~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/powerpc/platforms/powernv/pci-ioda.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-or-later
  2 /*
  3  * Support PCI/PCIe on PowerNV platforms
  4  *
  5  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
  6  */
  7 
  8 #undef DEBUG
  9 
 10 #include <linux/kernel.h>
 11 #include <linux/pci.h>
 12 #include <linux/crash_dump.h>
 13 #include <linux/delay.h>
 14 #include <linux/string.h>
 15 #include <linux/init.h>
 16 #include <linux/memblock.h>
 17 #include <linux/irq.h>
 18 #include <linux/io.h>
 19 #include <linux/msi.h>
 20 #include <linux/iommu.h>
 21 #include <linux/rculist.h>
 22 #include <linux/sizes.h>
 23 #include <linux/debugfs.h>
 24 #include <linux/of_address.h>
 25 #include <linux/of_irq.h>
 26 
 27 #include <asm/sections.h>
 28 #include <asm/io.h>
 29 #include <asm/pci-bridge.h>
 30 #include <asm/machdep.h>
 31 #include <asm/msi_bitmap.h>
 32 #include <asm/ppc-pci.h>
 33 #include <asm/opal.h>
 34 #include <asm/iommu.h>
 35 #include <asm/tce.h>
 36 #include <asm/xics.h>
 37 #include <asm/firmware.h>
 38 #include <asm/pnv-pci.h>
 39 #include <asm/mmzone.h>
 40 #include <asm/xive.h>
 41 
 42 #include <misc/cxl-base.h>
 43 
 44 #include "powernv.h"
 45 #include "pci.h"
 46 #include "../../../../drivers/pci/pci.h"
 47 
 48 /* This array is indexed with enum pnv_phb_type */
 49 static const char * const pnv_phb_names[] = { "IODA2", "NPU_OCAPI" };
 50 
 51 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable);
 52 static void pnv_pci_configure_bus(struct pci_bus *bus);
 53 
 54 void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
 55                             const char *fmt, ...)
 56 {
 57         struct va_format vaf;
 58         va_list args;
 59         char pfix[32];
 60 
 61         va_start(args, fmt);
 62 
 63         vaf.fmt = fmt;
 64         vaf.va = &args;
 65 
 66         if (pe->flags & PNV_IODA_PE_DEV)
 67                 strscpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
 68         else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
 69                 sprintf(pfix, "%04x:%02x     ",
 70                         pci_domain_nr(pe->pbus), pe->pbus->number);
 71 #ifdef CONFIG_PCI_IOV
 72         else if (pe->flags & PNV_IODA_PE_VF)
 73                 sprintf(pfix, "%04x:%02x:%2x.%d",
 74                         pci_domain_nr(pe->parent_dev->bus),
 75                         (pe->rid & 0xff00) >> 8,
 76                         PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
 77 #endif /* CONFIG_PCI_IOV*/
 78 
 79         printk("%spci %s: [PE# %.2x] %pV",
 80                level, pfix, pe->pe_number, &vaf);
 81 
 82         va_end(args);
 83 }
 84 
 85 static bool pnv_iommu_bypass_disabled __read_mostly;
 86 static bool pci_reset_phbs __read_mostly;
 87 
 88 static int __init iommu_setup(char *str)
 89 {
 90         if (!str)
 91                 return -EINVAL;
 92 
 93         while (*str) {
 94                 if (!strncmp(str, "nobypass", 8)) {
 95                         pnv_iommu_bypass_disabled = true;
 96                         pr_info("PowerNV: IOMMU bypass window disabled.\n");
 97                         break;
 98                 }
 99                 str += strcspn(str, ",");
100                 if (*str == ',')
101                         str++;
102         }
103 
104         return 0;
105 }
106 early_param("iommu", iommu_setup);
107 
108 static int __init pci_reset_phbs_setup(char *str)
109 {
110         pci_reset_phbs = true;
111         return 0;
112 }
113 
114 early_param("ppc_pci_reset_phbs", pci_reset_phbs_setup);
115 
116 static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
117 {
118         s64 rc;
119 
120         phb->ioda.pe_array[pe_no].phb = phb;
121         phb->ioda.pe_array[pe_no].pe_number = pe_no;
122         phb->ioda.pe_array[pe_no].dma_setup_done = false;
123 
124         /*
125          * Clear the PE frozen state as it might be put into frozen state
126          * in the last PCI remove path. It's not harmful to do so when the
127          * PE is already in unfrozen state.
128          */
129         rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no,
130                                        OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
131         if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED)
132                 pr_warn("%s: Error %lld unfreezing PHB#%x-PE#%x\n",
133                         __func__, rc, phb->hose->global_number, pe_no);
134 
135         return &phb->ioda.pe_array[pe_no];
136 }
137 
138 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
139 {
140         if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
141                 pr_warn("%s: Invalid PE %x on PHB#%x\n",
142                         __func__, pe_no, phb->hose->global_number);
143                 return;
144         }
145 
146         mutex_lock(&phb->ioda.pe_alloc_mutex);
147         if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
148                 pr_debug("%s: PE %x was reserved on PHB#%x\n",
149                          __func__, pe_no, phb->hose->global_number);
150         mutex_unlock(&phb->ioda.pe_alloc_mutex);
151 
152         pnv_ioda_init_pe(phb, pe_no);
153 }
154 
155 struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb, int count)
156 {
157         struct pnv_ioda_pe *ret = NULL;
158         int run = 0, pe, i;
159 
160         mutex_lock(&phb->ioda.pe_alloc_mutex);
161 
162         /* scan backwards for a run of @count cleared bits */
163         for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) {
164                 if (test_bit(pe, phb->ioda.pe_alloc)) {
165                         run = 0;
166                         continue;
167                 }
168 
169                 run++;
170                 if (run == count)
171                         break;
172         }
173         if (run != count)
174                 goto out;
175 
176         for (i = pe; i < pe + count; i++) {
177                 set_bit(i, phb->ioda.pe_alloc);
178                 pnv_ioda_init_pe(phb, i);
179         }
180         ret = &phb->ioda.pe_array[pe];
181 
182 out:
183         mutex_unlock(&phb->ioda.pe_alloc_mutex);
184         return ret;
185 }
186 
187 void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
188 {
189         struct pnv_phb *phb = pe->phb;
190         unsigned int pe_num = pe->pe_number;
191 
192         WARN_ON(pe->pdev);
193         memset(pe, 0, sizeof(struct pnv_ioda_pe));
194 
195         mutex_lock(&phb->ioda.pe_alloc_mutex);
196         clear_bit(pe_num, phb->ioda.pe_alloc);
197         mutex_unlock(&phb->ioda.pe_alloc_mutex);
198 }
199 
200 /* The default M64 BAR is shared by all PEs */
201 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
202 {
203         const char *desc;
204         struct resource *r;
205         s64 rc;
206 
207         /* Configure the default M64 BAR */
208         rc = opal_pci_set_phb_mem_window(phb->opal_id,
209                                          OPAL_M64_WINDOW_TYPE,
210                                          phb->ioda.m64_bar_idx,
211                                          phb->ioda.m64_base,
212                                          0, /* unused */
213                                          phb->ioda.m64_size);
214         if (rc != OPAL_SUCCESS) {
215                 desc = "configuring";
216                 goto fail;
217         }
218 
219         /* Enable the default M64 BAR */
220         rc = opal_pci_phb_mmio_enable(phb->opal_id,
221                                       OPAL_M64_WINDOW_TYPE,
222                                       phb->ioda.m64_bar_idx,
223                                       OPAL_ENABLE_M64_SPLIT);
224         if (rc != OPAL_SUCCESS) {
225                 desc = "enabling";
226                 goto fail;
227         }
228 
229         /*
230          * Exclude the segments for reserved and root bus PE, which
231          * are first or last two PEs.
232          */
233         r = &phb->hose->mem_resources[1];
234         if (phb->ioda.reserved_pe_idx == 0)
235                 r->start += (2 * phb->ioda.m64_segsize);
236         else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
237                 r->end -= (2 * phb->ioda.m64_segsize);
238         else
239                 pr_warn("  Cannot strip M64 segment for reserved PE#%x\n",
240                         phb->ioda.reserved_pe_idx);
241 
242         return 0;
243 
244 fail:
245         pr_warn("  Failure %lld %s M64 BAR#%d\n",
246                 rc, desc, phb->ioda.m64_bar_idx);
247         opal_pci_phb_mmio_enable(phb->opal_id,
248                                  OPAL_M64_WINDOW_TYPE,
249                                  phb->ioda.m64_bar_idx,
250                                  OPAL_DISABLE_M64);
251         return -EIO;
252 }
253 
254 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
255                                          unsigned long *pe_bitmap)
256 {
257         struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
258         struct resource *r;
259         resource_size_t base, sgsz, start, end;
260         int segno, i;
261 
262         base = phb->ioda.m64_base;
263         sgsz = phb->ioda.m64_segsize;
264         for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
265                 r = &pdev->resource[i];
266                 if (!r->parent || !pnv_pci_is_m64(phb, r))
267                         continue;
268 
269                 start = ALIGN_DOWN(r->start - base, sgsz);
270                 end = ALIGN(r->end - base, sgsz);
271                 for (segno = start / sgsz; segno < end / sgsz; segno++) {
272                         if (pe_bitmap)
273                                 set_bit(segno, pe_bitmap);
274                         else
275                                 pnv_ioda_reserve_pe(phb, segno);
276                 }
277         }
278 }
279 
280 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
281                                     unsigned long *pe_bitmap,
282                                     bool all)
283 {
284         struct pci_dev *pdev;
285 
286         list_for_each_entry(pdev, &bus->devices, bus_list) {
287                 pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
288 
289                 if (all && pdev->subordinate)
290                         pnv_ioda_reserve_m64_pe(pdev->subordinate,
291                                                 pe_bitmap, all);
292         }
293 }
294 
295 static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
296 {
297         struct pnv_phb *phb = pci_bus_to_pnvhb(bus);
298         struct pnv_ioda_pe *master_pe, *pe;
299         unsigned long size, *pe_alloc;
300         int i;
301 
302         /* Root bus shouldn't use M64 */
303         if (pci_is_root_bus(bus))
304                 return NULL;
305 
306         /* Allocate bitmap */
307         size = ALIGN(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
308         pe_alloc = kzalloc(size, GFP_KERNEL);
309         if (!pe_alloc) {
310                 pr_warn("%s: Out of memory !\n",
311                         __func__);
312                 return NULL;
313         }
314 
315         /* Figure out reserved PE numbers by the PE */
316         pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
317 
318         /*
319          * the current bus might not own M64 window and that's all
320          * contributed by its child buses. For the case, we needn't
321          * pick M64 dependent PE#.
322          */
323         if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
324                 kfree(pe_alloc);
325                 return NULL;
326         }
327 
328         /*
329          * Figure out the master PE and put all slave PEs to master
330          * PE's list to form compound PE.
331          */
332         master_pe = NULL;
333         i = -1;
334         while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
335                 phb->ioda.total_pe_num) {
336                 pe = &phb->ioda.pe_array[i];
337 
338                 phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
339                 if (!master_pe) {
340                         pe->flags |= PNV_IODA_PE_MASTER;
341                         INIT_LIST_HEAD(&pe->slaves);
342                         master_pe = pe;
343                 } else {
344                         pe->flags |= PNV_IODA_PE_SLAVE;
345                         pe->master = master_pe;
346                         list_add_tail(&pe->list, &master_pe->slaves);
347                 }
348         }
349 
350         kfree(pe_alloc);
351         return master_pe;
352 }
353 
354 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
355 {
356         struct pci_controller *hose = phb->hose;
357         struct device_node *dn = hose->dn;
358         struct resource *res;
359         u32 m64_range[2], i;
360         const __be32 *r;
361         u64 pci_addr;
362 
363         if (phb->type != PNV_PHB_IODA2) {
364                 pr_info("  Not support M64 window\n");
365                 return;
366         }
367 
368         if (!firmware_has_feature(FW_FEATURE_OPAL)) {
369                 pr_info("  Firmware too old to support M64 window\n");
370                 return;
371         }
372 
373         r = of_get_property(dn, "ibm,opal-m64-window", NULL);
374         if (!r) {
375                 pr_info("  No <ibm,opal-m64-window> on %pOF\n",
376                         dn);
377                 return;
378         }
379 
380         /*
381          * Find the available M64 BAR range and pickup the last one for
382          * covering the whole 64-bits space. We support only one range.
