~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/powerpc/platforms/cell/spufs/switch.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-or-later
  2 /*
  3  * spu_switch.c
  4  *
  5  * (C) Copyright IBM Corp. 2005
  6  *
  7  * Author: Mark Nutter <mnutter@us.ibm.com>
  8  *
  9  * Host-side part of SPU context switch sequence outlined in
 10  * Synergistic Processor Element, Book IV.
 11  *
 12  * A fully premptive switch of an SPE is very expensive in terms
 13  * of time and system resources.  SPE Book IV indicates that SPE
 14  * allocation should follow a "serially reusable device" model,
 15  * in which the SPE is assigned a task until it completes.  When
 16  * this is not possible, this sequence may be used to premptively
 17  * save, and then later (optionally) restore the context of a
 18  * program executing on an SPE.
 19  */
 20 
 21 #include <linux/export.h>
 22 #include <linux/errno.h>
 23 #include <linux/hardirq.h>
 24 #include <linux/sched.h>
 25 #include <linux/kernel.h>
 26 #include <linux/mm.h>
 27 #include <linux/vmalloc.h>
 28 #include <linux/smp.h>
 29 #include <linux/stddef.h>
 30 #include <linux/unistd.h>
 31 
 32 #include <asm/io.h>
 33 #include <asm/spu.h>
 34 #include <asm/spu_priv1.h>
 35 #include <asm/spu_csa.h>
 36 #include <asm/mmu_context.h>
 37 
 38 #include "spufs.h"
 39 
 40 #include "spu_save_dump.h"
 41 #include "spu_restore_dump.h"
 42 
 43 #if 0
 44 #define POLL_WHILE_TRUE(_c) {                           \
 45     do {                                                \
 46     } while (_c);                                       \
 47   }
 48 #else
 49 #define RELAX_SPIN_COUNT                                1000
 50 #define POLL_WHILE_TRUE(_c) {                           \
 51     do {                                                \
 52         int _i;                                         \
 53         for (_i=0; _i<RELAX_SPIN_COUNT && (_c); _i++) { \
 54             cpu_relax();                                \
 55         }                                               \
 56         if (unlikely(_c)) yield();                      \
 57         else break;                                     \
 58     } while (_c);                                       \
 59   }
 60 #endif                          /* debug */
 61 
 62 #define POLL_WHILE_FALSE(_c)    POLL_WHILE_TRUE(!(_c))
 63 
 64 static inline void acquire_spu_lock(struct spu *spu)
 65 {
 66         /* Save, Step 1:
 67          * Restore, Step 1:
 68          *    Acquire SPU-specific mutual exclusion lock.
 69          *    TBD.
 70          */
 71 }
 72 
 73 static inline void release_spu_lock(struct spu *spu)
 74 {
 75         /* Restore, Step 76:
 76          *    Release SPU-specific mutual exclusion lock.
 77          *    TBD.
 78          */
 79 }
 80 
 81 static inline int check_spu_isolate(struct spu_state *csa, struct spu *spu)
 82 {
 83         struct spu_problem __iomem *prob = spu->problem;
 84         u32 isolate_state;
 85 
 86         /* Save, Step 2:
 87          * Save, Step 6:
 88          *     If SPU_Status[E,L,IS] any field is '1', this
 89          *     SPU is in isolate state and cannot be context
 90          *     saved at this time.
 91          */
 92         isolate_state = SPU_STATUS_ISOLATED_STATE |
 93             SPU_STATUS_ISOLATED_LOAD_STATUS | SPU_STATUS_ISOLATED_EXIT_STATUS;
 94         return (in_be32(&prob->spu_status_R) & isolate_state) ? 1 : 0;
 95 }
 96 
 97 static inline void disable_interrupts(struct spu_state *csa, struct spu *spu)
 98 {
 99         /* Save, Step 3:
100          * Restore, Step 2:
101          *     Save INT_Mask_class0 in CSA.
102          *     Write INT_MASK_class0 with value of 0.
103          *     Save INT_Mask_class1 in CSA.
104          *     Write INT_MASK_class1 with value of 0.
105          *     Save INT_Mask_class2 in CSA.
106          *     Write INT_MASK_class2 with value of 0.
107          *     Synchronize all three interrupts to be sure
108          *     we no longer execute a handler on another CPU.
109          */
110         spin_lock_irq(&spu->register_lock);
111         if (csa) {
112                 csa->priv1.int_mask_class0_RW = spu_int_mask_get(spu, 0);
113                 csa->priv1.int_mask_class1_RW = spu_int_mask_get(spu, 1);
114                 csa->priv1.int_mask_class2_RW = spu_int_mask_get(spu, 2);
115         }
116         spu_int_mask_set(spu, 0, 0ul);
117         spu_int_mask_set(spu, 1, 0ul);
118         spu_int_mask_set(spu, 2, 0ul);
119         eieio();
120         spin_unlock_irq(&spu->register_lock);
121 
122         /*
123          * This flag needs to be set before calling synchronize_irq so
124          * that the update will be visible to the relevant handlers
125          * via a simple load.
126          */
127         set_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
128         clear_bit(SPU_CONTEXT_FAULT_PENDING, &spu->flags);
129         synchronize_irq(spu->irqs[0]);
130         synchronize_irq(spu->irqs[1]);
131         synchronize_irq(spu->irqs[2]);
132 }
133 
134 static inline void set_watchdog_timer(struct spu_state *csa, struct spu *spu)
135 {
136         /* Save, Step 4:
137          * Restore, Step 25.
138          *    Set a software watchdog timer, which specifies the
139          *    maximum allowable time for a context save sequence.
140          *
141          *    For present, this implementation will not set a global
142          *    watchdog timer, as virtualization & variable system load
143          *    may cause unpredictable execution times.
144          */
145 }
146 
147 static inline void inhibit_user_access(struct spu_state *csa, struct spu *spu)
148 {
149         /* Save, Step 5:
150          * Restore, Step 3:
151          *     Inhibit user-space access (if provided) to this
152          *     SPU by unmapping the virtual pages assigned to
153          *     the SPU memory-mapped I/O (MMIO) for problem
154          *     state. TBD.
155          */
156 }
157 
158 static inline void set_switch_pending(struct spu_state *csa, struct spu *spu)
159 {
160         /* Save, Step 7:
161          * Restore, Step 5:
162          *     Set a software context switch pending flag.
163          *     Done above in Step 3 - disable_interrupts().
164          */
165 }
166 
167 static inline void save_mfc_cntl(struct spu_state *csa, struct spu *spu)
168 {
169         struct spu_priv2 __iomem *priv2 = spu->priv2;
170 
171         /* Save, Step 8:
172          *     Suspend DMA and save MFC_CNTL.
173          */
174         switch (in_be64(&priv2->mfc_control_RW) &
175                MFC_CNTL_SUSPEND_DMA_STATUS_MASK) {
176         case MFC_CNTL_SUSPEND_IN_PROGRESS:
177                 POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
178                                   MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
179                                  MFC_CNTL_SUSPEND_COMPLETE);
180                 fallthrough;
181         case MFC_CNTL_SUSPEND_COMPLETE:
182                 if (csa)
183                         csa->priv2.mfc_control_RW =
184                                 in_be64(&priv2->mfc_control_RW) |
185                                 MFC_CNTL_SUSPEND_DMA_QUEUE;
186                 break;
187         case MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION:
188                 out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE);
189                 POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
190                                   MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
191                                  MFC_CNTL_SUSPEND_COMPLETE);
192                 if (csa)
193                         csa->priv2.mfc_control_RW =
194                                 in_be64(&priv2->mfc_control_RW) &
195                                 ~MFC_CNTL_SUSPEND_DMA_QUEUE &
196                                 ~MFC_CNTL_SUSPEND_MASK;
197                 break;
198         }
199 }
200 
201 static inline void save_spu_runcntl(struct spu_state *csa, struct spu *spu)
202 {
203         struct spu_problem __iomem *prob = spu->problem;
204 
205         /* Save, Step 9:
206          *     Save SPU_Runcntl in the CSA.  This value contains
207          *     the "Application Desired State".
208          */
209         csa->prob.spu_runcntl_RW = in_be32(&prob->spu_runcntl_RW);
210 }
211 
212 static inline void save_mfc_sr1(struct spu_state *csa, struct spu *spu)
213 {
214         /* Save, Step 10:
215          *     Save MFC_SR1 in the CSA.
216          */
217         csa->priv1.mfc_sr1_RW = spu_mfc_sr1_get(spu);
218 }
219 
220 static inline void save_spu_status(struct spu_state *csa, struct spu *spu)
221 {
222         struct spu_problem __iomem *prob = spu->problem;
223 
224         /* Save, Step 11:
225          *     Read SPU_Status[R], and save to CSA.
226          */
227         if ((in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) == 0) {
228                 csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
229         } else {
230                 u32 stopped;
231 
232                 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
233                 eieio();
234                 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
235                                 SPU_STATUS_RUNNING);
236                 stopped =
237                     SPU_STATUS_INVALID_INSTR | SPU_STATUS_SINGLE_STEP |
238                     SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
239                 if ((in_be32(&prob->spu_status_R) & stopped) == 0)
240                         csa->prob.spu_status_R = SPU_STATUS_RUNNING;
241                 else
242                         csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
243         }
244 }
245 
246 static inline void save_mfc_stopped_status(struct spu_state *csa,
247                 struct spu *spu)
248 {
249         struct spu_priv2 __iomem *priv2 = spu->priv2;
250         const u64 mask = MFC_CNTL_DECREMENTER_RUNNING |
251                         MFC_CNTL_DMA_QUEUES_EMPTY;
252 
253         /* Save, Step 12:
254          *     Read MFC_CNTL[Ds].  Update saved copy of
255          *     CSA.MFC_CNTL[Ds].
256          *
257          * update: do the same with MFC_CNTL[Q].
258          */
259         csa->priv2.mfc_control_RW &= ~mask;
260         csa->priv2.mfc_control_RW |= in_be64(&priv2->mfc_control_RW) & mask;
261 }
262 
263 static inline void halt_mfc_decr(struct spu_state *csa, struct spu *spu)
264 {
265         struct spu_priv2 __iomem *priv2 = spu->priv2;
266 
267         /* Save, Step 13:
268          *     Write MFC_CNTL[Dh] set to a '1' to halt
269          *     the decrementer.
270          */
271         out_be64(&priv2->mfc_control_RW,
272                  MFC_CNTL_DECREMENTER_HALTED | MFC_CNTL_SUSPEND_MASK);
273         eieio();
274 }
275 
276 static inline void save_timebase(struct spu_state *csa, struct spu *spu)
277 {
278         /* Save, Step 14:
279          *    Read PPE Timebase High and Timebase low registers
280          *    and save in CSA.  TBD.
281          */
282         csa->suspend_time = get_cycles();
283 }
284 
285 static inline void remove_other_spu_access(struct spu_state *csa,
286                                            struct spu *spu)
287 {
288         /* Save, Step 15:
289          *     Remove other SPU access to this SPU by unmapping
290          *     this SPU's pages from their address space.  TBD.
