1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* backing_ops.c - query/set operations on saved SPU context. 3 * 4 * Copyright (C) IBM 2005 5 * Author: Mark Nutter <mnutter@us.ibm.com> 6 * 7 * These register operations allow SPUFS to operate on saved 8 * SPU contexts rather than hardware. 9 */ 10 11 #include <linux/errno.h> 12 #include <linux/sched.h> 13 #include <linux/kernel.h> 14 #include <linux/mm.h> 15 #include <linux/vmalloc.h> 16 #include <linux/smp.h> 17 #include <linux/stddef.h> 18 #include <linux/unistd.h> 19 #include <linux/poll.h> 20 21 #include <asm/io.h> 22 #include <asm/spu.h> 23 #include <asm/spu_csa.h> 24 #include <asm/spu_info.h> 25 #include <asm/mmu_context.h> 26 #include "spufs.h" 27 28 /* 29 * Reads/writes to various problem and priv2 registers require 30 * state changes, i.e. generate SPU events, modify channel 31 * counts, etc. 32 */ 33 34 static void gen_spu_event(struct spu_context *ctx, u32 event) 35 { 36 u64 ch0_cnt; 37 u64 ch0_data; 38 u64 ch1_data; 39 40 ch0_cnt = ctx->csa.spu_chnlcnt_RW[0]; 41 ch0_data = ctx->csa.spu_chnldata_RW[0]; 42 ch1_data = ctx->csa.spu_chnldata_RW[1]; 43 ctx->csa.spu_chnldata_RW[0] |= event; 44 if ((ch0_cnt == 0) && !(ch0_data & event) && (ch1_data & event)) { 45 ctx->csa.spu_chnlcnt_RW[0] = 1; 46 } 47 } 48 49 static int spu_backing_mbox_read(struct spu_context *ctx, u32 * data) 50 { 51 u32 mbox_stat; 52 int ret = 0; 53 54 spin_lock(&ctx->csa.register_lock); 55 mbox_stat = ctx->csa.prob.mb_stat_R; 56 if (mbox_stat & 0x0000ff) { 57 /* Read the first available word. 58 * Implementation note: the depth 59 * of pu_mb_R is currently 1. 60 */ 61 *data = ctx->csa.prob.pu_mb_R; 62 ctx->csa.prob.mb_stat_R &= ~(0x0000ff); 63 ctx->csa.spu_chnlcnt_RW[28] = 1; 64 gen_spu_event(ctx, MFC_PU_MAILBOX_AVAILABLE_EVENT); 65 ret = 4; 66 } 67 spin_unlock(&ctx->csa.register_lock); 68 return ret; 69 } 70 71 static u32 spu_backing_mbox_stat_read(struct spu_context *ctx) 72 { 73 return ctx->csa.prob.mb_stat_R; 74 } 75 76 static __poll_t spu_backing_mbox_stat_poll(struct spu_context *ctx, 77 __poll_t events) 78 { 79 __poll_t ret; 80 u32 stat; 81 82 ret = 0; 83 spin_lock_irq(&ctx->csa.register_lock); 84 stat = ctx->csa.prob.mb_stat_R; 85 86 /* if the requested event is there, return the poll 87 mask, otherwise enable the interrupt to get notified, 88 but first mark any pending interrupts as done so 89 we don't get woken up unnecessarily */ 90 91 if (events & (EPOLLIN | EPOLLRDNORM)) { 92 if (stat & 0xff0000) 93 ret |= EPOLLIN | EPOLLRDNORM; 94 else { 95 ctx->csa.priv1.int_stat_class2_RW &= 96 ~CLASS2_MAILBOX_INTR; 97 ctx->csa.priv1.int_mask_class2_RW |= 98 CLASS2_ENABLE_MAILBOX_INTR; 99 } 100 } 101 if (events & (EPOLLOUT | EPOLLWRNORM)) { 102 if (stat & 0x00ff00) 103 ret = EPOLLOUT | EPOLLWRNORM; 104 else { 105 ctx->csa.priv1.int_stat_class2_RW &= 106 ~CLASS2_MAILBOX_THRESHOLD_INTR; 107 ctx->csa.priv1.int_mask_class2_RW |= 108 CLASS2_ENABLE_MAILBOX_THRESHOLD_INTR; 109 } 110 } 111 spin_unlock_irq(&ctx->csa.register_lock); 112 return ret; 113 } 114 115 static int spu_backing_ibox_read(struct spu_context *ctx, u32 * data) 116 { 117 int ret; 118 119 spin_lock(&ctx->csa.register_lock); 120 if (ctx->csa.prob.mb_stat_R & 0xff0000) { 121 /* Read the first available word. 122 * Implementation note: the depth 123 * of puint_mb_R is currently 1. 