383          */
384         if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges",
385                                        m64_range, 2)) {
386                 /* In absence of the property, assume 0..15 */
387                 m64_range[0] = 0;
388                 m64_range[1] = 16;
389         }
390         /* We only support 64 bits in our allocator */
391         if (m64_range[1] > 63) {
392                 pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n",
393                         __func__, m64_range[1], phb->hose->global_number);
394                 m64_range[1] = 63;
395         }
396         /* Empty range, no m64 */
397         if (m64_range[1] <= m64_range[0]) {
398                 pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n",
399                         __func__, phb->hose->global_number);
400                 return;
401         }
402 
403         /* Configure M64 informations */
404         res = &hose->mem_resources[1];
405         res->name = dn->full_name;
406         res->start = of_translate_address(dn, r + 2);
407         res->end = res->start + of_read_number(r + 4, 2) - 1;
408         res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
409         pci_addr = of_read_number(r, 2);
410         hose->mem_offset[1] = res->start - pci_addr;
411 
412         phb->ioda.m64_size = resource_size(res);
413         phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
414         phb->ioda.m64_base = pci_addr;
415 
416         /* This lines up nicely with the display from processing OF ranges */
417         pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n",
418                 res->start, res->end, pci_addr, m64_range[0],
419                 m64_range[0] + m64_range[1] - 1);
420 
421         /* Mark all M64 used up by default */
422         phb->ioda.m64_bar_alloc = (unsigned long)-1;
423 
424         /* Use last M64 BAR to cover M64 window */
425         m64_range[1]--;
426         phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1];
427 
428         pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx);
429 
430         /* Mark remaining ones free */
431         for (i = m64_range[0]; i < m64_range[1]; i++)
432                 clear_bit(i, &phb->ioda.m64_bar_alloc);
433 
434         /*
435          * Setup init functions for M64 based on IODA version, IODA3 uses
436          * the IODA2 code.
437          */
438         phb->init_m64 = pnv_ioda2_init_m64;
439 }
440 
441 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
442 {
443         struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
444         struct pnv_ioda_pe *slave;
445         s64 rc;
446 
447         /* Fetch master PE */
448         if (pe->flags & PNV_IODA_PE_SLAVE) {
449                 pe = pe->master;
450                 if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
451                         return;
452 
453                 pe_no = pe->pe_number;
454         }
455 
456         /* Freeze master PE */
457         rc = opal_pci_eeh_freeze_set(phb->opal_id,
458                                      pe_no,
459                                      OPAL_EEH_ACTION_SET_FREEZE_ALL);
460         if (rc != OPAL_SUCCESS) {
461                 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
462                         __func__, rc, phb->hose->global_number, pe_no);
463                 return;
464         }
465 
466         /* Freeze slave PEs */
467         if (!(pe->flags & PNV_IODA_PE_MASTER))
468                 return;
469 
470         list_for_each_entry(slave, &pe->slaves, list) {
471                 rc = opal_pci_eeh_freeze_set(phb->opal_id,
472                                              slave->pe_number,
473                                              OPAL_EEH_ACTION_SET_FREEZE_ALL);
474                 if (rc != OPAL_SUCCESS)
475                         pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
476                                 __func__, rc, phb->hose->global_number,
477                                 slave->pe_number);
478         }
479 }
480 
481 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
482 {
483         struct pnv_ioda_pe *pe, *slave;
484         s64 rc;
485 
486         /* Find master PE */
487         pe = &phb->ioda.pe_array[pe_no];
488         if (pe->flags & PNV_IODA_PE_SLAVE) {
489                 pe = pe->master;
490                 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
491                 pe_no = pe->pe_number;
492         }
493 
494         /* Clear frozen state for master PE */
495         rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
496         if (rc != OPAL_SUCCESS) {
497                 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
498                         __func__, rc, opt, phb->hose->global_number, pe_no);
499                 return -EIO;
500         }
501 
502         if (!(pe->flags & PNV_IODA_PE_MASTER))
503                 return 0;
504 
505         /* Clear frozen state for slave PEs */
506         list_for_each_entry(slave, &pe->slaves, list) {
507                 rc = opal_pci_eeh_freeze_clear(phb->opal_id,
508                                              slave->pe_number,
509                                              opt);
510                 if (rc != OPAL_SUCCESS) {
511                         pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
512                                 __func__, rc, opt, phb->hose->global_number,
513                                 slave->pe_number);
514                         return -EIO;
515                 }
516         }
517 
518         return 0;
519 }
520 
521 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
522 {
523         struct pnv_ioda_pe *slave, *pe;
524         u8 fstate = 0, state;
525         __be16 pcierr = 0;
526         s64 rc;
527 
528         /* Sanity check on PE number */
529         if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
530                 return OPAL_EEH_STOPPED_PERM_UNAVAIL;
531 
532         /*
533          * Fetch the master PE and the PE instance might be
534          * not initialized yet.
535          */
536         pe = &phb->ioda.pe_array[pe_no];
537         if (pe->flags & PNV_IODA_PE_SLAVE) {
538                 pe = pe->master;
539                 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
540                 pe_no = pe->pe_number;
541         }
542 
543         /* Check the master PE */
544         rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
545                                         &state, &pcierr, NULL);
546         if (rc != OPAL_SUCCESS) {
547                 pr_warn("%s: Failure %lld getting "
548                         "PHB#%x-PE#%x state\n",
549                         __func__, rc,
550                         phb->hose->global_number, pe_no);
551                 return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
552         }
553 
554         /* Check the slave PE */
555         if (!(pe->flags & PNV_IODA_PE_MASTER))
556                 return state;
557 
558         list_for_each_entry(slave, &pe->slaves, list) {
559                 rc = opal_pci_eeh_freeze_status(phb->opal_id,
560                                                 slave->pe_number,
561                                                 &fstate,
562                                                 &pcierr,
563                                                 NULL);
564                 if (rc != OPAL_SUCCESS) {
565                         pr_warn("%s: Failure %lld getting "
566                                 "PHB#%x-PE#%x state\n",
567                                 __func__, rc,
568                                 phb->hose->global_number, slave->pe_number);
569                         return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
570                 }
571 
572                 /*
573                  * Override the result based on the ascending
574                  * priority.
575                  */
576                 if (fstate > state)
577                         state = fstate;
578         }
579 
580         return state;
581 }
582 
583 struct pnv_ioda_pe *pnv_pci_bdfn_to_pe(struct pnv_phb *phb, u16 bdfn)
584 {
585         int pe_number = phb->ioda.pe_rmap[bdfn];
586 
587         if (pe_number == IODA_INVALID_PE)
588                 return NULL;
589 
590         return &phb->ioda.pe_array[pe_number];
591 }
592 
593 struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
594 {
595         struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus);
596         struct pci_dn *pdn = pci_get_pdn(dev);
597 
598         if (!pdn)
599                 return NULL;
600         if (pdn->pe_number == IODA_INVALID_PE)
601                 return NULL;
602         return &phb->ioda.pe_array[pdn->pe_number];
603 }
604 
605 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
606                                   struct pnv_ioda_pe *parent,
607                                   struct pnv_ioda_pe *child,
608                                   bool is_add)
609 {
610         const char *desc = is_add ? "adding" : "removing";
611         uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
612                               OPAL_REMOVE_PE_FROM_DOMAIN;
613         struct pnv_ioda_pe *slave;
614         long rc;
615 
616         /* Parent PE affects child PE */
617         rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
618                                 child->pe_number, op);
619         if (rc != OPAL_SUCCESS) {
620                 pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
621                         rc, desc);
622                 return -ENXIO;
623         }
624 
625         if (!(child->flags & PNV_IODA_PE_MASTER))
626                 return 0;
627 
628         /* Compound case: parent PE affects slave PEs */
629         list_for_each_entry(slave, &child->slaves, list) {
630                 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
631                                         slave->pe_number, op);
632                 if (rc != OPAL_SUCCESS) {
633                         pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
634                                 rc, desc);
635                         return -ENXIO;
636                 }
637         }
638 
639         return 0;
640 }
641 
642 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
643                               struct pnv_ioda_pe *pe,
644                               bool is_add)
645 {
646         struct pnv_ioda_pe *slave;
647         struct pci_dev *pdev = NULL;
648         int ret;
649 
650         /*
651          * Clear PE frozen state. If it's master PE, we need
652          * clear slave PE frozen state as well.
653          */
654         if (is_add) {
655                 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
656                                           OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
657                 if (pe->flags & PNV_IODA_PE_MASTER) {
658                         list_for_each_entry(slave, &pe->slaves, list)
659                                 opal_pci_eeh_freeze_clear(phb->opal_id,
660                                                           slave->pe_number,
661                                                           OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
662                 }
663         }
664 
665         /*
666          * Associate PE in PELT. We need add the PE into the
667          * corresponding PELT-V as well. Otherwise, the error
668          * originated from the PE might contribute to other
669          * PEs.
670          */
671         ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
672         if (ret)
673                 return ret;
674 
675         /* For compound PEs, any one affects all of them */
676         if (pe->flags & PNV_IODA_PE_MASTER) {
677                 list_for_each_entry(slave, &pe->slaves, list) {
678                         ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
679                         if (ret)
680                                 return ret;
681                 }
682         }
683 
684         if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
685                 pdev = pe->pbus->self;
686         else if (pe->flags & PNV_IODA_PE_DEV)
687                 pdev = pe->pdev->bus->self;
688 #ifdef CONFIG_PCI_IOV
689         else if (pe->flags & PNV_IODA_PE_VF)
690                 pdev = pe->parent_dev;
691 #endif /* CONFIG_PCI_IOV */
692         while (pdev) {
693                 struct pci_dn *pdn = pci_get_pdn(pdev);
694                 struct pnv_ioda_pe *parent;
695 
696                 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
697                         parent = &phb->ioda.pe_array[pdn->pe_number];
698                         ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
699                         if (ret)
700                                 return ret;
701                 }
702 
703                 pdev = pdev->bus->self;
704         }
705 
706         return 0;
707 }
708 
709 static void pnv_ioda_unset_peltv(struct pnv_phb *phb,
710                                  struct pnv_ioda_pe *pe,
711                                  struct pci_dev *parent)
712 {
713         int64_t rc;
714 
715         while (parent) {
716                 struct pci_dn *pdn = pci_get_pdn(parent);
717 
718                 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
719                         rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
720                                                 pe->pe_number,
721                                                 OPAL_REMOVE_PE_FROM_DOMAIN);
722                         /* XXX What to do in case of error ? */
723                 }
724                 parent = parent->bus->self;
725         }
726 
727         opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
728                                   OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
729 
730         /* Disassociate PE in PELT */
731         rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
732                                 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
733         if (rc)
734                 pe_warn(pe, "OPAL error %lld remove self from PELTV\n", rc);
735 }
736 
737 int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
738 {
739         struct pci_dev *parent;
740         uint8_t bcomp, dcomp, fcomp;
741         int64_t rc;
742         long rid_end, rid;
743 
744         /* Currently, we just deconfigure VF PE. Bus PE will always there.*/
745         if (pe->pbus) {
746                 int count;
747 
748                 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
749                 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
750                 parent = pe->pbus->self;
751                 if (pe->flags & PNV_IODA_PE_BUS_ALL)
752                         count = resource_size(&pe->pbus->busn_res);
753                 else
754                         count = 1;
755 
756                 switch(count) {
757                 case  1: bcomp = OpalPciBusAll;         break;
758                 case  2: bcomp = OpalPciBus7Bits;       break;
759                 case  4: bcomp = OpalPciBus6Bits;       break;
760                 case  8: bcomp = OpalPciBus5Bits;       break;
761                 case 16: bcomp = OpalPciBus4Bits;       break;
762                 case 32: bcomp = OpalPciBus3Bits;       break;
763                 default:
764                         dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
765                                 count);
766                         /* Do an exact match only */
767                         bcomp = OpalPciBusAll;
768                 }
769                 rid_end = pe->rid + (count << 8);
770         } else {
771 #ifdef CONFIG_PCI_IOV
772                 if (pe->flags & PNV_IODA_PE_VF)
773                         parent = pe->parent_dev;
774                 else
775 #endif
776                         parent = pe->pdev->bus->self;
777                 bcomp = OpalPciBusAll;
778                 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
779                 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
780                 rid_end = pe->rid + 1;
781         }
782 
783         /* Clear the reverse map */
784         for (rid = pe->rid; rid < rid_end; rid++)
785                 phb->ioda.pe_rmap[rid] = IODA_INVALID_PE;
786 
787         /*
788          * Release from all parents PELT-V. NPUs don't have a PELTV
789          * table
790          */
791         if (phb->type != PNV_PHB_NPU_OCAPI)
792                 pnv_ioda_unset_peltv(phb, pe, parent);
793 
794         rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
795                              bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
796         if (rc)
797                 pe_err(pe, "OPAL error %lld trying to setup PELT table\n", rc);
798 
799         pe->pbus = NULL;
800         pe->pdev = NULL;
801 #ifdef CONFIG_PCI_IOV
802         pe->parent_dev = NULL;
803 #endif
804 
805         return 0;
806 }
807 
808 int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
809 {
810         uint8_t bcomp, dcomp, fcomp;
811         long rc, rid_end, rid;
812 
813         /* Bus validation ? */
814         if (pe->pbus) {
815                 int count;
816 
817                 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
818                 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
819                 if (pe->flags & PNV_IODA_PE_BUS_ALL)
820                         count = resource_size(&pe->pbus->busn_res);
821                 else
822                         count = 1;
823 
824                 switch(count) {
825                 case  1: bcomp = OpalPciBusAll;         break;
826                 case  2: bcomp = OpalPciBus7Bits;       break;
827                 case  4: bcomp = OpalPciBus6Bits;       break;
828                 case  8: bcomp = OpalPciBus5Bits;       break;
829                 case 16: bcomp = OpalPciBus4Bits;       break;
830                 case 32: bcomp = OpalPciBus3Bits;       break;
831                 default:
832                         dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
833                                 count);
834                         /* Do an exact match only */
835                         bcomp = OpalPciBusAll;
836                 }
837                 rid_end = pe->rid + (count << 8);
838         } else {
839                 bcomp = OpalPciBusAll;
840                 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
841                 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
842                 rid_end = pe->rid + 1;
843         }
844 
845         /*
846          * Associate PE in PELT. We need add the PE into the
847          * corresponding PELT-V as well. Otherwise, the error
848          * originated from the PE might contribute to other
849          * PEs.
