106                                 ~CLASS2_MAILBOX_THRESHOLD_INTR;
107                         ctx->csa.priv1.int_mask_class2_RW |=
108                                 CLASS2_ENABLE_MAILBOX_THRESHOLD_INTR;
109                 }
110         }
111         spin_unlock_irq(&ctx->csa.register_lock);
112         return ret;
113 }
114 
115 static int spu_backing_ibox_read(struct spu_context *ctx, u32 * data)
116 {
117         int ret;
118 
119         spin_lock(&ctx->csa.register_lock);
120         if (ctx->csa.prob.mb_stat_R & 0xff0000) {
121                 /* Read the first available word.
122                  * Implementation note: the depth
123                  * of puint_mb_R is currently 1.
124                  */
125                 *data = ctx->csa.priv2.puint_mb_R;
126                 ctx->csa.prob.mb_stat_R &= ~(0xff0000);
127                 ctx->csa.spu_chnlcnt_RW[30] = 1;
128                 gen_spu_event(ctx, MFC_PU_INT_MAILBOX_AVAILABLE_EVENT);
129                 ret = 4;
130         } else {
131                 /* make sure we get woken up by the interrupt */
132                 ctx->csa.priv1.int_mask_class2_RW |= CLASS2_ENABLE_MAILBOX_INTR;
133                 ret = 0;
134         }
135         spin_unlock(&ctx->csa.register_lock);
136         return ret;
137 }
138 
139 static int spu_backing_wbox_write(struct spu_context *ctx, u32 data)
140 {
141         int ret;
142 
143         spin_lock(&ctx->csa.register_lock);
144         if ((ctx->csa.prob.mb_stat_R) & 0x00ff00) {
145                 int slot = ctx->csa.spu_chnlcnt_RW[29];
146                 int avail = (ctx->csa.prob.mb_stat_R & 0x00ff00) >> 8;
147 
148                 /* We have space to write wbox_data.
149                  * Implementation note: the depth
150                  * of spu_mb_W is currently 4.
151                  */
152                 BUG_ON(avail != (4 - slot));
153                 ctx->csa.spu_mailbox_data[slot] = data;
154                 ctx->csa.spu_chnlcnt_RW[29] = ++slot;
155                 ctx->csa.prob.mb_stat_R &= ~(0x00ff00);
156                 ctx->csa.prob.mb_stat_R |= (((4 - slot) & 0xff) << 8);
157                 gen_spu_event(ctx, MFC_SPU_MAILBOX_WRITTEN_EVENT);
158                 ret = 4;
159         } else {
160                 /* make sure we get woken up by the interrupt when space
161                    becomes available */
162                 ctx->csa.priv1.int_mask_class2_RW |=
163                         CLASS2_ENABLE_MAILBOX_THRESHOLD_INTR;
164                 ret = 0;
165         }
166         spin_unlock(&ctx->csa.register_lock);
167         return ret;
168 }
169 
170 static u32 spu_backing_signal1_read(struct spu_context *ctx)
171 {
172         return ctx->csa.spu_chnldata_RW[3];
173 }
174 
175 static void spu_backing_signal1_write(struct spu_context *ctx, u32 data)
176 {
177         spin_lock(&ctx->csa.register_lock);
178         if (ctx->csa.priv2.spu_cfg_RW & 0x1)
179                 ctx->csa.spu_chnldata_RW[3] |= data;
180         else
181                 ctx->csa.spu_chnldata_RW[3] = data;
182         ctx->csa.spu_chnlcnt_RW[3] = 1;
183         gen_spu_event(ctx, MFC_SIGNAL_1_EVENT);
184         spin_unlock(&ctx->csa.register_lock);
185 }
186 
187 static u32 spu_backing_signal2_read(struct spu_context *ctx)
188 {
189         return ctx->csa.spu_chnldata_RW[4];
190 }
191 
192 static void spu_backing_signal2_write(struct spu_context *ctx, u32 data)
193 {
194         spin_lock(&ctx->csa.register_lock);
195         if (ctx->csa.priv2.spu_cfg_RW & 0x2)
196                 ctx->csa.spu_chnldata_RW[4] |= data;
197         else
