1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright 2013, Michael (Ellerman|Neuling), IBM Corporation. 4 */ 5 6 #define pr_fmt(fmt) "powernv: " fmt 7 8 #include <linux/kernel.h> 9 #include <linux/cpu.h> 10 #include <linux/cpumask.h> 11 #include <linux/device.h> 12 #include <linux/gfp.h> 13 #include <linux/smp.h> 14 #include <linux/stop_machine.h> 15 16 #include <asm/cputhreads.h> 17 #include <asm/cpuidle.h> 18 #include <asm/kvm_ppc.h> 19 #include <asm/machdep.h> 20 #include <asm/opal.h> 21 #include <asm/smp.h> 22 23 #include <trace/events/ipi.h> 24 25 #include "subcore.h" 26 #include "powernv.h" 27 28 29 /* 30 * Split/unsplit procedure: 31 * 32 * A core can be in one of three states, unsplit, 2-way split, and 4-way split. 33 * 34 * The mapping to subcores_per_core is simple: 35 * 36 * State | subcores_per_core 37 * ------------|------------------ 38 * Unsplit | 1 39 * 2-way split | 2 40 * 4-way split | 4 41 * 42 * The core is split along thread boundaries, the mapping between subcores and 43 * threads is as follows: 44 * 45 * Unsplit: 46 * ---------------------------- 47 * Subcore | 0 | 48 * ---------------------------- 49 * Thread | 0 1 2 3 4 5 6 7 | 50 * ---------------------------- 51 * 52 * 2-way split: 53 * ------------------------------------- 54 * Subcore | 0 | 1 | 55 * ------------------------------------- 56 * Thread | 0 1 2 3 | 4 5 6 7 | 57 * ------------------------------------- 58 * 59 * 4-way split: 60 * ----------------------------------------- 61 * Subcore | 0 | 1 | 2 | 3 | 62 * ----------------------------------------- 63 * Thread | 0 1 | 2 3 | 4 5 | 6 7 | 64 * ----------------------------------------- 65 * 66 * 67 * Transitions 68 * ----------- 69 * 70 * It is not possible to transition between either of the split states, the 71 * core must first be unsplit. The legal transitions are: 72 * 73 * ----------- --------------- 74 * | | <----> | 2-way split | 75 * | | --------------- 76 * | Unsplit | 77 * | | --------------- 78 * | | <----> | 4-way split | 79 * ----------- --------------- 80 * 81 * Unsplitting 82 * ----------- 83 * 84 * Unsplitting is the simpler procedure. It requires thread 0 to request the 85 * unsplit while all other threads NAP. 86 * 87 * Thread 0 clears HID0_POWER8_DYNLPARDIS (Dynamic LPAR Disable). This tells 88 * the hardware that if all threads except 0 are napping, the hardware should 89 * unsplit the core. 90 * 91 * Non-zero threads are sent to a NAP loop, they don't exit the loop until they 92 * see the core unsplit. 93 * 94 * Core 0 spins waiting for the hardware to see all the other threads napping 95 * and perform the unsplit. 96 * 97 * Once thread 0 sees the unsplit, it IPIs the secondary threads to wake them 98 * out of NAP. They will then see the core unsplit and exit the NAP loop. 99 * 100 * Splitting 101 * --------- 102 * 103 * The basic splitting procedure is fairly straight forward. However it is 104 * complicated by the fact that after the split occurs, the newly created 105 * subcores are not in a fully initialised state. 106 * 107 * Most notably the subcores do not have the correct value for SDR1, which 108 * means they must not be running in virtual mode when the split occurs. The 109 * subcores have separate timebases SPRs but these are pre-synchronised by 110 * opal. 111 * 112 * To begin with secondary threads are sent to an assembly routine. There they 113 * switch to real mode, so they are immune to the uninitialised SDR1 value. 114 * Once in real mode they indicate that they are in real mode, and spin waiting 115 * to see the core split. 116 * 117 * Thread 0 waits to see that all secondaries are in real mode, and then begins 118 * the splitting procedure. It firstly sets HID0_POWER8_DYNLPARDIS, which 119 * prevents the hardware from unsplitting. Then it sets the appropriate HID bit 120 * to request the split, and spins waiting to see that the split has happened. 121 * 122 * Concurrently the secondaries will notice the split. When they do they set up 123 * their SPRs, notably SDR1, and then they can return to virtual mode and exit 124 * the procedure. 