850          */
851         rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
852                              bcomp, dcomp, fcomp, OPAL_MAP_PE);
853         if (rc) {
854                 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
855                 return -ENXIO;
856         }
857 
858         /*
859          * Configure PELTV. NPUs don't have a PELTV table so skip
860          * configuration on them.
861          */
862         if (phb->type != PNV_PHB_NPU_OCAPI)
863                 pnv_ioda_set_peltv(phb, pe, true);
864 
865         /* Setup reverse map */
866         for (rid = pe->rid; rid < rid_end; rid++)
867                 phb->ioda.pe_rmap[rid] = pe->pe_number;
868 
869         pe->mve_number = 0;
870 
871         return 0;
872 }
873 
874 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
875 {
876         struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus);
877         struct pci_dn *pdn = pci_get_pdn(dev);
878         struct pnv_ioda_pe *pe;
879 
880         if (!pdn) {
881                 pr_err("%s: Device tree node not associated properly\n",
882                            pci_name(dev));
883                 return NULL;
884         }
885         if (pdn->pe_number != IODA_INVALID_PE)
886                 return NULL;
887 
888         pe = pnv_ioda_alloc_pe(phb, 1);
889         if (!pe) {
890                 pr_warn("%s: Not enough PE# available, disabling device\n",
891                         pci_name(dev));
892                 return NULL;
893         }
894 
895         /* NOTE: We don't get a reference for the pointer in the PE
896          * data structure, both the device and PE structures should be
897          * destroyed at the same time.
898          *
899          * At some point we want to remove the PDN completely anyways
900          */
901         pdn->pe_number = pe->pe_number;
902         pe->flags = PNV_IODA_PE_DEV;
903         pe->pdev = dev;
904         pe->pbus = NULL;
905         pe->mve_number = -1;
906         pe->rid = dev->bus->number << 8 | pdn->devfn;
907         pe->device_count++;
908 
909         pe_info(pe, "Associated device to PE\n");
910 
911         if (pnv_ioda_configure_pe(phb, pe)) {
912                 /* XXX What do we do here ? */
913                 pnv_ioda_free_pe(pe);
914                 pdn->pe_number = IODA_INVALID_PE;
915                 pe->pdev = NULL;
916                 return NULL;
917         }
918 
919         /* Put PE to the list */
920         mutex_lock(&phb->ioda.pe_list_mutex);
921         list_add_tail(&pe->list, &phb->ioda.pe_list);
922         mutex_unlock(&phb->ioda.pe_list_mutex);
923         return pe;
924 }
925 
926 /*
927  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
928  * single PCI bus. Another one that contains the primary PCI bus and its
929  * subordinate PCI devices and buses. The second type of PE is normally
930  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
931  */
932 static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
933 {
934         struct pnv_phb *phb = pci_bus_to_pnvhb(bus);
935         struct pnv_ioda_pe *pe = NULL;
936         unsigned int pe_num;
937 
938         /*
939          * In partial hotplug case, the PE instance might be still alive.
940          * We should reuse it instead of allocating a new one.
941          */
942         pe_num = phb->ioda.pe_rmap[bus->number << 8];
943         if (WARN_ON(pe_num != IODA_INVALID_PE)) {
944                 pe = &phb->ioda.pe_array[pe_num];
945                 return NULL;
946         }
947 
948         /* PE number for root bus should have been reserved */
949         if (pci_is_root_bus(bus))
950                 pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx];
951 
952         /* Check if PE is determined by M64 */
953         if (!pe)
954                 pe = pnv_ioda_pick_m64_pe(bus, all);
955 
956         /* The PE number isn't pinned by M64 */
957         if (!pe)
958                 pe = pnv_ioda_alloc_pe(phb, 1);
959 
960         if (!pe) {
961                 pr_warn("%s: Not enough PE# available for PCI bus %04x:%02x\n",
962                         __func__, pci_domain_nr(bus), bus->number);
963                 return NULL;
964         }
965 
966         pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
967         pe->pbus = bus;
968         pe->pdev = NULL;
969         pe->mve_number = -1;
970         pe->rid = bus->busn_res.start << 8;
971 
972         if (all)
973                 pe_info(pe, "Secondary bus %pad..%pad associated with PE#%x\n",
974                         &bus->busn_res.start, &bus->busn_res.end,
975                         pe->pe_number);
976         else
977                 pe_info(pe, "Secondary bus %pad associated with PE#%x\n",
978                         &bus->busn_res.start, pe->pe_number);
979 
980         if (pnv_ioda_configure_pe(phb, pe)) {
981                 /* XXX What do we do here ? */
982                 pnv_ioda_free_pe(pe);
983                 pe->pbus = NULL;
984                 return NULL;
985         }
986 
987         /* Put PE to the list */
988         list_add_tail(&pe->list, &phb->ioda.pe_list);
989 
990         return pe;
991 }
992 
993 static void pnv_pci_ioda_dma_dev_setup(struct pci_dev *pdev)
994 {
995         struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
996         struct pci_dn *pdn = pci_get_pdn(pdev);
997         struct pnv_ioda_pe *pe;
998 
999         /* Check if the BDFN for this device is associated with a PE yet */
1000         pe = pnv_pci_bdfn_to_pe(phb, pci_dev_id(pdev));
1001         if (!pe) {
1002                 /* VF PEs should be pre-configured in pnv_pci_sriov_enable() */
1003                 if (WARN_ON(pdev->is_virtfn))
1004                         return;
1005 
1006                 pnv_pci_configure_bus(pdev->bus);
1007                 pe = pnv_pci_bdfn_to_pe(phb, pci_dev_id(pdev));
1008                 pci_info(pdev, "Configured PE#%x\n", pe ? pe->pe_number : 0xfffff);
1009 
1010 
1011                 /*
1012                  * If we can't setup the IODA PE something has gone horribly
1013                  * wrong and we can't enable DMA for the device.
1014                  */
1015                 if (WARN_ON(!pe))
1016                         return;
1017         } else {
1018                 pci_info(pdev, "Added to existing PE#%x\n", pe->pe_number);
1019         }
1020 
1021         /*
1022          * We assume that bridges *probably* don't need to do any DMA so we can
1023          * skip allocating a TCE table, etc unless we get a non-bridge device.
1024          */
1025         if (!pe->dma_setup_done && !pci_is_bridge(pdev)) {
1026                 switch (phb->type) {
1027                 case PNV_PHB_IODA2:
1028                         pnv_pci_ioda2_setup_dma_pe(phb, pe);
1029                         break;
1030                 default:
1031                         pr_warn("%s: No DMA for PHB#%x (type %d)\n",
1032                                 __func__, phb->hose->global_number, phb->type);
1033                 }
1034         }
1035 
1036         if (pdn)
1037                 pdn->pe_number = pe->pe_number;
1038         pe->device_count++;
1039 
1040         WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1041         pdev->dev.archdata.dma_offset = pe->tce_bypass_base;
1042         set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1043 
1044         /* PEs with a DMA weight of zero won't have a group */
1045         if (pe->table_group.group)
1046                 iommu_add_device(&pe->table_group, &pdev->dev);
1047 }
1048 
1049 /*
1050  * Reconfigure TVE#0 to be usable as 64-bit DMA space.
1051  *
1052  * The first 4GB of virtual memory for a PE is reserved for 32-bit accesses.
1053  * Devices can only access more than that if bit 59 of the PCI address is set
1054  * by hardware, which indicates TVE#1 should be used instead of TVE#0.
1055  * Many PCI devices are not capable of addressing that many bits, and as a
1056  * result are limited to the 4GB of virtual memory made available to 32-bit
1057  * devices in TVE#0.
1058  *
1059  * In order to work around this, reconfigure TVE#0 to be suitable for 64-bit
1060  * devices by configuring the virtual memory past the first 4GB inaccessible
1061  * by 64-bit DMAs.  This should only be used by devices that want more than
1062  * 4GB, and only on PEs that have no 32-bit devices.
1063  *
1064  * Currently this will only work on PHB3 (POWER8).
1065  */
1066 static int pnv_pci_ioda_dma_64bit_bypass(struct pnv_ioda_pe *pe)
1067 {
1068         u64 window_size, table_size, tce_count, addr;
1069         struct page *table_pages;
1070         u64 tce_order = 28; /* 256MB TCEs */
1071         __be64 *tces;
1072         s64 rc;
1073 
1074         /*
1075          * Window size needs to be a power of two, but needs to account for
1076          * shifting memory by the 4GB offset required to skip 32bit space.
1077          */
1078         window_size = roundup_pow_of_two(memory_hotplug_max() + (1ULL << 32));
1079         tce_count = window_size >> tce_order;
1080         table_size = tce_count << 3;
1081 
1082         if (table_size < PAGE_SIZE)
1083                 table_size = PAGE_SIZE;
1084 
1085         table_pages = alloc_pages_node(pe->phb->hose->node, GFP_KERNEL,
1086                                        get_order(table_size));
1087         if (!table_pages)
1088                 goto err;
1089 
1090         tces = page_address(table_pages);
1091         if (!tces)
1092                 goto err;
1093 
1094         memset(tces, 0, table_size);
1095 
1096         for (addr = 0; addr < memory_hotplug_max(); addr += (1 << tce_order)) {
1097                 tces[(addr + (1ULL << 32)) >> tce_order] =
1098                         cpu_to_be64(addr | TCE_PCI_READ | TCE_PCI_WRITE);
1099         }
1100 
1101         rc = opal_pci_map_pe_dma_window(pe->phb->opal_id,
1102                                         pe->pe_number,
1103                                         /* reconfigure window 0 */
1104                                         (pe->pe_number << 1) + 0,
1105                                         1,
1106                                         __pa(tces),
1107                                         table_size,
1108                                         1 << tce_order);
1109         if (rc == OPAL_SUCCESS) {
1110                 pe_info(pe, "Using 64-bit DMA iommu bypass (through TVE#0)\n");
1111                 return 0;
1112         }
1113 err:
1114         pe_err(pe, "Error configuring 64-bit DMA bypass\n");
1115         return -EIO;
1116 }
1117 
1118 static bool pnv_pci_ioda_iommu_bypass_supported(struct pci_dev *pdev,
1119                 u64 dma_mask)
1120 {
1121         struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
1122         struct pci_dn *pdn = pci_get_pdn(pdev);
1123         struct pnv_ioda_pe *pe;
1124 
1125         if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1126                 return false;
1127 
1128         pe = &phb->ioda.pe_array[pdn->pe_number];
1129         if (pe->tce_bypass_enabled) {
1130                 u64 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1131                 if (dma_mask >= top)
1132                         return true;
1133         }
1134 
1135         /*
1136          * If the device can't set the TCE bypass bit but still wants
1137          * to access 4GB or more, on PHB3 we can reconfigure TVE#0 to
1138          * bypass the 32-bit region and be usable for 64-bit DMAs.