198                 ctx->csa.spu_chnldata_RW[4] = data;
199         ctx->csa.spu_chnlcnt_RW[4] = 1;
200         gen_spu_event(ctx, MFC_SIGNAL_2_EVENT);
201         spin_unlock(&ctx->csa.register_lock);
202 }
203 
204 static void spu_backing_signal1_type_set(struct spu_context *ctx, u64 val)
205 {
206         u64 tmp;
207 
208         spin_lock(&ctx->csa.register_lock);
209         tmp = ctx->csa.priv2.spu_cfg_RW;
210         if (val)
211                 tmp |= 1;
212         else
213                 tmp &= ~1;
214         ctx->csa.priv2.spu_cfg_RW = tmp;
215         spin_unlock(&ctx->csa.register_lock);
216 }
217 
218 static u64 spu_backing_signal1_type_get(struct spu_context *ctx)
219 {
220         return ((ctx->csa.priv2.spu_cfg_RW & 1) != 0);
221 }
222 
223 static void spu_backing_signal2_type_set(struct spu_context *ctx, u64 val)
224 {
225         u64 tmp;
226 
227         spin_lock(&ctx->csa.register_lock);
228         tmp = ctx->csa.priv2.spu_cfg_RW;
229         if (val)
230                 tmp |= 2;
231         else
232                 tmp &= ~2;
233         ctx->csa.priv2.spu_cfg_RW = tmp;
234         spin_unlock(&ctx->csa.register_lock);
235 }
236 
237 static u64 spu_backing_signal2_type_get(struct spu_context *ctx)
238 {
239         return ((ctx->csa.priv2.spu_cfg_RW & 2) != 0);
240 }
241 
242 static u32 spu_backing_npc_read(struct spu_context *ctx)
243 {
244         return ctx->csa.prob.spu_npc_RW;
245 }
246 
247 static void spu_backing_npc_write(struct spu_context *ctx, u32 val)
248 {
249         ctx->csa.prob.spu_npc_RW = val;
250 }
251 
252 static u32 spu_backing_status_read(struct spu_context *ctx)
253 {
254         return ctx->csa.prob.spu_status_R;
255 }
256 
257 static char *spu_backing_get_ls(struct spu_context *ctx)
258 {
259         return ctx->csa.lscsa->ls;
260 }
261 
262 static void spu_backing_privcntl_write(struct spu_context *ctx, u64 val)
263 {
264         ctx->csa.priv2.spu_privcntl_RW = val;
265 }
266 
267 static u32 spu_backing_runcntl_read(struct spu_context *ctx)
268 {
269         return ctx->csa.prob.spu_runcntl_RW;
270 }
271 
272 static void spu_backing_runcntl_write(struct spu_context *ctx, u32 val)
273 {
274         spin_lock(&ctx->csa.register_lock);
275         ctx->csa.prob.spu_runcntl_RW = val;
276         if (val & SPU_RUNCNTL_RUNNABLE) {
277                 ctx->csa.prob.spu_status_R &=
278                         ~SPU_STATUS_STOPPED_BY_STOP &
279                         ~SPU_STATUS_STOPPED_BY_HALT &
280                         ~SPU_STATUS_SINGLE_STEP &
281                         ~SPU_STATUS_INVALID_INSTR &
282                         ~SPU_STATUS_INVALID_CH;
283                 ctx->csa.prob.spu_status_R |= SPU_STATUS_RUNNING;
284         } else {
285                 ctx->csa.prob.spu_status_R &= ~SPU_STATUS_RUNNING;
286         }
287         spin_unlock(&ctx->csa.register_lock);
288 }
289 
290 static void spu_backing_runcntl_stop(struct spu_context *ctx)
291 {
292         spu_backing_runcntl_write(ctx, SPU_RUNCNTL_STOP);
293 }
294 
295 static void spu_backing_master_start(struct spu_context *ctx)
296 {
297         struct spu_state *csa = &ctx->csa;
298         u64 sr1;
299 
300         spin_lock(&csa->register_lock);
301         sr1 = csa->priv1.mfc_sr1_RW | MFC_STATE1_MASTER_RUN_CONTROL_MASK;
302         csa->priv1.mfc_sr1_RW = sr1;
303         spin_unlock(&csa->register_lock);
304 }
305 
306 static void spu_backing_master_stop(struct spu_context *ctx)
307 {
308         struct spu_state *csa = &ctx->csa;
309         u64 sr1;
310 
311         spin_lock(&csa->register_lock);