124 */ 125 *data = ctx->csa.priv2.puint_mb_R; 126 ctx->csa.prob.mb_stat_R &= ~(0xff0000); 127 ctx->csa.spu_chnlcnt_RW[30] = 1; 128 gen_spu_event(ctx, MFC_PU_INT_MAILBOX_AVAILABLE_EVENT); 129 ret = 4; 130 } else { 131 /* make sure we get woken up by the interrupt */ 132 ctx->csa.priv1.int_mask_class2_RW |= CLASS2_ENABLE_MAILBOX_INTR; 133 ret = 0; 134 } 135 spin_unlock(&ctx->csa.register_lock); 136 return ret; 137 } 138 139 static int spu_backing_wbox_write(struct spu_context *ctx, u32 data) 140 { 141 int ret; 142 143 spin_lock(&ctx->csa.register_lock); 144 if ((ctx->csa.prob.mb_stat_R) & 0x00ff00) { 145 int slot = ctx->csa.spu_chnlcnt_RW[29]; 146 int avail = (ctx->csa.prob.mb_stat_R & 0x00ff00) >> 8; 147 148 /* We have space to write wbox_data. 149 * Implementation note: the depth 150 * of spu_mb_W is currently 4. 151 */ 152 BUG_ON(avail != (4 - slot)); 153 ctx->csa.spu_mailbox_data[slot] = data; 154 ctx->csa.spu_chnlcnt_RW[29] = ++slot; 155 ctx->csa.prob.mb_stat_R &= ~(0x00ff00); 156 ctx->csa.prob.mb_stat_R |= (((4 - slot) & 0xff) << 8); 157 gen_spu_event(ctx, MFC_SPU_MAILBOX_WRITTEN_EVENT); 158 ret = 4; 159 } else { 160 /* make sure we get woken up by the interrupt when space 161 becomes available */ 162 ctx->csa.priv1.int_mask_class2_RW |= 163 CLASS2_ENABLE_MAILBOX_THRESHOLD_INTR; 164 ret = 0; 165 } 166 spin_unlock(&ctx->csa.register_lock); 167 return ret; 168 } 169 170 static u32 spu_backing_signal1_read(struct spu_context *ctx) 171 { 172 return ctx->csa.spu_chnldata_RW[3]; 173 } 174 175 static void spu_backing_signal1_write(struct spu_context *ctx, u32 data) 176 { 177 spin_lock(&ctx->csa.register_lock); 178 if (ctx->csa.priv2.spu_cfg_RW & 0x1) 179 ctx->csa.spu_chnldata_RW[3] |= data; 180 else 181 ctx->csa.spu_chnldata_RW[3] = data; 182 ctx->csa.spu_chnlcnt_RW[3] = 1; 183 gen_spu_event(ctx, MFC_SIGNAL_1_EVENT); 184 spin_unlock(&ctx->csa.register_lock); 185 } 186 187 static u32 spu_backing_signal2_read(struct spu_context *ctx) 188 { 189 return ctx->csa.spu_chnldata_RW[4]; 190 } 191 192 static void spu_backing_signal2_write(struct spu_context *ctx, u32 data) 193 { 194 spin_lock(&ctx->csa.register_lock); 195 if (ctx->csa.priv2.spu_cfg_RW & 0x2) 196 ctx->csa.spu_chnldata_RW[4] |= data; 197 else 198 ctx->csa.spu_chnldata_RW[4] = data; 199 ctx->csa.spu_chnlcnt_RW[4] = 1; 200 gen_spu_event(ctx, MFC_SIGNAL_2_EVENT); 201 spin_unlock(&ctx->csa.register_lock); 202 } 203 204 static void spu_backing_signal1_type_set(struct spu_context *ctx, u64 val) 