1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * PowerNV Platform dependent EEH operations 4 * 5 * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2013. 6 */ 7 8 #include <linux/atomic.h> 9 #include <linux/debugfs.h> 10 #include <linux/delay.h> 11 #include <linux/export.h> 12 #include <linux/init.h> 13 #include <linux/interrupt.h> 14 #include <linux/irqdomain.h> 15 #include <linux/list.h> 16 #include <linux/msi.h> 17 #include <linux/of.h> 18 #include <linux/pci.h> 19 #include <linux/proc_fs.h> 20 #include <linux/rbtree.h> 21 #include <linux/sched.h> 22 #include <linux/seq_file.h> 23 #include <linux/spinlock.h> 24 25 #include <asm/eeh.h> 26 #include <asm/eeh_event.h> 27 #include <asm/firmware.h> 28 #include <asm/io.h> 29 #include <asm/iommu.h> 30 #include <asm/machdep.h> 31 #include <asm/msi_bitmap.h> 32 #include <asm/opal.h> 33 #include <asm/ppc-pci.h> 34 #include <asm/pnv-pci.h> 35 36 #include "powernv.h" 37 #include "pci.h" 38 #include "../../../../drivers/pci/pci.h" 39 40 static int eeh_event_irq = -EINVAL; 41 42 static void pnv_pcibios_bus_add_device(struct pci_dev *pdev) 43 { 44 dev_dbg(&pdev->dev, "EEH: Setting up device\n"); 45 eeh_probe_device(pdev); 46 } 47 48 static irqreturn_t pnv_eeh_event(int irq, void *data) 49 { 50 /* 51 * We simply send a special EEH event if EEH has been 52 * enabled. We don't care about EEH events until we've 53 * finished processing the outstanding ones. Event processing 54 * gets unmasked in next_error() if EEH is enabled. 55 */ 56 disable_irq_nosync(irq); 57 58 if (eeh_enabled()) 59 eeh_send_failure_event(NULL); 60 61 return IRQ_HANDLED; 62 } 63 64 #ifdef CONFIG_DEBUG_FS 65 static ssize_t pnv_eeh_ei_write(struct file *filp, 66 const char __user *user_buf, 67 size_t count, loff_t *ppos) 68 { 69 struct pci_controller *hose = filp->private_data; 70 struct eeh_pe *pe; 71 int pe_no, type, func; 72 unsigned long addr, mask; 73 char buf[50]; 74 int ret; 75 76 if (!eeh_ops || !eeh_ops->err_inject) 77 return -ENXIO; 78 79 /* Copy over argument buffer */ 80 ret = simple_write_to_buffer(buf, sizeof(buf), ppos, user_buf, count); 81 if (!ret) 82 return -EFAULT; 83 84 /* Retrieve parameters */ 85 ret = sscanf(buf, "%x:%x:%x:%lx:%lx", 86 &pe_no, &type, &func, &addr, &mask); 87 if (ret != 5) 88 return -EINVAL; 89 90 /* Retrieve PE */ 91 pe = eeh_pe_get(hose, pe_no); 92 if (!pe) 93 return -ENODEV; 94 95 /* Do error injection */ 96 ret = eeh_ops->err_inject(pe, type, func, addr, mask); 97 return ret < 0 ? ret : count; 98 } 99 100 static const struct file_operations pnv_eeh_ei_fops = { 101 .open = simple_open, 102 .llseek = no_llseek, 103 .write = pnv_eeh_ei_write, 104 }; 105 106 static int pnv_eeh_dbgfs_set(void *data, int offset, u64 val) 107 { 108 struct pci_controller *hose = data; 109 struct pnv_phb *phb = hose->private_data; 110 111 out_be64(phb->regs + offset, val); 112 return 0; 113 } 114 115 static int pnv_eeh_dbgfs_get(void *data, int offset, u64 *val) 116 { 117 struct pci_controller *hose = data; 118 struct pnv_phb *phb = hose->private_data; 119 120 *val = in_be64(phb->regs + offset); 121 return 0; 122 } 123 124 #define PNV_EEH_DBGFS_ENTRY(name, reg) \ 125 static int pnv_eeh_dbgfs_set_##name(void *data, u64 val) \ 126 { \ 127 return pnv_eeh_dbgfs_set(data, reg, val); \ 128 } \ 129 \ 130 static int pnv_eeh_dbgfs_get_##name(void *data, u64 *val) \ 131 { \ 132 return pnv_eeh_dbgfs_get(data, reg, val); \ 133 } \ 134 \ 135 DEFINE_SIMPLE_ATTRIBUTE(pnv_eeh_dbgfs_ops_##name, \ 136 pnv_eeh_dbgfs_get_##name, \ 137 pnv_eeh_dbgfs_set_##name, \ 138 "0x%llx\n") 139 140 PNV_EEH_DBGFS_ENTRY(outb, 0xD10); 141 PNV_EEH_DBGFS_ENTRY(inbA, 0xD90); 142 PNV_EEH_DBGFS_ENTRY(inbB, 0xE10); 143 144 #endif /* CONFIG_DEBUG_FS */ 145 146 static void pnv_eeh_enable_phbs(void) 147 { 148 struct pci_controller *hose; 149 struct pnv_phb *phb; 150 151 list_for_each_entry(hose, &hose_list, list_node) { 152 phb = hose->private_data; 153 /* 154 * If EEH is enabled, we're going to rely on that. 155 * Otherwise, we restore to conventional mechanism 156 * to clear frozen PE during PCI config access. 157 */ 158 if (eeh_enabled()) 159 phb->flags |= PNV_PHB_FLAG_EEH; 160 else 161 phb->flags &= ~PNV_PHB_FLAG_EEH; 162 } 163 } 164 165 /** 166 * pnv_eeh_post_init - EEH platform dependent post initialization 167 * 168 * EEH platform dependent post initialization on powernv. When 169 * the function is called, the EEH PEs and devices should have 170 * been built. If the I/O cache staff has been built, EEH is 171 * ready to supply service. 172 */ 173 int pnv_eeh_post_init(void) 174 { 175 struct pci_controller *hose; 176 struct pnv_phb *phb; 177 int ret = 0; 178 179 eeh_show_enabled(); 180 181 /* Register OPAL event notifier */ 182 eeh_event_irq = opal_event_request(ilog2(OPAL_EVENT_PCI_ERROR)); 183 if (eeh_event_irq < 0) { 184 pr_err("%s: Can't register OPAL event interrupt (%d)\n", 185 __func__, eeh_event_irq); 186 return eeh_event_irq; 187 } 188 189 ret = request_irq(eeh_event_irq, pnv_eeh_event, 190 IRQ_TYPE_LEVEL_HIGH, "opal-eeh", NULL); 191 if (ret < 0) { 192 irq_dispose_mapping(eeh_event_irq); 193 pr_err("%s: Can't request OPAL event interrupt (%d)\n", 194 __func__, eeh_event_irq); 195 return ret; 196 } 197 198 if (!eeh_enabled()) 199 disable_irq(eeh_event_irq); 200 201 pnv_eeh_enable_phbs(); 202 203 list_for_each_entry(hose, &hose_list, list_node) { 204 phb = hose->private_data; 205 206 /* Create debugfs entries */ 207 #ifdef CONFIG_DEBUG_FS 208 if (phb->has_dbgfs || !phb->dbgfs) 209 continue; 210 211 phb->has_dbgfs = 1; 212 debugfs_create_file("err_injct", 0200, 213 phb->dbgfs, hose, 214 &pnv_eeh_ei_fops); 215 216 debugfs_create_file("err_injct_outbound", 0600, 217 phb->dbgfs, hose, 218 &pnv_eeh_dbgfs_ops_outb); 219 debugfs_create_file("err_injct_inboundA", 0600, 220 phb->dbgfs, hose, 221 &pnv_eeh_dbgfs_ops_inbA); 222 debugfs_create_file("err_injct_inboundB", 0600, 223 phb->dbgfs, hose, 224 &pnv_eeh_dbgfs_ops_inbB); 225 #endif /* CONFIG_DEBUG_FS */ 226 } 227 228 return ret; 229 } 230 231 static int pnv_eeh_find_cap(struct pci_dn *pdn, int cap) 232 { 233 int pos = PCI_CAPABILITY_LIST; 234 int cnt = 48; /* Maximal number of capabilities */ 235 u32 status, id; 236 237 if (!pdn) 238 return 0; 239 240 /* Check if the device supports capabilities */ 241 pnv_pci_cfg_read(pdn, PCI_STATUS, 2, &status); 242 if (!