1139          * The device needs to be able to address all of this space.
1140          */
1141         if (dma_mask >> 32 &&
1142             dma_mask > (memory_hotplug_max() + (1ULL << 32)) &&
1143             /* pe->pdev should be set if it's a single device, pe->pbus if not */
1144             (pe->device_count == 1 || !pe->pbus) &&
1145             phb->model == PNV_PHB_MODEL_PHB3) {
1146                 /* Configure the bypass mode */
1147                 s64 rc = pnv_pci_ioda_dma_64bit_bypass(pe);
1148                 if (rc)
1149                         return false;
1150                 /* 4GB offset bypasses 32-bit space */
1151                 pdev->dev.archdata.dma_offset = (1ULL << 32);
1152                 return true;
1153         }
1154 
1155         return false;
1156 }
1157 
1158 static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb)
1159 {
1160         return phb->regs + 0x210;
1161 }
1162 
1163 #ifdef CONFIG_IOMMU_API
1164 /* Common for IODA1 and IODA2 */
1165 static int pnv_ioda_tce_xchg_no_kill(struct iommu_table *tbl, long index,
1166                 unsigned long *hpa, enum dma_data_direction *direction)
1167 {
1168         return pnv_tce_xchg(tbl, index, hpa, direction);
1169 }
1170 #endif
1171 
1172 #define PHB3_TCE_KILL_INVAL_ALL         PPC_BIT(0)
1173 #define PHB3_TCE_KILL_INVAL_PE          PPC_BIT(1)
1174 #define PHB3_TCE_KILL_INVAL_ONE         PPC_BIT(2)
1175 
1176 static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1177 {
1178         /* 01xb - invalidate TCEs that match the specified PE# */
1179         __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb);
1180         unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF);
1181 
1182         mb(); /* Ensure above stores are visible */
1183         __raw_writeq_be(val, invalidate);
1184 }
1185 
1186 static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe,
1187                                         unsigned shift, unsigned long index,
1188                                         unsigned long npages)
1189 {
1190         __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb);
1191         unsigned long start, end, inc;
1192 
1193         /* We'll invalidate DMA address in PE scope */
1194         start = PHB3_TCE_KILL_INVAL_ONE;
1195         start |= (pe->pe_number & 0xFF);
1196         end = start;
1197 
1198         /* Figure out the start, end and step */
1199         start |= (index << shift);
1200         end |= ((index + npages - 1) << shift);
1201         inc = (0x1ull << shift);
1202         mb();
1203 
1204         while (start <= end) {
1205                 __raw_writeq_be(start, invalidate);
1206                 start += inc;
1207         }
1208 }
1209 
1210 static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1211 {
1212         struct pnv_phb *phb = pe->phb;
1213 
1214         if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
1215                 pnv_pci_phb3_tce_invalidate_pe(pe);
1216         else
1217                 opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE,
1218                                   pe->pe_number, 0, 0, 0);
1219 }
1220 
1221 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
1222                 unsigned long index, unsigned long npages)
1223 {
1224         struct iommu_table_group_link *tgl;
1225 
1226         list_for_each_entry_lockless(tgl, &tbl->it_group_list, next) {
1227                 struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1228                                 struct pnv_ioda_pe, table_group);
1229                 struct pnv_phb *phb = pe->phb;
1230                 unsigned int shift = tbl->it_page_shift;
1231 
1232                 if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
1233                         pnv_pci_phb3_tce_invalidate(pe, shift,
1234                                                     index, npages);
1235                 else
1236                         opal_pci_tce_kill(phb->opal_id,
1237                                           OPAL_PCI_TCE_KILL_PAGES,
1238                                           pe->pe_number, 1u << shift,
1239                                           index << shift, npages);
1240         }
1241 }
1242 
1243 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
1244                 long npages, unsigned long uaddr,
1245                 enum dma_data_direction direction,
1246                 unsigned long attrs)
1247 {
1248         int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1249                         attrs);
1250 
1251         if (!ret)
1252                 pnv_pci_ioda2_tce_invalidate(tbl, index, npages);
1253 
1254         return ret;
1255 }
1256 
1257 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
1258                 long npages)
1259 {
1260         pnv_tce_free(tbl, index, npages);
1261 
1262         pnv_pci_ioda2_tce_invalidate(tbl, index, npages);
1263 }
1264 
1265 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
1266         .set = pnv_ioda2_tce_build,
1267 #ifdef CONFIG_IOMMU_API
1268         .xchg_no_kill = pnv_ioda_tce_xchg_no_kill,
1269         .tce_kill = pnv_pci_ioda2_tce_invalidate,
1270         .useraddrptr = pnv_tce_useraddrptr,
1271 #endif
1272         .clear = pnv_ioda2_tce_free,
1273         .get = pnv_tce_get,
1274         .free = pnv_pci_ioda2_table_free_pages,
1275 };
1276 
1277 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
1278                 int num, struct iommu_table *tbl)
1279 {
1280         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1281                         table_group);
1282         struct pnv_phb *phb = pe->phb;
1283         int64_t rc;
1284         const unsigned long size = tbl->it_indirect_levels ?
1285                         tbl->it_level_size : tbl->it_size;
1286         const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
1287         const __u64 win_size = tbl->it_size << tbl->it_page_shift;
1288 
1289         pe_info(pe, "Setting up window#%d %llx..%llx pg=%lx\n",
1290                 num, start_addr, start_addr + win_size - 1,
1291                 IOMMU_PAGE_SIZE(tbl));
1292 
1293         /*
1294          * Map TCE table through TVT. The TVE index is the PE number
1295          * shifted by 1 bit for 32-bits DMA space.
1296          */
1297         rc = opal_pci_map_pe_dma_window(phb->opal_id,
1298                         pe->pe_number,
1299                         (pe->pe_number << 1) + num,
1300                         tbl->it_indirect_levels + 1,
1301                         __pa(tbl->it_base),
1302                         size << 3,
1303                         IOMMU_PAGE_SIZE(tbl));
1304         if (rc) {
1305                 pe_err(pe, "Failed to configure TCE table, err %lld\n", rc);
1306                 return rc;
1307         }
1308 
1309         pnv_pci_link_table_and_group(phb->hose->node, num,
1310                         tbl, &pe->table_group);
1311         pnv_pci_ioda2_tce_invalidate_pe(pe);
1312 
1313         return 0;
1314 }
1315 
1316 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
1317 {
1318         uint16_t window_id = (pe->pe_number << 1 ) + 1;
1319         int64_t rc;
1320 
1321         pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
1322         if (enable) {
1323                 phys_addr_t top = memblock_end_of_DRAM();
1324 
1325                 top = roundup_pow_of_two(top);
1326                 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1327                                                      pe->pe_number,
1328                                                      window_id,
1329                                                      pe->tce_bypass_base,
1330                                                      top);
1331         } else {
1332                 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1333                                                      pe->pe_number,
1334                                                      window_id,
1335                                                      pe->tce_bypass_base,
1336                                                      0);
1337         }
1338         if (rc)
1339                 pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
1340         else
1341                 pe->tce_bypass_enabled = enable;
1342 }
1343 
1344 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
1345                 int num, __u32 page_shift, __u64 window_size, __u32 levels,
1346                 bool alloc_userspace_copy, struct iommu_table **ptbl)
1347 {
1348         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1349                         table_group);
1350         int nid = pe->phb->hose->node;
1351         __u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
1352         long ret;
1353         struct iommu_table *tbl;
1354 
1355         tbl = pnv_pci_table_alloc(nid);
1356         if (!tbl)
1357                 return -ENOMEM;
1358 
1359         tbl->it_ops = &pnv_ioda2_iommu_ops;
1360 
1361         ret = pnv_pci_ioda2_table_alloc_pages(nid,
1362                         bus_offset, page_shift, window_size,
1363                         levels, alloc_userspace_copy, tbl);
1364         if (ret) {
1365                 iommu_tce_table_put(tbl);
1366                 return ret;
1367         }
1368 
1369         *ptbl = tbl;
1370 
1371         return 0;
1372 }
1373 
1374 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
1375 {
1376         struct iommu_table *tbl = NULL;
1377         long rc;
1378         unsigned long res_start, res_end;
1379 
1380         /*
1381          * crashkernel= specifies the kdump kernel's maximum memory at
1382          * some offset and there is no guaranteed the result is a power
1383          * of 2, which will cause errors later.
1384          */
1385         const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
1386 
1387         /*
1388          * In memory constrained environments, e.g. kdump kernel, the
1389          * DMA window can be larger than available memory, which will
1390          * cause errors later.
1391          */
1392         const u64 maxblock = 1UL << (PAGE_SHIFT + MAX_PAGE_ORDER);
1393 
1394         /*
1395          * We create the default window as big as we can. The constraint is
1396          * the max order of allocation possible. The TCE table is likely to
1397          * end up being multilevel and with on-demand allocation in place,
1398          * the initial use is not going to be huge as the default window aims
1399          * to support crippled devices (i.e. not fully 64bit DMAble) only.
1400          */
1401         /* iommu_table::it_map uses 1 bit per IOMMU page, hence 8 */
1402         const u64 window_size = min((maxblock * 8) << PAGE_SHIFT, max_memory);
1403         /* Each TCE level cannot exceed maxblock so go multilevel if needed */
1404         unsigned long tces_order = ilog2(window_size >> PAGE_SHIFT);
1405         unsigned long tcelevel_order = ilog2(maxblock >> 3);
1406         unsigned int levels = tces_order / tcelevel_order;
1407 
1408         if (tces_order % tcelevel_order)
1409                 levels += 1;
1410         /*
1411          * We try to stick to default levels (which is >1 at the moment) in
1412          * order to save memory by relying on on-demain TCE level allocation.
1413          */
1414         levels = max_t(unsigned int, levels, POWERNV_IOMMU_DEFAULT_LEVELS);
1415 
1416         rc = pnv_pci_ioda2_create_table(&pe->table_group, 0, PAGE_SHIFT,
1417                         window_size, levels, false, &tbl);
1418         if (rc) {
1419                 pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
1420                                 rc);
1421                 return rc;
1422         }
1423 
1424         /* We use top part of 32bit space for MMIO so exclude it from DMA */
1425         res_start = 0;
1426         res_end = 0;
1427         if (window_size > pe->phb->ioda.m32_pci_base) {
1428                 res_start = pe->phb->ioda.m32_pci_base >> tbl->it_page_shift;
1429                 res_end = min(window_size, SZ_4G) >> tbl->it_page_shift;
1430         }
1431 
1432         tbl->it_index = (pe->phb->hose->global_number << 16) | pe->pe_number;
1433         if (iommu_init_table(tbl, pe->phb->hose->node, res_start, res_end))
1434                 rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
1435         else
1436                 rc = -ENOMEM;
1437         if (rc) {
1438                 pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n", rc);
1439                 iommu_tce_table_put(tbl);
1440                 tbl = NULL; /* This clears iommu_table_base below */
1441         }
1442         if (!pnv_iommu_bypass_disabled)
1443                 pnv_pci_ioda2_set_bypass(pe, true);
1444 
1445         /*
1446          * Set table base for the case of IOMMU DMA use. Usually this is done
1447          * from dma_dev_setup() which is not called when a device is returned
1448          * from VFIO so do it here.
