~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/powerpc/platforms/powernv/subcore.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-or-later
  2 /*
  3  * Copyright 2013, Michael (Ellerman|Neuling), IBM Corporation.
  4  */
  5 
  6 #define pr_fmt(fmt)     "powernv: " fmt
  7 
  8 #include <linux/kernel.h>
  9 #include <linux/cpu.h>
 10 #include <linux/cpumask.h>
 11 #include <linux/device.h>
 12 #include <linux/gfp.h>
 13 #include <linux/smp.h>
 14 #include <linux/stop_machine.h>
 15 
 16 #include <asm/cputhreads.h>
 17 #include <asm/cpuidle.h>
 18 #include <asm/kvm_ppc.h>
 19 #include <asm/machdep.h>
 20 #include <asm/opal.h>
 21 #include <asm/smp.h>
 22 
 23 #include <trace/events/ipi.h>
 24 
 25 #include "subcore.h"
 26 #include "powernv.h"
 27 
 28 
 29 /*
 30  * Split/unsplit procedure:
 31  *
 32  * A core can be in one of three states, unsplit, 2-way split, and 4-way split.
 33  *
 34  * The mapping to subcores_per_core is simple:
 35  *
 36  *  State       | subcores_per_core
 37  *  ------------|------------------
 38  *  Unsplit     |        1
 39  *  2-way split |        2
 40  *  4-way split |        4
 41  *
 42  * The core is split along thread boundaries, the mapping between subcores and
 43  * threads is as follows:
 44  *
 45  *  Unsplit:
 46  *          ----------------------------
 47  *  Subcore |            0             |
 48  *          ----------------------------
 49  *  Thread  |  0  1  2  3  4  5  6  7  |
 50  *          ----------------------------
 51  *
 52  *  2-way split:
 53  *          -------------------------------------
 54  *  Subcore |        0        |        1        |
 55  *          -------------------------------------
 56  *  Thread  |  0   1   2   3  |  4   5   6   7  |
 57  *          -------------------------------------
 58  *
 59  *  4-way split:
 60  *          -----------------------------------------
 61  *  Subcore |    0    |    1    |    2    |    3    |
 62  *          -----------------------------------------
 63  *  Thread  |  0   1  |  2   3  |  4   5  |  6   7  |
 64  *          -----------------------------------------
 65  *
 66  *
 67  * Transitions
 68  * -----------
 69  *
 70  * It is not possible to transition between either of the split states, the
 71  * core must first be unsplit. The legal transitions are:
 72  *
 73  *  -----------          ---------------
 74  *  |         |  <---->  | 2-way split |
 75  *  |         |          ---------------
 76  *  | Unsplit |
 77  *  |         |          ---------------
 78  *  |         |  <---->  | 4-way split |
 79  *  -----------          ---------------
 80  *
 81  * Unsplitting
 82  * -----------
 83  *
 84  * Unsplitting is the simpler procedure. It requires thread 0 to request the
 85  * unsplit while all other threads NAP.
 86  *
 87  * Thread 0 clears HID0_POWER8_DYNLPARDIS (Dynamic LPAR Disable). This tells
 88  * the hardware that if all threads except 0 are napping, the hardware should
 89  * unsplit the core.
 90  *
 91  * Non-zero threads are sent to a NAP loop, they don't exit the loop until they
 92  * see the core unsplit.
 93  *
 94  * Core 0 spins waiting for the hardware to see all the other threads napping
 95  * and perform the unsplit.
 96  *
 97  * Once thread 0 sees the unsplit, it IPIs the secondary threads to wake them
 98  * out of NAP. They will then see the core unsplit and exit the NAP loop.
 99  *
100  * Splitting
101  * ---------
102  *
103  * The basic splitting procedure is fairly straight forward. However it is
104  * complicated by the fact that after the split occurs, the newly created
105  * subcores are not in a fully initialised state.
106  *
107  * Most notably the subcores do not have the correct value for SDR1, which
108  * means they must not be running in virtual mode when the split occurs. The
109  * subcores have separate timebases SPRs but these are pre-synchronised by
110  * opal.
111  *
112  * To begin with secondary threads are sent to an assembly routine. There they
113  * switch to real mode, so they are immune to the uninitialised SDR1 value.
114  * Once in real mode they indicate that they are in real mode, and spin waiting
115  * to see the core split.
116  *
117  * Thread 0 waits to see that all secondaries are in real mode, and then begins
118  * the splitting procedure. It firstly sets HID0_POWER8_DYNLPARDIS, which
119  * prevents the hardware from unsplitting. Then it sets the appropriate HID bit
120  * to request the split, and spins waiting to see that the split has happened.
121  *
122  * Concurrently the secondaries will notice the split. When they do they set up
123  * their SPRs, notably SDR1, and then they can return to virtual mode and exit
124  * the procedure.
125  */
126 
127 /* Initialised at boot by subcore_init() */
128 static int subcores_per_core;
129 
130 /*
131  * Used to communicate to offline cpus that we want them to pop out of the
132  * offline loop and do a split or unsplit.