(status & PCI_STATUS_CAP_LIST)) 243 return 0; 244 245 while (cnt--) { 246 pnv_pci_cfg_read(pdn, pos, 1, &pos); 247 if (pos < 0x40) 248 break; 249 250 pos &= ~3; 251 pnv_pci_cfg_read(pdn, pos + PCI_CAP_LIST_ID, 1, &id); 252 if (id == 0xff) 253 break; 254 255 /* Found */ 256 if (id == cap) 257 return pos; 258 259 /* Next one */ 260 pos += PCI_CAP_LIST_NEXT; 261 } 262 263 return 0; 264 } 265 266 static int pnv_eeh_find_ecap(struct pci_dn *pdn, int cap) 267 { 268 struct eeh_dev *edev = pdn_to_eeh_dev(pdn); 269 u32 header; 270 int pos = 256, ttl = (4096 - 256) / 8; 271 272 if (!edev || !edev->pcie_cap) 273 return 0; 274 if (pnv_pci_cfg_read(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL) 275 return 0; 276 else if (!header) 277 return 0; 278 279 while (ttl-- > 0) { 280 if (PCI_EXT_CAP_ID(header) == cap && pos) 281 return pos; 282 283 pos = PCI_EXT_CAP_NEXT(header); 284 if (pos < 256) 285 break; 286 287 if (pnv_pci_cfg_read(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL) 288 break; 289 } 290 291 return 0; 292 } 293 294 static struct eeh_pe *pnv_eeh_get_upstream_pe(struct pci_dev *pdev) 295 { 296 struct pci_controller *hose = pdev->bus->sysdata; 297 struct pnv_phb *phb = hose->private_data; 298 struct pci_dev *parent = pdev->bus->self; 299 300 #ifdef CONFIG_PCI_IOV 301 /* for VFs we use the PF's PE as the upstream PE */ 302 if (pdev->is_virtfn) 303 parent = pdev->physfn; 304 #endif 305 306 /* otherwise use the PE of our parent bridge */ 307 if (parent) { 308 struct pnv_ioda_pe *ioda_pe = pnv_ioda_get_pe(parent); 309 310 return eeh_pe_get(phb->hose, ioda_pe->pe_number); 311 } 312 313 return NULL; 314 } 315 316 /** 317 * pnv_eeh_probe - Do probe on PCI device 318 * @pdev: pci_dev to probe 319 * 320 * Create, or find the existing, eeh_dev for this pci_dev. 321 */ 322 static struct eeh_dev *pnv_eeh_probe(struct pci_dev *pdev) 323 { 324 struct pci_dn *pdn = pci_get_pdn(pdev); 325 struct pci_controller *hose = pdn->phb; 326 struct pnv_phb *phb = hose->private_data; 327 struct eeh_dev *edev = pdn_to_eeh_dev(pdn); 328 struct eeh_pe *upstream_pe; 329 uint32_t pcie_flags; 330 int ret; 331 int config_addr = (pdn->busno << 8) | (pdn->devfn); 332 333 /* 334 * When probing the root bridge, which doesn't have any 335 * subordinate PCI devices. We don't have OF node for 336 * the root bridge. So it's not reasonable to continue 337 * the probing. 338 */ 339 if (!edev || edev->pe) 340 return NULL; 341 342 /* already configured? */ 343 if (edev->pdev) { 344 pr_debug("%s: found existing edev for %04x:%02x:%02x.%01x\n", 345 __func__, hose->global_number, config_addr >> 8, 346 PCI_SLOT(config_addr), PCI_FUNC(config_addr)); 347 return edev; 348 } 349 350 /* Skip for PCI-ISA bridge */ 351 if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) 352 return NULL; 353 354 eeh_edev_dbg(edev, "Probing device\n"); 355 356 /* Initialize eeh device */ 357 edev->mode &= 0xFFFFFF00; 358 edev->pcix_cap = pnv_eeh_find_cap(pdn, PCI_CAP_ID_PCIX); 359 edev->pcie_cap = pnv_eeh_find_cap(pdn, PCI_CAP_ID_EXP); 360 edev->af_cap = pnv_eeh_find_cap(pdn, PCI_CAP_ID_AF); 361 edev->aer_cap = pnv_eeh_find_ecap(pdn, PCI_EXT_CAP_ID_ERR); 362 if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_PCI) { 363 edev->mode |= EEH_DEV_BRIDGE; 364 if (edev->pcie_cap) { 365 pnv_pci_cfg_read(pdn, edev->pcie_cap + PCI_EXP_FLAGS, 366 2, &pcie_flags); 367 pcie_flags = (pcie_flags & PCI_EXP_FLAGS_TYPE) >> 4; 368 if (pcie_flags == PCI_EXP_TYPE_ROOT_PORT) 369 edev->mode |= EEH_DEV_ROOT_PORT; 370 else if (pcie_flags == PCI_EXP_TYPE_DOWNSTREAM) 371 edev->mode |= EEH_DEV_DS_PORT; 372 } 373 } 374 375 edev->pe_config_addr = phb->ioda.pe_rmap[config_addr]; 376 377 upstream_pe = pnv_eeh_get_upstream_pe(pdev); 378 379 /* Create PE */ 380 ret = eeh_pe_tree_insert(edev, upstream_pe); 381 if (ret) { 382 eeh_edev_warn(edev, "Failed to add device to PE (code %d)\n", ret); 383 return NULL; 384 } 385 386 /* 387 * If the PE contains any one of following adapters, the 388 * PCI config space can't be accessed when dumping EEH log. 389 * Otherwise, we will run into fenced PHB caused by shortage 390 * of outbound credits in the adapter. The PCI config access 391 * should be blocked until PE reset. MMIO access is dropped 392 * by hardware certainly. In order to drop PCI config requests, 393 * one more flag (EEH_PE_CFG_RESTRICTED) is introduced, which 394 * will be checked in the backend for PE state retrieval. If 395 * the PE becomes frozen for the first time and the flag has 396 * been set for the PE, we will set EEH_PE_CFG_BLOCKED for 397 * that PE to block its config space. 398 * 399 * Broadcom BCM5718 2-ports NICs (14e4:1656) 400 * Broadcom Austin 4-ports NICs (14e4:1657) 401 * Broadcom Shiner 4-ports 1G NICs (14e4:168a) 402 * Broadcom Shiner 2-ports 10G NICs (14e4:168e) 403 */ 404 if ((pdn->vendor_id == PCI_VENDOR_ID_BROADCOM && 405 pdn->device_id == 0x1656) || 406 (pdn->vendor_id == PCI_VENDOR_ID_BROADCOM && 407 pdn->device_id == 0x1657) || 408 (pdn->vendor_id == PCI_VENDOR_ID_BROADCOM && 409 pdn->device_id == 0x168a) || 410 (pdn->vendor_id == PCI_VENDOR_ID_BROADCOM && 411 pdn->device_id == 0x168e)) 412 edev->pe->state |= EEH_PE_CFG_RESTRICTED; 413 414 /* 415 * Cache the PE primary bus, which can't be fetched when 416 * full hotplug is in progress. In that case, all child 417 * PCI devices of the PE are expected to be removed prior 418 * to PE reset. 419 */ 420 if (!(edev->pe->state & EEH_PE_PRI_BUS)) { 421 edev->pe->bus = pci_find_bus(hose->global_number, 422 pdn->busno); 423 if (edev->pe->bus) 424 edev->pe->state |= EEH_PE_PRI_BUS; 425 } 426 427 /* 428 * Enable EEH explicitly so that we will do EEH check 429 * while accessing I/O stuff 430 */ 431 if (!eeh_has_flag(EEH_ENABLED)) { 432 enable_irq(eeh_event_irq); 433 pnv_eeh_enable_phbs(); 434 eeh_add_flag(EEH_ENABLED); 435 } 436 437 /* Save memory bars */ 438 eeh_save_bars(edev); 439 440 eeh_edev_dbg(edev, "EEH enabled on device\n"); 441 442 return edev; 443 } 444 445 /** 446 * pnv_eeh_set_option - Initialize EEH or MMIO/DMA reenable 447 * @pe: EEH PE 448 * @option: operation to be issued 449 * 450 * The function is used to control the EEH functionality globally. 