~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/powerpc/platforms/cell/spufs/sched.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-or-later
  2 /* sched.c - SPU scheduler.
  3  *
  4  * Copyright (C) IBM 2005
  5  * Author: Mark Nutter <mnutter@us.ibm.com>
  6  *
  7  * 2006-03-31   NUMA domains added.
  8  */
  9 
 10 #undef DEBUG
 11 
 12 #include <linux/errno.h>
 13 #include <linux/sched/signal.h>
 14 #include <linux/sched/loadavg.h>
 15 #include <linux/sched/rt.h>
 16 #include <linux/kernel.h>
 17 #include <linux/mm.h>
 18 #include <linux/slab.h>
 19 #include <linux/completion.h>
 20 #include <linux/vmalloc.h>
 21 #include <linux/smp.h>
 22 #include <linux/stddef.h>
 23 #include <linux/unistd.h>
 24 #include <linux/numa.h>
 25 #include <linux/mutex.h>
 26 #include <linux/notifier.h>
 27 #include <linux/kthread.h>
 28 #include <linux/pid_namespace.h>
 29 #include <linux/proc_fs.h>
 30 #include <linux/seq_file.h>
 31 
 32 #include <asm/io.h>
 33 #include <asm/mmu_context.h>
 34 #include <asm/spu.h>
 35 #include <asm/spu_csa.h>
 36 #include <asm/spu_priv1.h>
 37 #include "spufs.h"
 38 #define CREATE_TRACE_POINTS
 39 #include "sputrace.h"
 40 
 41 struct spu_prio_array {
 42         DECLARE_BITMAP(bitmap, MAX_PRIO);
 43         struct list_head runq[MAX_PRIO];
 44         spinlock_t runq_lock;
 45         int nr_waiting;
 46 };
 47 
 48 static unsigned long spu_avenrun[3];
 49 static struct spu_prio_array *spu_prio;
 50 static struct task_struct *spusched_task;
 51 static struct timer_list spusched_timer;
 52 static struct timer_list spuloadavg_timer;
 53 
 54 /*
 55  * Priority of a normal, non-rt, non-niced'd process (aka nice level 0).
 56  */
 57 #define NORMAL_PRIO             120
 58 
 59 /*
 60  * Frequency of the spu scheduler tick.  By default we do one SPU scheduler
 61  * tick for every 10 CPU scheduler ticks.
 62  */
 63 #define SPUSCHED_TICK           (10)
 64 
 65 /*
 66  * These are the 'tuning knobs' of the scheduler:
 67  *
 68  * Minimum timeslice is 5 msecs (or 1 spu scheduler tick, whichever is
 69  * larger), default timeslice is 100 msecs, maximum timeslice is 800 msecs.
 70  */
 71 #define MIN_SPU_TIMESLICE       max(5 * HZ / (1000 * SPUSCHED_TICK), 1)
 72 #define DEF_SPU_TIMESLICE       (100 * HZ / (1000 * SPUSCHED_TICK))
 73 
 74 #define SCALE_PRIO(x, prio) \
 75         max(x * (MAX_PRIO - prio) / (NICE_WIDTH / 2), MIN_SPU_TIMESLICE)
 76 
 77 /*
 78  * scale user-nice values [ -20 ... 0 ... 19 ] to time slice values:
 79  * [800ms ... 100ms ... 5ms]
 80  *
 81  * The higher a thread's priority, the bigger timeslices
 82  * it gets during one round of execution. But even the lowest
 83  * priority thread gets MIN_TIMESLICE worth of execution time.
 84  */
 85 void spu_set_timeslice(struct spu_context *ctx)
 86 {
 87         if (ctx->prio < NORMAL_PRIO)
 88                 ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE * 4, ctx->prio);
 89         else
 90                 ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE, ctx->prio);
 91 }
 92 
 93 /*
 94  * Update scheduling information from the owning thread.
 95  */
 96 void __spu_update_sched_info(struct spu_context *ctx)
 97 {
 98         /*
 99          * assert that the context is not on the runqueue, so it is safe
100          * to change its scheduling parameters.
101          */
102         BUG_ON(!list_empty(&ctx->rq));
103 
104         /*
105          * 32-Bit assignments are atomic on powerpc, and we don't care about
106          * memory ordering here because retrieving the controlling thread is
107          * per definition racy.
108          */
109         ctx->tid = current->pid;
110 
111         /*
112          * We do our own priority calculations, so we normally want
113          * ->static_prio to start with. Unfortunately this field
114          * contains junk for threads with a realtime scheduling
115          * policy so we have to look at ->prio in this case.
116          */
117         if (rt_prio(current->prio))
118                 ctx->prio = current->prio;
119         else
120                 ctx->prio = current->static_prio;
121         ctx->policy = current->policy;
122 
123         /*
124          * TO DO: the context may be loaded, so we may need to activate
125          * it again on a different node. But it shouldn't hurt anything
126          * to update its parameters, because we know that the scheduler
127          * is not actively looking at this field, since it is not on the
128          * runqueue. The context will be rescheduled on the proper node
129          * if it is timesliced or preempted.