291          */
292 }
293 
294 static inline void do_mfc_mssync(struct spu_state *csa, struct spu *spu)
295 {
296         struct spu_problem __iomem *prob = spu->problem;
297 
298         /* Save, Step 16:
299          * Restore, Step 11.
300          *     Write SPU_MSSync register. Poll SPU_MSSync[P]
301          *     for a value of 0.
302          */
303         out_be64(&prob->spc_mssync_RW, 1UL);
304         POLL_WHILE_TRUE(in_be64(&prob->spc_mssync_RW) & MS_SYNC_PENDING);
305 }
306 
307 static inline void issue_mfc_tlbie(struct spu_state *csa, struct spu *spu)
308 {
309         /* Save, Step 17:
310          * Restore, Step 12.
311          * Restore, Step 48.
312          *     Write TLB_Invalidate_Entry[IS,VPN,L,Lp]=0 register.
313          *     Then issue a PPE sync instruction.
314          */
315         spu_tlb_invalidate(spu);
316         mb();
317 }
318 
319 static inline void handle_pending_interrupts(struct spu_state *csa,
320                                              struct spu *spu)
321 {
322         /* Save, Step 18:
323          *     Handle any pending interrupts from this SPU
324          *     here.  This is OS or hypervisor specific.  One
325          *     option is to re-enable interrupts to handle any
326          *     pending interrupts, with the interrupt handlers
327          *     recognizing the software Context Switch Pending
328          *     flag, to ensure the SPU execution or MFC command
329          *     queue is not restarted.  TBD.
330          */
331 }
332 
333 static inline void save_mfc_queues(struct spu_state *csa, struct spu *spu)
334 {
335         struct spu_priv2 __iomem *priv2 = spu->priv2;
336         int i;
337 
338         /* Save, Step 19:
339          *     If MFC_Cntl[Se]=0 then save
340          *     MFC command queues.
341          */
342         if ((in_be64(&priv2->mfc_control_RW) & MFC_CNTL_DMA_QUEUES_EMPTY) == 0) {
343                 for (i = 0; i < 8; i++) {
344                         csa->priv2.puq[i].mfc_cq_data0_RW =
345                             in_be64(&priv2->puq[i].mfc_cq_data0_RW);
346                         csa->priv2.puq[i].mfc_cq_data1_RW =
347                             in_be64(&priv2->puq[i].mfc_cq_data1_RW);
348                         csa->priv2.puq[i].mfc_cq_data2_RW =
349                             in_be64(&priv2->puq[i].mfc_cq_data2_RW);
350                         csa->priv2.puq[i].mfc_cq_data3_RW =
351                             in_be64(&priv2->puq[i].mfc_cq_data3_RW);
352                 }
353                 for (i = 0; i < 16; i++) {
354                         csa->priv2.spuq[i].mfc_cq_data0_RW =
355                             in_be64(&priv2->spuq[i].mfc_cq_data0_RW);
356                         csa->priv2.spuq[i].mfc_cq_data1_RW =
357                             in_be64(&priv2->spuq[i].mfc_cq_data1_RW);
358                         csa->priv2.spuq[i].mfc_cq_data2_RW =
359                             in_be64(&priv2->spuq[i].mfc_cq_data2_RW);
360                         csa->priv2.spuq[i].mfc_cq_data3_RW =
361                             in_be64(&priv2->spuq[i].mfc_cq_data3_RW);
362                 }
363         }
364 }
365 
366 static inline void save_ppu_querymask(struct spu_state *csa, struct spu *spu)
367 {
368         struct spu_problem __iomem *prob = spu->problem;
369 
370         /* Save, Step 20:
371          *     Save the PPU_QueryMask register
372          *     in the CSA.
373          */
374         csa->prob.dma_querymask_RW = in_be32(&prob->dma_querymask_RW);
375 }
376 
377 static inline void save_ppu_querytype(struct spu_state *csa, struct spu *spu)
378 {
379         struct spu_problem __iomem *prob = spu->problem;
380 
381         /* Save, Step 21:
382          *     Save the PPU_QueryType register
383          *     in the CSA.
384          */
385         csa->prob.dma_querytype_RW = in_be32(&prob->dma_querytype_RW);
386 }
387 
388 static inline void save_ppu_tagstatus(struct spu_state *csa, struct spu *spu)
389 {
390         struct spu_problem __iomem *prob = spu->problem;
391 
392         /* Save the Prxy_TagStatus register in the CSA.
393          *
394          * It is unnecessary to restore dma_tagstatus_R, however,
395          * dma_tagstatus_R in the CSA is accessed via backing_ops, so
396          * we must save it.
397          */
398         csa->prob.dma_tagstatus_R = in_be32(&prob->dma_tagstatus_R);
399 }
400 
401 static inline void save_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
402 {
403         struct spu_priv2 __iomem *priv2 = spu->priv2;
404 
405         /* Save, Step 22:
406          *     Save the MFC_CSR_TSQ register
407          *     in the LSCSA.
408          */
409         csa->priv2.spu_tag_status_query_RW =
410             in_be64(&priv2->spu_tag_status_query_RW);
411 }
412 
413 static inline void save_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
414 {
415         struct spu_priv2 __iomem *priv2 = spu->priv2;
416 
417         /* Save, Step 23:
418          *     Save the MFC_CSR_CMD1 and MFC_CSR_CMD2
419          *     registers in the CSA.
420          */
421         csa->priv2.spu_cmd_buf1_RW = in_be64(&priv2->spu_cmd_buf1_RW);
422         csa->priv2.spu_cmd_buf2_RW = in_be64(&priv2->spu_cmd_buf2_RW);
423 }
424 
425 static inline void save_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
426 {
427         struct spu_priv2 __iomem *priv2 = spu->priv2;
428 
429         /* Save, Step 24:
430          *     Save the MFC_CSR_ATO register in
431          *     the CSA.
432          */
433         csa->priv2.spu_atomic_status_RW = in_be64(&priv2->spu_atomic_status_RW);
434 }
435 
436 static inline void save_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
437 {
438         /* Save, Step 25:
439          *     Save the MFC_TCLASS_ID register in
440          *     the CSA.
441          */
442         csa->priv1.mfc_tclass_id_RW = spu_mfc_tclass_id_get(spu);
443 }
444 
445 static inline void set_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
446 {
447         /* Save, Step 26:
448          * Restore, Step 23.
449          *     Write the MFC_TCLASS_ID register with
450          *     the value 0x10000000.
451          */
452         spu_mfc_tclass_id_set(spu, 0x10000000);
453         eieio();
454 }
455 
456 static inline void purge_mfc_queue(struct spu_state *csa, struct spu *spu)
457 {
458         struct spu_priv2 __iomem *priv2 = spu->priv2;
459 
460         /* Save, Step 27:
461          * Restore, Step 14.
462          *     Write MFC_CNTL[Pc]=1 (purge queue).
463          */
464         out_be64(&priv2->mfc_control_RW,
465                         MFC_CNTL_PURGE_DMA_REQUEST |
466                         MFC_CNTL_SUSPEND_MASK);
467         eieio();
468 }
469 
470 static inline void wait_purge_complete(struct spu_state *csa, struct spu *spu)
471 {
472         struct spu_priv2 __iomem *priv2 = spu->priv2;
473 
474         /* Save, Step 28:
475          *     Poll MFC_CNTL[Ps] until value '11' is read
476          *     (purge complete).
477          */
478         POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
479                          MFC_CNTL_PURGE_DMA_STATUS_MASK) ==
480                          MFC_CNTL_PURGE_DMA_COMPLETE);
481 }
482 
483 static inline void setup_mfc_sr1(struct spu_state *csa, struct spu *spu)
484 {
485         /* Save, Step 30:
486          * Restore, Step 18:
487          *     Write MFC_SR1 with MFC_SR1[D=0,S=1] and
488          *     MFC_SR1[TL,R,Pr,T] set correctly for the
489          *     OS specific environment.
490          *
491          *     Implementation note: The SPU-side code
492          *     for save/restore is privileged, so the
493          *     MFC_SR1[Pr] bit is not set.
494          *
495          */
496         spu_mfc_sr1_set(spu, (MFC_STATE1_MASTER_RUN_CONTROL_MASK |
497                               MFC_STATE1_RELOCATE_MASK |
498                               MFC_STATE1_BUS_TLBIE_MASK));
499 }
500 
501 static inline void save_spu_npc(struct spu_state *csa, struct spu *spu)
502 {
503         struct spu_problem __iomem *prob = spu->problem;
504 
505         /* Save, Step 31:
506          *     Save SPU_NPC in the CSA.
507          */
508         csa->prob.spu_npc_RW = in_be32(&prob->spu_npc_RW);
509 }
510 
511 static inline void save_spu_privcntl(struct spu_state *csa, struct spu *spu)
512 {
513         struct spu_priv2 __iomem *priv2 = spu->priv2;
514 
515         /* Save, Step 32:
516          *     Save SPU_PrivCntl in the CSA.
517          */
518         csa->priv2.spu_privcntl_RW = in_be64(&priv2->spu_privcntl_RW);
519 }
520 
521 static inline void reset_spu_privcntl(struct spu_state *csa, struct spu *spu)
522 {
523         struct spu_priv2 __iomem *priv2 = spu->priv2;
524 
525         /* Save, Step 33:
526          * Restore, Step 16:
527          *     Write SPU_PrivCntl[S,Le,A] fields reset to 0.
528          */
529         out_be64(&priv2->spu_privcntl_RW, 0UL);
530         eieio();
531 }
532 
533 static inline void save_spu_lslr(struct spu_state *csa, struct spu *spu)
534 {
535         struct spu_priv2 __iomem *priv2 = spu->priv2;
536 
537         /* Save, Step 34:
538          *     Save SPU_LSLR in the CSA.
539          */
540         csa->priv2.spu_lslr_RW = in_be64(&priv2->spu_lslr_RW);
541 }
542 
543 static inline void reset_spu_lslr(struct spu_state *csa, struct spu *spu)
544 {
545         struct spu_priv2 __iomem *priv2 = spu->priv2;
546 
547         /* Save, Step 35:
548          * Restore, Step 17.
549          *     Reset SPU_LSLR.
550          */
551         out_be64(&priv2->spu_lslr_RW, LS_ADDR_MASK);
552         eieio();
553 }
554 
555 static inline void save_spu_cfg(struct spu_state *csa, struct spu *spu)
556 {
557         struct spu_priv2 __iomem *priv2 = spu->priv2;
558 
559         /* Save, Step 36:
560          *     Save SPU_Cfg in the CSA.
561          */
562         csa->priv2.spu_cfg_RW = in_be64(&priv2->spu_cfg_RW);
563 }
564 
565 static inline void save_pm_trace(struct spu_state *csa, struct spu *spu)
566 {
567         /* Save, Step 37:
568          *     Save PM_Trace_Tag_Wait_Mask in the CSA.
569          *     Not performed by this implementation.
570          */
571 }
572 
573 static inline void save_mfc_rag(struct spu_state *csa, struct spu *spu)
574 {
575         /* Save, Step 38:
576          *     Save RA_GROUP_ID register and the
577          *     RA_ENABLE reigster in the CSA.