451 * Currently, following options are support according to PAPR: 452 * Enable EEH, Disable EEH, Enable MMIO and Enable DMA 453 */ 454 static int pnv_eeh_set_option(struct eeh_pe *pe, int option) 455 { 456 struct pci_controller *hose = pe->phb; 457 struct pnv_phb *phb = hose->private_data; 458 bool freeze_pe = false; 459 int opt; 460 s64 rc; 461 462 switch (option) { 463 case EEH_OPT_DISABLE: 464 return -EPERM; 465 case EEH_OPT_ENABLE: 466 return 0; 467 case EEH_OPT_THAW_MMIO: 468 opt = OPAL_EEH_ACTION_CLEAR_FREEZE_MMIO; 469 break; 470 case EEH_OPT_THAW_DMA: 471 opt = OPAL_EEH_ACTION_CLEAR_FREEZE_DMA; 472 break; 473 case EEH_OPT_FREEZE_PE: 474 freeze_pe = true; 475 opt = OPAL_EEH_ACTION_SET_FREEZE_ALL; 476 break; 477 default: 478 pr_warn("%s: Invalid option %d\n", __func__, option); 479 return -EINVAL; 480 } 481 482 /* Freeze master and slave PEs if PHB supports compound PEs */ 483 if (freeze_pe) { 484 if (phb->freeze_pe) { 485 phb->freeze_pe(phb, pe->addr); 486 return 0; 487 } 488 489 rc = opal_pci_eeh_freeze_set(phb->opal_id, pe->addr, opt); 490 if (rc != OPAL_SUCCESS) { 491 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n", 492 __func__, rc, phb->hose->global_number, 493 pe->addr); 494 return -EIO; 495 } 496 497 return 0; 498 } 499 500 /* Unfreeze master and slave PEs if PHB supports */ 501 if (phb->unfreeze_pe) 502 return phb->unfreeze_pe(phb, pe->addr, opt); 503 504 rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe->addr, opt); 505 if (rc != OPAL_SUCCESS) { 506 pr_warn("%s: Failure %lld enable %d for PHB#%x-PE#%x\n", 507 __func__, rc, option, phb->hose->global_number, 508 pe->addr); 509 return -EIO; 510 } 511 512 return 0; 513 } 514 515 static void pnv_eeh_get_phb_diag(struct eeh_pe *pe) 516 { 517 struct pnv_phb *phb = pe->phb->private_data; 518 s64 rc; 519 520 rc = opal_pci_get_phb_diag_data2(phb->opal_id, pe->data, 521 phb->diag_data_size); 522 if (rc != OPAL_SUCCESS) 523 pr_warn("%s: Failure %lld getting PHB#%x diag-data\n", 524 __func__, rc, pe->phb->global_number); 525 } 526 527 static int pnv_eeh_get_phb_state(struct eeh_pe *pe) 528 { 529 struct pnv_phb *phb = pe->phb->private_data; 530 u8 fstate = 0; 531 __be16 pcierr = 0; 532 s64 rc; 533 int result = 0; 534 535 rc = opal_pci_eeh_freeze_status(phb->opal_id, 536 pe->addr, 537 &fstate, 538 &pcierr, 539 NULL); 540 if (rc != OPAL_SUCCESS) { 541 pr_warn("%s: Failure %lld getting PHB#%x state\n", 542 __func__, rc, phb->hose->global_number); 543 return EEH_STATE_NOT_SUPPORT; 544 } 545 546 /* 547 * Check PHB state. If the PHB is frozen for the 548 * first time, to dump the PHB diag-data. 549 */ 550 if (be16_to_cpu(pcierr) != OPAL_EEH_PHB_ERROR) { 551 result = (EEH_STATE_MMIO_ACTIVE | 552 EEH_STATE_DMA_ACTIVE | 553 EEH_STATE_MMIO_ENABLED | 554 EEH_STATE_DMA_ENABLED); 555 } else if (!(pe->state & EEH_PE_ISOLATED)) { 556 eeh_pe_mark_isolated(pe); 557 pnv_eeh_get_phb_diag(pe); 558 559 if (eeh_has_flag(EEH_EARLY_DUMP_LOG)) 560 pnv_pci_dump_phb_diag_data(pe->phb, pe->data); 561 } 562 563 return result; 564 } 565 566 static int pnv_eeh_get_pe_state(struct eeh_pe *pe) 567 { 568 struct pnv_phb *phb = pe->phb->private_data; 569 u8 fstate = 0; 570 __be16 pcierr = 0; 571 s64 rc; 572 int result; 573 574 /* 575 * We don't clobber hardware frozen state until PE 576 * reset is completed. In order to keep EEH core 577 * moving forward, we have to return operational 578 * state during PE reset. 579 */ 580 if (pe->state & EEH_PE_RESET) { 581 result = (EEH_STATE_MMIO_ACTIVE | 582 EEH_STATE_DMA_ACTIVE | 583 EEH_STATE_MMIO_ENABLED | 584 EEH_STATE_DMA_ENABLED); 585 return result; 586 } 587 588 /* 589 * Fetch PE state from hardware. If the PHB 590 * supports compound PE, let it handle that. 591 */ 592 if (phb->get_pe_state) { 593 fstate = phb->get_pe_state(phb, pe->addr); 594 } else { 595 rc = opal_pci_eeh_freeze_status(phb->opal_id, 596 pe->addr, 597 &fstate, 598 &pcierr, 599 NULL); 600 if (rc != OPAL_SUCCESS) { 601 pr_warn("%s: Failure %lld getting PHB#%x-PE%x state\n", 602 __func__, rc, phb->hose->global_number, 603 pe->addr); 604 return EEH_STATE_NOT_SUPPORT; 605 } 606 } 607 608 /* Figure out state */ 609 switch (fstate) { 610 case OPAL_EEH_STOPPED_NOT_FROZEN: 611 result = (EEH_STATE_MMIO_ACTIVE | 612 EEH_STATE_DMA_ACTIVE | 613 EEH_STATE_MMIO_ENABLED | 614 EEH_STATE_DMA_ENABLED); 615 break; 616 case OPAL_EEH_STOPPED_MMIO_FREEZE: 617 result = (EEH_STATE_DMA_ACTIVE | 618 EEH_STATE_DMA_ENABLED); 619 break; 620 case OPAL_EEH_STOPPED_DMA_FREEZE: 621 result = (EEH_STATE_MMIO_ACTIVE | 622 EEH_STATE_MMIO_ENABLED); 623 break; 624 case OPAL_EEH_STOPPED_MMIO_DMA_FREEZE: 625 result = 0; 626 break; 627 case OPAL_EEH_STOPPED_RESET: 628 result = EEH_STATE_RESET_ACTIVE; 629 break; 630 case OPAL_EEH_STOPPED_TEMP_UNAVAIL: 631 result = EEH_STATE_UNAVAILABLE; 632 break; 633 case OPAL_EEH_STOPPED_PERM_UNAVAIL: 634 result = EEH_STATE_NOT_SUPPORT; 635 break; 636 default: 637 result = EEH_STATE_NOT_SUPPORT; 638 pr_warn("%s: Invalid PHB#%x-PE#%x state %x\n", 639 __func__, phb->hose->global_number, 640 pe->addr, fstate); 641 } 642 643 /* 644 * If PHB supports compound PE, to freeze all 645 * slave PEs for consistency. 646 * 647 * If the PE is switching to frozen state for the 648 * first time, to dump the PHB diag-data. 649 */ 650 if (!(result & EEH_STATE_NOT_SUPPORT) && 651 !(result & EEH_STATE_UNAVAILABLE) && 652 !(result & EEH_STATE_MMIO_ACTIVE) && 653 !(result & EEH_STATE_DMA_ACTIVE) && 654 !