130          */
131         cpumask_copy(&ctx->cpus_allowed, current->cpus_ptr);
132 
133         /* Save the current cpu id for spu interrupt routing. */
134         ctx->last_ran = raw_smp_processor_id();
135 }
136 
137 void spu_update_sched_info(struct spu_context *ctx)
138 {
139         int node;
140 
141         if (ctx->state == SPU_STATE_RUNNABLE) {
142                 node = ctx->spu->node;
143 
144                 /*
145                  * Take list_mutex to sync with find_victim().
146                  */
147                 mutex_lock(&cbe_spu_info[node].list_mutex);
148                 __spu_update_sched_info(ctx);
149                 mutex_unlock(&cbe_spu_info[node].list_mutex);
150         } else {
151                 __spu_update_sched_info(ctx);
152         }
153 }
154 
155 static int __node_allowed(struct spu_context *ctx, int node)
156 {
157         if (nr_cpus_node(node)) {
158                 const struct cpumask *mask = cpumask_of_node(node);
159 
160                 if (cpumask_intersects(mask, &ctx->cpus_allowed))
161                         return 1;
162         }
163 
164         return 0;
165 }
166 
167 static int node_allowed(struct spu_context *ctx, int node)
168 {
169         int rval;
170 
171         spin_lock(&spu_prio->runq_lock);
172         rval = __node_allowed(ctx, node);
173         spin_unlock(&spu_prio->runq_lock);
174 
175         return rval;
176 }
177 
178 void do_notify_spus_active(void)
179 {
180         int node;
181 
182         /*
183          * Wake up the active spu_contexts.
184          */
185         for_each_online_node(node) {
186                 struct spu *spu;
187 
188                 mutex_lock(&cbe_spu_info[node].list_mutex);
189                 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
190                         if (spu->alloc_state != SPU_FREE) {
191                                 struct spu_context *ctx = spu->ctx;
192                                 set_bit(SPU_SCHED_NOTIFY_ACTIVE,
193                                         &ctx->sched_flags);
194                                 mb();
195                                 wake_up_all(&ctx->stop_wq);
196                         }
197                 }
198                 mutex_unlock(&cbe_spu_info[node].list_mutex);
199         }
200 }
201 
202 /**
203  * spu_bind_context - bind spu context to physical spu
204  * @spu:        physical spu to bind to
205  * @ctx:        context to bind
206  */
207 static void spu_bind_context(struct spu *spu, struct spu_context *ctx)
208 {
209         spu_context_trace(spu_bind_context__enter, ctx, spu);
210 
211         spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
212 
213         if (ctx->flags & SPU_CREATE_NOSCHED)
214                 atomic_inc(&cbe_spu_info[spu->node].reserved_spus);
215 
216         ctx->stats.slb_flt_base = spu->stats.slb_flt;
217         ctx->stats.class2_intr_base = spu->stats.class2_intr;
218 
219         spu_associate_mm(spu, ctx->owner);
220 
221         spin_lock_irq(&spu->register_lock);
222         spu->ctx = ctx;
223         spu->flags = 0;
224         ctx->spu = spu;
225         ctx->ops = &spu_hw_ops;
226         spu->pid = current->pid;
227         spu->tgid = current->tgid;
228         spu->ibox_callback = spufs_ibox_callback;
229         spu->wbox_callback = spufs_wbox_callback;
230         spu->stop_callback = spufs_stop_callback;
231         spu->mfc_callback = spufs_mfc_callback;
232         spin_unlock_irq(&spu->register_lock);
233 
234         spu_unmap_mappings(ctx);
235 
236         spu_switch_log_notify(spu, ctx, SWITCH_LOG_START, 0);
237         spu_restore(&ctx->csa, spu);
238         spu->timestamp = jiffies;
239         ctx->state = SPU_STATE_RUNNABLE;
240 
241         spuctx_switch_state(ctx, SPU_UTIL_USER);
242 }
243 
244 /*
245  * Must be used with the list_mutex held.
246  */
247 static inline int sched_spu(struct spu *spu)
248 {
249         BUG_ON(!mutex_is_locked(&cbe_spu_info[spu->node].list_mutex));
250 
251         return (!spu->ctx || !(spu->ctx->flags & SPU_CREATE_NOSCHED));
252 }
253 
254 static void aff_merge_remaining_ctxs(struct spu_gang *gang)
255 {
256         struct spu_context *ctx;
257 
258         list_for_each_entry(ctx, &gang->aff_list_head, aff_list) {
259                 if (list_empty(&ctx->aff_list))
260                         list_add(&ctx->aff_list, &gang->aff_list_head);
261         }
262         gang->aff_flags |= AFF_MERGED;
263 }
264 
265 static void aff_set_offsets(struct spu_gang *gang)
266 {
267         struct spu_context *ctx;
268         int offset;
269 
270         offset = -1;
271         list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
272                                                                 aff_list) {
273                 if (&ctx->aff_list == &gang->aff_list_head)
274                         break;
275                 ctx->aff_offset = offset--;
276         }
277 
278         offset = 0;
279         list_for_each_entry(ctx, gang->aff_ref_ctx->aff_list.prev, aff_list) {
280                 if (&ctx->aff_list == &gang->aff_list_head)
281                         break;
282                 ctx->aff_offset = offset++;
283         }
284 
285         gang->aff_flags |= AFF_OFFSETS_SET;
286 }
287 
288 static struct spu *aff_ref_location(struct spu_context *ctx, int mem_aff,
289                  int group_size, int lowest_offset)
290 {
291         struct spu *spu;
292         int node, n;
293 
294         /*
295          * TODO: A better algorithm could be used to find a good spu to be
296          *       used as reference location for the ctxs chain.