1449          */
1450         if (pe->pdev)
1451                 set_iommu_table_base(&pe->pdev->dev, tbl);
1452 
1453         return 0;
1454 }
1455 
1456 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1457                 int num)
1458 {
1459         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1460                         table_group);
1461         struct pnv_phb *phb = pe->phb;
1462         long ret;
1463 
1464         pe_info(pe, "Removing DMA window #%d\n", num);
1465 
1466         ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
1467                         (pe->pe_number << 1) + num,
1468                         0/* levels */, 0/* table address */,
1469                         0/* table size */, 0/* page size */);
1470         if (ret)
1471                 pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
1472         else
1473                 pnv_pci_ioda2_tce_invalidate_pe(pe);
1474 
1475         pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
1476 
1477         return ret;
1478 }
1479 
1480 #ifdef CONFIG_IOMMU_API
1481 unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
1482                 __u64 window_size, __u32 levels)
1483 {
1484         unsigned long bytes = 0;
1485         const unsigned window_shift = ilog2(window_size);
1486         unsigned entries_shift = window_shift - page_shift;
1487         unsigned table_shift = entries_shift + 3;
1488         unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
1489         unsigned long direct_table_size;
1490 
1491         if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
1492                         !is_power_of_2(window_size))
1493                 return 0;
1494 
1495         /* Calculate a direct table size from window_size and levels */
1496         entries_shift = (entries_shift + levels - 1) / levels;
1497         table_shift = entries_shift + 3;
1498         table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
1499         direct_table_size =  1UL << table_shift;
1500 
1501         for ( ; levels; --levels) {
1502                 bytes += ALIGN(tce_table_size, direct_table_size);
1503 
1504                 tce_table_size /= direct_table_size;
1505                 tce_table_size <<= 3;
1506                 tce_table_size = max_t(unsigned long,
1507                                 tce_table_size, direct_table_size);
1508         }
1509 
1510         return bytes + bytes; /* one for HW table, one for userspace copy */
1511 }
1512 
1513 static long pnv_pci_ioda2_create_table_userspace(
1514                 struct iommu_table_group *table_group,
1515                 int num, __u32 page_shift, __u64 window_size, __u32 levels,
1516                 struct iommu_table **ptbl)
1517 {
1518         long ret = pnv_pci_ioda2_create_table(table_group,
1519                         num, page_shift, window_size, levels, true, ptbl);
1520 
1521         if (!ret)
1522                 (*ptbl)->it_allocated_size = pnv_pci_ioda2_get_table_size(
1523                                 page_shift, window_size, levels);
1524         return ret;
1525 }
1526 
1527 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe, struct pci_bus *bus)
1528 {
1529         struct pci_dev *dev;
1530 
1531         list_for_each_entry(dev, &bus->devices, bus_list) {
1532                 set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1533                 dev->dev.archdata.dma_offset = pe->tce_bypass_base;
1534 
1535                 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1536                         pnv_ioda_setup_bus_dma(pe, dev->subordinate);
1537         }
1538 }
1539 
1540 static long pnv_ioda2_take_ownership(struct iommu_table_group *table_group,
1541                                      struct device *dev __maybe_unused)
1542 {
1543         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1544                                                 table_group);
1545         /* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
1546         struct iommu_table *tbl = pe->table_group.tables[0];
1547 
1548         /*
1549          * iommu_ops transfers the ownership per a device and we mode
1550          * the group ownership with the first device in the group.
1551          */
1552         if (!tbl)
1553                 return 0;
1554 
1555         pnv_pci_ioda2_set_bypass(pe, false);
1556         pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1557         if (pe->pbus)
1558                 pnv_ioda_setup_bus_dma(pe, pe->pbus);
1559         else if (pe->pdev)
1560                 set_iommu_table_base(&pe->pdev->dev, NULL);
1561         iommu_tce_table_put(tbl);
1562 
1563         return 0;
1564 }
1565 
1566 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group,
1567                                         struct device *dev __maybe_unused)
1568 {
1569         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1570                                                 table_group);
1571 
1572         /* See the comment about iommu_ops above */
1573         if (pe->table_group.tables[0])
1574                 return;
1575         pnv_pci_ioda2_setup_default_config(pe);
1576         if (pe->pbus)
1577                 pnv_ioda_setup_bus_dma(pe, pe->pbus);
1578 }
1579 
1580 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
1581         .get_table_size = pnv_pci_ioda2_get_table_size,
1582         .create_table = pnv_pci_ioda2_create_table_userspace,
1583         .set_window = pnv_pci_ioda2_set_window,
1584         .unset_window = pnv_pci_ioda2_unset_window,
1585         .take_ownership = pnv_ioda2_take_ownership,
1586         .release_ownership = pnv_ioda2_release_ownership,
1587 };
1588 #endif
1589 
1590 void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1591                                 struct pnv_ioda_pe *pe)
1592 {
1593         int64_t rc;
1594 
1595         /* TVE #1 is selected by PCI address bit 59 */
1596         pe->tce_bypass_base = 1ull << 59;
1597 
1598         /* The PE will reserve all possible 32-bits space */
1599         pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
1600                 phb->ioda.m32_pci_base);
1601 
1602         /* Setup linux iommu table */
1603         pe->table_group.tce32_start = 0;
1604         pe->table_group.tce32_size = phb->ioda.m32_pci_base;
1605         pe->table_group.max_dynamic_windows_supported =
1606                         IOMMU_TABLE_GROUP_MAX_TABLES;
1607         pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
1608         pe->table_group.pgsizes = pnv_ioda_parse_tce_sizes(phb);
1609 
1610         rc = pnv_pci_ioda2_setup_default_config(pe);
1611         if (rc)
1612                 return;
1613 
1614 #ifdef CONFIG_IOMMU_API
1615         pe->table_group.ops = &pnv_pci_ioda2_ops;
1616         iommu_register_group(&pe->table_group, phb->hose->global_number,
1617                              pe->pe_number);
1618 #endif
1619         pe->dma_setup_done = true;
1620 }
1621 
1622 /*
1623  * Called from KVM in real mode to EOI passthru interrupts. The ICP
1624  * EOI is handled directly in KVM in kvmppc_deliver_irq_passthru().
1625  *
1626  * The IRQ data is mapped in the PCI-MSI domain and the EOI OPAL call
1627  * needs an HW IRQ number mapped in the XICS IRQ domain. The HW IRQ
1628  * numbers of the in-the-middle MSI domain are vector numbers and it's
1629  * good enough for OPAL. Use that.
1630  */
1631 int64_t pnv_opal_pci_msi_eoi(struct irq_data *d)
1632 {
1633         struct pci_controller *hose = irq_data_get_irq_chip_data(d->parent_data);
1634         struct pnv_phb *phb = hose->private_data;
1635 
1636         return opal_pci_msi_eoi(phb->opal_id, d->parent_data->hwirq);
1637 }
1638 
1639 /*
1640  * The IRQ data is mapped in the XICS domain, with OPAL HW IRQ numbers
1641  */
1642 static void pnv_ioda2_msi_eoi(struct irq_data *d)
1643 {
1644         int64_t rc;
1645         unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
1646         struct pci_controller *hose = irq_data_get_irq_chip_data(d);
1647         struct pnv_phb *phb = hose->private_data;
1648 
1649         rc = opal_pci_msi_eoi(phb->opal_id, hw_irq);
1650         WARN_ON_ONCE(rc);
1651 
1652         icp_native_eoi(d);
1653 }
1654 
1655 /* P8/CXL only */
1656 void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
1657 {
1658         struct irq_data *idata;
1659         struct irq_chip *ichip;
1660 
1661         /* The MSI EOI OPAL call is only needed on PHB3 */
1662         if (phb->model != PNV_PHB_MODEL_PHB3)
1663                 return;
1664 
1665         if (!phb->ioda.irq_chip_init) {
1666                 /*
1667                  * First time we setup an MSI IRQ, we need to setup the
1668                  * corresponding IRQ chip to route correctly.
1669                  */
1670                 idata = irq_get_irq_data(virq);
1671                 ichip = irq_data_get_irq_chip(idata);
1672                 phb->ioda.irq_chip_init = 1;
1673                 phb->ioda.irq_chip = *ichip;
1674                 phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
1675         }
1676         irq_set_chip(virq, &phb->ioda.irq_chip);
1677         irq_set_chip_data(virq, phb->hose);
1678 }
1679 
1680 static struct irq_chip pnv_pci_msi_irq_chip;
1681 
1682 /*
1683  * Returns true iff chip is something that we could call
1684  * pnv_opal_pci_msi_eoi for.
1685  */
1686 bool is_pnv_opal_msi(struct irq_chip *chip)
1687 {
1688         return chip == &pnv_pci_msi_irq_chip;
1689 }
1690 EXPORT_SYMBOL_GPL(is_pnv_opal_msi);
1691 
1692 static int __pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
1693                                     unsigned int xive_num,
1694                                     unsigned int is_64, struct msi_msg *msg)
1695 {
1696         struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
1697         __be32 data;
1698         int rc;
1699 
1700         dev_dbg(&dev->dev, "%s: setup %s-bit MSI for vector #%d\n", __func__,
1701                 is_64 ? "64" : "32", xive_num);
1702 
1703         /* No PE assigned ? bail out ... no MSI for you ! */
1704         if (pe == NULL)
1705                 return -ENXIO;
1706 
1707         /* Check if we have an MVE */
1708         if (pe->mve_number < 0)
1709                 return -ENXIO;
1710 
1711         /* Force 32-bit MSI on some broken devices */
1712         if (dev->no_64bit_msi)
1713                 is_64 = 0;
1714 
1715         /* Assign XIVE to PE */
1716         rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
1717         if (rc) {
1718                 pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
1719                         pci_name(dev), rc, xive_num);
1720                 return -EIO;
1721         }
1722 
1723         if (is_64) {
1724                 __be64 addr64;
1725 
1726                 rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
1727                                      &addr64, &data);
1728                 if (rc) {
1729                         pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
1730                                 pci_name(dev), rc);
1731                         return -EIO;
1732                 }
1733                 msg->address_hi = be64_to_cpu(addr64) >> 32;
1734                 msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
1735         } else {
1736                 __be32 addr32;
1737 
1738                 rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
1739                                      &addr32, &data);
1740                 if (rc) {
1741                         pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
1742                                 pci_name(dev), rc);
1743                         return -EIO;
1744                 }
1745                 msg->address_hi = 0;
1746                 msg->address_lo = be32_to_cpu(addr32);
1747         }
1748         msg->data = be32_to_cpu(data);
1749 
1750         return 0;
1751 }
1752 
1753 /*
1754  * The msi_free() op is called before irq_domain_free_irqs_top() when
1755  * the handler data is still available. Use that to clear the XIVE
1756  * controller.
1757  */
1758 static void pnv_msi_ops_msi_free(struct irq_domain *domain,
1759                                  struct msi_domain_info *info,
1760                                  unsigned int irq)
1761 {
1762         if (xive_enabled())
1763                 xive_irq_free_data(irq);
1764 }
1765 
1766 static struct msi_domain_ops pnv_pci_msi_domain_ops = {
1767         .msi_free       = pnv_msi_ops_msi_free,
1768 };
1769 
1770 static void pnv_msi_shutdown(struct irq_data *d)
1771 {
1772         d = d->parent_data;
1773         if (d->chip->irq_shutdown)
1774                 d->chip->irq_shutdown(d);
1775 }
1776 
1777 static void pnv_msi_mask(struct irq_data *d)
1778 {
1779         pci_msi_mask_irq(d);
1780         irq_chip_mask_parent(d);
1781 }
1782 
1783 static void pnv_msi_unmask(struct irq_data *d)
1784 {
1785         pci_msi_unmask_irq(d);
1786         irq_chip_unmask_parent(d);
1787 }
1788 
1789 static struct irq_chip pnv_pci_msi_irq_chip = {
1790         .name           = "PNV-PCI-MSI",
1791         .irq_shutdown   = pnv_msi_shutdown,
1792         .irq_mask       = pnv_msi_mask,
1793         .irq_unmask     = pnv_msi_unmask,
1794         .irq_eoi        = irq_chip_eoi_parent,
1795 };
1796 
1797 static struct msi_domain_info pnv_msi_domain_info = {
1798         .flags = (MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
1799                   MSI_FLAG_MULTI_PCI_MSI  | MSI_FLAG_PCI_MSIX),
1800         .ops   = &pnv_pci_msi_domain_ops,
1801         .chip  = &pnv_pci_msi_irq_chip,
1802 };
1803 
1804 static void pnv_msi_compose_msg(struct irq_data *d, struct msi_msg *msg)
1805 {
1806         struct msi_desc *entry = irq_data_get_msi_desc(d);
1807         struct pci_dev *pdev = msi_desc_to_pci_dev(entry);
1808         struct pci_controller *hose = irq_data_get_irq_chip_data(d);
1809         struct pnv_phb *phb = hose->private_data;
1810         int rc;
1811 
1812         rc = __pnv_pci_ioda_msi_setup(phb, pdev, d->hwirq,
1813                                       entry->pci.msi_attrib.is_64, msg);
1814         if (rc)
1815                 dev_err(&pdev->dev, "Failed to setup %s-bit MSI #%ld : %d\n",
1816                         entry->pci.msi_attrib.is_64 ? "64" : "32", d->hwirq, rc);
1817 }
1818 
1819 /*
1820  * The IRQ data is mapped in the MSI domain in which HW IRQ numbers
1821  * correspond to vector numbers.
1822  */
1823 static void pnv_msi_eoi(struct irq_data *d)
1824 {
1825         struct pci_controller *hose = irq_data_get_irq_chip_data(d);
1826         struct pnv_phb *phb = hose->private_data;
1827 
1828         if (phb->model == PNV_PHB_MODEL_PHB3) {
1829                 /*
1830                  * The EOI OPAL call takes an OPAL HW IRQ number but
1831                  * since it is translated into a vector number in
1832                  * OPAL, use that directly.