(pe->state & EEH_PE_ISOLATED)) { 655 if (phb->freeze_pe) 656 phb->freeze_pe(phb, pe->addr); 657 658 eeh_pe_mark_isolated(pe); 659 pnv_eeh_get_phb_diag(pe); 660 661 if (eeh_has_flag(EEH_EARLY_DUMP_LOG)) 662 pnv_pci_dump_phb_diag_data(pe->phb, pe->data); 663 } 664 665 return result; 666 } 667 668 /** 669 * pnv_eeh_get_state - Retrieve PE state 670 * @pe: EEH PE 671 * @delay: delay while PE state is temporarily unavailable 672 * 673 * Retrieve the state of the specified PE. For IODA-compitable 674 * platform, it should be retrieved from IODA table. Therefore, 675 * we prefer passing down to hardware implementation to handle 676 * it. 677 */ 678 static int pnv_eeh_get_state(struct eeh_pe *pe, int *delay) 679 { 680 int ret; 681 682 if (pe->type & EEH_PE_PHB) 683 ret = pnv_eeh_get_phb_state(pe); 684 else 685 ret = pnv_eeh_get_pe_state(pe); 686 687 if (!delay) 688 return ret; 689 690 /* 691 * If the PE state is temporarily unavailable, 692 * to inform the EEH core delay for default 693 * period (1 second) 694 */ 695 *delay = 0; 696 if (ret & EEH_STATE_UNAVAILABLE) 697 *delay = 1000; 698 699 return ret; 700 } 701 702 static s64 pnv_eeh_poll(unsigned long id) 703 { 704 s64 rc = OPAL_HARDWARE; 705 706 while (1) { 707 rc = opal_pci_poll(id); 708 if (rc <= 0) 709 break; 710 711 if (system_state < SYSTEM_RUNNING) 712 udelay(1000 * rc); 713 else 714 msleep(rc); 715 } 716 717 return rc; 718 } 719 720 int pnv_eeh_phb_reset(struct pci_controller *hose, int option) 721 { 722 struct pnv_phb *phb = hose->private_data; 723 s64 rc = OPAL_HARDWARE; 724 725 pr_debug("%s: Reset PHB#%x, option=%d\n", 726 __func__, hose->global_number, option); 727 728 /* Issue PHB complete reset request */ 729 if (option == EEH_RESET_FUNDAMENTAL || 730 option == EEH_RESET_HOT) 731 rc = opal_pci_reset(phb->opal_id, 732 OPAL_RESET_PHB_COMPLETE, 733 OPAL_ASSERT_RESET); 734 else if (option == EEH_RESET_DEACTIVATE) 735 rc = opal_pci_reset(phb->opal_id, 736 OPAL_RESET_PHB_COMPLETE, 737 OPAL_DEASSERT_RESET); 738 if (rc < 0) 739 goto out; 740 741 /* 742 * Poll state of the PHB until the request is done 743 * successfully. The PHB reset is usually PHB complete 744 * reset followed by hot reset on root bus. So we also 745 * need the PCI bus settlement delay. 746 */ 747 if (rc > 0) 748 rc = pnv_eeh_poll(phb->opal_id); 749 if (option == EEH_RESET_DEACTIVATE) { 750 if (system_state < SYSTEM_RUNNING) 751 udelay(1000 * EEH_PE_RST_SETTLE_TIME); 752 else 753 msleep(EEH_PE_RST_SETTLE_TIME); 754 } 755 out: 756 if (rc != OPAL_SUCCESS) 757 return -EIO; 758 759 return 0; 760 } 761 762 static int pnv_eeh_root_reset(struct pci_controller *hose, int option) 763 { 764 struct pnv_phb *phb = hose->private_data; 765 s64 rc = OPAL_HARDWARE; 766 767 pr_debug("%s: Reset PHB#%x, option=%d\n", 768 __func__, hose->global_number, option); 769 770 /* 771 * During the reset deassert time, we needn't care 772 * the reset scope because the firmware does nothing 773 * for fundamental or hot reset during deassert phase. 774 */ 775 if (option == EEH_RESET_FUNDAMENTAL) 776 rc = opal_pci_reset(phb->opal_id, 777 OPAL_RESET_PCI_FUNDAMENTAL, 778 OPAL_ASSERT_RESET); 779 else if (option == EEH_RESET_HOT) 780 rc = opal_pci_reset(phb->opal_id, 781 OPAL_RESET_PCI_HOT, 782 OPAL_ASSERT_RESET); 783 else if (option == EEH_RESET_DEACTIVATE) 784 rc = opal_pci_reset(phb->opal_id, 785 OPAL_RESET_PCI_HOT, 786 OPAL_DEASSERT_RESET); 787 if (rc < 0) 788 goto out; 789 790 /* Poll state of the PHB until the request is done */ 791 if (rc > 0) 792 rc = pnv_eeh_poll(phb->opal_id); 793 if (option == EEH_RESET_DEACTIVATE) 794 msleep(EEH_PE_RST_SETTLE_TIME); 795 out: 796 if (rc != OPAL_SUCCESS) 797 return -EIO; 798 799 return 0; 800 } 801 802 static int __pnv_eeh_bridge_reset(struct pci_dev *dev, int option) 803 { 804 struct pci_dn *pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn); 805 struct eeh_dev *edev = pdn_to_eeh_dev(pdn); 806 int aer = edev ? edev->aer_cap : 0; 807 u32 ctrl; 808 809 pr_debug("%s: Secondary Reset PCI bus %04x:%02x with option %d\n", 810 __func__, pci_domain_nr(dev->bus), 811 dev->bus->number, option); 812 813 switch (option) { 814 case EEH_RESET_FUNDAMENTAL: 815 case EEH_RESET_HOT: 816 /* Don't report linkDown event */ 817 if (aer) { 818 eeh_ops->read_config(edev, aer + PCI_ERR_UNCOR_MASK, 819 4, &ctrl); 820 ctrl |= PCI_ERR_UNC_SURPDN; 821 eeh_ops->write_config(edev, aer + PCI_ERR_UNCOR_MASK, 822 4, ctrl); 823 } 824 825 eeh_ops->read_config(edev, PCI_BRIDGE_CONTROL, 2, &ctrl); 826 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 827 eeh_ops->write_config(edev, PCI_BRIDGE_CONTROL, 2, ctrl); 828 829 msleep(EEH_PE_RST_HOLD_TIME); 830 break; 831 case EEH_RESET_DEACTIVATE: 832 eeh_ops->read_config(edev, PCI_BRIDGE_CONTROL, 2, &ctrl); 833 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 834 eeh_ops->write_config(edev, PCI_BRIDGE_CONTROL, 2, ctrl); 835 836 msleep(EEH_PE_RST_SETTLE_TIME); 837 838 /* Continue reporting linkDown event */ 839 if (aer) { 840 eeh_ops->read_config(edev, aer + PCI_ERR_UNCOR_MASK, 841 4, &ctrl); 842 ctrl &= ~PCI_ERR_UNC_SURPDN; 843 eeh_ops->write_config(edev, aer + PCI_ERR_UNCOR_MASK, 844 4, ctrl); 845 } 846 847 break; 848 } 849 850 return 0; 851 } 852 853 static int pnv_eeh_bridge_reset(struct pci_dev *pdev, int option) 854 { 855 struct pci_controller *hose = pci_bus_to_host(pdev->bus); 856 struct pnv_phb *phb = hose->private_data; 857 struct device_node *dn = pci_device_to_OF_node(pdev); 858 uint64_t id = PCI_SLOT_ID(phb->opal_id, pci_dev_id(pdev)); 859 uint8_t scope; 860 int64_t rc; 861 862 /* Hot reset to the bus if firmware cannot handle */ 863 if (!dn || !of_get_property(dn, "ibm,reset-by-firmware", NULL)) 864 return __pnv_eeh_bridge_reset(pdev, option); 865 866 pr_debug("%s: FW reset PCI bus %04x:%02x with option %d\n", 867 __func__, pci_domain_nr(pdev->bus), 868 pdev->bus->number, option); 869 870 switch (option) { 871 case EEH_RESET_FUNDAMENTAL: 872 scope = OPAL_RESET_PCI_FUNDAMENTAL; 873 break; 874 case EEH_RESET_HOT: 875 scope = OPAL_RESET_PCI_HOT; 876 break; 877 case EEH_RESET_DEACTIVATE: 878 return 0; 879 default: 880 dev_dbg(&pdev->dev, "%s: Unsupported reset %d\n", 881 __func__, option); 882 return -EINVAL; 883 } 884 885 rc = opal_pci_reset(id, scope, OPAL_ASSERT_RESET); 886 if (rc <= OPAL_SUCCESS) 887 goto out; 888 889 rc = pnv_eeh_poll(id); 890 out: 891 return (rc == OPAL_SUCCESS) ? 