297          */
298         node = cpu_to_node(raw_smp_processor_id());
299         for (n = 0; n < MAX_NUMNODES; n++, node++) {
300                 /*
301                  * "available_spus" counts how many spus are not potentially
302                  * going to be used by other affinity gangs whose reference
303                  * context is already in place. Although this code seeks to
304                  * avoid having affinity gangs with a summed amount of
305                  * contexts bigger than the amount of spus in the node,
306                  * this may happen sporadically. In this case, available_spus
307                  * becomes negative, which is harmless.
308                  */
309                 int available_spus;
310 
311                 node = (node < MAX_NUMNODES) ? node : 0;
312                 if (!node_allowed(ctx, node))
313                         continue;
314 
315                 available_spus = 0;
316                 mutex_lock(&cbe_spu_info[node].list_mutex);
317                 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
318                         if (spu->ctx && spu->ctx->gang && !spu->ctx->aff_offset
319                                         && spu->ctx->gang->aff_ref_spu)
320                                 available_spus -= spu->ctx->gang->contexts;
321                         available_spus++;
322                 }
323                 if (available_spus < ctx->gang->contexts) {
324                         mutex_unlock(&cbe_spu_info[node].list_mutex);
325                         continue;
326                 }
327 
328                 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
329                         if ((!mem_aff || spu->has_mem_affinity) &&
330                                                         sched_spu(spu)) {
331                                 mutex_unlock(&cbe_spu_info[node].list_mutex);
332                                 return spu;
333                         }
334                 }
335                 mutex_unlock(&cbe_spu_info[node].list_mutex);
336         }
337         return NULL;
338 }
339 
340 static void aff_set_ref_point_location(struct spu_gang *gang)
341 {
342         int mem_aff, gs, lowest_offset;
343         struct spu_context *tmp, *ctx;
344 
345         mem_aff = gang->aff_ref_ctx->flags & SPU_CREATE_AFFINITY_MEM;
346         lowest_offset = 0;
347         gs = 0;
348 
349         list_for_each_entry(tmp, &gang->aff_list_head, aff_list)
350                 gs++;
351 
352         list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
353                                                                 aff_list) {
354                 if (&ctx->aff_list == &gang->aff_list_head)
355                         break;
356                 lowest_offset = ctx->aff_offset;
357         }
358 
359         gang->aff_ref_spu = aff_ref_location(gang->aff_ref_ctx, mem_aff, gs,
360                                                         lowest_offset);
361 }
362 
363 static struct spu *ctx_location(struct spu *ref, int offset, int node)
364 {
365         struct spu *spu;
366 
367         spu = NULL;
368         if (offset >= 0) {
369                 list_for_each_entry(spu, ref->aff_list.prev, aff_list) {
370                         BUG_ON(spu->node != node);
371                         if (offset == 0)
372                                 break;
373                         if (sched_spu(spu))
374                                 offset--;
375                 }
376         } else {
377                 list_for_each_entry_reverse(spu, ref->aff_list.next, aff_list) {
378                         BUG_ON(spu->node != node);
379                         if (offset == 0)
380                                 break;
381                         if (sched_spu(spu))
382                                 offset++;
383                 }
384         }
385 
386         return spu;
387 }
388 
389 /*
390  * affinity_check is called each time a context is going to be scheduled.
391  * It returns the spu ptr on which the context must run.