578          */
579         csa->priv1.resource_allocation_groupID_RW =
580                 spu_resource_allocation_groupID_get(spu);
581         csa->priv1.resource_allocation_enable_RW =
582                 spu_resource_allocation_enable_get(spu);
583 }
584 
585 static inline void save_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
586 {
587         struct spu_problem __iomem *prob = spu->problem;
588 
589         /* Save, Step 39:
590          *     Save MB_Stat register in the CSA.
591          */
592         csa->prob.mb_stat_R = in_be32(&prob->mb_stat_R);
593 }
594 
595 static inline void save_ppu_mb(struct spu_state *csa, struct spu *spu)
596 {
597         struct spu_problem __iomem *prob = spu->problem;
598 
599         /* Save, Step 40:
600          *     Save the PPU_MB register in the CSA.
601          */
602         csa->prob.pu_mb_R = in_be32(&prob->pu_mb_R);
603 }
604 
605 static inline void save_ppuint_mb(struct spu_state *csa, struct spu *spu)
606 {
607         struct spu_priv2 __iomem *priv2 = spu->priv2;
608 
609         /* Save, Step 41:
610          *     Save the PPUINT_MB register in the CSA.
611          */
612         csa->priv2.puint_mb_R = in_be64(&priv2->puint_mb_R);
613 }
614 
615 static inline void save_ch_part1(struct spu_state *csa, struct spu *spu)
616 {
617         struct spu_priv2 __iomem *priv2 = spu->priv2;
618         u64 idx, ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
619         int i;
620 
621         /* Save, Step 42:
622          */
623 
624         /* Save CH 1, without channel count */
625         out_be64(&priv2->spu_chnlcntptr_RW, 1);
626         csa->spu_chnldata_RW[1] = in_be64(&priv2->spu_chnldata_RW);
627 
628         /* Save the following CH: [0,3,4,24,25,27] */
629         for (i = 0; i < ARRAY_SIZE(ch_indices); i++) {
630                 idx = ch_indices[i];
631                 out_be64(&priv2->spu_chnlcntptr_RW, idx);
632                 eieio();
633                 csa->spu_chnldata_RW[idx] = in_be64(&priv2->spu_chnldata_RW);
634                 csa->spu_chnlcnt_RW[idx] = in_be64(&priv2->spu_chnlcnt_RW);
635                 out_be64(&priv2->spu_chnldata_RW, 0UL);
636                 out_be64(&priv2->spu_chnlcnt_RW, 0UL);
637                 eieio();
638         }
639 }
640 
641 static inline void save_spu_mb(struct spu_state *csa, struct spu *spu)
642 {
643         struct spu_priv2 __iomem *priv2 = spu->priv2;
644         int i;
645 
646         /* Save, Step 43:
647          *     Save SPU Read Mailbox Channel.
648          */
649         out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
650         eieio();
651         csa->spu_chnlcnt_RW[29] = in_be64(&priv2->spu_chnlcnt_RW);
652         for (i = 0; i < 4; i++) {
653                 csa->spu_mailbox_data[i] = in_be64(&priv2->spu_chnldata_RW);
654         }
655         out_be64(&priv2->spu_chnlcnt_RW, 0UL);
656         eieio();
657 }
658 
659 static inline void save_mfc_cmd(struct spu_state *csa, struct spu *spu)
660 {
661         struct spu_priv2 __iomem *priv2 = spu->priv2;
662 
663         /* Save, Step 44:
664          *     Save MFC_CMD Channel.
665          */
666         out_be64(&priv2->spu_chnlcntptr_RW, 21UL);
667         eieio();
668         csa->spu_chnlcnt_RW[21] = in_be64(&priv2->spu_chnlcnt_RW);
669         eieio();
670 }
671 
672 static inline void reset_ch(struct spu_state *csa, struct spu *spu)
673 {
674         struct spu_priv2 __iomem *priv2 = spu->priv2;
675         u64 ch_indices[4] = { 21UL, 23UL, 28UL, 30UL };
676         u64 ch_counts[4] = { 16UL, 1UL, 1UL, 1UL };
677         u64 idx;
678         int i;
679 
680         /* Save, Step 45:
681          *     Reset the following CH: [21, 23, 28, 30]
682          */
683         for (i = 0; i < 4; i++) {
684                 idx = ch_indices[i];
685                 out_be64(&priv2->spu_chnlcntptr_RW, idx);
686                 eieio();
687                 out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
688                 eieio();
689         }
690 }
691 
692 static inline void resume_mfc_queue(struct spu_state *csa, struct spu *spu)
693 {
694         struct spu_priv2 __iomem *priv2 = spu->priv2;
695 
696         /* Save, Step 46:
697          * Restore, Step 25.
698          *     Write MFC_CNTL[Sc]=0 (resume queue processing).
699          */
700         out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESUME_DMA_QUEUE);
701 }
702 
703 static inline void setup_mfc_slbs(struct spu_state *csa, struct spu *spu,
704                 unsigned int *code, int code_size)
705 {
706         /* Save, Step 47:
707          * Restore, Step 30.
708          *     If MFC_SR1[R]=1, write 0 to SLB_Invalidate_All
709          *     register, then initialize SLB_VSID and SLB_ESID
710          *     to provide access to SPU context save code and
711          *     LSCSA.
712          *
713          *     This implementation places both the context
714          *     switch code and LSCSA in kernel address space.
715          *
716          *     Further this implementation assumes that the
717          *     MFC_SR1[R]=1 (in other words, assume that
718          *     translation is desired by OS environment).
719          */
720         spu_invalidate_slbs(spu);
721         spu_setup_kernel_slbs(spu, csa->lscsa, code, code_size);
722 }
723 
724 static inline void set_switch_active(struct spu_state *csa, struct spu *spu)
725 {
726         /* Save, Step 48:
727          * Restore, Step 23.
728          *     Change the software context switch pending flag
729          *     to context switch active.  This implementation does
730          *     not uses a switch active flag.
731          *
732          * Now that we have saved the mfc in the csa, we can add in the
733          * restart command if an exception occurred.
734          */
735         if (test_bit(SPU_CONTEXT_FAULT_PENDING, &spu->flags))
736                 csa->priv2.mfc_control_RW |= MFC_CNTL_RESTART_DMA_COMMAND;
737         clear_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
738         mb();
739 }
740 
741 static inline void enable_interrupts(struct spu_state *csa, struct spu *spu)
742 {
743         unsigned long class1_mask = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
744             CLASS1_ENABLE_STORAGE_FAULT_INTR;
745 
746         /* Save, Step 49:
747          * Restore, Step 22:
748          *     Reset and then enable interrupts, as
749          *     needed by OS.
750          *
751          *     This implementation enables only class1
752          *     (translation) interrupts.
753          */
754         spin_lock_irq(&spu->register_lock);
755         spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
756         spu_int_stat_clear(spu, 1, CLASS1_INTR_MASK);
757         spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
758         spu_int_mask_set(spu, 0, 0ul);
759         spu_int_mask_set(spu, 1, class1_mask);
760         spu_int_mask_set(spu, 2, 0ul);
761         spin_unlock_irq(&spu->register_lock);
762 }
763 
764 static inline int send_mfc_dma(struct spu *spu, unsigned long ea,
765                                unsigned int ls_offset, unsigned int size,
766                                unsigned int tag, unsigned int rclass,
767                                unsigned int cmd)
768 {
769         struct spu_problem __iomem *prob = spu->problem;
770         union mfc_tag_size_class_cmd command;
771         unsigned int transfer_size;
772         volatile unsigned int status = 0x0;
773 
774         while (size > 0) {
775                 transfer_size =
776                     (size > MFC_MAX_DMA_SIZE) ? MFC_MAX_DMA_SIZE : size;
777                 command.u.mfc_size = transfer_size;
778                 command.u.mfc_tag = tag;
779                 command.u.mfc_rclassid = rclass;
780                 command.u.mfc_cmd = cmd;
781                 do {
782                         out_be32(&prob->mfc_lsa_W, ls_offset);
783                         out_be64(&prob->mfc_ea_W, ea);
784                         out_be64(&prob->mfc_union_W.all64, command.all64);
785                         status =
786                             in_be32(&prob->mfc_union_W.by32.mfc_class_cmd32);
787                         if (unlikely(status & 0x2)) {
788                                 cpu_relax();
789                         }
790                 } while (status & 0x3);
791                 size -= transfer_size;
792                 ea += transfer_size;
793                 ls_offset += transfer_size;
794         }
795         return 0;
796 }
797 
798 static inline void save_ls_16kb(struct spu_state *csa, struct spu *spu)
799 {
800         unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
801         unsigned int ls_offset = 0x0;
802         unsigned int size = 16384;
803         unsigned int tag = 0;
804         unsigned int rclass = 0;
805         unsigned int cmd = MFC_PUT_CMD;
806 
807         /* Save, Step 50:
808          *     Issue a DMA command to copy the first 16K bytes
809          *     of local storage to the CSA.
810          */
811         send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
812 }
813 
814 static inline void set_spu_npc(struct spu_state *csa, struct spu *spu)
815 {
816         struct spu_problem __iomem *prob = spu->problem;
817 
818         /* Save, Step 51:
819          * Restore, Step 31.
820          *     Write SPU_NPC[IE]=0 and SPU_NPC[LSA] to entry
821          *     point address of context save code in local
822          *     storage.
823          *
824          *     This implementation uses SPU-side save/restore
825          *     programs with entry points at LSA of 0.
826          */
827         out_be32(&prob->spu_npc_RW, 0);
828         eieio();
829 }
830 
831 static inline void set_signot1(struct spu_state *csa, struct spu *spu)
832 {
833         struct spu_problem __iomem *prob = spu->problem;
834         union {
835                 u64 ull;
836                 u32 ui[2];
837         } addr64;
838 
839         /* Save, Step 52:
840          * Restore, Step 32:
841          *    Write SPU_Sig_Notify_1 register with upper 32-bits
842          *    of the CSA.LSCSA effective address.
843          */
844         addr64.ull = (u64) csa->lscsa;
845         out_be32(&prob->signal_notify1, addr64.ui[0]);
846         eieio();
847 }
848 
849 static inline void set_signot2(struct spu_state *csa, struct spu *spu)
850 {
851         struct spu_problem __iomem *prob = spu->problem;
852         union {
853                 u64 ull;
854                 u32 ui[2];
855         } addr64;
856 
857         /* Save, Step 53:
858          * Restore, Step 33:
859          *    Write SPU_Sig_Notify_2 register with lower 32-bits
860          *    of the CSA.LSCSA effective address.
861          */
862         addr64.ull = (u64) csa->lscsa;
863         out_be32(&prob->signal_notify2, addr64.ui[1]);
864         eieio();
865 }
866 
867 static inline void send_save_code(struct spu_state *csa, struct spu *spu)
868 {
869         unsigned long addr = (unsigned long)&spu_save_code[0];
870         unsigned int ls_offset = 0x0;
871         unsigned int size = sizeof(spu_save_code);
872         unsigned int tag = 0;
873         unsigned int rclass = 0;
874         unsigned int cmd = MFC_GETFS_CMD;
875 
876         /* Save, Step 54:
877          *     Issue a DMA command to copy context save code
878          *     to local storage and start SPU.