205 { 206 u64 tmp; 207 208 spin_lock(&ctx->csa.register_lock); 209 tmp = ctx->csa.priv2.spu_cfg_RW; 210 if (val) 211 tmp |= 1; 212 else 213 tmp &= ~1; 214 ctx->csa.priv2.spu_cfg_RW = tmp; 215 spin_unlock(&ctx->csa.register_lock); 216 } 217 218 static u64 spu_backing_signal1_type_get(struct spu_context *ctx) 219 { 220 return ((ctx->csa.priv2.spu_cfg_RW & 1) != 0); 221 } 222 223 static void spu_backing_signal2_type_set(struct spu_context *ctx, u64 val) 224 { 225 u64 tmp; 226 227 spin_lock(&ctx->csa.register_lock); 228 tmp = ctx->csa.priv2.spu_cfg_RW; 229 if (val) 230 tmp |= 2; 231 else 232 tmp &= ~2; 233 ctx->csa.priv2.spu_cfg_RW = tmp; 234 spin_unlock(&ctx->csa.register_lock); 235 } 236 237 static u64 spu_backing_signal2_type_get(struct spu_context *ctx) 238 { 239 return ((ctx->csa.priv2.spu_cfg_RW & 2) != 0); 240 } 241 242 static u32 spu_backing_npc_read(struct spu_context *ctx) 243 { 244 return ctx->csa.prob.spu_npc_RW; 245 } 246 247 static void spu_backing_npc_write(struct spu_context *ctx, u32 val) 248 { 249 ctx->csa.prob.spu_npc_RW = val; 250 } 251 252 static u32 spu_backing_status_read(struct spu_context *ctx) 253 { 254 return ctx->csa.prob.spu_status_R; 255 } 256 257 static char *spu_backing_get_ls(struct spu_context *ctx) 258 { 259 return ctx->csa.lscsa->ls; 260 } 261 262 static void spu_backing_privcntl_write(struct spu_context *ctx, u64 val) 263 { 264 ctx->csa.priv2.spu_privcntl_RW = val; 265 } 266 267 static u32 spu_backing_runcntl_read(struct spu_context *ctx) 268 { 269 return ctx->csa.prob.spu_runcntl_RW; 270 } 271 272 static void spu_backing_runcntl_write(struct spu_context *ctx, u32 val) 273 { 274 spin_lock(&ctx->csa.register_lock); 275 ctx->csa.prob.spu_runcntl_RW = val; 276 if (val & SPU_RUNCNTL_RUNNABLE) { 277 ctx->csa.prob.spu_status_R &= 278 ~SPU_STATUS_STOPPED_BY_STOP & 279 ~SPU_STATUS_STOPPED_BY_HALT & 280 ~SPU_STATUS_SINGLE_STEP & 281 ~SPU_STATUS_INVALID_INSTR & 282 ~SPU_STATUS_INVALID_CH; 283 ctx->csa.prob.spu_status_R |= SPU_STATUS_RUNNING; 284 } else { 285 ctx->csa.prob.spu_status_R &= ~SPU_STATUS_RUNNING; 286 } 287 spin_unlock(&ctx->csa.register_lock); 288 } 289 290 static void spu_backing_runcntl_stop(struct spu_context *ctx) 291 { 292 spu_backing_runcntl_write(ctx, SPU_RUNCNTL_STOP); 293 } 294 295 static void spu_backing_master_start(struct spu_context *ctx) 296 { 297 struct spu_state *csa = &ctx->csa; 298 u64 sr1; 299 300 spin_lock(&csa->register_lock); 301 sr1 = csa->priv1.mfc_sr1_RW | MFC_STATE1_MASTER_RUN_CONTROL_MASK; 302 csa->priv1.mfc_sr1_RW = sr1; 303 spin_unlock(&csa->register_lock); 304 } 305 306 static void spu_backing_master_stop(struct spu_context *ctx) 307 { 308 struct spu_state *csa = &ctx->csa; 309 u64 sr1; 310 311 spin_lock(&csa->register_lock); 312 sr1 = csa->priv1.mfc_sr1_RW & ~MFC_STATE1_MASTER_RUN_CONTROL_MASK; 313 csa->priv1.mfc_sr1_RW = sr1; 314 spin_unlock(&csa->register_lock); 315 } 316 317 static int