392  */
393 static int has_affinity(struct spu_context *ctx)
394 {
395         struct spu_gang *gang = ctx->gang;
396 
397         if (list_empty(&ctx->aff_list))
398                 return 0;
399 
400         if (atomic_read(&ctx->gang->aff_sched_count) == 0)
401                 ctx->gang->aff_ref_spu = NULL;
402 
403         if (!gang->aff_ref_spu) {
404                 if (!(gang->aff_flags & AFF_MERGED))
405                         aff_merge_remaining_ctxs(gang);
406                 if (!(gang->aff_flags & AFF_OFFSETS_SET))
407                         aff_set_offsets(gang);
408                 aff_set_ref_point_location(gang);
409         }
410 
411         return gang->aff_ref_spu != NULL;
412 }
413 
414 /**
415  * spu_unbind_context - unbind spu context from physical spu
416  * @spu:        physical spu to unbind from
417  * @ctx:        context to unbind
418  */
419 static void spu_unbind_context(struct spu *spu, struct spu_context *ctx)
420 {
421         u32 status;
422 
423         spu_context_trace(spu_unbind_context__enter, ctx, spu);
424 
425         spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
426 
427         if (spu->ctx->flags & SPU_CREATE_NOSCHED)
428                 atomic_dec(&cbe_spu_info[spu->node].reserved_spus);
429 
430         if (ctx->gang)
431                 /*
432                  * If ctx->gang->aff_sched_count is positive, SPU affinity is
433                  * being considered in this gang. Using atomic_dec_if_positive
434                  * allow us to skip an explicit check for affinity in this gang
435                  */
436                 atomic_dec_if_positive(&ctx->gang->aff_sched_count);
437 
438         spu_unmap_mappings(ctx);
439         spu_save(&ctx->csa, spu);
440         spu_switch_log_notify(spu, ctx, SWITCH_LOG_STOP, 0);
441 
442         spin_lock_irq(&spu->register_lock);
443         spu->timestamp = jiffies;
444         ctx->state = SPU_STATE_SAVED;
445         spu->ibox_callback = NULL;
446         spu->wbox_callback = NULL;
447         spu->stop_callback = NULL;
448         spu->mfc_callback = NULL;
449         spu->pid = 0;
450         spu->tgid = 0;
451         ctx->ops = &spu_backing_ops;
452         spu->flags = 0;
453         spu->ctx = NULL;
454         spin_unlock_irq(&spu->register_lock);
455 
456         spu_associate_mm(spu, NULL);
457 
458         ctx->stats.slb_flt +=
459                 (spu->stats.slb_flt - ctx->stats.slb_flt_base);
460         ctx->stats.class2_intr +=
461                 (spu->stats.class2_intr - ctx->stats.class2_intr_base);
462 
463         /* This maps the underlying spu state to idle */
464         spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED);
465         ctx->spu = NULL;
466 
467         if (spu_stopped(ctx, &status))
468                 wake_up_all(&ctx->stop_wq);
469 }
470 
471 /**
472  * spu_add_to_rq - add a context to the runqueue
473  * @ctx:       context to add
474  */
475 static void __spu_add_to_rq(struct spu_context *ctx)
476 {
477         /*
478          * Unfortunately this code path can be called from multiple threads
479          * on behalf of a single context due to the way the problem state
480          * mmap support works.
481          *
482          * Fortunately we need to wake up all these threads at the same time
483          * and can simply skip the runqueue addition for every but the first
484          * thread getting into this codepath.
485          *
486          * It's still quite hacky, and long-term we should proxy all other
487          * threads through the owner thread so that spu_run is in control
488          * of all the scheduling activity for a given context.
489          */
490         if (list_empty(&ctx->rq)) {
491                 list_add_tail(&ctx->rq, &spu_prio->runq[ctx->prio]);
492                 set_bit(ctx->prio, spu_prio->bitmap);
493                 if (!spu_prio->nr_waiting++)
494                         mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
495         }
496 }
497 
498 static void spu_add_to_rq(struct spu_context *ctx)
499 {
500         spin_lock(&spu_prio->runq_lock);
501         __spu_add_to_rq(ctx);
502         spin_unlock(&spu_prio->runq_lock);
503 }
504 
505 static void __spu_del_from_rq(struct spu_context *ctx)
506 {
507         int prio = ctx->prio;
508 
509         if (!list_empty(&ctx->rq)) {
510                 if (!--spu_prio->nr_waiting)
511                         del_timer(&spusched_timer);
512                 list_del_init(&ctx->rq);
513 
514                 if (list_empty(&spu_prio->runq[prio]))
515                         clear_bit(prio, spu_prio->bitmap);
516         }
517 }
518 
519 void spu_del_from_rq(struct spu_context *ctx)
520 {
521         spin_lock(&spu_prio->runq_lock);
522         __spu_del_from_rq(ctx);
523         spin_unlock(&spu_prio->runq_lock);
524 }
525 
526 static void spu_prio_wait(struct spu_context *ctx)
527 {
528         DEFINE_WAIT(wait);
529 
530         /*
531          * The caller must explicitly wait for a context to be loaded
532          * if the nosched flag is set.  If NOSCHED is not set, the caller
533          * queues the context and waits for an spu event or error.