125 */ 126 127 /* Initialised at boot by subcore_init() */ 128 static int subcores_per_core; 129 130 /* 131 * Used to communicate to offline cpus that we want them to pop out of the 132 * offline loop and do a split or unsplit. 133 * 134 * 0 - no split happening 135 * 1 - unsplit in progress 136 * 2 - split to 2 in progress 137 * 4 - split to 4 in progress 138 */ 139 static int new_split_mode; 140 141 static cpumask_var_t cpu_offline_mask; 142 143 struct split_state { 144 u8 step; 145 u8 master; 146 }; 147 148 static DEFINE_PER_CPU(struct split_state, split_state); 149 150 static void wait_for_sync_step(int step) 151 { 152 int i, cpu = smp_processor_id(); 153 154 for (i = cpu + 1; i < cpu + threads_per_core; i++) 155 while(per_cpu(split_state, i).step < step) 156 barrier(); 157 158 /* Order the wait loop vs any subsequent loads/stores. */ 159 mb(); 160 } 161 162 static void update_hid_in_slw(u64 hid0) 163 { 164 u64 idle_states = pnv_get_supported_cpuidle_states(); 165 166 if (idle_states & OPAL_PM_WINKLE_ENABLED) { 167 /* OPAL call to patch slw with the new HID0 value */ 168 u64 cpu_pir = hard_smp_processor_id(); 169 170 opal_slw_set_reg(cpu_pir, SPRN_HID0, hid0); 171 } 172 } 173 174 static inline void update_power8_hid0(unsigned long hid0) 175 { 176 /* 177 * The HID0 update on Power8 should at the very least be 178 * preceded by a SYNC instruction followed by an ISYNC 179 * instruction 180 */ 181 asm volatile("sync; mtspr %0,%1; isync":: "i"(SPRN_HID0), "r"(hid0)); 182 } 183 184 static void unsplit_core(void) 185 { 186 u64 hid0, mask; 187 int i, cpu; 188 189 mask = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE; 190 191 cpu = smp_processor_id(); 192 if (cpu_thread_in_core(cpu) != 0) { 193 while (mfspr(SPRN_HID0) & mask) 194 power7_idle_type(PNV_THREAD_NAP); 195 196 per_cpu(split_state, cpu).step = SYNC_STEP_UNSPLIT; 197 return; 198 } 199 200 hid0 = mfspr(SPRN_HID0); 201 hid0 &= ~HID0_POWER8_DYNLPARDIS; 202 update_power8_hid0(hid0); 203 update_hid_in_slw(hid0); 204 205 while (mfspr(SPRN_HID0) & mask) 206 cpu_relax(); 207 208 /* Wake secondaries out of NAP */ 209 for (i = cpu + 1; i < cpu + threads_per_core; i++) 210 smp_send_reschedule(i); 211 212 wait_for_sync_step(SYNC_STEP_UNSPLIT); 213 } 214 215 static void split_core(int new_mode) 216 { 217 struct { u64 value; u64 mask; } split_parms[2] = { 218 { HID0_POWER8_1TO2LPAR, HID0_POWER8_2LPARMODE }, 219 { HID0_POWER8_1TO4LPAR, HID0_POWER8_4LPARMODE } 220 }; 221 int i, cpu; 222 u64 hid0; 223 224 /* Convert new_mode (2 or 4) into an index into our parms array */ 225 i = (new_mode >> 1) - 1; 226 BUG_ON(i < 0 || i > 1); 227 228 cpu = smp_processor_id(); 229 if (cpu_thread_in_core(cpu) != 0) { 230 split_core_secondary_loop(&per_cpu(split_state, cpu).step); 231 return; 232 } 233 234 wait_for_sync_step(SYNC_STEP_REAL_MODE); 235 236 /* Write new mode */ 237 hid0 = mfspr(SPRN_HID0); 238 hid0 |= HID0_POWER8_DYNLPARDIS | split_parms[i].value; 239 update_power8_hid0(hid0); 240 update_hid_in_slw(hid0); 241 242 /* Wait for it to happen */ 243 while (!(mfspr(SPRN_HID0) & split_parms[i].mask)) 244 cpu_relax(); 245 } 246 247 static void cpu_do_split(int new_mode) 248 { 249 /* 250 * At boot subcores_per_core will be 0, so we will always unsplit at 251 * boot. In the usual case where the core is already unsplit it's a 252 * nop, and this just ensures the kernel's notion of the mode is 253 * consistent with the hardware. 