0 : -EIO; 892 } 893 894 void pnv_pci_reset_secondary_bus(struct pci_dev *dev) 895 { 896 struct pci_controller *hose; 897 898 if (pci_is_root_bus(dev->bus)) { 899 hose = pci_bus_to_host(dev->bus); 900 pnv_eeh_root_reset(hose, EEH_RESET_HOT); 901 pnv_eeh_root_reset(hose, EEH_RESET_DEACTIVATE); 902 } else { 903 pnv_eeh_bridge_reset(dev, EEH_RESET_HOT); 904 pnv_eeh_bridge_reset(dev, EEH_RESET_DEACTIVATE); 905 } 906 } 907 908 static void pnv_eeh_wait_for_pending(struct pci_dn *pdn, const char *type, 909 int pos, u16 mask) 910 { 911 struct eeh_dev *edev = pdn->edev; 912 int i, status = 0; 913 914 /* Wait for Transaction Pending bit to be cleared */ 915 for (i = 0; i < 4; i++) { 916 eeh_ops->read_config(edev, pos, 2, &status); 917 if (!(status & mask)) 918 return; 919 920 msleep((1 << i) * 100); 921 } 922 923 pr_warn("%s: Pending transaction while issuing %sFLR to %04x:%02x:%02x.%01x\n", 924 __func__, type, 925 pdn->phb->global_number, pdn->busno, 926 PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn)); 927 } 928 929 static int pnv_eeh_do_flr(struct pci_dn *pdn, int option) 930 { 931 struct eeh_dev *edev = pdn_to_eeh_dev(pdn); 932 u32 reg = 0; 933 934 if (WARN_ON(!edev->pcie_cap)) 935 return -ENOTTY; 936 937 eeh_ops->read_config(edev, edev->pcie_cap + PCI_EXP_DEVCAP, 4, ®); 938 if (!(reg & PCI_EXP_DEVCAP_FLR)) 939 return -ENOTTY; 940 941 switch (option) { 942 case EEH_RESET_HOT: 943 case EEH_RESET_FUNDAMENTAL: 944 pnv_eeh_wait_for_pending(pdn, "", 945 edev->pcie_cap + PCI_EXP_DEVSTA, 946 PCI_EXP_DEVSTA_TRPND); 947 eeh_ops->read_config(edev, edev->pcie_cap + PCI_EXP_DEVCTL, 948 4, ®); 949 reg |= PCI_EXP_DEVCTL_BCR_FLR; 950 eeh_ops->write_config(edev, edev->pcie_cap + PCI_EXP_DEVCTL, 951 4, reg); 952 msleep(EEH_PE_RST_HOLD_TIME); 953 break; 954 case EEH_RESET_DEACTIVATE: 955 eeh_ops->read_config(edev, edev->pcie_cap + PCI_EXP_DEVCTL, 956 4, ®); 957 reg &= ~PCI_EXP_DEVCTL_BCR_FLR; 958 eeh_ops->write_config(edev, edev->pcie_cap + PCI_EXP_DEVCTL, 959 4, reg); 960 msleep(EEH_PE_RST_SETTLE_TIME); 961 break; 962 } 963 964 return 0; 965 } 966 967 static int pnv_eeh_do_af_flr(struct pci_dn *pdn, int option) 968 { 969 struct eeh_dev *edev = pdn_to_eeh_dev(pdn); 970 u32 cap = 0; 971 972 if (WARN_ON(!edev->af_cap)) 973 return -ENOTTY; 974 975 eeh_ops->read_config(edev, edev->af_cap + PCI_AF_CAP, 1, &cap); 976 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 977 return -ENOTTY; 978 979 switch (option) { 980 case EEH_RESET_HOT: 981 case EEH_RESET_FUNDAMENTAL: 982 /* 983 * Wait for Transaction Pending bit to clear. A word-aligned 984 * test is used, so we use the control offset rather than status 985 * and shift the test bit to match. 986 */ 987 pnv_eeh_wait_for_pending(pdn, "AF", 988 edev->af_cap + PCI_AF_CTRL, 989 PCI_AF_STATUS_TP << 8); 990 eeh_ops->write_config(edev, edev->af_cap + PCI_AF_CTRL, 991 1, PCI_AF_CTRL_FLR); 992 msleep(EEH_PE_RST_HOLD_TIME); 993 break; 994 case EEH_RESET_DEACTIVATE: 995 eeh_ops->write_config(edev, edev->af_cap + PCI_AF_CTRL, 1, 0); 996 msleep(EEH_PE_RST_SETTLE_TIME); 997 break; 998 } 999 1000 return 0; 1001 } 1002 1003 static int pnv_eeh_reset_vf_pe(struct eeh_pe *pe, int option) 1004 { 1005 struct eeh_dev *edev; 1006 struct pci_dn *pdn; 1007 int ret; 1008 1009 /* The VF PE should have only one child device */ 1010 edev = list_first_entry_or_null(&pe->edevs, struct eeh_dev, entry); 1011 pdn = eeh_dev_to_pdn(edev); 1012 if (!pdn) 1013 return -ENXIO; 1014 1015 ret = pnv_eeh_do_flr(pdn, option); 1016 if (!ret) 1017 return ret; 1018 1019 return pnv_eeh_do_af_flr(pdn, option); 1020 } 1021 1022 /** 1023 * pnv_eeh_reset - Reset the specified PE 1024 * @pe: EEH PE 1025 * @option: reset option 1026 * 1027 * Do reset on the indicated PE. For PCI bus sensitive PE, 1028 * we need to reset the parent p2p bridge. The PHB has to 1029 * be reinitialized if the p2p bridge is root bridge. For 1030 * PCI device sensitive PE, we will try to reset the device 1031 * through FLR. For now, we don't have OPAL APIs to do HARD 1032 * reset yet, so all reset would be SOFT (HOT) reset. 1033 */ 1034 static int pnv_eeh_reset(struct eeh_pe *pe, int option) 1035 { 1036 struct pci_controller *hose = pe->phb; 1037 struct pnv_phb *phb; 1038 struct pci_bus *bus; 1039 int64_t rc; 1040 1041 /* 1042 * For PHB reset, we always have complete reset. For those PEs whose 1043 * primary bus derived from root complex (root bus) or root port 1044 * (usually bus#1), we apply hot or fundamental reset on the root port. 1045 * For other PEs, we always have hot reset on the PE primary bus. 1046 * 1047 * Here, we have different design to pHyp, which always clear the 1048 * frozen state during PE reset. However, the good idea here from 1049 * benh is to keep frozen state before we get PE reset done completely 1050 * (until BAR restore). With the frozen state, HW drops illegal IO 1051 * or MMIO access, which can incur recursive frozen PE during PE 1052 * reset. The side effect is that EEH core has to clear the frozen 1053 * state explicitly after BAR restore. 1054 */ 1055 if (pe->type & EEH_PE_PHB) 1056 return pnv_eeh_phb_reset(hose, option); 1057 1058 /* 1059 * The frozen PE might be caused by PAPR error injection 1060 * registers, which are expected to be cleared after hitting 1061 * frozen PE as stated in the hardware spec. Unfortunately, 1062 * that's not true on P7IOC. So we have to clear it manually 1063 * to avoid recursive EEH errors during recovery. 1064 */ 1065 phb = hose->private_data; 1066 if (phb->model == PNV_PHB_MODEL_P7IOC && 1067 (option == EEH_RESET_HOT || 1068 option == EEH_RESET_FUNDAMENTAL)) { 1069 rc = opal_pci_reset(phb->opal_id, 1070 OPAL_RESET_PHB_ERROR, 1071 OPAL_ASSERT_RESET); 1072 if (rc != OPAL_SUCCESS) { 1073 pr_warn("%s: Failure %lld clearing error injection registers\n", 1074 __func__, rc); 1075 return -EIO; 1076 } 1077 } 1078 1079 if (pe->type & EEH_PE_VF) 1080 return pnv_eeh_reset_vf_pe(pe, option); 1081 1082 bus = eeh_pe_bus_get(pe); 1083 if (!bus) { 1084 pr_err("%s: Cannot find PCI bus for PHB#%x-PE#%x\n", 1085 __func__, pe->phb->global_number, pe->addr); 1086 return -EIO; 1087 } 1088 1089 if (pci_is_root_bus(bus)) 1090 return pnv_eeh_root_reset(hose, option); 1091 1092 /* 1093 * For hot resets try use the generic PCI error recovery reset 1094 * functions. These correctly handles the case where the secondary 1095 * bus is behind a hotplug slot and it will use the slot provided 1096 * reset methods to prevent spurious hotplug events during the reset. 