534          */
535         BUG_ON(!(ctx->flags & SPU_CREATE_NOSCHED));
536 
537         spin_lock(&spu_prio->runq_lock);
538         prepare_to_wait_exclusive(&ctx->stop_wq, &wait, TASK_INTERRUPTIBLE);
539         if (!signal_pending(current)) {
540                 __spu_add_to_rq(ctx);
541                 spin_unlock(&spu_prio->runq_lock);
542                 mutex_unlock(&ctx->state_mutex);
543                 schedule();
544                 mutex_lock(&ctx->state_mutex);
545                 spin_lock(&spu_prio->runq_lock);
546                 __spu_del_from_rq(ctx);
547         }
548         spin_unlock(&spu_prio->runq_lock);
549         __set_current_state(TASK_RUNNING);
550         remove_wait_queue(&ctx->stop_wq, &wait);
551 }
552 
553 static struct spu *spu_get_idle(struct spu_context *ctx)
554 {
555         struct spu *spu, *aff_ref_spu;
556         int node, n;
557 
558         spu_context_nospu_trace(spu_get_idle__enter, ctx);
559 
560         if (ctx->gang) {
561                 mutex_lock(&ctx->gang->aff_mutex);
562                 if (has_affinity(ctx)) {
563                         aff_ref_spu = ctx->gang->aff_ref_spu;
564                         atomic_inc(&ctx->gang->aff_sched_count);
565                         mutex_unlock(&ctx->gang->aff_mutex);
566                         node = aff_ref_spu->node;
567 
568                         mutex_lock(&cbe_spu_info[node].list_mutex);
569                         spu = ctx_location(aff_ref_spu, ctx->aff_offset, node);
570                         if (spu && spu->alloc_state == SPU_FREE)
571                                 goto found;
572                         mutex_unlock(&cbe_spu_info[node].list_mutex);
573 
574                         atomic_dec(&ctx->gang->aff_sched_count);
575                         goto not_found;
576                 }
577                 mutex_unlock(&ctx->gang->aff_mutex);
578         }
579         node = cpu_to_node(raw_smp_processor_id());
580         for (n = 0; n < MAX_NUMNODES; n++, node++) {
581                 node = (node < MAX_NUMNODES) ? node : 0;
582                 if (!node_allowed(ctx, node))
583                         continue;
584 
585                 mutex_lock(&cbe_spu_info[node].list_mutex);
586                 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
587                         if (spu->alloc_state == SPU_FREE)
588                                 goto found;
589                 }
590                 mutex_unlock(&cbe_spu_info[node].list_mutex);
591         }
592 
593  not_found:
594         spu_context_nospu_trace(spu_get_idle__not_found, ctx);
595         return NULL;
596 
597  found:
598         spu->alloc_state = SPU_USED;
599         mutex_unlock(&cbe_spu_info[node].list_mutex);
600         spu_context_trace(spu_get_idle__found, ctx, spu);
601         spu_init_channels(spu);
602         return spu;
603 }
604 
605 /**
606  * find_victim - find a lower priority context to preempt
607  * @ctx:        candidate context for running
608  *
609  * Returns the freed physical spu to run the new context on.
610  */
611 static struct spu *find_victim(struct spu_context *ctx)
612 {
613         struct spu_context *victim = NULL;
614         struct spu *spu;
615         int node, n;
616 
617         spu_context_nospu_trace(spu_find_victim__enter, ctx);
618 
619         /*
620          * Look for a possible preemption candidate on the local node first.
621          * If there is no candidate look at the other nodes.  This isn't
622          * exactly fair, but so far the whole spu scheduler tries to keep
623          * a strong node affinity.  We might want to fine-tune this in
624          * the future.
625          */
626  restart:
627         node = cpu_to_node(raw_smp_processor_id());
628         for (n = 0; n < MAX_NUMNODES; n++, node++) {
629                 node = (node < MAX_NUMNODES) ? node : 0;
630                 if (!node_allowed(ctx, node))
631                         continue;
632 
633                 mutex_lock(&cbe_spu_info[node].list_mutex);
634                 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
635                         struct spu_context *tmp = spu->ctx;
636 
637                         if (tmp && tmp->prio > ctx->prio &&
638                             !(tmp->flags & SPU_CREATE_NOSCHED) &&
639                             (!victim || tmp->prio > victim->prio)) {
640                                 victim = spu->ctx;
641                         }
642                 }
643                 if (victim)
644                         get_spu_context(victim);
645                 mutex_unlock(&cbe_spu_info[node].list_mutex);
646 
647                 if (victim) {
648                         /*
649                          * This nests ctx->state_mutex, but we always lock
650                          * higher priority contexts before lower priority
651                          * ones, so this is safe until we introduce
652                          * priority inheritance schemes.
653                          *
654                          * XXX if the highest priority context is locked,
655                          * this can loop a long time.  Might be better to
656                          * look at another context or give up after X retries.
657                          */
658                         if (!mutex_trylock(&victim->state_mutex)) {
659                                 put_spu_context(victim);
660                                 victim = NULL;
661                                 goto restart;
662                         }
663 
664                         spu = victim->spu;
665                         if (!spu || victim->prio <= ctx->prio) {
666                                 /*
667                                  * This race can happen because we've dropped
668                                  * the active list mutex.  Not a problem, just
669                                  * restart the search.
670                                  */
671                                 mutex_unlock(&victim->state_mutex);
672                                 put_spu_context(victim);
673                                 victim = NULL;
674                                 goto restart;
675                         }
676 
677                         spu_context_trace(__spu_deactivate__unload, ctx, spu);
678 
679                         mutex_lock(&cbe_spu_info[node].list_mutex);
680                         cbe_spu_info[node].nr_active--;
681                         spu_unbind_context(spu, victim);
682                         mutex_unlock(&cbe_spu_info[node].list_mutex);
683 
684                         victim->stats.invol_ctx_switch++;
685                         spu->stats.invol_ctx_switch++;
686                         if (test_bit(SPU_SCHED_SPU_RUN, &victim->sched_flags))
687                                 spu_add_to_rq(victim);
688 
689                         mutex_unlock(&victim->state_mutex);
690                         put_spu_context(victim);
691 
692                         return spu;
693                 }
694         }
695 
696         return NULL;
697 }
698 
699 static void __spu_schedule(struct spu *spu, struct spu_context *ctx)
700 {
701         int node = spu->node;
702         int success = 0;
703 
704         spu_set_timeslice(ctx);
705 
706         mutex_lock(&cbe_spu_info[node].list_mutex);
707         if (spu->ctx == NULL) {
708                 spu_bind_context(spu, ctx);
709                 cbe_spu_info[node].nr_active++;
710                 spu->alloc_state = SPU_USED;
711                 success = 1;
712         }
713         mutex_unlock(&cbe_spu_info[node].list_mutex);
714 
715         if (success)
716                 wake_up_all(&ctx->run_wq);
717         else
718                 spu_add_to_rq(ctx);
719 }
720 
721 static void spu_schedule(struct spu *spu, struct spu_context *ctx)
722 {
723         /* not a candidate for interruptible because it's called either
724            from the scheduler thread or from spu_deactivate */
725         mutex_lock(&ctx->state_mutex);
726         if (ctx->state == SPU_STATE_SAVED)
727                 __spu_schedule(spu, ctx);
728         spu_release(ctx);
729 }
730 
731 /**
732  * spu_unschedule - remove a context from a spu, and possibly release it.