312         sr1 = csa->priv1.mfc_sr1_RW & ~MFC_STATE1_MASTER_RUN_CONTROL_MASK;
313         csa->priv1.mfc_sr1_RW = sr1;
314         spin_unlock(&csa->register_lock);
315 }
316 
317 static int spu_backing_set_mfc_query(struct spu_context * ctx, u32 mask,
318                                         u32 mode)
319 {
320         struct spu_problem_collapsed *prob = &ctx->csa.prob;
321         int ret;
322 
323         spin_lock(&ctx->csa.register_lock);
324         ret = -EAGAIN;
325         if (prob->dma_querytype_RW)
326                 goto out;
327         ret = 0;
328         /* FIXME: what are the side-effects of this? */
329         prob->dma_querymask_RW = mask;
330         prob->dma_querytype_RW = mode;
331         /* In the current implementation, the SPU context is always
332          * acquired in runnable state when new bits are added to the
333          * mask (tagwait), so it's sufficient just to mask
334          * dma_tagstatus_R with the 'mask' parameter here.
335          */
336         ctx->csa.prob.dma_tagstatus_R &= mask;
337 out:
338         spin_unlock(&ctx->csa.register_lock);
339 
340         return ret;
341 }
342 
343 static u32 spu_backing_read_mfc_tagstatus(struct spu_context * ctx)
344 {
345         return ctx->csa.prob.dma_tagstatus_R;
346 }
347 
348 static u32 spu_backing_get_mfc_free_elements(struct spu_context *ctx)
349 {
350         return ctx->csa.prob.dma_qstatus_R;
351 }
352 
353 static int spu_backing_send_mfc_command(struct spu_context *ctx,
354                                         struct mfc_dma_command *cmd)
355 {
356         int ret;
357 
358         spin_lock(&ctx->csa.register_lock);
359         ret = -EAGAIN;
360         /* FIXME: set up priv2->puq */
361         spin_unlock(&ctx->csa.register_lock);
362 
363         return ret;
364 }
365 
366 static void spu_backing_restart_dma(struct spu_context *ctx)
367 {
368         ctx->csa.priv2.mfc_control_RW |= MFC_CNTL_RESTART_DMA_COMMAND;
369 }
370 
371 struct spu_context_ops spu_backing_ops = {
372         .mbox_read = spu_backing_mbox_read,
373         .mbox_stat_read = spu_backing_mbox_stat_read,
374         .mbox_stat_poll = spu_backing_mbox_stat_poll,
375         .ibox_read = spu_backing_ibox_read,
376         .wbox_write = spu_backing_wbox_write,
377         .signal1_read = spu_backing_signal1_read,
378         .signal1_write = spu_backing_signal1_write,
379         .signal2_read = spu_backing_signal2_read,
380         .signal2_write = spu_backing_signal2_write,
381         .signal1_type_set = spu_backing_signal1_type_set,
382         .signal1_type_get = spu_backing_signal1_type_get,
383         .signal2_type_set = spu_backing_signal2_type_set,
384         .signal2_type_get = spu_backing_signal2_type_get,
385         .npc_read = spu_backing_npc_read,
386         .npc_write = spu_backing_npc_write,
387         .status_read = spu_backing_status_read,
388         .get_ls = spu_backing_get_ls,
389         .privcntl_write = spu_backing_privcntl_write,
390         .runcntl_read = spu_backing_runcntl_read,
391         .runcntl_write = spu_backing_runcntl_write,
392         .runcntl_stop = spu_backing_runcntl_stop,
393         .master_start = spu_backing_master_start,
394         .master_stop = spu_backing_master_stop,
395         .set_mfc_query = spu_backing_set_mfc_query,
396         .read_mfc_tagstatus = spu_backing_read_mfc_tagstatus,
397         .get_mfc_free_elements = spu_backing_get_mfc_free_elements,
398         .send_mfc_command = spu_backing_send_mfc_command,
399         .restart_dma = spu_backing_restart_dma,
400 };
401 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php