879          */
880         send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
881 }
882 
883 static inline void set_ppu_querymask(struct spu_state *csa, struct spu *spu)
884 {
885         struct spu_problem __iomem *prob = spu->problem;
886 
887         /* Save, Step 55:
888          * Restore, Step 38.
889          *     Write PPU_QueryMask=1 (enable Tag Group 0)
890          *     and issue eieio instruction.
891          */
892         out_be32(&prob->dma_querymask_RW, MFC_TAGID_TO_TAGMASK(0));
893         eieio();
894 }
895 
896 static inline void wait_tag_complete(struct spu_state *csa, struct spu *spu)
897 {
898         struct spu_problem __iomem *prob = spu->problem;
899         u32 mask = MFC_TAGID_TO_TAGMASK(0);
900         unsigned long flags;
901 
902         /* Save, Step 56:
903          * Restore, Step 39.
904          * Restore, Step 39.
905          * Restore, Step 46.
906          *     Poll PPU_TagStatus[gn] until 01 (Tag group 0 complete)
907          *     or write PPU_QueryType[TS]=01 and wait for Tag Group
908          *     Complete Interrupt.  Write INT_Stat_Class0 or
909          *     INT_Stat_Class2 with value of 'handled'.
910          */
911         POLL_WHILE_FALSE(in_be32(&prob->dma_tagstatus_R) & mask);
912 
913         local_irq_save(flags);
914         spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
915         spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
916         local_irq_restore(flags);
917 }
918 
919 static inline void wait_spu_stopped(struct spu_state *csa, struct spu *spu)
920 {
921         struct spu_problem __iomem *prob = spu->problem;
922         unsigned long flags;
923 
924         /* Save, Step 57:
925          * Restore, Step 40.
926          *     Poll until SPU_Status[R]=0 or wait for SPU Class 0
927          *     or SPU Class 2 interrupt.  Write INT_Stat_class0
928          *     or INT_Stat_class2 with value of handled.
929          */
930         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING);
931 
932         local_irq_save(flags);
933         spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
934         spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
935         local_irq_restore(flags);
936 }
937 
938 static inline int check_save_status(struct spu_state *csa, struct spu *spu)
939 {
940         struct spu_problem __iomem *prob = spu->problem;
941         u32 complete;
942 
943         /* Save, Step 54:
944          *     If SPU_Status[P]=1 and SPU_Status[SC] = "success",
945          *     context save succeeded, otherwise context save
946          *     failed.
947          */
948         complete = ((SPU_SAVE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
949                     SPU_STATUS_STOPPED_BY_STOP);
950         return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
951 }
952 
953 static inline void terminate_spu_app(struct spu_state *csa, struct spu *spu)
954 {
955         /* Restore, Step 4:
956          *    If required, notify the "using application" that
957          *    the SPU task has been terminated.  TBD.
958          */
959 }
960 
961 static inline void suspend_mfc_and_halt_decr(struct spu_state *csa,
962                 struct spu *spu)
963 {
964         struct spu_priv2 __iomem *priv2 = spu->priv2;
965 
966         /* Restore, Step 7:
967          *     Write MFC_Cntl[Dh,Sc,Sm]='1','1','' to suspend
968          *     the queue and halt the decrementer.
969          */
970         out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE |
971                  MFC_CNTL_DECREMENTER_HALTED);
972         eieio();
973 }
974 
975 static inline void wait_suspend_mfc_complete(struct spu_state *csa,
976                                              struct spu *spu)
977 {
978         struct spu_priv2 __iomem *priv2 = spu->priv2;
979 
980         /* Restore, Step 8:
981          * Restore, Step 47.
982          *     Poll MFC_CNTL[Ss] until 11 is returned.
983          */
984         POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
985                          MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
986                          MFC_CNTL_SUSPEND_COMPLETE);
987 }
988 
989 static inline int suspend_spe(struct spu_state *csa, struct spu *spu)
990 {
991         struct spu_problem __iomem *prob = spu->problem;
992 
993         /* Restore, Step 9:
994          *    If SPU_Status[R]=1, stop SPU execution
995          *    and wait for stop to complete.
996          *
997          *    Returns       1 if SPU_Status[R]=1 on entry.
998          *                  0 otherwise
999          */
1000         if (in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) {
1001                 if (in_be32(&prob->spu_status_R) &
1002                     SPU_STATUS_ISOLATED_EXIT_STATUS) {
1003                         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1004                                         SPU_STATUS_RUNNING);
1005                 }
1006                 if ((in_be32(&prob->spu_status_R) &
1007                      SPU_STATUS_ISOLATED_LOAD_STATUS)
1008                     || (in_be32(&prob->spu_status_R) &
1009                         SPU_STATUS_ISOLATED_STATE)) {
1010                         out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1011                         eieio();
1012                         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1013                                         SPU_STATUS_RUNNING);
1014                         out_be32(&prob->spu_runcntl_RW, 0x2);
1015                         eieio();
1016                         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1017                                         SPU_STATUS_RUNNING);
1018                 }
1019                 if (in_be32(&prob->spu_status_R) &
1020                     SPU_STATUS_WAITING_FOR_CHANNEL) {
1021                         out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1022                         eieio();
1023                         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1024                                         SPU_STATUS_RUNNING);
1025                 }
1026                 return 1;
1027         }
1028         return 0;
1029 }
1030 
1031 static inline void clear_spu_status(struct spu_state *csa, struct spu *spu)
1032 {
1033         struct spu_problem __iomem *prob = spu->problem;
1034 
1035         /* Restore, Step 10:
1036          *    If SPU_Status[R]=0 and SPU_Status[E,L,IS]=1,
1037          *    release SPU from isolate state.
1038          */
1039         if (!(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING)) {
1040                 if (in_be32(&prob->spu_status_R) &
1041                     SPU_STATUS_ISOLATED_EXIT_STATUS) {
1042                         spu_mfc_sr1_set(spu,
1043                                         MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1044                         eieio();
1045                         out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1046                         eieio();
1047                         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1048                                         SPU_STATUS_RUNNING);
1049                 }
1050                 if ((in_be32(&prob->spu_status_R) &
1051                      SPU_STATUS_ISOLATED_LOAD_STATUS)
1052                     || (in_be32(&prob->spu_status_R) &
1053                         SPU_STATUS_ISOLATED_STATE)) {
1054                         spu_mfc_sr1_set(spu,
1055                                         MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1056                         eieio();
1057                         out_be32(&prob->spu_runcntl_RW, 0x2);
1058                         eieio();
1059                         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1060                                         SPU_STATUS_RUNNING);
1061                 }
1062         }
1063 }
1064 
1065 static inline void reset_ch_part1(struct spu_state *csa, struct spu *spu)
1066 {
1067         struct spu_priv2 __iomem *priv2 = spu->priv2;
1068         u64 ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
1069         u64 idx;
1070         int i;
1071 
1072         /* Restore, Step 20:
1073          */
1074 
1075         /* Reset CH 1 */
1076         out_be64(&priv2->spu_chnlcntptr_RW, 1);
1077         out_be64(&priv2->spu_chnldata_RW, 0UL);
1078 
1079         /* Reset the following CH: [0,3,4,24,25,27] */
1080         for (i = 0; i < ARRAY_SIZE(ch_indices); i++) {
1081                 idx = ch_indices[i];
1082                 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1083                 eieio();
1084                 out_be64(&priv2->spu_chnldata_RW, 0UL);
1085                 out_be64(&priv2->spu_chnlcnt_RW, 0UL);
1086                 eieio();
1087         }
1088 }
1089 
1090 static inline void reset_ch_part2(struct spu_state *csa, struct spu *spu)
1091 {
1092         struct spu_priv2 __iomem *priv2 = spu->priv2;
1093         u64 ch_indices[5] = { 21UL, 23UL, 28UL, 29UL, 30UL };
1094         u64 ch_counts[5] = { 16UL, 1UL, 1UL, 0UL, 1UL };
1095         u64 idx;
1096         int i;
1097 
1098         /* Restore, Step 21:
1099          *     Reset the following CH: [21, 23, 28, 29, 30]
1100          */
1101         for (i = 0; i < 5; i++) {
1102                 idx = ch_indices[i];
1103                 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1104                 eieio();
1105                 out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
1106                 eieio();
1107         }
1108 }
1109 
1110 static inline void setup_spu_status_part1(struct spu_state *csa,
1111                                           struct spu *spu)
1112 {
1113         u32 status_P = SPU_STATUS_STOPPED_BY_STOP;
1114         u32 status_I = SPU_STATUS_INVALID_INSTR;
1115         u32 status_H = SPU_STATUS_STOPPED_BY_HALT;
1116         u32 status_S = SPU_STATUS_SINGLE_STEP;
1117         u32 status_S_I = SPU_STATUS_SINGLE_STEP | SPU_STATUS_INVALID_INSTR;
1118         u32 status_S_P = SPU_STATUS_SINGLE_STEP | SPU_STATUS_STOPPED_BY_STOP;
1119         u32 status_P_H = SPU_STATUS_STOPPED_BY_HALT |SPU_STATUS_STOPPED_BY_STOP;
1120         u32 status_P_I = SPU_STATUS_STOPPED_BY_STOP |SPU_STATUS_INVALID_INSTR;
1121         u32 status_code;
1122 
1123         /* Restore, Step 27:
1124          *     If the CSA.SPU_Status[I,S,H,P]=1 then add the correct
1125          *     instruction sequence to the end of the SPU based restore
1126          *     code (after the "context restored" stop and signal) to
1127          *     restore the correct SPU status.
1128          *
1129          *     NOTE: Rather than modifying the SPU executable, we
1130          *     instead add a new 'stopped_status' field to the
1131          *     LSCSA.  The SPU-side restore reads this field and
1132          *     takes the appropriate action when exiting.
1133          */
1134 
1135         status_code =
1136             (csa->prob.spu_status_R >> SPU_STOP_STATUS_SHIFT) & 0xFFFF;
1137         if ((csa->prob.spu_status_R & status_P_I) == status_P_I) {
1138 
1139                 /* SPU_Status[P,I]=1 - Illegal Instruction followed
1140                  * by Stop and Signal instruction, followed by 'br -4'.
1141                  *
1142                  */
1143                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_I;
1144                 csa->lscsa->stopped_status.slot[1] = status_code;
1145 
1146         } else if ((csa->prob.spu_status_R & status_P_H) == status_P_H) {
1147 
1148                 /* SPU_Status[P,H]=1 - Halt Conditional, followed
1149                  * by Stop and Signal instruction, followed by
1150                  * 'br -4'.
1151                  */
1152                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_H;
1153                 csa->lscsa->stopped_status.slot[1] = status_code;
1154 
1155         } else if ((csa->prob.spu_status_R & status_S_P) == status_S_P) {
1156 
1157                 /* SPU_Status[S,P]=1 - Stop and Signal instruction
1158                  * followed by 'br -4'.
1159                  */
1160                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_P;
1161                 csa->lscsa->stopped_status.slot[1] = status_code;
1162 
1163         } else if ((csa->prob.spu_status_R & status_S_I) == status_S_I) {
1164 
1165                 /* SPU_Status[S,I]=1 - Illegal instruction followed
1166                  * by 'br -4'.