733  * @spu:        The SPU to unschedule from
734  * @ctx:        The context currently scheduled on the SPU
735  * @free_spu    Whether to free the SPU for other contexts
736  *
737  * Unbinds the context @ctx from the SPU @spu. If @free_spu is non-zero, the
738  * SPU is made available for other contexts (ie, may be returned by
739  * spu_get_idle). If this is zero, the caller is expected to schedule another
740  * context to this spu.
741  *
742  * Should be called with ctx->state_mutex held.
743  */
744 static void spu_unschedule(struct spu *spu, struct spu_context *ctx,
745                 int free_spu)
746 {
747         int node = spu->node;
748 
749         mutex_lock(&cbe_spu_info[node].list_mutex);
750         cbe_spu_info[node].nr_active--;
751         if (free_spu)
752                 spu->alloc_state = SPU_FREE;
753         spu_unbind_context(spu, ctx);
754         ctx->stats.invol_ctx_switch++;
755         spu->stats.invol_ctx_switch++;
756         mutex_unlock(&cbe_spu_info[node].list_mutex);
757 }
758 
759 /**
760  * spu_activate - find a free spu for a context and execute it
761  * @ctx:        spu context to schedule
762  * @flags:      flags (currently ignored)
763  *
764  * Tries to find a free spu to run @ctx.  If no free spu is available
765  * add the context to the runqueue so it gets woken up once an spu
766  * is available.
767  */
768 int spu_activate(struct spu_context *ctx, unsigned long flags)
769 {
770         struct spu *spu;
771 
772         /*
773          * If there are multiple threads waiting for a single context
774          * only one actually binds the context while the others will
775          * only be able to acquire the state_mutex once the context
776          * already is in runnable state.
777          */
778         if (ctx->spu)
779                 return 0;
780 
781 spu_activate_top:
782         if (signal_pending(current))
783                 return -ERESTARTSYS;
784 
785         spu = spu_get_idle(ctx);
786         /*
787          * If this is a realtime thread we try to get it running by
788          * preempting a lower priority thread.
789          */
790         if (!spu && rt_prio(ctx->prio))
791                 spu = find_victim(ctx);
792         if (spu) {
793                 unsigned long runcntl;
794 
795                 runcntl = ctx->ops->runcntl_read(ctx);
796                 __spu_schedule(spu, ctx);
797                 if (runcntl & SPU_RUNCNTL_RUNNABLE)
798                         spuctx_switch_state(ctx, SPU_UTIL_USER);
799 
800                 return 0;
801         }
802 
803         if (ctx->flags & SPU_CREATE_NOSCHED) {
804                 spu_prio_wait(ctx);
805                 goto spu_activate_top;
806         }
807 
808         spu_add_to_rq(ctx);
809 
810         return 0;
811 }
812 
813 /**
814  * grab_runnable_context - try to find a runnable context
815  *
816  * Remove the highest priority context on the runqueue and return it
817  * to the caller.  Returns %NULL if no runnable context was found.
818  */
819 static struct spu_context *grab_runnable_context(int prio, int node)
820 {
821         struct spu_context *ctx;
822         int best;
823 
824         spin_lock(&spu_prio->runq_lock);
825         best = find_first_bit(spu_prio->bitmap, prio);
826         while (best < prio) {
827                 struct list_head *rq = &spu_prio->runq[best];
828 
829                 list_for_each_entry(ctx, rq, rq) {
830                         /* XXX(hch): check for affinity here as well */
831                         if (__node_allowed(ctx, node)) {
832                                 __spu_del_from_rq(ctx);
833                                 goto found;
834                         }
835                 }
836                 best++;
837         }
838         ctx = NULL;
839  found:
840         spin_unlock(&spu_prio->runq_lock);
841         return ctx;
842 }
843 
844 static int __spu_deactivate(struct spu_context *ctx, int force, int max_prio)
845 {
846         struct spu *spu = ctx->spu;
847         struct spu_context *new = NULL;
848 
849         if (spu) {
850                 new = grab_runnable_context(max_prio, spu->node);
851                 if (new || force) {
852                         spu_unschedule(spu, ctx, new == NULL);
853                         if (new) {
854                                 if (new->flags & SPU_CREATE_NOSCHED)
855                                         wake_up(&new->stop_wq);
856                                 else {
857                                         spu_release(ctx);
858                                         spu_schedule(spu, new);
859                                         /* this one can't easily be made
860                                            interruptible */
861                                         mutex_lock(&ctx->state_mutex);
862                                 }
863                         }
864                 }
865         }
866 
867         return new != NULL;
868 }
869 
870 /**
871  * spu_deactivate - unbind a context from its physical spu
872  * @ctx:        spu context to unbind
873  *
874  * Unbind @ctx from the physical spu it is running on and schedule
875  * the highest priority context to run on the freed physical spu.