1097 * 1098 * Fundamental resets need to be handled internally to EEH since the 1099 * PCI core doesn't really have a concept of a fundamental reset, 1100 * mainly because there's no standard way to generate one. Only a 1101 * few devices require an FRESET so it should be fine. 1102 */ 1103 if (option != EEH_RESET_FUNDAMENTAL) { 1104 /* 1105 * NB: Skiboot and pnv_eeh_bridge_reset() also no-op the 1106 * de-assert step. It's like the OPAL reset API was 1107 * poorly designed or something... 1108 */ 1109 if (option == EEH_RESET_DEACTIVATE) 1110 return 0; 1111 1112 rc = pci_bus_error_reset(bus->self); 1113 if (!rc) 1114 return 0; 1115 } 1116 1117 /* otherwise, use the generic bridge reset. this might call into FW */ 1118 if (pci_is_root_bus(bus->parent)) 1119 return pnv_eeh_root_reset(hose, option); 1120 return pnv_eeh_bridge_reset(bus->self, option); 1121 } 1122 1123 /** 1124 * pnv_eeh_get_log - Retrieve error log 1125 * @pe: EEH PE 1126 * @severity: temporary or permanent error log 1127 * @drv_log: driver log to be combined with retrieved error log 1128 * @len: length of driver log 1129 * 1130 * Retrieve the temporary or permanent error from the PE. 1131 */ 1132 static int pnv_eeh_get_log(struct eeh_pe *pe, int severity, 1133 char *drv_log, unsigned long len) 1134 { 1135 if (!eeh_has_flag(EEH_EARLY_DUMP_LOG)) 1136 pnv_pci_dump_phb_diag_data(pe->phb, pe->data); 1137 1138 return 0; 1139 } 1140 1141 /** 1142 * pnv_eeh_configure_bridge - Configure PCI bridges in the indicated PE 1143 * @pe: EEH PE 1144 * 1145 * The function will be called to reconfigure the bridges included 1146 * in the specified PE so that the mulfunctional PE would be recovered 1147 * again. 1148 */ 1149 static int pnv_eeh_configure_bridge(struct eeh_pe *pe) 1150 { 1151 return 0; 1152 } 1153 1154 /** 1155 * pnv_pe_err_inject - Inject specified error to the indicated PE 1156 * @pe: the indicated PE 1157 * @type: error type 1158 * @func: specific error type 1159 * @addr: address 1160 * @mask: address mask 1161 * 1162 * The routine is called to inject specified error, which is 1163 * determined by @type and @func, to the indicated PE for 1164 * testing purpose. 1165 */ 1166 static int pnv_eeh_err_inject(struct eeh_pe *pe, int type, int func, 1167 unsigned long addr, unsigned long mask) 1168 { 1169 struct pci_controller *hose = pe->phb; 1170 struct pnv_phb *phb = hose->private_data; 1171 s64 rc; 1172 1173 if (type != OPAL_ERR_INJECT_TYPE_IOA_BUS_ERR && 1174 type != OPAL_ERR_INJECT_TYPE_IOA_BUS_ERR64) { 1175 pr_warn("%s: Invalid error type %d\n", 1176 __func__, type); 1177 return -ERANGE; 1178 } 1179 1180 if (func < OPAL_ERR_INJECT_FUNC_IOA_LD_MEM_ADDR || 1181 func > OPAL_ERR_INJECT_FUNC_IOA_DMA_WR_TARGET) { 1182 pr_warn("%s: Invalid error function %d\n", 1183 __func__, func); 1184 return -ERANGE; 1185 } 1186 1187 /* Firmware supports error injection ? */ 1188 if (!opal_check_token(OPAL_PCI_ERR_INJECT)) { 1189 pr_warn("%s: Firmware doesn't support error injection\n", 1190 __func__); 1191 return -ENXIO; 1192 } 1193 1194 /* Do error injection */ 1195 rc = opal_pci_err_inject(phb->opal_id, pe->addr, 1196 type, func, addr, mask); 1197 if (rc != OPAL_SUCCESS) { 1198 pr_warn("%s: Failure %lld injecting error " 1199 "%d-%d to PHB#%x-PE#%x\n", 1200 __func__, rc, type, func, 1201 hose->global_number, pe->addr); 1202 return -EIO; 1203 } 1204 1205 return 0; 1206 } 1207 1208 static inline bool pnv_eeh_cfg_blocked(struct pci_dn *pdn) 1209 { 1210 struct eeh_dev *edev = pdn_to_eeh_dev(pdn); 1211 1212 if (!edev || !edev->pe) 1213 return false; 1214 1215 /* 1216 * We will issue FLR or AF FLR to all VFs, which are contained 1217 * in VF PE. It relies on the EEH PCI config accessors. So we 1218 * can't block them during the window. 1219 */ 1220 if (edev->physfn && (edev->pe->state & EEH_PE_RESET)) 1221 return false; 1222 1223 if (edev->pe->state & EEH_PE_CFG_BLOCKED) 1224 return true; 1225 1226 return false; 1227 } 1228 1229 static int pnv_eeh_read_config(struct eeh_dev *edev, 1230 int where, int size, u32 *val) 1231 { 1232 struct pci_dn *pdn = eeh_dev_to_pdn(edev); 1233 1234 if (!pdn) 1235 return PCIBIOS_DEVICE_NOT_FOUND; 1236 1237 if (pnv_eeh_cfg_blocked(pdn)) { 1238 *val = 0xFFFFFFFF; 1239 return PCIBIOS_SET_FAILED; 1240 } 1241 1242 return pnv_pci_cfg_read(pdn, where, size, val); 1243 } 1244 1245 static int pnv_eeh_write_config(struct eeh_dev *edev, 1246 int where, int size, u32 val) 1247 { 1248 struct pci_dn *pdn = eeh_dev_to_pdn(edev); 1249 1250 if (!pdn) 1251 return PCIBIOS_DEVICE_NOT_FOUND; 1252 1253 if (pnv_eeh_cfg_blocked(pdn)) 1254 return PCIBIOS_SET_FAILED; 1255 1256 return pnv_pci_cfg_write(pdn, where, size, val); 1257 } 1258 1259 static void pnv_eeh_dump_hub_diag_common(struct OpalIoP7IOCErrorData *data) 1260 { 1261 /* GEM */ 1262 if (data->gemXfir || data->gemRfir || 1263 data->gemRirqfir || data->gemMask || data->gemRwof) 1264 pr_info(" GEM: %016llx %016llx %016llx %016llx %016llx\n", 1265 be64_to_cpu(data->gemXfir), 1266 be64_to_cpu(data->gemRfir), 1267 be64_to_cpu(data->gemRirqfir), 1268 be64_to_cpu(data->gemMask), 1269 be64_to_cpu(data->gemRwof)); 1270 1271 /* LEM */ 1272 if (data->lemFir || data->lemErrMask || 1273 data->lemAction0 || data->lemAction1 || data->lemWof) 1274 pr_info(" LEM: %016llx %016llx %016llx %016llx %016llx\n", 1275 be64_to_cpu(data->lemFir), 1276 be64_to_cpu(data->lemErrMask), 1277 be64_to_cpu(data->lemAction0), 1278 be64_to_cpu(data->lemAction1), 1279 be64_to_cpu(data->lemWof)); 1280 } 1281 1282 static void pnv_eeh_get_and_dump_hub_diag(struct pci_controller *hose) 1283 { 1284 struct pnv_phb *phb = hose->private_data; 1285 struct OpalIoP7IOCErrorData *data = 1286 (struct OpalIoP7IOCErrorData*)phb->diag_data; 1287 long rc; 1288 1289 rc = opal_pci_get_hub_diag_data(phb->hub_id, data, sizeof(*data)); 1290 if (rc != OPAL_SUCCESS) { 1291 pr_warn("%s: Failed to get HUB#%llx