1833                  */
1834                 WARN_ON_ONCE(opal_pci_msi_eoi(phb->opal_id, d->hwirq));
1835         }
1836 
1837         irq_chip_eoi_parent(d);
1838 }
1839 
1840 static struct irq_chip pnv_msi_irq_chip = {
1841         .name                   = "PNV-MSI",
1842         .irq_shutdown           = pnv_msi_shutdown,
1843         .irq_mask               = irq_chip_mask_parent,
1844         .irq_unmask             = irq_chip_unmask_parent,
1845         .irq_eoi                = pnv_msi_eoi,
1846         .irq_set_affinity       = irq_chip_set_affinity_parent,
1847         .irq_compose_msi_msg    = pnv_msi_compose_msg,
1848 };
1849 
1850 static int pnv_irq_parent_domain_alloc(struct irq_domain *domain,
1851                                        unsigned int virq, int hwirq)
1852 {
1853         struct irq_fwspec parent_fwspec;
1854         int ret;
1855 
1856         parent_fwspec.fwnode = domain->parent->fwnode;
1857         parent_fwspec.param_count = 2;
1858         parent_fwspec.param[0] = hwirq;
1859         parent_fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
1860 
1861         ret = irq_domain_alloc_irqs_parent(domain, virq, 1, &parent_fwspec);
1862         if (ret)
1863                 return ret;
1864 
1865         return 0;
1866 }
1867 
1868 static int pnv_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1869                                 unsigned int nr_irqs, void *arg)
1870 {
1871         struct pci_controller *hose = domain->host_data;
1872         struct pnv_phb *phb = hose->private_data;
1873         msi_alloc_info_t *info = arg;
1874         struct pci_dev *pdev = msi_desc_to_pci_dev(info->desc);
1875         int hwirq;
1876         int i, ret;
1877 
1878         hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, nr_irqs);
1879         if (hwirq < 0) {
1880                 dev_warn(&pdev->dev, "failed to find a free MSI\n");
1881                 return -ENOSPC;
1882         }
1883 
1884         dev_dbg(&pdev->dev, "%s bridge %pOF %d/%x #%d\n", __func__,
1885                 hose->dn, virq, hwirq, nr_irqs);
1886 
1887         for (i = 0; i < nr_irqs; i++) {
1888                 ret = pnv_irq_parent_domain_alloc(domain, virq + i,
1889                                                   phb->msi_base + hwirq + i);
1890                 if (ret)
1891                         goto out;
1892 
1893                 irq_domain_set_hwirq_and_chip(domain, virq + i, hwirq + i,
1894                                               &pnv_msi_irq_chip, hose);
1895         }
1896 
1897         return 0;
1898 
1899 out:
1900         irq_domain_free_irqs_parent(domain, virq, i - 1);
1901         msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq, nr_irqs);
1902         return ret;
1903 }
1904 
1905 static void pnv_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1906                                 unsigned int nr_irqs)
1907 {
1908         struct irq_data *d = irq_domain_get_irq_data(domain, virq);
1909         struct pci_controller *hose = irq_data_get_irq_chip_data(d);
1910         struct pnv_phb *phb = hose->private_data;
1911 
1912         pr_debug("%s bridge %pOF %d/%lx #%d\n", __func__, hose->dn,
1913                  virq, d->hwirq, nr_irqs);
1914 
1915         msi_bitmap_free_hwirqs(&phb->msi_bmp, d->hwirq, nr_irqs);
1916         /* XIVE domain is cleared through ->msi_free() */
1917 }
1918 
1919 static const struct irq_domain_ops pnv_irq_domain_ops = {
1920         .alloc  = pnv_irq_domain_alloc,
1921         .free   = pnv_irq_domain_free,
1922 };
1923 
1924 static int __init pnv_msi_allocate_domains(struct pci_controller *hose, unsigned int count)
1925 {
1926         struct pnv_phb *phb = hose->private_data;
1927         struct irq_domain *parent = irq_get_default_host();
1928 
1929         hose->fwnode = irq_domain_alloc_named_id_fwnode("PNV-MSI", phb->opal_id);
1930         if (!hose->fwnode)
1931                 return -ENOMEM;
1932 
1933         hose->dev_domain = irq_domain_create_hierarchy(parent, 0, count,
1934                                                        hose->fwnode,
1935                                                        &pnv_irq_domain_ops, hose);
1936         if (!hose->dev_domain) {
1937                 pr_err("PCI: failed to create IRQ domain bridge %pOF (domain %d)\n",
1938                        hose->dn, hose->global_number);
1939                 irq_domain_free_fwnode(hose->fwnode);
1940                 return -ENOMEM;
1941         }
1942 
1943         hose->msi_domain = pci_msi_create_irq_domain(of_node_to_fwnode(hose->dn),
1944                                                      &pnv_msi_domain_info,
1945                                                      hose->dev_domain);
1946         if (!hose->msi_domain) {
1947                 pr_err("PCI: failed to create MSI IRQ domain bridge %pOF (domain %d)\n",
1948                        hose->dn, hose->global_number);
1949                 irq_domain_free_fwnode(hose->fwnode);
1950                 irq_domain_remove(hose->dev_domain);
1951                 return -ENOMEM;
1952         }
1953 
1954         return 0;
1955 }
1956 
1957 static void __init pnv_pci_init_ioda_msis(struct pnv_phb *phb)
1958 {
1959         unsigned int count;
1960         const __be32 *prop = of_get_property(phb->hose->dn,
1961                                              "ibm,opal-msi-ranges", NULL);
1962         if (!prop) {
1963                 /* BML Fallback */
1964                 prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
1965         }
1966         if (!prop)
1967                 return;
1968 
1969         phb->msi_base = be32_to_cpup(prop);
1970         count = be32_to_cpup(prop + 1);
1971         if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
1972                 pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
1973                        phb->hose->global_number);
1974                 return;
1975         }
1976 
1977         pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
1978                 count, phb->msi_base);
1979 
1980         pnv_msi_allocate_domains(phb->hose, count);
1981 }
1982 
1983 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
1984                                   struct resource *res)
1985 {
1986         struct pnv_phb *phb = pe->phb;
1987         struct pci_bus_region region;
1988         int index;
1989         int64_t rc;
1990 
1991         if (!res || !res->flags || res->start > res->end ||
1992             res->flags & IORESOURCE_UNSET)
1993                 return;
1994 
1995         if (res->flags & IORESOURCE_IO) {
1996                 region.start = res->start - phb->ioda.io_pci_base;
1997                 region.end   = res->end - phb->ioda.io_pci_base;
1998                 index = region.start / phb->ioda.io_segsize;
1999 
2000                 while (index < phb->ioda.total_pe_num &&
2001                        region.start <= region.end) {
2002                         phb->ioda.io_segmap[index] = pe->pe_number;
2003                         rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2004                                 pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
2005                         if (rc != OPAL_SUCCESS) {
2006                                 pr_err("%s: Error %lld mapping IO segment#%d to PE#%x\n",
2007                                        __func__, rc, index, pe->pe_number);
2008                                 break;
2009                         }
2010 
2011                         region.start += phb->ioda.io_segsize;
2012                         index++;
2013                 }
2014         } else if ((res->flags & IORESOURCE_MEM) &&
2015                    !pnv_pci_is_m64(phb, res)) {
2016                 region.start = res->start -
2017                                phb->hose->mem_offset[0] -
2018                                phb->ioda.m32_pci_base;
2019                 region.end   = res->end -
2020                                phb->hose->mem_offset[0] -
2021                                phb->ioda.m32_pci_base;
2022                 index = region.start / phb->ioda.m32_segsize;
2023 
2024                 while (index < phb->ioda.total_pe_num &&
2025                        region.start <= region.end) {
2026                         phb->ioda.m32_segmap[index] = pe->pe_number;
2027                         rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2028                                 pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
2029                         if (rc != OPAL_SUCCESS) {
2030                                 pr_err("%s: Error %lld mapping M32 segment#%d to PE#%x",
2031                                        __func__, rc, index, pe->pe_number);
2032                                 break;
2033                         }
2034 
2035                         region.start += phb->ioda.m32_segsize;
2036                         index++;
2037                 }
2038         }
2039 }
2040 
2041 /*
2042  * This function is supposed to be called on basis of PE from top
2043  * to bottom style. So the I/O or MMIO segment assigned to
2044  * parent PE could be overridden by its child PEs if necessary.
2045  */
2046 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
2047 {
2048         struct pci_dev *pdev;
2049         int i;
2050 
2051         /*
2052          * NOTE: We only care PCI bus based PE for now. For PCI
2053          * device based PE, for example SRIOV sensitive VF should
2054          * be figured out later.
2055          */
2056         BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
2057 
2058         list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
2059                 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2060                         pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);
2061 
2062                 /*
2063                  * If the PE contains all subordinate PCI buses, the
2064                  * windows of the child bridges should be mapped to
2065                  * the PE as well.
2066                  */
2067                 if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
2068                         continue;
2069                 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
2070                         pnv_ioda_setup_pe_res(pe,
2071                                 &pdev->resource[PCI_BRIDGE_RESOURCES + i]);
2072         }
2073 }
2074 
2075 #ifdef CONFIG_DEBUG_FS
2076 static int pnv_pci_diag_data_set(void *data, u64 val)
2077 {
2078         struct pnv_phb *phb = data;
2079         s64 ret;
2080 
2081         /* Retrieve the diag data from firmware */
2082         ret = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag_data,
2083                                           phb->diag_data_size);
2084         if (ret != OPAL_SUCCESS)
2085                 return -EIO;
2086 
2087         /* Print the diag data to the kernel log */
2088         pnv_pci_dump_phb_diag_data(phb->hose, phb->diag_data);
2089         return 0;
2090 }
2091 
2092 DEFINE_DEBUGFS_ATTRIBUTE(pnv_pci_diag_data_fops, NULL, pnv_pci_diag_data_set,
2093                          "%llu\n");
2094 
2095 static int pnv_pci_ioda_pe_dump(void *data, u64 val)
2096 {
2097         struct pnv_phb *phb = data;
2098         int pe_num;
2099 
2100         for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
2101                 struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_num];
2102 
2103                 if (!test_bit(pe_num, phb->ioda.pe_alloc))
2104                         continue;
2105 
2106                 pe_warn(pe, "rid: %04x dev count: %2d flags: %s%s%s%s%s%s\n",
2107                         pe->rid, pe->device_count,
2108                         (pe->flags & PNV_IODA_PE_DEV) ? "dev " : "",
2109                         (pe->flags & PNV_IODA_PE_BUS) ? "bus " : "",
2110                         (pe->flags & PNV_IODA_PE_BUS_ALL) ? "all " : "",
2111                         (pe->flags & PNV_IODA_PE_MASTER) ? "master " : "",
2112                         (pe->flags & PNV_IODA_PE_SLAVE) ? "slave " : "",
2113                         (pe->flags & PNV_IODA_PE_VF) ? "vf " : "");
2114         }
2115 
2116         return 0;
2117 }
2118 
2119 DEFINE_DEBUGFS_ATTRIBUTE(pnv_pci_ioda_pe_dump_fops, NULL,
2120                          pnv_pci_ioda_pe_dump, "%llu\n");
2121 
2122 #endif /* CONFIG_DEBUG_FS */
2123 
2124 static void pnv_pci_ioda_create_dbgfs(void)
2125 {
2126 #ifdef CONFIG_DEBUG_FS
2127         struct pci_controller *hose, *tmp;
2128         struct pnv_phb *phb;
2129         char name[16];
2130 
2131         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2132                 phb = hose->private_data;
2133 
2134                 sprintf(name, "PCI%04x", hose->global_number);
2135                 phb->dbgfs = debugfs_create_dir(name, arch_debugfs_dir);
2136 
2137                 debugfs_create_file_unsafe("dump_diag_regs", 0200, phb->dbgfs,
2138                                            phb, &pnv_pci_diag_data_fops);
2139                 debugfs_create_file_unsafe("dump_ioda_pe_state", 0200, phb->dbgfs,
2140                                            phb, &pnv_pci_ioda_pe_dump_fops);
2141         }
2142 #endif /* CONFIG_DEBUG_FS */
2143 }
2144 
2145 static void pnv_pci_enable_bridge(struct pci_bus *bus)
2146 {
2147         struct pci_dev *dev = bus->self;
2148         struct pci_bus *child;
2149 
2150         /* Empty bus ? bail */
2151         if (list_empty(&bus->devices))
2152                 return;
2153 
2154         /*
2155          * If there's a bridge associated with that bus enable it. This works
2156          * around races in the generic code if the enabling is done during
2157          * parallel probing. This can be removed once those races have been
2158          * fixed.