1167                  */
1168                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_I;
1169                 csa->lscsa->stopped_status.slot[1] = status_code;
1170 
1171         } else if ((csa->prob.spu_status_R & status_P) == status_P) {
1172 
1173                 /* SPU_Status[P]=1 - Stop and Signal instruction
1174                  * followed by 'br -4'.
1175                  */
1176                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P;
1177                 csa->lscsa->stopped_status.slot[1] = status_code;
1178 
1179         } else if ((csa->prob.spu_status_R & status_H) == status_H) {
1180 
1181                 /* SPU_Status[H]=1 - Halt Conditional, followed
1182                  * by 'br -4'.
1183                  */
1184                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_H;
1185 
1186         } else if ((csa->prob.spu_status_R & status_S) == status_S) {
1187 
1188                 /* SPU_Status[S]=1 - Two nop instructions.
1189                  */
1190                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S;
1191 
1192         } else if ((csa->prob.spu_status_R & status_I) == status_I) {
1193 
1194                 /* SPU_Status[I]=1 - Illegal instruction followed
1195                  * by 'br -4'.
1196                  */
1197                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_I;
1198 
1199         }
1200 }
1201 
1202 static inline void setup_spu_status_part2(struct spu_state *csa,
1203                                           struct spu *spu)
1204 {
1205         u32 mask;
1206 
1207         /* Restore, Step 28:
1208          *     If the CSA.SPU_Status[I,S,H,P,R]=0 then
1209          *     add a 'br *' instruction to the end of
1210          *     the SPU based restore code.
1211          *
1212          *     NOTE: Rather than modifying the SPU executable, we
1213          *     instead add a new 'stopped_status' field to the
1214          *     LSCSA.  The SPU-side restore reads this field and
1215          *     takes the appropriate action when exiting.
1216          */
1217         mask = SPU_STATUS_INVALID_INSTR |
1218             SPU_STATUS_SINGLE_STEP |
1219             SPU_STATUS_STOPPED_BY_HALT |
1220             SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
1221         if (!(csa->prob.spu_status_R & mask)) {
1222                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_R;
1223         }
1224 }
1225 
1226 static inline void restore_mfc_rag(struct spu_state *csa, struct spu *spu)
1227 {
1228         /* Restore, Step 29:
1229          *     Restore RA_GROUP_ID register and the
1230          *     RA_ENABLE reigster from the CSA.
1231          */
1232         spu_resource_allocation_groupID_set(spu,
1233                         csa->priv1.resource_allocation_groupID_RW);
1234         spu_resource_allocation_enable_set(spu,
1235                         csa->priv1.resource_allocation_enable_RW);
1236 }
1237 
1238 static inline void send_restore_code(struct spu_state *csa, struct spu *spu)
1239 {
1240         unsigned long addr = (unsigned long)&spu_restore_code[0];
1241         unsigned int ls_offset = 0x0;
1242         unsigned int size = sizeof(spu_restore_code);
1243         unsigned int tag = 0;
1244         unsigned int rclass = 0;
1245         unsigned int cmd = MFC_GETFS_CMD;
1246 
1247         /* Restore, Step 37:
1248          *     Issue MFC DMA command to copy context
1249          *     restore code to local storage.
1250          */
1251         send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
1252 }
1253 
1254 static inline void setup_decr(struct spu_state *csa, struct spu *spu)
1255 {
1256         /* Restore, Step 34:
1257          *     If CSA.MFC_CNTL[Ds]=1 (decrementer was
1258          *     running) then adjust decrementer, set
1259          *     decrementer running status in LSCSA,
1260          *     and set decrementer "wrapped" status
1261          *     in LSCSA.
1262          */
1263         if (csa->priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING) {
1264                 cycles_t resume_time = get_cycles();
1265                 cycles_t delta_time = resume_time - csa->suspend_time;
1266 
1267                 csa->lscsa->decr_status.slot[0] = SPU_DECR_STATUS_RUNNING;
1268                 if (csa->lscsa->decr.slot[0] < delta_time) {
1269                         csa->lscsa->decr_status.slot[0] |=
1270                                  SPU_DECR_STATUS_WRAPPED;
1271                 }
1272 
1273                 csa->lscsa->decr.slot[0] -= delta_time;
1274         } else {
1275                 csa->lscsa->decr_status.slot[0] = 0;
1276         }
1277 }
1278 
1279 static inline void setup_ppu_mb(struct spu_state *csa, struct spu *spu)
1280 {
1281         /* Restore, Step 35:
1282          *     Copy the CSA.PU_MB data into the LSCSA.
1283          */
1284         csa->lscsa->ppu_mb.slot[0] = csa->prob.pu_mb_R;
1285 }
1286 
1287 static inline void setup_ppuint_mb(struct spu_state *csa, struct spu *spu)
1288 {
1289         /* Restore, Step 36:
1290          *     Copy the CSA.PUINT_MB data into the LSCSA.
1291          */
1292         csa->lscsa->ppuint_mb.slot[0] = csa->priv2.puint_mb_R;
1293 }
1294 
1295 static inline int check_restore_status(struct spu_state *csa, struct spu *spu)
1296 {
1297         struct spu_problem __iomem *prob = spu->problem;
1298         u32 complete;
1299 
1300         /* Restore, Step 40:
1301          *     If SPU_Status[P]=1 and SPU_Status[SC] = "success",
1302          *     context restore succeeded, otherwise context restore
1303          *     failed.
1304          */
1305         complete = ((SPU_RESTORE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
1306                     SPU_STATUS_STOPPED_BY_STOP);
1307         return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
1308 }
1309 
1310 static inline void restore_spu_privcntl(struct spu_state *csa, struct spu *spu)
1311 {
1312         struct spu_priv2 __iomem *priv2 = spu->priv2;
1313 
1314         /* Restore, Step 41:
1315          *     Restore SPU_PrivCntl from the CSA.
1316          */
1317         out_be64(&priv2->spu_privcntl_RW, csa->priv2.spu_privcntl_RW);
1318         eieio();
1319 }
1320 
1321 static inline void restore_status_part1(struct spu_state *csa, struct spu *spu)
1322 {
1323         struct spu_problem __iomem *prob = spu->problem;
1324         u32 mask;
1325 
1326         /* Restore, Step 42:
1327          *     If any CSA.SPU_Status[I,S,H,P]=1, then
1328          *     restore the error or single step state.
1329          */
1330         mask = SPU_STATUS_INVALID_INSTR |
1331             SPU_STATUS_SINGLE_STEP |
1332             SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
1333         if (csa->prob.spu_status_R & mask) {
1334                 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1335                 eieio();
1336                 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1337                                 SPU_STATUS_RUNNING);
1338         }
1339 }
1340 
1341 static inline void restore_status_part2(struct spu_state *csa, struct spu *spu)
1342 {
1343         struct spu_problem __iomem *prob = spu->problem;
1344         u32 mask;
1345 
1346         /* Restore, Step 43:
1347          *     If all CSA.SPU_Status[I,S,H,P,R]=0 then write
1348          *     SPU_RunCntl[R0R1]='01', wait for SPU_Status[R]=1,
1349          *     then write '00' to SPU_RunCntl[R0R1] and wait
1350          *     for SPU_Status[R]=0.
1351          */
1352         mask = SPU_STATUS_INVALID_INSTR |
1353             SPU_STATUS_SINGLE_STEP |
1354             SPU_STATUS_STOPPED_BY_HALT |
1355             SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
1356         if (!(csa->prob.spu_status_R & mask)) {
1357                 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1358                 eieio();
1359                 POLL_WHILE_FALSE(in_be32(&prob->spu_status_R) &
1360                                  SPU_STATUS_RUNNING);
1361                 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1362                 eieio();
1363                 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1364                                 SPU_STATUS_RUNNING);
1365         }
1366 }
1367 
1368 static inline void restore_ls_16kb(struct spu_state *csa, struct spu *spu)
1369 {
1370         unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
1371         unsigned int ls_offset = 0x0;
1372         unsigned int size = 16384;
1373         unsigned int tag = 0;
1374         unsigned int rclass = 0;
1375         unsigned int cmd = MFC_GET_CMD;
1376 
1377         /* Restore, Step 44:
1378          *     Issue a DMA command to restore the first
1379          *     16kb of local storage from CSA.
1380          */
1381         send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
1382 }
1383 
1384 static inline void suspend_mfc(struct spu_state *csa, struct spu *spu)
1385 {
1386         struct spu_priv2 __iomem *priv2 = spu->priv2;
1387 
1388         /* Restore, Step 47.
1389          *     Write MFC_Cntl[Sc,Sm]='1','' to suspend
1390          *     the queue.
1391          */
1392         out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE);
1393         eieio();
1394 }
1395 
1396 static inline void clear_interrupts(struct spu_state *csa, struct spu *spu)
1397 {
1398         /* Restore, Step 49:
1399          *     Write INT_MASK_class0 with value of 0.
1400          *     Write INT_MASK_class1 with value of 0.
1401          *     Write INT_MASK_class2 with value of 0.
1402          *     Write INT_STAT_class0 with value of -1.
1403          *     Write INT_STAT_class1 with value of -1.
1404          *     Write INT_STAT_class2 with value of -1.
1405          */
1406         spin_lock_irq(&spu->register_lock);
1407         spu_int_mask_set(spu, 0, 0ul);
1408         spu_int_mask_set(spu, 1, 0ul);
1409         spu_int_mask_set(spu, 2, 0ul);
1410         spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
1411         spu_int_stat_clear(spu, 1, CLASS1_INTR_MASK);
1412         spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
1413         spin_unlock_irq(&spu->register_lock);
1414 }
1415 
1416 static inline void restore_mfc_queues(struct spu_state *csa, struct spu *spu)
1417 {
1418         struct spu_priv2 __iomem *priv2 = spu->priv2;
1419         int i;
1420 
1421         /* Restore, Step 50:
1422          *     If MFC_Cntl[Se]!=0 then restore
1423          *     MFC command queues.
1424          */
1425         if ((csa->priv2.mfc_control_RW & MFC_CNTL_DMA_QUEUES_EMPTY_MASK) == 0) {
1426                 for (i = 0; i < 8; i++) {
1427                         out_be64(&priv2->puq[i].mfc_cq_data0_RW,
1428                                  csa->priv2.puq[i].mfc_cq_data0_RW);
1429                         out_be64(&priv2->puq[i].mfc_cq_data1_RW,
1430                                  csa->priv2.puq[i].mfc_cq_data1_RW);
1431                         out_be64(&priv2->puq[i].mfc_cq_data2_RW,
1432                                  csa->priv2.puq[i].mfc_cq_data2_RW);
1433                         out_be64(&priv2->puq[i].mfc_cq_data3_RW,
1434                                  csa->priv2.puq[i].mfc_cq_data3_RW);
1435                 }
1436                 for (i = 0; i < 16; i++) {
1437                         out_be64(&priv2->spuq[i].mfc_cq_data0_RW,
1438                                  csa->priv2.spuq[i].mfc_cq_data0_RW);
1439                         out_be64(&priv2->spuq[i].mfc_cq_data1_RW,
1440                                  csa->priv2.spuq[i].mfc_cq_data1_RW);
1441                         out_be64(&priv2->spuq[i].mfc_cq_data2_RW,
1442                                  csa->priv2.spuq[i].mfc_cq_data2_RW);
1443                         out_be64(&priv2->spuq[i].mfc_cq_data3_RW,
1444                                  csa->priv2.spuq[i].mfc_cq_data3_RW);
1445                 }
1446         }
1447         eieio();
1448 }
1449 
1450 static inline void restore_ppu_querymask(struct spu_state *csa, struct spu *spu)
1451 {
1452         struct spu_problem __iomem *prob = spu->problem;
1453 
1454         /* Restore, Step 51:
1455          *     Restore the PPU_QueryMask register from CSA.