876  */
877 void spu_deactivate(struct spu_context *ctx)
878 {
879         spu_context_nospu_trace(spu_deactivate__enter, ctx);
880         __spu_deactivate(ctx, 1, MAX_PRIO);
881 }
882 
883 /**
884  * spu_yield -  yield a physical spu if others are waiting
885  * @ctx:        spu context to yield
886  *
887  * Check if there is a higher priority context waiting and if yes
888  * unbind @ctx from the physical spu and schedule the highest
889  * priority context to run on the freed physical spu instead.
890  */
891 void spu_yield(struct spu_context *ctx)
892 {
893         spu_context_nospu_trace(spu_yield__enter, ctx);
894         if (!(ctx->flags & SPU_CREATE_NOSCHED)) {
895                 mutex_lock(&ctx->state_mutex);
896                 __spu_deactivate(ctx, 0, MAX_PRIO);
897                 mutex_unlock(&ctx->state_mutex);
898         }
899 }
900 
901 static noinline void spusched_tick(struct spu_context *ctx)
902 {
903         struct spu_context *new = NULL;
904         struct spu *spu = NULL;
905 
906         if (spu_acquire(ctx))
907                 BUG();  /* a kernel thread never has signals pending */
908 
909         if (ctx->state != SPU_STATE_RUNNABLE)
910                 goto out;
911         if (ctx->flags & SPU_CREATE_NOSCHED)
912                 goto out;
913         if (ctx->policy == SCHED_FIFO)
914                 goto out;
915 
916         if (--ctx->time_slice && test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags))
917                 goto out;
918 
919         spu = ctx->spu;
920 
921         spu_context_trace(spusched_tick__preempt, ctx, spu);
922 
923         new = grab_runnable_context(ctx->prio + 1, spu->node);
924         if (new) {
925                 spu_unschedule(spu, ctx, 0);
926                 if (test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags))
927                         spu_add_to_rq(ctx);
928         } else {
929                 spu_context_nospu_trace(spusched_tick__newslice, ctx);
930                 if (!ctx->time_slice)
931                         ctx->time_slice++;
932         }
933 out:
934         spu_release(ctx);
935 
936         if (new)
937                 spu_schedule(spu, new);
938 }
939 
940 /**
941  * count_active_contexts - count nr of active tasks
942  *
943  * Return the number of tasks currently running or waiting to run.
944  *
945  * Note that we don't take runq_lock / list_mutex here.  Reading
946  * a single 32bit value is atomic on powerpc, and we don't care
947  * about memory ordering issues here.
948  */
949 static unsigned long count_active_contexts(void)
950 {
951         int nr_active = 0, node;
952 
953         for (node = 0; node < MAX_NUMNODES; node++)
954                 nr_active += cbe_spu_info[node].nr_active;
955         nr_active += spu_prio->nr_waiting;
956 
957         return nr_active;
958 }
959 
960 /**
961  * spu_calc_load - update the avenrun load estimates.
962  *
963  * No locking against reading these values from userspace, as for
964  * the CPU loadavg code.
965  */
966 static void spu_calc_load(void)
967 {
968         unsigned long active_tasks; /* fixed-point */
969 
970         active_tasks = count_active_contexts() * FIXED_1;
971         spu_avenrun[0] = calc_load(spu_avenrun[0], EXP_1, active_tasks);
972         spu_avenrun[1] = calc_load(spu_avenrun[1], EXP_5, active_tasks);
973         spu_avenrun[2] = calc_load(spu_avenrun[2], EXP_15, active_tasks);
974 }
975 
976 static void spusched_wake(struct timer_list *unused)
977 {
978         mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
979         wake_up_process(spusched_task);
980 }
981 
982 static void spuloadavg_wake(struct timer_list *unused)
983 {
984         mod_timer(&spuloadavg_timer, jiffies + LOAD_FREQ);
985         spu_calc_load();
986 }
987 
988 static int spusched_thread(void *unused)
989 {
990         struct spu *spu;
991         int node;
992 
993         while (!kthread_should_stop()) {
994                 set_current_state(TASK_INTERRUPTIBLE);
995                 schedule();
996                 for (node = 0; node < MAX_NUMNODES; node++) {
997                         struct mutex *mtx = &cbe_spu_info[node].list_mutex;
998 
999                         mutex_lock(mtx);
1000                         list_for_each_entry(spu, &cbe_spu_info[node].spus,
1001                                         cbe_list) {
1002                                 struct spu_context *ctx = spu->ctx;
1003 
1004                                 if (ctx) {
1005                                         get_spu_context(ctx);
1006                                         mutex_unlock(mtx);
1007                                         spusched_tick(ctx);
1008                                         mutex_lock(mtx);
1009                                         put_spu_context(ctx);
1010                                 }
1011                         }
1012                         mutex_unlock(mtx);
1013                 }
1014         }
1015 
1016         return 0;
1017 }
1018 
1019 void spuctx_switch_state(struct spu_context *ctx,
1020                 enum spu_utilization_state new_state)
1021 {
1022         unsigned long long curtime;
1023         signed long long delta;
1024         struct spu *spu;
1025         enum spu_utilization_state old_state;
1026         int node;
1027 
1028         curtime = ktime_get_ns();
1029         delta = curtime - ctx->stats.tstamp;
1030 
1031         WARN_ON(!mutex_is_locked(&ctx->state_mutex));
1032         WARN_ON(delta < 0);
1033 
1034         spu = ctx->spu;
1035         old_state = ctx->stats.util_state;
1036         ctx->stats.util_state = new_state;
1037         ctx->stats.tstamp = curtime;
1038 
1039         /*
1040          * Update the physical SPU utilization statistics.