2159          */
2160         if (dev) {
2161                 int rc = pci_enable_device(dev);
2162                 if (rc)
2163                         pci_err(dev, "Error enabling bridge (%d)\n", rc);
2164                 pci_set_master(dev);
2165         }
2166 
2167         /* Perform the same to child busses */
2168         list_for_each_entry(child, &bus->children, node)
2169                 pnv_pci_enable_bridge(child);
2170 }
2171 
2172 static void pnv_pci_enable_bridges(void)
2173 {
2174         struct pci_controller *hose;
2175 
2176         list_for_each_entry(hose, &hose_list, list_node)
2177                 pnv_pci_enable_bridge(hose->bus);
2178 }
2179 
2180 static void pnv_pci_ioda_fixup(void)
2181 {
2182         pnv_pci_ioda_create_dbgfs();
2183 
2184         pnv_pci_enable_bridges();
2185 
2186 #ifdef CONFIG_EEH
2187         pnv_eeh_post_init();
2188 #endif
2189 }
2190 
2191 /*
2192  * Returns the alignment for I/O or memory windows for P2P
2193  * bridges. That actually depends on how PEs are segmented.
2194  * For now, we return I/O or M32 segment size for PE sensitive
2195  * P2P bridges. Otherwise, the default values (4KiB for I/O,
2196  * 1MiB for memory) will be returned.
2197  *
2198  * The current PCI bus might be put into one PE, which was
2199  * create against the parent PCI bridge. For that case, we
2200  * needn't enlarge the alignment so that we can save some
2201  * resources.
2202  */
2203 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
2204                                                 unsigned long type)
2205 {
2206         struct pnv_phb *phb = pci_bus_to_pnvhb(bus);
2207         int num_pci_bridges = 0;
2208         struct pci_dev *bridge;
2209 
2210         bridge = bus->self;
2211         while (bridge) {
2212                 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
2213                         num_pci_bridges++;
2214                         if (num_pci_bridges >= 2)
2215                                 return 1;
2216                 }
2217 
2218                 bridge = bridge->bus->self;
2219         }
2220 
2221         /*
2222          * We fall back to M32 if M64 isn't supported. We enforce the M64
2223          * alignment for any 64-bit resource, PCIe doesn't care and
2224          * bridges only do 64-bit prefetchable anyway.
2225          */
2226         if (phb->ioda.m64_segsize && pnv_pci_is_m64_flags(type))
2227                 return phb->ioda.m64_segsize;
2228         if (type & IORESOURCE_MEM)
2229                 return phb->ioda.m32_segsize;
2230 
2231         return phb->ioda.io_segsize;
2232 }
2233 
2234 /*
2235  * We are updating root port or the upstream port of the
2236  * bridge behind the root port with PHB's windows in order
2237  * to accommodate the changes on required resources during
2238  * PCI (slot) hotplug, which is connected to either root
2239  * port or the downstream ports of PCIe switch behind the
2240  * root port.
2241  */
2242 static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus,
2243                                            unsigned long type)
2244 {
2245         struct pci_controller *hose = pci_bus_to_host(bus);
2246         struct pnv_phb *phb = hose->private_data;
2247         struct pci_dev *bridge = bus->self;
2248         struct resource *r, *w;
2249         bool msi_region = false;
2250         int i;
2251 
2252         /* Check if we need apply fixup to the bridge's windows */
2253         if (!pci_is_root_bus(bridge->bus) &&
2254             !pci_is_root_bus(bridge->bus->self->bus))
2255                 return;
2256 
2257         /* Fixup the resources */
2258         for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
2259                 r = &bridge->resource[PCI_BRIDGE_RESOURCES + i];
2260                 if (!r->flags || !r->parent)
2261                         continue;
2262 
2263                 w = NULL;
2264                 if (r->flags & type & IORESOURCE_IO)
2265                         w = &hose->io_resource;
2266                 else if (pnv_pci_is_m64(phb, r) &&
2267                          (type & IORESOURCE_PREFETCH) &&
2268                          phb->ioda.m64_segsize)
2269                         w = &hose->mem_resources[1];
2270                 else if (r->flags & type & IORESOURCE_MEM) {
2271                         w = &hose->mem_resources[0];
2272                         msi_region = true;
2273                 }
2274 
2275                 r->start = w->start;
2276                 r->end = w->end;
2277 
2278                 /* The 64KB 32-bits MSI region shouldn't be included in
2279                  * the 32-bits bridge window. Otherwise, we can see strange
2280                  * issues. One of them is EEH error observed on Garrison.
2281                  *
2282                  * Exclude top 1MB region which is the minimal alignment of
2283                  * 32-bits bridge window.
2284                  */
2285                 if (msi_region) {
2286                         r->end += 0x10000;
2287                         r->end -= 0x100000;
2288                 }
2289         }
2290 }
2291 
2292 static void pnv_pci_configure_bus(struct pci_bus *bus)
2293 {
2294         struct pci_dev *bridge = bus->self;
2295         struct pnv_ioda_pe *pe;
2296         bool all = (bridge && pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE);
2297 
2298         dev_info(&bus->dev, "Configuring PE for bus\n");
2299 
2300         /* Don't assign PE to PCI bus, which doesn't have subordinate devices */
2301         if (WARN_ON(list_empty(&bus->devices)))
2302                 return;
2303 
2304         /* Reserve PEs according to used M64 resources */
2305         pnv_ioda_reserve_m64_pe(bus, NULL, all);
2306 
2307         /*
2308          * Assign PE. We might run here because of partial hotplug.
2309          * For the case, we just pick up the existing PE and should
2310          * not allocate resources again.
2311          */
2312         pe = pnv_ioda_setup_bus_PE(bus, all);
2313         if (!pe)
2314                 return;
2315 
2316         pnv_ioda_setup_pe_seg(pe);
2317 }
2318 
2319 static resource_size_t pnv_pci_default_alignment(void)
2320 {
2321         return PAGE_SIZE;
2322 }
2323 
2324 /* Prevent enabling devices for which we couldn't properly
2325  * assign a PE
2326  */
2327 static bool pnv_pci_enable_device_hook(struct pci_dev *dev)
2328 {
2329         struct pci_dn *pdn;
2330 
2331         pdn = pci_get_pdn(dev);
2332         if (!pdn || pdn->pe_number == IODA_INVALID_PE) {
2333                 pci_err(dev, "pci_enable_device() blocked, no PE assigned.\n");
2334                 return false;
2335         }
2336 
2337         return true;
2338 }
2339 
2340 static bool pnv_ocapi_enable_device_hook(struct pci_dev *dev)
2341 {
2342         struct pci_dn *pdn;
2343         struct pnv_ioda_pe *pe;
2344 
2345         pdn = pci_get_pdn(dev);
2346         if (!pdn)
2347                 return false;
2348 
2349         if (pdn->pe_number == IODA_INVALID_PE) {
2350                 pe = pnv_ioda_setup_dev_PE(dev);
2351                 if (!pe)
2352                         return false;
2353         }
2354         return true;
2355 }
2356 
2357 void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe)
2358 {
2359         struct iommu_table *tbl = pe->table_group.tables[0];
2360         int64_t rc;
2361 
2362         if (!pe->dma_setup_done)
2363                 return;
2364 
2365         rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2366         if (rc)
2367                 pe_warn(pe, "OPAL error %lld release DMA window\n", rc);
2368 
2369         pnv_pci_ioda2_set_bypass(pe, false);
2370         if (pe->table_group.group) {
2371                 iommu_group_put(pe->table_group.group);
2372                 WARN_ON(pe->table_group.group);
2373         }
2374 
2375         iommu_tce_table_put(tbl);
2376 }
2377 
2378 static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe,
2379                                  unsigned short win,
2380                                  unsigned int *map)
2381 {
2382         struct pnv_phb *phb = pe->phb;
2383         int idx;
2384         int64_t rc;
2385 
2386         for (idx = 0; idx < phb->ioda.total_pe_num; idx++) {
2387                 if (map[idx] != pe->pe_number)
2388                         continue;
2389 
2390                 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2391                                 phb->ioda.reserved_pe_idx, win, 0, idx);
2392 
2393                 if (rc != OPAL_SUCCESS)
2394                         pe_warn(pe, "Error %lld unmapping (%d) segment#%d\n",
2395                                 rc, win, idx);
2396 
2397                 map[idx] = IODA_INVALID_PE;
2398         }
2399 }
2400 
2401 static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe)
2402 {
2403         struct pnv_phb *phb = pe->phb;
2404 
2405         if (phb->type == PNV_PHB_IODA2) {
2406                 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
2407                                      phb->ioda.m32_segmap);
2408         }
2409 }
2410 
2411 static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe)
2412 {
2413         struct pnv_phb *phb = pe->phb;
2414         struct pnv_ioda_pe *slave, *tmp;
2415 
2416         pe_info(pe, "Releasing PE\n");
2417 
2418         mutex_lock(&phb->ioda.pe_list_mutex);
2419         list_del(&pe->list);
2420         mutex_unlock(&phb->ioda.pe_list_mutex);
2421 
2422         switch (phb->type) {
2423         case PNV_PHB_IODA2:
2424                 pnv_pci_ioda2_release_pe_dma(pe);
2425                 break;
2426         case PNV_PHB_NPU_OCAPI:
2427                 break;
2428         default:
2429                 WARN_ON(1);
2430         }
2431 
2432         pnv_ioda_release_pe_seg(pe);
2433         pnv_ioda_deconfigure_pe(pe->phb, pe);
2434 
2435         /* Release slave PEs in the compound PE */
2436         if (pe->flags & PNV_IODA_PE_MASTER) {
2437                 list_for_each_entry_safe(slave, tmp, &pe->slaves, list) {
2438                         list_del(&slave->list);
2439                         pnv_ioda_free_pe(slave);
2440                 }
2441         }
2442 
2443         /*
2444          * The PE for root bus can be removed because of hotplug in EEH
2445          * recovery for fenced PHB error. We need to mark the PE dead so
2446          * that it can be populated again in PCI hot add path. The PE
2447          * shouldn't be destroyed as it's the global reserved resource.
2448          */
2449         if (phb->ioda.root_pe_idx == pe->pe_number)
2450                 return;
2451 
2452         pnv_ioda_free_pe(pe);
2453 }
2454 
2455 static void pnv_pci_release_device(struct pci_dev *pdev)
2456 {
2457         struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
2458         struct pci_dn *pdn = pci_get_pdn(pdev);
2459         struct pnv_ioda_pe *pe;
2460 
2461         /* The VF PE state is torn down when sriov_disable() is called */
2462         if (pdev->is_virtfn)
2463                 return;
2464 
2465         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
2466                 return;
2467 
2468 #ifdef CONFIG_PCI_IOV
2469         /*
2470          * FIXME: Try move this to sriov_disable(). It's here since we allocate
2471          * the iov state at probe time since we need to fiddle with the IOV
2472          * resources.
2473          */
2474         if (pdev->is_physfn)
2475                 kfree(pdev->dev.archdata.iov_data);
2476 #endif
2477 
2478         /*
2479          * PCI hotplug can happen as part of EEH error recovery. The @pdn
2480          * isn't removed and added afterwards in this scenario. We should
2481          * set the PE number in @pdn to an invalid one. Otherwise, the PE's
2482          * device count is decreased on removing devices while failing to
2483          * be increased on adding devices. It leads to unbalanced PE's device
2484          * count and eventually make normal PCI hotplug path broken.