1456          */
1457         out_be32(&prob->dma_querymask_RW, csa->prob.dma_querymask_RW);
1458         eieio();
1459 }
1460 
1461 static inline void restore_ppu_querytype(struct spu_state *csa, struct spu *spu)
1462 {
1463         struct spu_problem __iomem *prob = spu->problem;
1464 
1465         /* Restore, Step 52:
1466          *     Restore the PPU_QueryType register from CSA.
1467          */
1468         out_be32(&prob->dma_querytype_RW, csa->prob.dma_querytype_RW);
1469         eieio();
1470 }
1471 
1472 static inline void restore_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
1473 {
1474         struct spu_priv2 __iomem *priv2 = spu->priv2;
1475 
1476         /* Restore, Step 53:
1477          *     Restore the MFC_CSR_TSQ register from CSA.
1478          */
1479         out_be64(&priv2->spu_tag_status_query_RW,
1480                  csa->priv2.spu_tag_status_query_RW);
1481         eieio();
1482 }
1483 
1484 static inline void restore_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
1485 {
1486         struct spu_priv2 __iomem *priv2 = spu->priv2;
1487 
1488         /* Restore, Step 54:
1489          *     Restore the MFC_CSR_CMD1 and MFC_CSR_CMD2
1490          *     registers from CSA.
1491          */
1492         out_be64(&priv2->spu_cmd_buf1_RW, csa->priv2.spu_cmd_buf1_RW);
1493         out_be64(&priv2->spu_cmd_buf2_RW, csa->priv2.spu_cmd_buf2_RW);
1494         eieio();
1495 }
1496 
1497 static inline void restore_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
1498 {
1499         struct spu_priv2 __iomem *priv2 = spu->priv2;
1500 
1501         /* Restore, Step 55:
1502          *     Restore the MFC_CSR_ATO register from CSA.
1503          */
1504         out_be64(&priv2->spu_atomic_status_RW, csa->priv2.spu_atomic_status_RW);
1505 }
1506 
1507 static inline void restore_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
1508 {
1509         /* Restore, Step 56:
1510          *     Restore the MFC_TCLASS_ID register from CSA.
1511          */
1512         spu_mfc_tclass_id_set(spu, csa->priv1.mfc_tclass_id_RW);
1513         eieio();
1514 }
1515 
1516 static inline void set_llr_event(struct spu_state *csa, struct spu *spu)
1517 {
1518         u64 ch0_cnt, ch0_data;
1519         u64 ch1_data;
1520 
1521         /* Restore, Step 57:
1522          *    Set the Lock Line Reservation Lost Event by:
1523          *      1. OR CSA.SPU_Event_Status with bit 21 (Lr) set to 1.
1524          *      2. If CSA.SPU_Channel_0_Count=0 and
1525          *         CSA.SPU_Wr_Event_Mask[Lr]=1 and
1526          *         CSA.SPU_Event_Status[Lr]=0 then set
1527          *         CSA.SPU_Event_Status_Count=1.
1528          */
1529         ch0_cnt = csa->spu_chnlcnt_RW[0];
1530         ch0_data = csa->spu_chnldata_RW[0];
1531         ch1_data = csa->spu_chnldata_RW[1];
1532         csa->spu_chnldata_RW[0] |= MFC_LLR_LOST_EVENT;
1533         if ((ch0_cnt == 0) && !(ch0_data & MFC_LLR_LOST_EVENT) &&
1534             (ch1_data & MFC_LLR_LOST_EVENT)) {
1535                 csa->spu_chnlcnt_RW[0] = 1;
1536         }
1537 }
1538 
1539 static inline void restore_decr_wrapped(struct spu_state *csa, struct spu *spu)
1540 {
1541         /* Restore, Step 58:
1542          *     If the status of the CSA software decrementer
1543          *     "wrapped" flag is set, OR in a '1' to
1544          *     CSA.SPU_Event_Status[Tm].
1545          */
1546         if (!(csa->lscsa->decr_status.slot[0] & SPU_DECR_STATUS_WRAPPED))
1547                 return;
1548 
1549         if ((csa->spu_chnlcnt_RW[0] == 0) &&
1550             (csa->spu_chnldata_RW[1] & 0x20) &&
1551             !(csa->spu_chnldata_RW[0] & 0x20))
1552                 csa->spu_chnlcnt_RW[0] = 1;
1553 
1554         csa->spu_chnldata_RW[0] |= 0x20;
1555 }
1556 
1557 static inline void restore_ch_part1(struct spu_state *csa, struct spu *spu)
1558 {
1559         struct spu_priv2 __iomem *priv2 = spu->priv2;
1560         u64 idx, ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
1561         int i;
1562 
1563         /* Restore, Step 59:
1564          *      Restore the following CH: [0,3,4,24,25,27]
1565          */
1566         for (i = 0; i < ARRAY_SIZE(ch_indices); i++) {
1567                 idx = ch_indices[i];
1568                 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1569                 eieio();
1570                 out_be64(&priv2->spu_chnldata_RW, csa->spu_chnldata_RW[idx]);
1571                 out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[idx]);
1572                 eieio();
1573         }
1574 }
1575 
1576 static inline void restore_ch_part2(struct spu_state *csa, struct spu *spu)
1577 {
1578         struct spu_priv2 __iomem *priv2 = spu->priv2;
1579         u64 ch_indices[3] = { 9UL, 21UL, 23UL };
1580         u64 ch_counts[3] = { 1UL, 16UL, 1UL };
1581         u64 idx;
1582         int i;
1583 
1584         /* Restore, Step 60:
1585          *     Restore the following CH: [9,21,23].
1586          */
1587         ch_counts[0] = 1UL;
1588         ch_counts[1] = csa->spu_chnlcnt_RW[21];
1589         ch_counts[2] = 1UL;
1590         for (i = 0; i < 3; i++) {
1591                 idx = ch_indices[i];
1592                 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1593                 eieio();
1594                 out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
1595                 eieio();
1596         }
1597 }
1598 
1599 static inline void restore_spu_lslr(struct spu_state *csa, struct spu *spu)
1600 {
1601         struct spu_priv2 __iomem *priv2 = spu->priv2;
1602 
1603         /* Restore, Step 61:
1604          *     Restore the SPU_LSLR register from CSA.
1605          */
1606         out_be64(&priv2->spu_lslr_RW, csa->priv2.spu_lslr_RW);
1607         eieio();
1608 }
1609 
1610 static inline void restore_spu_cfg(struct spu_state *csa, struct spu *spu)
1611 {
1612         struct spu_priv2 __iomem *priv2 = spu->priv2;
1613 
1614         /* Restore, Step 62:
1615          *     Restore the SPU_Cfg register from CSA.
1616          */
1617         out_be64(&priv2->spu_cfg_RW, csa->priv2.spu_cfg_RW);
1618         eieio();
1619 }
1620 
1621 static inline void restore_pm_trace(struct spu_state *csa, struct spu *spu)
1622 {
1623         /* Restore, Step 63:
1624          *     Restore PM_Trace_Tag_Wait_Mask from CSA.
1625          *     Not performed by this implementation.
1626          */
1627 }
1628 
1629 static inline void restore_spu_npc(struct spu_state *csa, struct spu *spu)
1630 {
1631         struct spu_problem __iomem *prob = spu->problem;
1632 
1633         /* Restore, Step 64:
1634          *     Restore SPU_NPC from CSA.
1635          */
1636         out_be32(&prob->spu_npc_RW, csa->prob.spu_npc_RW);
1637         eieio();
1638 }
1639 
1640 static inline void restore_spu_mb(struct spu_state *csa, struct spu *spu)
1641 {
1642         struct spu_priv2 __iomem *priv2 = spu->priv2;
1643         int i;
1644 
1645         /* Restore, Step 65:
1646          *     Restore MFC_RdSPU_MB from CSA.
1647          */
1648         out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
1649         eieio();
1650         out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[29]);
1651         for (i = 0; i < 4; i++) {
1652                 out_be64(&priv2->spu_chnldata_RW, csa->spu_mailbox_data[i]);
1653         }
1654         eieio();
1655 }
1656 
1657 static inline void check_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
1658 {
1659         struct spu_problem __iomem *prob = spu->problem;
1660 
1661         /* Restore, Step 66:
1662          *     If CSA.MB_Stat[P]=0 (mailbox empty) then
1663          *     read from the PPU_MB register.
1664          */
1665         if ((csa->prob.mb_stat_R & 0xFF) == 0) {
1666                 in_be32(&prob->pu_mb_R);
1667                 eieio();
1668         }
1669 }
1670 
1671 static inline void check_ppuint_mb_stat(struct spu_state *csa, struct spu *spu)
1672 {
1673         struct spu_priv2 __iomem *priv2 = spu->priv2;
1674 
1675         /* Restore, Step 66:
1676          *     If CSA.MB_Stat[I]=0 (mailbox empty) then
1677          *     read from the PPUINT_MB register.
1678          */
1679         if ((csa->prob.mb_stat_R & 0xFF0000) == 0) {
1680                 in_be64(&priv2->puint_mb_R);
1681                 eieio();
1682                 spu_int_stat_clear(spu, 2, CLASS2_ENABLE_MAILBOX_INTR);
1683                 eieio();
1684         }
1685 }
1686 
1687 static inline void restore_mfc_sr1(struct spu_state *csa, struct spu *spu)
1688 {
1689         /* Restore, Step 69:
1690          *     Restore the MFC_SR1 register from CSA.
1691          */
1692         spu_mfc_sr1_set(spu, csa->priv1.mfc_sr1_RW);
1693         eieio();
1694 }
1695 
1696 static inline void set_int_route(struct spu_state *csa, struct spu *spu)
1697 {
1698         struct spu_context *ctx = spu->ctx;
1699 
1700         spu_cpu_affinity_set(spu, ctx->last_ran);
1701 }
1702 
1703 static inline void restore_other_spu_access(struct spu_state *csa,
1704                                             struct spu *spu)
1705 {
1706         /* Restore, Step 70:
1707          *     Restore other SPU mappings to this SPU. TBD.
1708          */
1709 }
1710 
1711 static inline void restore_spu_runcntl(struct spu_state *csa, struct spu *spu)
1712 {
1713         struct spu_problem __iomem *prob = spu->problem;
1714 
1715         /* Restore, Step 71:
1716          *     If CSA.SPU_Status[R]=1 then write
1717          *     SPU_RunCntl[R0R1]='01'.