133  *
134  * 0 - no split happening
135  * 1 - unsplit in progress
136  * 2 - split to 2 in progress
137  * 4 - split to 4 in progress
138  */
139 static int new_split_mode;
140 
141 static cpumask_var_t cpu_offline_mask;
142 
143 struct split_state {
144         u8 step;
145         u8 master;
146 };
147 
148 static DEFINE_PER_CPU(struct split_state, split_state);
149 
150 static void wait_for_sync_step(int step)
151 {
152         int i, cpu = smp_processor_id();
153 
154         for (i = cpu + 1; i < cpu + threads_per_core; i++)
155                 while(per_cpu(split_state, i).step < step)
156                         barrier();
157 
158         /* Order the wait loop vs any subsequent loads/stores. */
159         mb();
160 }
161 
162 static void update_hid_in_slw(u64 hid0)
163 {
164         u64 idle_states = pnv_get_supported_cpuidle_states();
165 
166         if (idle_states & OPAL_PM_WINKLE_ENABLED) {
167                 /* OPAL call to patch slw with the new HID0 value */
168                 u64 cpu_pir = hard_smp_processor_id();
169 
170                 opal_slw_set_reg(cpu_pir, SPRN_HID0, hid0);
171         }
172 }
173 
174 static inline void update_power8_hid0(unsigned long hid0)
175 {
176         /*
177          *  The HID0 update on Power8 should at the very least be
178          *  preceded by a SYNC instruction followed by an ISYNC
179          *  instruction
180          */
181         asm volatile("sync; mtspr %0,%1; isync":: "i"(SPRN_HID0), "r"(hid0));
182 }
183 
184 static void unsplit_core(void)
185 {
186         u64 hid0, mask;
187         int i, cpu;
188 
189         mask = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
190 
191         cpu = smp_processor_id();
192         if (cpu_thread_in_core(cpu) != 0) {
193                 while (mfspr(SPRN_HID0) & mask)
194                         power7_idle_type(PNV_THREAD_NAP);
195 
196                 per_cpu(split_state, cpu).step = SYNC_STEP_UNSPLIT;
197                 return;
198         }
199 
200         hid0 = mfspr(SPRN_HID0);
201         hid0 &= ~HID0_POWER8_DYNLPARDIS;
202         update_power8_hid0(hid0);
203         update_hid_in_slw(hid0);
204 
205         while (mfspr(SPRN_HID0) & mask)
206                 cpu_relax();
207 
208         /* Wake secondaries out of NAP */
209         for (i = cpu + 1; i < cpu + threads_per_core; i++)
210                 smp_send_reschedule(i);
211 
212         wait_for_sync_step(SYNC_STEP_UNSPLIT);
213 }
214 
215 static void split_core(int new_mode)
216 {
217         struct {  u64 value; u64 mask; } split_parms[2] = {
218                 { HID0_POWER8_1TO2LPAR, HID0_POWER8_2LPARMODE },
219                 { HID0_POWER8_1TO4LPAR, HID0_POWER8_4LPARMODE }
220         };
221         int i, cpu;
222         u64 hid0;
223 
224         /* Convert new_mode (2 or 4) into an index into our parms array */
225         i = (new_mode >> 1) - 1;
226         BUG_ON(i < 0 || i > 1);
227 
228         cpu = smp_processor_id();
229         if (cpu_thread_in_core(cpu) != 0) {
230                 split_core_secondary_loop(&per_cpu(split_state, cpu).step);
231                 return;
232         }
233 
234         wait_for_sync_step(SYNC_STEP_REAL_MODE);
235 
236         /* Write new mode */
237         hid0  = mfspr(SPRN_HID0);
238         hid0 |= HID0_POWER8_DYNLPARDIS | split_parms[i].value;
239         update_power8_hid0(hid0);
240         update_hid_in_slw(hid0);
241 
242         /* Wait for it to happen */
243         while (!(mfspr(SPRN_HID0) & split_parms[i].mask))
244                 cpu_relax();
245 }
246 
247 static void cpu_do_split(int new_mode)
248 {
249         /*
250          * At boot subcores_per_core will be 0, so we will always unsplit at
251          * boot. In the usual case where the core is already unsplit it's a
252          * nop, and this just ensures the kernel's notion of the mode is
253          * consistent with the hardware.
254          */
255         if (subcores_per_core != 1)
256                 unsplit_core();
257 
258         if (new_mode != 1)
259                 split_core(new_mode);
260 
261         mb();
262         per_cpu(split_state, smp_processor_id()).step = SYNC_STEP_FINISHED;
263 }
264 
265 bool cpu_core_split_required(void)
266 {
267         smp_rmb();
268 
269         if (!new_split_mode)
270                 return false;
271 
272         cpu_do_split(new_split_mode);
273 
274         return true;
275 }
276 
277 void update_subcore_sibling_mask(void)
278 {
279         int cpu;
280         /*
281          * sibling mask for the first cpu. Left shift this by required bits
282          * to get sibling mask for the rest of the cpus.