1041          */
1042         if (spu) {
1043                 ctx->stats.times[old_state] += delta;
1044                 spu->stats.times[old_state] += delta;
1045                 spu->stats.util_state = new_state;
1046                 spu->stats.tstamp = curtime;
1047                 node = spu->node;
1048                 if (old_state == SPU_UTIL_USER)
1049                         atomic_dec(&cbe_spu_info[node].busy_spus);
1050                 if (new_state == SPU_UTIL_USER)
1051                         atomic_inc(&cbe_spu_info[node].busy_spus);
1052         }
1053 }
1054 
1055 #ifdef CONFIG_PROC_FS
1056 static int show_spu_loadavg(struct seq_file *s, void *private)
1057 {
1058         int a, b, c;
1059 
1060         a = spu_avenrun[0] + (FIXED_1/200);
1061         b = spu_avenrun[1] + (FIXED_1/200);
1062         c = spu_avenrun[2] + (FIXED_1/200);
1063 
1064         /*
1065          * Note that last_pid doesn't really make much sense for the
1066          * SPU loadavg (it even seems very odd on the CPU side...),
1067          * but we include it here to have a 100% compatible interface.
1068          */
1069         seq_printf(s, "%d.%02d %d.%02d %d.%02d %ld/%d %d\n",
1070                 LOAD_INT(a), LOAD_FRAC(a),
1071                 LOAD_INT(b), LOAD_FRAC(b),
1072                 LOAD_INT(c), LOAD_FRAC(c),
1073                 count_active_contexts(),
1074                 atomic_read(&nr_spu_contexts),
1075                 idr_get_cursor(&task_active_pid_ns(current)->idr) - 1);
1076         return 0;
1077 }
1078 #endif
1079 
1080 int __init spu_sched_init(void)
1081 {
1082         struct proc_dir_entry *entry;
1083         int err = -ENOMEM, i;
1084 
1085         spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL);
1086         if (!spu_prio)
1087                 goto out;
1088 
1089         for (i = 0; i < MAX_PRIO; i++) {
1090                 INIT_LIST_HEAD(&spu_prio->runq[i]);
1091                 __clear_bit(i, spu_prio->bitmap);
1092         }
1093         spin_lock_init(&spu_prio->runq_lock);
1094 
1095         timer_setup(&spusched_timer, spusched_wake, 0);
1096         timer_setup(&spuloadavg_timer, spuloadavg_wake, 0);
1097 
1098         spusched_task = kthread_run(spusched_thread, NULL, "spusched");
1099         if (IS_ERR(spusched_task)) {
1100                 err = PTR_ERR(spusched_task);
1101                 goto out_free_spu_prio;
1102         }
1103 
1104         mod_timer(&spuloadavg_timer, 0);
1105 
1106         entry = proc_create_single("spu_loadavg", 0, NULL, show_spu_loadavg);
1107         if (!entry)
1108                 goto out_stop_kthread;
1109 
1110         pr_debug("spusched: tick: %d, min ticks: %d, default ticks: %d\n",
1111                         SPUSCHED_TICK, MIN_SPU_TIMESLICE, DEF_SPU_TIMESLICE);
1112         return 0;
1113 
1114  out_stop_kthread:
1115         kthread_stop(spusched_task);
1116  out_free_spu_prio:
1117         kfree(spu_prio);
1118  out:
1119         return err;
1120 }
1121 
1122 void spu_sched_exit(void)
1123 {
1124         struct spu *spu;
1125         int node;
1126 
1127         remove_proc_entry("spu_loadavg", NULL);
1128 
1129         del_timer_sync(&spusched_timer);
1130         del_timer_sync(&spuloadavg_timer);
1131         kthread_stop(spusched_task);
1132 
1133         for (node = 0; node < MAX_NUMNODES; node++) {
1134                 mutex_lock(&cbe_spu_info[node].list_mutex);
1135                 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list)
1136                         if (spu->alloc_state != SPU_FREE)
1137                                 spu->alloc_state = SPU_FREE;
1138                 mutex_unlock(&cbe_spu_info[node].list_mutex);
1139         }
1140         kfree(spu_prio);
1141 }
1142 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php