1718          */
1719         if (csa->prob.spu_status_R & SPU_STATUS_RUNNING) {
1720                 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1721                 eieio();
1722         }
1723 }
1724 
1725 static inline void restore_mfc_cntl(struct spu_state *csa, struct spu *spu)
1726 {
1727         struct spu_priv2 __iomem *priv2 = spu->priv2;
1728 
1729         /* Restore, Step 72:
1730          *    Restore the MFC_CNTL register for the CSA.
1731          */
1732         out_be64(&priv2->mfc_control_RW, csa->priv2.mfc_control_RW);
1733         eieio();
1734 
1735         /*
1736          * The queue is put back into the same state that was evident prior to
1737          * the context switch. The suspend flag is added to the saved state in
1738          * the csa, if the operational state was suspending or suspended. In
1739          * this case, the code that suspended the mfc is responsible for
1740          * continuing it. Note that SPE faults do not change the operational
1741          * state of the spu.
1742          */
1743 }
1744 
1745 static inline void enable_user_access(struct spu_state *csa, struct spu *spu)
1746 {
1747         /* Restore, Step 73:
1748          *     Enable user-space access (if provided) to this
1749          *     SPU by mapping the virtual pages assigned to
1750          *     the SPU memory-mapped I/O (MMIO) for problem
1751          *     state. TBD.
1752          */
1753 }
1754 
1755 static inline void reset_switch_active(struct spu_state *csa, struct spu *spu)
1756 {
1757         /* Restore, Step 74:
1758          *     Reset the "context switch active" flag.
1759          *     Not performed by this implementation.
1760          */
1761 }
1762 
1763 static inline void reenable_interrupts(struct spu_state *csa, struct spu *spu)
1764 {
1765         /* Restore, Step 75:
1766          *     Re-enable SPU interrupts.
1767          */
1768         spin_lock_irq(&spu->register_lock);
1769         spu_int_mask_set(spu, 0, csa->priv1.int_mask_class0_RW);
1770         spu_int_mask_set(spu, 1, csa->priv1.int_mask_class1_RW);
1771         spu_int_mask_set(spu, 2, csa->priv1.int_mask_class2_RW);
1772         spin_unlock_irq(&spu->register_lock);
1773 }
1774 
1775 static int quiece_spu(struct spu_state *prev, struct spu *spu)
1776 {
1777         /*
1778          * Combined steps 2-18 of SPU context save sequence, which
1779          * quiesce the SPU state (disable SPU execution, MFC command
1780          * queues, decrementer, SPU interrupts, etc.).
1781          *
1782          * Returns      0 on success.
1783          *              2 if failed step 2.
1784          *              6 if failed step 6.
1785          */
1786 
1787         if (check_spu_isolate(prev, spu)) {     /* Step 2. */
1788                 return 2;
1789         }
1790         disable_interrupts(prev, spu);          /* Step 3. */
1791         set_watchdog_timer(prev, spu);          /* Step 4. */
1792         inhibit_user_access(prev, spu);         /* Step 5. */
1793         if (check_spu_isolate(prev, spu)) {     /* Step 6. */
1794                 return 6;
1795         }
1796         set_switch_pending(prev, spu);          /* Step 7. */
1797         save_mfc_cntl(prev, spu);               /* Step 8. */
1798         save_spu_runcntl(prev, spu);            /* Step 9. */
1799         save_mfc_sr1(prev, spu);                /* Step 10. */
1800         save_spu_status(prev, spu);             /* Step 11. */
1801         save_mfc_stopped_status(prev, spu);     /* Step 12. */
1802         halt_mfc_decr(prev, spu);               /* Step 13. */
1803         save_timebase(prev, spu);               /* Step 14. */
1804         remove_other_spu_access(prev, spu);     /* Step 15. */
1805         do_mfc_mssync(prev, spu);               /* Step 16. */
1806         issue_mfc_tlbie(prev, spu);             /* Step 17. */
1807         handle_pending_interrupts(prev, spu);   /* Step 18. */
1808 
1809         return 0;
1810 }
1811 
1812 static void save_csa(struct spu_state *prev, struct spu *spu)
1813 {
1814         /*
1815          * Combine steps 19-44 of SPU context save sequence, which
1816          * save regions of the privileged & problem state areas.
1817          */
1818 
1819         save_mfc_queues(prev, spu);     /* Step 19. */
1820         save_ppu_querymask(prev, spu);  /* Step 20. */
1821         save_ppu_querytype(prev, spu);  /* Step 21. */
1822         save_ppu_tagstatus(prev, spu);  /* NEW.     */
1823         save_mfc_csr_tsq(prev, spu);    /* Step 22. */
1824         save_mfc_csr_cmd(prev, spu);    /* Step 23. */
1825         save_mfc_csr_ato(prev, spu);    /* Step 24. */
1826         save_mfc_tclass_id(prev, spu);  /* Step 25. */
1827         set_mfc_tclass_id(prev, spu);   /* Step 26. */
1828         save_mfc_cmd(prev, spu);        /* Step 26a - moved from 44. */
1829         purge_mfc_queue(prev, spu);     /* Step 27. */
1830         wait_purge_complete(prev, spu); /* Step 28. */
1831         setup_mfc_sr1(prev, spu);       /* Step 30. */
1832         save_spu_npc(prev, spu);        /* Step 31. */
1833         save_spu_privcntl(prev, spu);   /* Step 32. */
1834         reset_spu_privcntl(prev, spu);  /* Step 33. */
1835         save_spu_lslr(prev, spu);       /* Step 34. */
1836         reset_spu_lslr(prev, spu);      /* Step 35. */
1837         save_spu_cfg(prev, spu);        /* Step 36. */
1838         save_pm_trace(prev, spu);       /* Step 37. */
1839         save_mfc_rag(prev, spu);        /* Step 38. */
1840         save_ppu_mb_stat(prev, spu);    /* Step 39. */
1841         save_ppu_mb(prev, spu);         /* Step 40. */
1842         save_ppuint_mb(prev, spu);      /* Step 41. */
1843         save_ch_part1(prev, spu);       /* Step 42. */
1844         save_spu_mb(prev, spu);         /* Step 43. */
1845         reset_ch(prev, spu);            /* Step 45. */
1846 }
1847 
1848 static void save_lscsa(struct spu_state *prev, struct spu *spu)
1849 {
1850         /*
1851          * Perform steps 46-57 of SPU context save sequence,
1852          * which save regions of the local store and register
1853          * file.
1854          */
1855 
1856         resume_mfc_queue(prev, spu);    /* Step 46. */
1857         /* Step 47. */
1858         setup_mfc_slbs(prev, spu, spu_save_code, sizeof(spu_save_code));
1859         set_switch_active(prev, spu);   /* Step 48. */
1860         enable_interrupts(prev, spu);   /* Step 49. */
1861         save_ls_16kb(prev, spu);        /* Step 50. */
1862         set_spu_npc(prev, spu);         /* Step 51. */
1863         set_signot1(prev, spu);         /* Step 52. */
1864         set_signot2(prev, spu);         /* Step 53. */
1865         send_save_code(prev, spu);      /* Step 54. */
1866         set_ppu_querymask(prev, spu);   /* Step 55. */
1867         wait_tag_complete(prev, spu);   /* Step 56. */
1868         wait_spu_stopped(prev, spu);    /* Step 57. */
1869 }
1870 
1871 static void force_spu_isolate_exit(struct spu *spu)
1872 {
1873         struct spu_problem __iomem *prob = spu->problem;
1874         struct spu_priv2 __iomem *priv2 = spu->priv2;
1875 
1876         /* Stop SPE execution and wait for completion. */
1877         out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1878         iobarrier_rw();
1879         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING);
1880 
1881         /* Restart SPE master runcntl. */
1882         spu_mfc_sr1_set(spu, MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1883         iobarrier_w();
1884 
1885         /* Initiate isolate exit request and wait for completion. */
1886         out_be64(&priv2->spu_privcntl_RW, 4LL);
1887         iobarrier_w();
1888         out_be32(&prob->spu_runcntl_RW, 2);
1889         iobarrier_rw();
1890         POLL_WHILE_FALSE((in_be32(&prob->spu_status_R)
1891                                 & SPU_STATUS_STOPPED_BY_STOP));
1892 
1893         /* Reset load request to normal. */
1894         out_be64(&priv2->spu_privcntl_RW, SPU_PRIVCNT_LOAD_REQUEST_NORMAL);
1895         iobarrier_w();
1896 }
1897 
1898 /**
1899  * stop_spu_isolate
1900  *      Check SPU run-control state and force isolated
1901  *      exit function as necessary.
1902  */
1903 static void stop_spu_isolate(struct spu *spu)
1904 {
1905         struct spu_problem __iomem *prob = spu->problem;
1906 
1907         if (in_be32(&prob->spu_status_R) & SPU_STATUS_ISOLATED_STATE) {
1908                 /* The SPU is in isolated state; the only way
1909                  * to get it out is to perform an isolated
1910                  * exit (clean) operation.
1911                  */
1912                 force_spu_isolate_exit(spu);
1913         }
1914 }
1915 
1916 static void harvest(struct spu_state *prev, struct spu *spu)
1917 {
1918         /*
1919          * Perform steps 2-25 of SPU context restore sequence,
1920          * which resets an SPU either after a failed save, or
1921          * when using SPU for first time.
1922          */
1923 
1924         disable_interrupts(prev, spu);          /* Step 2.  */
1925         inhibit_user_access(prev, spu);         /* Step 3.  */
1926         terminate_spu_app(prev, spu);           /* Step 4.  */
1927         set_switch_pending(prev, spu);          /* Step 5.  */
1928         stop_spu_isolate(spu);                  /* NEW.     */
1929         remove_other_spu_access(prev, spu);     /* Step 6.  */
1930         suspend_mfc_and_halt_decr(prev, spu);   /* Step 7.  */
1931         wait_suspend_mfc_complete(prev, spu);   /* Step 8.  */
1932         if (!suspend_spe(prev, spu))            /* Step 9.  */
1933                 clear_spu_status(prev, spu);    /* Step 10. */
1934         do_mfc_mssync(prev, spu);               /* Step 11. */
1935         issue_mfc_tlbie(prev, spu);             /* Step 12. */
1936         handle_pending_interrupts(prev, spu);   /* Step 13. */
1937         purge_mfc_queue(prev, spu);             /* Step 14. */
1938         wait_purge_complete(prev, spu);         /* Step 15. */
1939         reset_spu_privcntl(prev, spu);          /* Step 16. */
1940         reset_spu_lslr(prev, spu);              /* Step 17. */
1941         setup_mfc_sr1(prev, spu);               /* Step 18. */
1942         spu_invalidate_slbs(spu);               /* Step 19. */
1943         reset_ch_part1(prev, spu);              /* Step 20. */
1944         reset_ch_part2(prev, spu);              /* Step 21. */
1945         enable_interrupts(prev, spu);           /* Step 22. */
1946         set_switch_active(prev, spu);           /* Step 23. */
1947         set_mfc_tclass_id(prev, spu);           /* Step 24. */
1948         resume_mfc_queue(prev, spu);            /* Step 25. */
1949 }
1950 
1951 static void restore_lscsa(struct spu_state *next, struct spu *spu)
1952 {
1953         /*
1954          * Perform steps 26-40 of SPU context restore sequence,
1955          * which restores regions of the local store and register
1956          * file.