diag-data (%ld)\n", 1292 __func__, phb->hub_id, rc); 1293 return; 1294 } 1295 1296 switch (be16_to_cpu(data->type)) { 1297 case OPAL_P7IOC_DIAG_TYPE_RGC: 1298 pr_info("P7IOC diag-data for RGC\n\n"); 1299 pnv_eeh_dump_hub_diag_common(data); 1300 if (data->rgc.rgcStatus || data->rgc.rgcLdcp) 1301 pr_info(" RGC: %016llx %016llx\n", 1302 be64_to_cpu(data->rgc.rgcStatus), 1303 be64_to_cpu(data->rgc.rgcLdcp)); 1304 break; 1305 case OPAL_P7IOC_DIAG_TYPE_BI: 1306 pr_info("P7IOC diag-data for BI %s\n\n", 1307 data->bi.biDownbound ? "Downbound" : "Upbound"); 1308 pnv_eeh_dump_hub_diag_common(data); 1309 if (data->bi.biLdcp0 || data->bi.biLdcp1 || 1310 data->bi.biLdcp2 || data->bi.biFenceStatus) 1311 pr_info(" BI: %016llx %016llx %016llx %016llx\n", 1312 be64_to_cpu(data->bi.biLdcp0), 1313 be64_to_cpu(data->bi.biLdcp1), 1314 be64_to_cpu(data->bi.biLdcp2), 1315 be64_to_cpu(data->bi.biFenceStatus)); 1316 break; 1317 case OPAL_P7IOC_DIAG_TYPE_CI: 1318 pr_info("P7IOC diag-data for CI Port %d\n\n", 1319 data->ci.ciPort); 1320 pnv_eeh_dump_hub_diag_common(data); 1321 if (data->ci.ciPortStatus || data->ci.ciPortLdcp) 1322 pr_info(" CI: %016llx %016llx\n", 1323 be64_to_cpu(data->ci.ciPortStatus), 1324 be64_to_cpu(data->ci.ciPortLdcp)); 1325 break; 1326 case OPAL_P7IOC_DIAG_TYPE_MISC: 1327 pr_info("P7IOC diag-data for MISC\n\n"); 1328 pnv_eeh_dump_hub_diag_common(data); 1329 break; 1330 case OPAL_P7IOC_DIAG_TYPE_I2C: 1331 pr_info("P7IOC diag-data for I2C\n\n"); 1332 pnv_eeh_dump_hub_diag_common(data); 1333 break; 1334 default: 1335 pr_warn("%s: Invalid type of HUB#%llx diag-data (%d)\n", 1336 __func__, phb->hub_id, data->type); 1337 } 1338 } 1339 1340 static int pnv_eeh_get_pe(struct pci_controller *hose, 1341 u16 pe_no, struct eeh_pe **pe) 1342 { 1343 struct pnv_phb *phb = hose->private_data; 1344 struct pnv_ioda_pe *pnv_pe; 1345 struct eeh_pe *dev_pe; 1346 1347 /* 1348 * If PHB supports compound PE, to fetch 1349 * the master PE because slave PE is invisible 1350 * to EEH core. 1351 */ 1352 pnv_pe = &phb->ioda.pe_array[pe_no]; 1353 if (pnv_pe->flags & PNV_IODA_PE_SLAVE) { 1354 pnv_pe = pnv_pe->master; 1355 WARN_ON(!pnv_pe || 1356 !(pnv_pe->flags & PNV_IODA_PE_MASTER)); 1357 pe_no = pnv_pe->pe_number; 1358 } 1359 1360 /* Find the PE according to PE# */ 1361 dev_pe = eeh_pe_get(hose, pe_no); 1362 if (!dev_pe) 1363 return -EEXIST; 1364 1365 /* Freeze the (compound) PE */ 1366 *pe = dev_pe; 1367 if (!(dev_pe->state & EEH_PE_ISOLATED)) 1368 phb->freeze_pe(phb, pe_no); 1369 1370 /* 1371 * At this point, we're sure the (compound) PE should 1372 * have been frozen. However, we still need poke until 1373 * hitting the frozen PE on top level. 1374 */ 1375 dev_pe = dev_pe->parent; 1376 while (dev_pe && !(dev_pe->type & EEH_PE_PHB)) { 1377 int ret; 1378 ret = eeh_ops->get_state(dev_pe, NULL); 1379 if (ret <= 0 || eeh_state_active(ret)) { 1380 dev_pe = dev_pe->parent; 1381 continue; 1382 } 1383 1384 /* Frozen parent PE */ 1385 *pe = dev_pe; 1386 if (!(dev_pe->state & EEH_PE_ISOLATED)) 1387 phb->freeze_pe(phb, dev_pe->addr); 1388 1389 /* Next one */ 1390 dev_pe = dev_pe->parent; 1391 } 1392 1393 return 0; 1394 } 1395 1396 /** 1397 * pnv_eeh_next_error - Retrieve next EEH error to handle 1398 * @pe: Affected PE 1399 * 1400 * The function is expected to be called by EEH core while it gets 1401 * special EEH event (without binding PE). The function calls to 1402 * OPAL APIs for next error to handle. The informational error is 1403 * handled internally by platform. However, the dead IOC, dead PHB, 1404 * fenced PHB and frozen PE should be handled by EEH core eventually. 1405 */ 1406 static int pnv_eeh_next_error(struct eeh_pe **pe) 1407 { 1408 struct pci_controller *hose; 1409 struct pnv_phb *phb; 1410 struct eeh_pe *phb_pe, *parent_pe; 1411 __be64 frozen_pe_no; 1412 __be16 err_type, severity; 1413 long rc; 1414 int state, ret = EEH_NEXT_ERR_NONE; 1415 1416 /* 1417 * While running here, it's safe to purge the event queue. The 1418 * event should still be masked. 1419 */ 1420 eeh_remove_event(NULL, false); 1421 1422 list_for_each_entry(hose, &hose_list, list_node) { 1423 /* 1424 * If the subordinate PCI buses of the PHB has been 1425 * removed or is exactly under error recovery, we 1426 * needn't take care of it any more. 1427 */ 1428 phb = hose->private_data; 1429 phb_pe = eeh_phb_pe_get(hose); 1430 if (!phb_pe || (phb_pe->state & EEH_PE_ISOLATED)) 1431 continue; 1432 1433 rc = opal_pci_next_error(phb->opal_id, 1434 &frozen_pe_no, &err_type, &severity); 1435 if (rc != OPAL_SUCCESS) { 1436 pr_devel("%s: Invalid return value on " 1437 "PHB#%x (0x%lx) from opal_pci_next_error", 1438 __func__, hose->global_number, rc); 1439 continue; 1440 } 1441 1442 /* If the PHB doesn't have error, stop processing */ 1443 if (be16_to_cpu(err_type) == OPAL_EEH_NO_ERROR || 1444 be16_to_cpu(severity) == OPAL_EEH_SEV_NO_ERROR) { 1445 pr_devel("%s: No error found on PHB#%x\n", 1446 __func__, hose->global_number); 1447 continue; 1448 } 1449 1450 /* 1451 * Processing the error. We're expecting the error with 1452 * highest priority reported upon multiple errors on the 1453 * specific PHB. 1454 */ 1455 pr_devel("%s: Error (%d, %d, %llu) on PHB#%x\n", 1456 __func__, be16_to_cpu(err_type), 1457 be16_to_cpu(severity), be64_to_cpu(frozen_pe_no), 1458 hose->global_number); 1459 switch (be16_to_cpu(err_type)) { 1460 case OPAL_EEH_IOC_ERROR: 1461 if (be16_to_cpu(severity) == OPAL_EEH_SEV_IOC_DEAD) { 1462 pr_err("EEH: dead IOC detected\n"); 1463 ret = EEH_NEXT_ERR_DEAD_IOC; 1464 } else if (be16_to_cpu(severity) == OPAL_EEH_SEV_INF) { 1465 pr_info("EEH: IOC informative error " 1466 "detected\n"); 1467 pnv_eeh_get_and_dump_hub_diag(hose); 1468 ret = EEH_NEXT_ERR_NONE; 1469 } 1470 1471 break; 1472 case OPAL_EEH_PHB_ERROR: 1473 if (be16_to_cpu(severity) == OPAL_EEH_SEV_PHB_DEAD) { 1474 *pe = phb_pe; 1475 pr_err("EEH: dead PHB#%x detected, " 1476 "location: %s\n", 1477 hose->global_number, 1478 eeh_pe_loc_get(phb_pe)); 1479 ret = EEH_NEXT_ERR_DEAD_PHB; 1480 } else if (be16_to_cpu(severity) == 1481 OPAL_EEH_SEV_PHB_FENCED) { 1482 *pe = phb_pe; 1483 pr_err("EEH: Fenced PHB#%x detected, " 1484 "location: %s\n", 1485 hose->global_number, 1486 eeh_pe_loc_get(phb_pe)); 1487 ret = EEH_NEXT_ERR_FENCED_PHB; 1488 } else if (be16_to_cpu(severity) == OPAL_EEH_SEV_INF) { 1489 pr_info("EEH: PHB#%x informative error " 1490 "detected, location: %s\n", 1491 hose->global_number, 1492 eeh_pe_loc_get(phb_pe)); 1493 pnv_eeh_get_phb_diag(phb_pe); 1494 pnv_pci_dump_phb_diag_data(hose, phb_pe->data); 1495 ret = EEH_NEXT_ERR_NONE; 1496 } 1497 1498 break; 1499 case OPAL_EEH_PE_ERROR: 1500 /* 1501 * If we can't find the corresponding PE, we 1502 * just try to unfreeze. 