2485          */
2486         pe = &phb->ioda.pe_array[pdn->pe_number];
2487         pdn->pe_number = IODA_INVALID_PE;
2488 
2489         WARN_ON(--pe->device_count < 0);
2490         if (pe->device_count == 0)
2491                 pnv_ioda_release_pe(pe);
2492 }
2493 
2494 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
2495 {
2496         struct pnv_phb *phb = hose->private_data;
2497 
2498         opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
2499                        OPAL_ASSERT_RESET);
2500 }
2501 
2502 static void pnv_pci_ioda_dma_bus_setup(struct pci_bus *bus)
2503 {
2504         struct pnv_phb *phb = pci_bus_to_pnvhb(bus);
2505         struct pnv_ioda_pe *pe;
2506 
2507         list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2508                 if (!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)))
2509                         continue;
2510 
2511                 if (!pe->pbus)
2512                         continue;
2513 
2514                 if (bus->number == ((pe->rid >> 8) & 0xFF)) {
2515                         pe->pbus = bus;
2516                         break;
2517                 }
2518         }
2519 }
2520 
2521 #ifdef CONFIG_IOMMU_API
2522 static struct iommu_group *pnv_pci_device_group(struct pci_controller *hose,
2523                                                 struct pci_dev *pdev)
2524 {
2525         struct pnv_phb *phb = hose->private_data;
2526         struct pnv_ioda_pe *pe;
2527 
2528         if (WARN_ON(!phb))
2529                 return ERR_PTR(-ENODEV);
2530 
2531         pe = pnv_pci_bdfn_to_pe(phb, pci_dev_id(pdev));
2532         if (!pe)
2533                 return ERR_PTR(-ENODEV);
2534 
2535         if (!pe->table_group.group)
2536                 return ERR_PTR(-ENODEV);
2537 
2538         return iommu_group_ref_get(pe->table_group.group);
2539 }
2540 #endif
2541 
2542 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
2543         .dma_dev_setup          = pnv_pci_ioda_dma_dev_setup,
2544         .dma_bus_setup          = pnv_pci_ioda_dma_bus_setup,
2545         .iommu_bypass_supported = pnv_pci_ioda_iommu_bypass_supported,
2546         .enable_device_hook     = pnv_pci_enable_device_hook,
2547         .release_device         = pnv_pci_release_device,
2548         .window_alignment       = pnv_pci_window_alignment,
2549         .setup_bridge           = pnv_pci_fixup_bridge_resources,
2550         .reset_secondary_bus    = pnv_pci_reset_secondary_bus,
2551         .shutdown               = pnv_pci_ioda_shutdown,
2552 #ifdef CONFIG_IOMMU_API
2553         .device_group           = pnv_pci_device_group,
2554 #endif
2555 };
2556 
2557 static const struct pci_controller_ops pnv_npu_ocapi_ioda_controller_ops = {
2558         .enable_device_hook     = pnv_ocapi_enable_device_hook,
2559         .release_device         = pnv_pci_release_device,
2560         .window_alignment       = pnv_pci_window_alignment,
2561         .reset_secondary_bus    = pnv_pci_reset_secondary_bus,
2562         .shutdown               = pnv_pci_ioda_shutdown,
2563 };
2564 
2565 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
2566                                          u64 hub_id, int ioda_type)
2567 {
2568         struct pci_controller *hose;
2569         struct pnv_phb *phb;
2570         unsigned long size, m64map_off, m32map_off, pemap_off;
2571         struct pnv_ioda_pe *root_pe;
2572         struct resource r;
2573         const __be64 *prop64;
2574         const __be32 *prop32;
2575         int len;
2576         unsigned int segno;
2577         u64 phb_id;
2578         void *aux;
2579         long rc;
2580 
2581         if (!of_device_is_available(np))
2582                 return;
2583 
2584         pr_info("Initializing %s PHB (%pOF)\n", pnv_phb_names[ioda_type], np);
2585 
2586         prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
2587         if (!prop64) {
2588                 pr_err("  Missing \"ibm,opal-phbid\" property !\n");
2589                 return;
2590         }
2591         phb_id = be64_to_cpup(prop64);
2592         pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
2593 
2594         phb = kzalloc(sizeof(*phb), GFP_KERNEL);
2595         if (!phb)
2596                 panic("%s: Failed to allocate %zu bytes\n", __func__,
2597                       sizeof(*phb));
2598 
2599         /* Allocate PCI controller */
2600         phb->hose = hose = pcibios_alloc_controller(np);
2601         if (!phb->hose) {
2602                 pr_err("  Can't allocate PCI controller for %pOF\n",
2603                        np);
2604                 memblock_free(phb, sizeof(struct pnv_phb));
2605                 return;
2606         }
2607 
2608         spin_lock_init(&phb->lock);
2609         prop32 = of_get_property(np, "bus-range", &len);
2610         if (prop32 && len == 8) {
2611                 hose->first_busno = be32_to_cpu(prop32[0]);
2612                 hose->last_busno = be32_to_cpu(prop32[1]);
2613         } else {
2614                 pr_warn("  Broken <bus-range> on %pOF\n", np);
2615                 hose->first_busno = 0;
2616                 hose->last_busno = 0xff;
2617         }
2618         hose->private_data = phb;
2619         phb->hub_id = hub_id;
2620         phb->opal_id = phb_id;
2621         phb->type = ioda_type;
2622         mutex_init(&phb->ioda.pe_alloc_mutex);
2623 
2624         /* Detect specific models for error handling */
2625         if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
2626                 phb->model = PNV_PHB_MODEL_P7IOC;
2627         else if (of_device_is_compatible(np, "ibm,power8-pciex"))
2628                 phb->model = PNV_PHB_MODEL_PHB3;
2629         else
2630                 phb->model = PNV_PHB_MODEL_UNKNOWN;
2631 
2632         /* Initialize diagnostic data buffer */
2633         prop32 = of_get_property(np, "ibm,phb-diag-data-size", NULL);
2634         if (prop32)
2635                 phb->diag_data_size = be32_to_cpup(prop32);
2636         else
2637                 phb->diag_data_size = PNV_PCI_DIAG_BUF_SIZE;
2638 
2639         phb->diag_data = kzalloc(phb->diag_data_size, GFP_KERNEL);
2640         if (!phb->diag_data)
2641                 panic("%s: Failed to allocate %u bytes\n", __func__,
2642                       phb->diag_data_size);
2643 
2644         /* Parse 32-bit and IO ranges (if any) */
2645         pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
2646 
2647         /* Get registers */
2648         if (!of_address_to_resource(np, 0, &r)) {
2649                 phb->regs_phys = r.start;
2650                 phb->regs = ioremap(r.start, resource_size(&r));
2651                 if (phb->regs == NULL)
2652                         pr_err("  Failed to map registers !\n");
2653         }
2654 
2655         /* Initialize more IODA stuff */
2656         phb->ioda.total_pe_num = 1;
2657         prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
2658         if (prop32)
2659                 phb->ioda.total_pe_num = be32_to_cpup(prop32);
2660         prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
2661         if (prop32)
2662                 phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
2663 
2664         /* Invalidate RID to PE# mapping */
2665         for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++)
2666                 phb->ioda.pe_rmap[segno] = IODA_INVALID_PE;
2667 
2668         /* Parse 64-bit MMIO range */
2669         pnv_ioda_parse_m64_window(phb);
2670 
2671         phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
2672         /* FW Has already off top 64k of M32 space (MSI space) */
2673         phb->ioda.m32_size += 0x10000;
2674 
2675         phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
2676         phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
2677         phb->ioda.io_size = hose->pci_io_size;
2678         phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
2679         phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
2680 
2681         /* Allocate aux data & arrays. We don't have IO ports on PHB3 */
2682         size = ALIGN(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8,
2683                         sizeof(unsigned long));
2684         m64map_off = size;
2685         size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
2686         m32map_off = size;
2687         size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
2688         pemap_off = size;
2689         size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
2690         aux = kzalloc(size, GFP_KERNEL);
2691         if (!aux)
2692                 panic("%s: Failed to allocate %lu bytes\n", __func__, size);
2693 
2694         phb->ioda.pe_alloc = aux;
2695         phb->ioda.m64_segmap = aux + m64map_off;
2696         phb->ioda.m32_segmap = aux + m32map_off;
2697         for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
2698                 phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
2699                 phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
2700         }
2701         phb->ioda.pe_array = aux + pemap_off;
2702 
2703         /*
2704          * Choose PE number for root bus, which shouldn't have
2705          * M64 resources consumed by its child devices. To pick
2706          * the PE number adjacent to the reserved one if possible.
2707          */
2708         pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx);
2709         if (phb->ioda.reserved_pe_idx == 0) {
2710                 phb->ioda.root_pe_idx = 1;
2711                 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
2712         } else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) {
2713                 phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1;
2714                 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
2715         } else {
2716                 /* otherwise just allocate one */
2717                 root_pe = pnv_ioda_alloc_pe(phb, 1);
2718                 phb->ioda.root_pe_idx = root_pe->pe_number;
2719         }
2720 
2721         INIT_LIST_HEAD(&phb->ioda.pe_list);
2722         mutex_init(&phb->ioda.pe_list_mutex);
2723 
2724 #if 0 /* We should really do that ... */
2725         rc = opal_pci_set_phb_mem_window(opal->phb_id,
2726                                          window_type,
2727                                          window_num,
2728                                          starting_real_address,
2729                                          starting_pci_address,
2730                                          segment_size);
2731 #endif
2732 
2733         pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
2734                 phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
2735                 phb->ioda.m32_size, phb->ioda.m32_segsize);
2736         if (phb->ioda.m64_size)
2737                 pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
2738                         phb->ioda.m64_size, phb->ioda.m64_segsize);
2739         if (phb->ioda.io_size)
2740                 pr_info("                  IO: 0x%x [segment=0x%x]\n",
2741                         phb->ioda.io_size, phb->ioda.io_segsize);
2742 
2743 
2744         phb->hose->ops = &pnv_pci_ops;
2745         phb->get_pe_state = pnv_ioda_get_pe_state;
2746         phb->freeze_pe = pnv_ioda_freeze_pe;
2747         phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
2748 
2749         /* Setup MSI support */
2750         pnv_pci_init_ioda_msis(phb);
2751 
2752         /*
2753          * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
2754          * to let the PCI core do resource assignment. It's supposed
2755          * that the PCI core will do correct I/O and MMIO alignment
2756          * for the P2P bridge bars so that each PCI bus (excluding
2757          * the child P2P bridges) can form individual PE.
2758          */
2759         ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
2760 
2761         switch (phb->type) {
2762         case PNV_PHB_NPU_OCAPI:
2763                 hose->controller_ops = pnv_npu_ocapi_ioda_controller_ops;
2764                 break;
2765         default:
2766                 hose->controller_ops = pnv_pci_ioda_controller_ops;
2767         }
2768 
2769         ppc_md.pcibios_default_alignment = pnv_pci_default_alignment;
2770 
2771 #ifdef CONFIG_PCI_IOV
2772         ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov;
2773         ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
2774         ppc_md.pcibios_sriov_enable = pnv_pcibios_sriov_enable;
2775         ppc_md.pcibios_sriov_disable = pnv_pcibios_sriov_disable;
2776 #endif
2777 
2778         pci_add_flags(PCI_REASSIGN_ALL_RSRC);
2779 
2780         /* Reset IODA tables to a clean state */
2781         rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
2782         if (rc)
2783                 pr_warn("  OPAL Error %ld performing IODA table reset !\n", rc);
2784 
2785         /*
2786          * If we're running in kdump kernel, the previous kernel never
2787          * shutdown PCI devices correctly. We already got IODA table
2788          * cleaned out. So we have to issue PHB reset to stop all PCI
2789          * transactions from previous kernel. The ppc_pci_reset_phbs
2790          * kernel parameter will force this reset too. Additionally,
2791          * if the IODA reset above failed then use a bigger hammer.
2792          * This can happen if we get a PHB fatal error in very early
2793          * boot.
2794          */
2795         if (is_kdump_kernel() || pci_reset_phbs || rc) {
2796                 pr_info("  Issue PHB reset ...\n");
2797                 pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
2798                 pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
2799         }
2800 
2801         /* Remove M64 resource if we can't configure it successfully */
2802         if (!phb->init_m64 || phb->init_m64(phb))
2803                 hose->mem_resources[1].flags = 0;
2804 
2805         /* create pci_dn's for DT nodes under this PHB */
2806         pci_devs_phb_init_dynamic(hose);
2807 }
2808 
2809 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
2810 {
2811         pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
2812 }
2813 
2814 void __init pnv_pci_init_npu2_opencapi_phb(struct device_node *np)
2815 {
2816         pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_OCAPI);
2817 }
2818 
2819 static void pnv_npu2_opencapi_cfg_size_fixup(struct pci_dev *dev)
2820 {
2821         struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus);
2822 
2823         if (!machine_is(powernv))
2824                 return;
2825 
2826         if (phb->type == PNV_PHB_NPU_OCAPI)
2827                 dev->cfg_size = PCI_CFG_SPACE_EXP_SIZE;
2828 }
2829 DECLARE_PCI_FIXUP_EARLY(PCI_ANY_ID, PCI_ANY_ID, pnv_npu2_opencapi_cfg_size_fixup);
2830 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php