254 */ 255 if (subcores_per_core != 1) 256 unsplit_core(); 257 258 if (new_mode != 1) 259 split_core(new_mode); 260 261 mb(); 262 per_cpu(split_state, smp_processor_id()).step = SYNC_STEP_FINISHED; 263 } 264 265 bool cpu_core_split_required(void) 266 { 267 smp_rmb(); 268 269 if (!new_split_mode) 270 return false; 271 272 cpu_do_split(new_split_mode); 273 274 return true; 275 } 276 277 void update_subcore_sibling_mask(void) 278 { 279 int cpu; 280 /* 281 * sibling mask for the first cpu. Left shift this by required bits 282 * to get sibling mask for the rest of the cpus. 283 */ 284 int sibling_mask_first_cpu = (1 << threads_per_subcore) - 1; 285 286 for_each_possible_cpu(cpu) { 287 int tid = cpu_thread_in_core(cpu); 288 int offset = (tid / threads_per_subcore) * threads_per_subcore; 289 int mask = sibling_mask_first_cpu << offset; 290 291 paca_ptrs[cpu]->subcore_sibling_mask = mask; 292 293 } 294 } 295 296 static int cpu_update_split_mode(void *data) 297 { 298 int cpu, new_mode = *(int *)data; 299 300 if (this_cpu_ptr(&split_state)->master) { 301 new_split_mode = new_mode; 302 smp_wmb(); 303 304 cpumask_andnot(cpu_offline_mask, cpu_present_mask, 305 cpu_online_mask); 306 307 /* This should work even though the cpu is offline */ 308 for_each_cpu(cpu, cpu_offline_mask) 309 smp_send_reschedule(cpu); 310 } 311 312 cpu_do_split(new_mode); 313 314 if (this_cpu_ptr(&split_state)->master) { 315 /* Wait for all cpus to finish before we touch subcores_per_core */ 316 for_each_present_cpu(cpu) { 317 if (cpu >= setup_max_cpus) 318 break; 319 320 while(per_cpu(split_state, cpu).step < SYNC_STEP_FINISHED) 321 barrier(); 322 } 323 324 new_split_mode = 0; 325 326 /* Make the new mode public */ 327 subcores_per_core = new_mode; 328 threads_per_subcore = threads_per_core / subcores_per_core; 329 update_subcore_sibling_mask(); 330 331 /* Make sure the new mode is written before we exit */ 332 mb(); 333 } 334 335 return 0; 336 } 337 338 static int set_subcores_per_core(int new_mode) 339 { 340 struct split_state *state; 341 int cpu; 342 343 if (kvm_hv_mode_active()) { 344 pr_err("Unable to change split core mode while KVM active.\n"); 345 return -EBUSY; 346 } 347 348 /* 349 * We are only called at boot, or from the sysfs write. If that ever 350 * changes we'll need a lock here. 351 */ 352 BUG_ON(new_mode < 1 || new_mode > 4 || new_mode == 3); 353 354 for_each_present_cpu(cpu) { 355 state = &per_cpu(split_state, cpu); 356 state->step = SYNC_STEP_INITIAL; 357 state->master = 0; 358 } 359 360 cpus_read_lock(); 361 362 /* This cpu will update the globals before exiting stop machine */ 363 this_cpu_ptr(&split_state)->master = 1; 364 365 /* Ensure state is consistent before we call the other cpus */ 366 mb(); 367 368 stop_machine_cpuslocked(cpu_update_split_mode, &new_mode, 369 cpu_online_mask); 370 371 cpus_read_unlock(); 372 373 return 0; 374 } 375 376 static ssize_t __used store_subcores_per_core(struct device *dev, 377 struct device_attribute *attr, const char *buf, 378 size_t count) 379 { 380 unsigned long val; 381 int rc; 382 383 /* We are serialised by the attribute lock */ 384 385 rc = sscanf(buf, "%lx", &val); 386 if (rc != 1) 387 return -EINVAL; 388 389 switch (val) { 390 case 1: 391 case 2: 392 case 4: 393 if (subcores_per_core == val) 394 /* Nothing to do */ 395 goto out; 396 break; 397 default: 398 return -EINVAL; 399 } 400 401 rc = set_subcores_per_core(val); 402 if (rc) 403 return rc; 404 405 out: 406 return count; 407 } 408 409 static ssize_t show_subcores_per_core(struct device *dev, 410 struct device_attribute *attr, char *buf) 411 { 412 return sprintf(buf, "%x\n", subcores_per_core); 413 } 414 415 static DEVICE_ATTR(subcores_per_core, 0644, 416 show_subcores_per_core, store_subcores_per_core); 417 418 static int subcore_init(void) 419 { 420 struct device *dev_root; 421 unsigned pvr_ver; 422 int rc = 0; 423 424 pvr_ver = PVR_VER(mfspr(SPRN_PVR)); 425 426 if (pvr_ver != PVR_POWER8 && 427 pvr_ver != PVR_POWER8E && 428 pvr_ver != PVR_POWER8NVL && 429 pvr_ver != PVR_HX_C2000) 430 return 0; 431 432 /* 433 * We need all threads in a core to be present to split/unsplit so 434 * continue only if max_cpus are aligned to threads_per_core. 435 */ 436 if (setup_max_cpus % threads_per_core) 437 return 0; 438 439 BUG_ON(!alloc_cpumask_var(&cpu_offline_mask, GFP_KERNEL)); 440 441 set_subcores_per_core(1); 442 443 dev_root = bus_get_dev_root(&cpu_subsys); 444 if (dev_root) { 445 rc = device_create_file(dev_root, &dev_attr_subcores_per_core); 446 put_device(dev_root); 447 } 448 return rc; 449 } 450 machine_device_initcall(powernv, subcore_init); 451
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.