1503 */ 1504 if (pnv_eeh_get_pe(hose, 1505 be64_to_cpu(frozen_pe_no), pe)) { 1506 pr_info("EEH: Clear non-existing PHB#%x-PE#%llx\n", 1507 hose->global_number, be64_to_cpu(frozen_pe_no)); 1508 pr_info("EEH: PHB location: %s\n", 1509 eeh_pe_loc_get(phb_pe)); 1510 1511 /* Dump PHB diag-data */ 1512 rc = opal_pci_get_phb_diag_data2(phb->opal_id, 1513 phb->diag_data, phb->diag_data_size); 1514 if (rc == OPAL_SUCCESS) 1515 pnv_pci_dump_phb_diag_data(hose, 1516 phb->diag_data); 1517 1518 /* Try best to clear it */ 1519 opal_pci_eeh_freeze_clear(phb->opal_id, 1520 be64_to_cpu(frozen_pe_no), 1521 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); 1522 ret = EEH_NEXT_ERR_NONE; 1523 } else if ((*pe)->state & EEH_PE_ISOLATED || 1524 eeh_pe_passed(*pe)) { 1525 ret = EEH_NEXT_ERR_NONE; 1526 } else { 1527 pr_err("EEH: Frozen PE#%x " 1528 "on PHB#%x detected\n", 1529 (*pe)->addr, 1530 (*pe)->phb->global_number); 1531 pr_err("EEH: PE location: %s, " 1532 "PHB location: %s\n", 1533 eeh_pe_loc_get(*pe), 1534 eeh_pe_loc_get(phb_pe)); 1535 ret = EEH_NEXT_ERR_FROZEN_PE; 1536 } 1537 1538 break; 1539 default: 1540 pr_warn("%s: Unexpected error type %d\n", 1541 __func__, be16_to_cpu(err_type)); 1542 } 1543 1544 /* 1545 * EEH core will try recover from fenced PHB or 1546 * frozen PE. In the time for frozen PE, EEH core 1547 * enable IO path for that before collecting logs, 1548 * but it ruins the site. So we have to dump the 1549 * log in advance here. 1550 */ 1551 if ((ret == EEH_NEXT_ERR_FROZEN_PE || 1552 ret == EEH_NEXT_ERR_FENCED_PHB) && 1553 !((*pe)->state & EEH_PE_ISOLATED)) { 1554 eeh_pe_mark_isolated(*pe); 1555 pnv_eeh_get_phb_diag(*pe); 1556 1557 if (eeh_has_flag(EEH_EARLY_DUMP_LOG)) 1558 pnv_pci_dump_phb_diag_data((*pe)->phb, 1559 (*pe)->data); 1560 } 1561 1562 /* 1563 * We probably have the frozen parent PE out there and 1564 * we need have to handle frozen parent PE firstly. 1565 */ 1566 if (ret == EEH_NEXT_ERR_FROZEN_PE) { 1567 parent_pe = (*pe)->parent; 1568 while (parent_pe) { 1569 /* Hit the ceiling ? */ 1570 if (parent_pe->type & EEH_PE_PHB) 1571 break; 1572 1573 /* Frozen parent PE ? */ 1574 state = eeh_ops->get_state(parent_pe, NULL); 1575 if (state > 0 && !eeh_state_active(state)) 1576 *pe = parent_pe; 1577 1578 /* Next parent level */ 1579 parent_pe = parent_pe->parent; 1580 } 1581 1582 /* We possibly migrate to another PE */ 1583 eeh_pe_mark_isolated(*pe); 1584 } 1585 1586 /* 1587 * If we have no errors on the specific PHB or only 1588 * informative error there, we continue poking it. 1589 * Otherwise, we need actions to be taken by upper 1590 * layer. 1591 */ 1592 if (ret > EEH_NEXT_ERR_INF) 1593 break; 1594 } 1595 1596 /* Unmask the event */ 1597 if (ret == EEH_NEXT_ERR_NONE && eeh_enabled()) 1598 enable_irq(eeh_event_irq); 1599 1600 return ret; 1601 } 1602 1603 static int pnv_eeh_restore_config(struct eeh_dev *edev) 1604 { 1605 struct pnv_phb *phb; 1606 s64 ret = 0; 1607 1608 if (!edev) 1609 return -EEXIST; 1610 1611 if (edev->physfn) 1612 return 0; 1613 1614 phb = edev->controller->private_data; 1615 ret = opal_pci_reinit(phb->opal_id, 1616 OPAL_REINIT_PCI_DEV, edev->bdfn); 1617 1618 if (ret) { 1619 pr_warn("%s: Can't reinit PCI dev 0x%x (%lld)\n", 1620 __func__, edev->bdfn, ret); 1621 return -EIO; 1622 } 1623 1624 return ret; 1625 } 1626 1627 static struct eeh_ops pnv_eeh_ops = { 1628 .name = "powernv", 1629 .probe = pnv_eeh_probe, 1630 .set_option = pnv_eeh_set_option, 1631 .get_state = pnv_eeh_get_state, 1632 .reset = pnv_eeh_reset, 1633 .get_log = pnv_eeh_get_log, 1634 .configure_bridge = pnv_eeh_configure_bridge, 1635 .err_inject = pnv_eeh_err_inject, 1636 .read_config = pnv_eeh_read_config, 1637 .write_config = pnv_eeh_write_config, 1638 .next_error = pnv_eeh_next_error, 1639 .restore_config = pnv_eeh_restore_config, 1640 .notify_resume = NULL 1641 }; 1642 1643 /** 1644 * eeh_powernv_init - Register platform dependent EEH operations 1645 * 1646 * EEH initialization on powernv platform. This function should be 1647 * called before any EEH related functions. 1648 */ 1649 static int __init eeh_powernv_init(void) 1650 { 1651 int max_diag_size = PNV_PCI_DIAG_BUF_SIZE; 1652 struct pci_controller *hose; 1653 struct pnv_phb *phb; 1654 int ret = -EINVAL; 1655 1656 if (!firmware_has_feature(FW_FEATURE_OPAL)) { 1657 pr_warn("%s: OPAL is required !\n", __func__); 1658 return -EINVAL; 1659 } 1660 1661 /* Set probe mode */ 1662 eeh_add_flag(EEH_PROBE_MODE_DEV); 1663 1664 /* 1665 * P7IOC blocks PCI config access to frozen PE, but PHB3 1666 * doesn't do that. So we have to selectively enable I/O 1667 * prior to collecting error log. 1668 */ 1669 list_for_each_entry(hose, &hose_list, list_node) { 1670 phb = hose->private_data; 1671 1672 if (phb->model == PNV_PHB_MODEL_P7IOC) 1673 eeh_add_flag(EEH_ENABLE_IO_FOR_LOG); 1674 1675 if (phb->diag_data_size > max_diag_size) 1676 max_diag_size = phb->diag_data_size; 1677 1678 break; 1679 } 1680 1681 /* 1682 * eeh_init() allocates the eeh_pe and its aux data buf so the 1683 * size needs to be set before calling eeh_init(). 1684 */ 1685 eeh_set_pe_aux_size(max_diag_size); 1686 ppc_md.pcibios_bus_add_device = pnv_pcibios_bus_add_device; 1687 1688 ret = eeh_init(&pnv_eeh_ops); 1689 if (!ret) 1690 pr_info("EEH: PowerNV platform initialized\n"); 1691 else 1692 pr_info("EEH: Failed to initialize PowerNV platform (%d)\n", ret); 1693 1694 return ret; 1695 } 1696 machine_arch_initcall(powernv, eeh_powernv_init); 1697
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.