1957          */
1958 
1959         set_watchdog_timer(next, spu);          /* Step 26. */
1960         setup_spu_status_part1(next, spu);      /* Step 27. */
1961         setup_spu_status_part2(next, spu);      /* Step 28. */
1962         restore_mfc_rag(next, spu);             /* Step 29. */
1963         /* Step 30. */
1964         setup_mfc_slbs(next, spu, spu_restore_code, sizeof(spu_restore_code));
1965         set_spu_npc(next, spu);                 /* Step 31. */
1966         set_signot1(next, spu);                 /* Step 32. */
1967         set_signot2(next, spu);                 /* Step 33. */
1968         setup_decr(next, spu);                  /* Step 34. */
1969         setup_ppu_mb(next, spu);                /* Step 35. */
1970         setup_ppuint_mb(next, spu);             /* Step 36. */
1971         send_restore_code(next, spu);           /* Step 37. */
1972         set_ppu_querymask(next, spu);           /* Step 38. */
1973         wait_tag_complete(next, spu);           /* Step 39. */
1974         wait_spu_stopped(next, spu);            /* Step 40. */
1975 }
1976 
1977 static void restore_csa(struct spu_state *next, struct spu *spu)
1978 {
1979         /*
1980          * Combine steps 41-76 of SPU context restore sequence, which
1981          * restore regions of the privileged & problem state areas.
1982          */
1983 
1984         restore_spu_privcntl(next, spu);        /* Step 41. */
1985         restore_status_part1(next, spu);        /* Step 42. */
1986         restore_status_part2(next, spu);        /* Step 43. */
1987         restore_ls_16kb(next, spu);             /* Step 44. */
1988         wait_tag_complete(next, spu);           /* Step 45. */
1989         suspend_mfc(next, spu);                 /* Step 46. */
1990         wait_suspend_mfc_complete(next, spu);   /* Step 47. */
1991         issue_mfc_tlbie(next, spu);             /* Step 48. */
1992         clear_interrupts(next, spu);            /* Step 49. */
1993         restore_mfc_queues(next, spu);          /* Step 50. */
1994         restore_ppu_querymask(next, spu);       /* Step 51. */
1995         restore_ppu_querytype(next, spu);       /* Step 52. */
1996         restore_mfc_csr_tsq(next, spu);         /* Step 53. */
1997         restore_mfc_csr_cmd(next, spu);         /* Step 54. */
1998         restore_mfc_csr_ato(next, spu);         /* Step 55. */
1999         restore_mfc_tclass_id(next, spu);       /* Step 56. */
2000         set_llr_event(next, spu);               /* Step 57. */
2001         restore_decr_wrapped(next, spu);        /* Step 58. */
2002         restore_ch_part1(next, spu);            /* Step 59. */
2003         restore_ch_part2(next, spu);            /* Step 60. */
2004         restore_spu_lslr(next, spu);            /* Step 61. */
2005         restore_spu_cfg(next, spu);             /* Step 62. */
2006         restore_pm_trace(next, spu);            /* Step 63. */
2007         restore_spu_npc(next, spu);             /* Step 64. */
2008         restore_spu_mb(next, spu);              /* Step 65. */
2009         check_ppu_mb_stat(next, spu);           /* Step 66. */
2010         check_ppuint_mb_stat(next, spu);        /* Step 67. */
2011         spu_invalidate_slbs(spu);               /* Modified Step 68. */
2012         restore_mfc_sr1(next, spu);             /* Step 69. */
2013         set_int_route(next, spu);               /* NEW      */
2014         restore_other_spu_access(next, spu);    /* Step 70. */
2015         restore_spu_runcntl(next, spu);         /* Step 71. */
2016         restore_mfc_cntl(next, spu);            /* Step 72. */
2017         enable_user_access(next, spu);          /* Step 73. */
2018         reset_switch_active(next, spu);         /* Step 74. */
2019         reenable_interrupts(next, spu);         /* Step 75. */
2020 }
2021 
2022 static int __do_spu_save(struct spu_state *prev, struct spu *spu)
2023 {
2024         int rc;
2025 
2026         /*
2027          * SPU context save can be broken into three phases:
2028          *
2029          *     (a) quiesce [steps 2-16].
2030          *     (b) save of CSA, performed by PPE [steps 17-42]
2031          *     (c) save of LSCSA, mostly performed by SPU [steps 43-52].
2032          *
2033          * Returns      0 on success.
2034          *              2,6 if failed to quiece SPU
2035          *              53 if SPU-side of save failed.
2036          */
2037 
2038         rc = quiece_spu(prev, spu);             /* Steps 2-16. */
2039         switch (rc) {
2040         default:
2041         case 2:
2042         case 6:
2043                 harvest(prev, spu);
2044                 return rc;
2045                 break;
2046         case 0:
2047                 break;
2048         }
2049         save_csa(prev, spu);                    /* Steps 17-43. */
2050         save_lscsa(prev, spu);                  /* Steps 44-53. */
2051         return check_save_status(prev, spu);    /* Step 54.     */
2052 }
2053 
2054 static int __do_spu_restore(struct spu_state *next, struct spu *spu)
2055 {
2056         int rc;
2057 
2058         /*
2059          * SPU context restore can be broken into three phases:
2060          *
2061          *    (a) harvest (or reset) SPU [steps 2-24].
2062          *    (b) restore LSCSA [steps 25-40], mostly performed by SPU.
2063          *    (c) restore CSA [steps 41-76], performed by PPE.
2064          *
2065          * The 'harvest' step is not performed here, but rather
2066          * as needed below.
2067          */
2068 
2069         restore_lscsa(next, spu);               /* Steps 24-39. */
2070         rc = check_restore_status(next, spu);   /* Step 40.     */
2071         switch (rc) {
2072         default:
2073                 /* Failed. Return now. */
2074                 return rc;
2075                 break;
2076         case 0:
2077                 /* Fall through to next step. */
2078                 break;
2079         }
2080         restore_csa(next, spu);
2081 
2082         return 0;
2083 }
2084 
2085 /**
2086  * spu_save - SPU context save, with locking.
2087  * @prev: pointer to SPU context save area, to be saved.
2088  * @spu: pointer to SPU iomem structure.
2089  *
2090  * Acquire locks, perform the save operation then return.
2091  */
2092 int spu_save(struct spu_state *prev, struct spu *spu)
2093 {
2094         int rc;
2095 
2096         acquire_spu_lock(spu);          /* Step 1.     */
2097         rc = __do_spu_save(prev, spu);  /* Steps 2-53. */
2098         release_spu_lock(spu);
2099         if (rc != 0 && rc != 2 && rc != 6) {
2100                 panic("%s failed on SPU[%d], rc=%d.\n",
2101                       __func__, spu->number, rc);
2102         }
2103         return 0;
2104 }
2105 EXPORT_SYMBOL_GPL(spu_save);
2106 
2107 /**
2108  * spu_restore - SPU context restore, with harvest and locking.
2109  * @new: pointer to SPU context save area, to be restored.
2110  * @spu: pointer to SPU iomem structure.
2111  *
2112  * Perform harvest + restore, as we may not be coming
2113  * from a previous successful save operation, and the
2114  * hardware state is unknown.
2115  */
2116 int spu_restore(struct spu_state *new, struct spu *spu)
2117 {
2118         int rc;
2119 
2120         acquire_spu_lock(spu);
2121         harvest(NULL, spu);
2122         spu->slb_replace = 0;
2123         rc = __do_spu_restore(new, spu);
2124         release_spu_lock(spu);
2125         if (rc) {
2126                 panic("%s failed on SPU[%d] rc=%d.\n",
2127                        __func__, spu->number, rc);
2128         }
2129         return rc;
2130 }
2131 EXPORT_SYMBOL_GPL(spu_restore);
2132 
2133 static void init_prob(struct spu_state *csa)
2134 {
2135         csa->spu_chnlcnt_RW[9] = 1;
2136         csa->spu_chnlcnt_RW[21] = 16;
2137         csa->spu_chnlcnt_RW[23] = 1;
2138         csa->spu_chnlcnt_RW[28] = 1;
2139         csa->spu_chnlcnt_RW[30] = 1;
2140         csa->prob.spu_runcntl_RW = SPU_RUNCNTL_STOP;
2141         csa->prob.mb_stat_R = 0x000400;
2142 }
2143 
2144 static void init_priv1(struct spu_state *csa)
2145 {
2146         /* Enable decode, relocate, tlbie response, master runcntl. */
2147         csa->priv1.mfc_sr1_RW = MFC_STATE1_LOCAL_STORAGE_DECODE_MASK |
2148             MFC_STATE1_MASTER_RUN_CONTROL_MASK |
2149             MFC_STATE1_PROBLEM_STATE_MASK |
2150             MFC_STATE1_RELOCATE_MASK | MFC_STATE1_BUS_TLBIE_MASK;
2151 
2152         /* Enable OS-specific set of interrupts. */
2153         csa->priv1.int_mask_class0_RW = CLASS0_ENABLE_DMA_ALIGNMENT_INTR |
2154             CLASS0_ENABLE_INVALID_DMA_COMMAND_INTR |
2155             CLASS0_ENABLE_SPU_ERROR_INTR;
2156         csa->priv1.int_mask_class1_RW = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
2157             CLASS1_ENABLE_STORAGE_FAULT_INTR;
2158         csa->priv1.int_mask_class2_RW = CLASS2_ENABLE_SPU_STOP_INTR |
2159             CLASS2_ENABLE_SPU_HALT_INTR |
2160             CLASS2_ENABLE_SPU_DMA_TAG_GROUP_COMPLETE_INTR;
2161 }
2162 
2163 static void init_priv2(struct spu_state *csa)
2164 {
2165         csa->priv2.spu_lslr_RW = LS_ADDR_MASK;
2166         csa->priv2.mfc_control_RW = MFC_CNTL_RESUME_DMA_QUEUE |
2167             MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION |
2168             MFC_CNTL_DMA_QUEUES_EMPTY_MASK;
2169 }
2170 
2171 /**
2172  * spu_alloc_csa - allocate and initialize an SPU context save area.
2173  *
2174  * Allocate and initialize the contents of an SPU context save area.
2175  * This includes enabling address translation, interrupt masks, etc.,
2176  * as appropriate for the given OS environment.
2177  *
2178  * Note that storage for the 'lscsa' is allocated separately,
2179  * as it is by far the largest of the context save regions,
2180  * and may need to be pinned or otherwise specially aligned.
2181  */
2182 int spu_init_csa(struct spu_state *csa)
2183 {
2184         int rc;
2185 
2186         if (!csa)
2187                 return -EINVAL;
2188         memset(csa, 0, sizeof(struct spu_state));
2189 
2190         rc = spu_alloc_lscsa(csa);
2191         if (rc)
2192                 return rc;
2193 
2194         spin_lock_init(&csa->register_lock);
2195 
2196         init_prob(csa);
2197         init_priv1(csa);
2198         init_priv2(csa);
2199 
2200         return 0;
2201 }
2202 
2203 void spu_fini_csa(struct spu_state *csa)
2204 {
2205         spu_free_lscsa(csa);
2206 }
2207 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php