283          */
284         int sibling_mask_first_cpu =  (1 << threads_per_subcore) - 1;
285 
286         for_each_possible_cpu(cpu) {
287                 int tid = cpu_thread_in_core(cpu);
288                 int offset = (tid / threads_per_subcore) * threads_per_subcore;
289                 int mask = sibling_mask_first_cpu << offset;
290 
291                 paca_ptrs[cpu]->subcore_sibling_mask = mask;
292 
293         }
294 }
295 
296 static int cpu_update_split_mode(void *data)
297 {
298         int cpu, new_mode = *(int *)data;
299 
300         if (this_cpu_ptr(&split_state)->master) {
301                 new_split_mode = new_mode;
302                 smp_wmb();
303 
304                 cpumask_andnot(cpu_offline_mask, cpu_present_mask,
305                                cpu_online_mask);
306 
307                 /* This should work even though the cpu is offline */
308                 for_each_cpu(cpu, cpu_offline_mask)
309                         smp_send_reschedule(cpu);
310         }
311 
312         cpu_do_split(new_mode);
313 
314         if (this_cpu_ptr(&split_state)->master) {
315                 /* Wait for all cpus to finish before we touch subcores_per_core */
316                 for_each_present_cpu(cpu) {
317                         if (cpu >= setup_max_cpus)
318                                 break;
319 
320                         while(per_cpu(split_state, cpu).step < SYNC_STEP_FINISHED)
321                                 barrier();
322                 }
323 
324                 new_split_mode = 0;
325 
326                 /* Make the new mode public */
327                 subcores_per_core = new_mode;
328                 threads_per_subcore = threads_per_core / subcores_per_core;
329                 update_subcore_sibling_mask();
330 
331                 /* Make sure the new mode is written before we exit */
332                 mb();
333         }
334 
335         return 0;
336 }
337 
338 static int set_subcores_per_core(int new_mode)
339 {
340         struct split_state *state;
341         int cpu;
342 
343         if (kvm_hv_mode_active()) {
344                 pr_err("Unable to change split core mode while KVM active.\n");
345                 return -EBUSY;
346         }
347 
348         /*
349          * We are only called at boot, or from the sysfs write. If that ever
350          * changes we'll need a lock here.
351          */
352         BUG_ON(new_mode < 1 || new_mode > 4 || new_mode == 3);
353 
354         for_each_present_cpu(cpu) {
355                 state = &per_cpu(split_state, cpu);
356                 state->step = SYNC_STEP_INITIAL;
357                 state->master = 0;
358         }
359 
360         cpus_read_lock();
361 
362         /* This cpu will update the globals before exiting stop machine */
363         this_cpu_ptr(&split_state)->master = 1;
364 
365         /* Ensure state is consistent before we call the other cpus */
366         mb();
367 
368         stop_machine_cpuslocked(cpu_update_split_mode, &new_mode,
369                                 cpu_online_mask);
370 
371         cpus_read_unlock();
372 
373         return 0;
374 }
375 
376 static ssize_t __used store_subcores_per_core(struct device *dev,
377                 struct device_attribute *attr, const char *buf,
378                 size_t count)
379 {
380         unsigned long val;
381         int rc;
382 
383         /* We are serialised by the attribute lock */
384 
385         rc = sscanf(buf, "%lx", &val);
386         if (rc != 1)
387                 return -EINVAL;
388 
389         switch (val) {
390         case 1:
391         case 2:
392         case 4:
393                 if (subcores_per_core == val)
394                         /* Nothing to do */
395                         goto out;
396                 break;
397         default:
398                 return -EINVAL;
399         }
400 
401         rc = set_subcores_per_core(val);
402         if (rc)
403                 return rc;
404 
405 out:
406         return count;
407 }
408 
409 static ssize_t show_subcores_per_core(struct device *dev,
410                 struct device_attribute *attr, char *buf)
411 {
412         return sprintf(buf, "%x\n", subcores_per_core);
413 }
414 
415 static DEVICE_ATTR(subcores_per_core, 0644,
416                 show_subcores_per_core, store_subcores_per_core);
417 
418 static int subcore_init(void)
419 {
420         struct device *dev_root;
421         unsigned pvr_ver;
422         int rc = 0;
423 
424         pvr_ver = PVR_VER(mfspr(SPRN_PVR));
425 
426         if (pvr_ver != PVR_POWER8 &&
427             pvr_ver != PVR_POWER8E &&
428             pvr_ver != PVR_POWER8NVL &&
429             pvr_ver != PVR_HX_C2000)
430                 return 0;
431 
432         /*
433          * We need all threads in a core to be present to split/unsplit so
434          * continue only if max_cpus are aligned to threads_per_core.
435          */
436         if (setup_max_cpus % threads_per_core)
437                 return 0;
438 
439         BUG_ON(!alloc_cpumask_var(&cpu_offline_mask, GFP_KERNEL));
440 
441         set_subcores_per_core(1);
442 
443         dev_root = bus_get_dev_root(&cpu_subsys);
444         if (dev_root) {
445                 rc = device_create_file(dev_root, &dev_attr_subcores_per_core);
446                 put_device(dev_root);
447         }
448         return rc;
449 }
450 machine_device_initcall(powernv, subcore_init);
451 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php