spu_backing_set_mfc_query(struct spu_context * ctx, u32 mask, 318 u32 mode) 319 { 320 struct spu_problem_collapsed *prob = &ctx->csa.prob; 321 int ret; 322 323 spin_lock(&ctx->csa.register_lock); 324 ret = -EAGAIN; 325 if (prob->dma_querytype_RW) 326 goto out; 327 ret = 0; 328 /* FIXME: what are the side-effects of this? */ 329 prob->dma_querymask_RW = mask; 330 prob->dma_querytype_RW = mode; 331 /* In the current implementation, the SPU context is always 332 * acquired in runnable state when new bits are added to the 333 * mask (tagwait), so it's sufficient just to mask 334 * dma_tagstatus_R with the 'mask' parameter here. 335 */ 336 ctx->csa.prob.dma_tagstatus_R &= mask; 337 out: 338 spin_unlock(&ctx->csa.register_lock); 339 340 return ret; 341 } 342 343 static u32 spu_backing_read_mfc_tagstatus(struct spu_context * ctx) 344 { 345 return ctx->csa.prob.dma_tagstatus_R; 346 } 347 348 static u32 spu_backing_get_mfc_free_elements(struct spu_context *ctx) 349 { 350 return ctx->csa.prob.dma_qstatus_R; 351 } 352 353 static int spu_backing_send_mfc_command(struct spu_context *ctx, 354 struct mfc_dma_command *cmd) 355 { 356 int ret; 357 358 spin_lock(&ctx->csa.register_lock); 359 ret = -EAGAIN; 360 /* FIXME: set up priv2->puq */ 361 spin_unlock(&ctx->csa.register_lock); 362 363 return ret; 364 } 365 366 static void spu_backing_restart_dma(struct spu_context *ctx) 367 { 368 ctx->csa.priv2.mfc_control_RW |= MFC_CNTL_RESTART_DMA_COMMAND; 369 } 370 371 struct spu_context_ops spu_backing_ops = { 372 .mbox_read = spu_backing_mbox_read, 373 .mbox_stat_read = spu_backing_mbox_stat_read, 374 .mbox_stat_poll = spu_backing_mbox_stat_poll, 375 .ibox_read = spu_backing_ibox_read, 376 .wbox_write = spu_backing_wbox_write, 377 .signal1_read = spu_backing_signal1_read, 378 .signal1_write = spu_backing_signal1_write, 379 .signal2_read = spu_backing_signal2_read, 380 .signal2_write = spu_backing_signal2_write, 381 .signal1_type_set = spu_backing_signal1_type_set, 382 .signal1_type_get = spu_backing_signal1_type_get, 383 .signal2_type_set = spu_backing_signal2_type_set, 384 .signal2_type_get = spu_backing_signal2_type_get, 385 .npc_read = spu_backing_npc_read, 386 .npc_write = spu_backing_npc_write, 387 .status_read = spu_backing_status_read, 388 .get_ls = spu_backing_get_ls, 389 .privcntl_write = spu_backing_privcntl_write, 390 .runcntl_read = spu_backing_runcntl_read, 391 .runcntl_write = spu_backing_runcntl_write, 392 .runcntl_stop = spu_backing_runcntl_stop, 393 .master_start = spu_backing_master_start, 394 .master_stop = spu_backing_master_stop, 395 .set_mfc_query = spu_backing_set_mfc_query, 396 .read_mfc_tagstatus = spu_backing_read_mfc_tagstatus, 397 .get_mfc_free_elements = spu_backing_get_mfc_free_elements, 398 .send_mfc_command = spu_backing_send_mfc_command, 399 .restart_dma = spu_backing_restart_dma, 400 }; 401
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.