~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/powerpc/platforms/pseries/lpar.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-or-later
  2 /*
  3  * pSeries_lpar.c
  4  * Copyright (C) 2001 Todd Inglett, IBM Corporation
  5  *
  6  * pSeries LPAR support.
  7  */
  8 
  9 /* Enables debugging of low-level hash table routines - careful! */
 10 #undef DEBUG
 11 #define pr_fmt(fmt) "lpar: " fmt
 12 
 13 #include <linux/kernel.h>
 14 #include <linux/dma-mapping.h>
 15 #include <linux/console.h>
 16 #include <linux/export.h>
 17 #include <linux/jump_label.h>
 18 #include <linux/delay.h>
 19 #include <linux/stop_machine.h>
 20 #include <linux/spinlock.h>
 21 #include <linux/cpuhotplug.h>
 22 #include <linux/workqueue.h>
 23 #include <linux/proc_fs.h>
 24 #include <linux/pgtable.h>
 25 #include <linux/debugfs.h>
 26 
 27 #include <asm/processor.h>
 28 #include <asm/mmu.h>
 29 #include <asm/page.h>
 30 #include <asm/setup.h>
 31 #include <asm/mmu_context.h>
 32 #include <asm/iommu.h>
 33 #include <asm/tlb.h>
 34 #include <asm/cputable.h>
 35 #include <asm/papr-sysparm.h>
 36 #include <asm/udbg.h>
 37 #include <asm/smp.h>
 38 #include <asm/trace.h>
 39 #include <asm/firmware.h>
 40 #include <asm/plpar_wrappers.h>
 41 #include <asm/kexec.h>
 42 #include <asm/fadump.h>
 43 #include <asm/dtl.h>
 44 #include <asm/vphn.h>
 45 
 46 #include "pseries.h"
 47 
 48 /* Flag bits for H_BULK_REMOVE */
 49 #define HBR_REQUEST     0x4000000000000000UL
 50 #define HBR_RESPONSE    0x8000000000000000UL
 51 #define HBR_END         0xc000000000000000UL
 52 #define HBR_AVPN        0x0200000000000000UL
 53 #define HBR_ANDCOND     0x0100000000000000UL
 54 
 55 
 56 /* in hvCall.S */
 57 EXPORT_SYMBOL(plpar_hcall);
 58 EXPORT_SYMBOL(plpar_hcall9);
 59 EXPORT_SYMBOL(plpar_hcall_norets);
 60 
 61 #ifdef CONFIG_PPC_64S_HASH_MMU
 62 /*
 63  * H_BLOCK_REMOVE supported block size for this page size in segment who's base
 64  * page size is that page size.
 65  *
 66  * The first index is the segment base page size, the second one is the actual
 67  * page size.
 68  */
 69 static int hblkrm_size[MMU_PAGE_COUNT][MMU_PAGE_COUNT] __ro_after_init;
 70 #endif
 71 
 72 /*
 73  * Due to the involved complexity, and that the current hypervisor is only
 74  * returning this value or 0, we are limiting the support of the H_BLOCK_REMOVE
 75  * buffer size to 8 size block.
 76  */
 77 #define HBLKRM_SUPPORTED_BLOCK_SIZE 8
 78 
 79 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 80 static u8 dtl_mask = DTL_LOG_PREEMPT;
 81 #else
 82 static u8 dtl_mask;
 83 #endif
 84 
 85 void alloc_dtl_buffers(unsigned long *time_limit)
 86 {
 87         int cpu;
 88         struct paca_struct *pp;
 89         struct dtl_entry *dtl;
 90 
 91         for_each_possible_cpu(cpu) {
 92                 pp = paca_ptrs[cpu];
 93                 if (pp->dispatch_log)
 94                         continue;
 95                 dtl = kmem_cache_alloc(dtl_cache, GFP_KERNEL);
 96                 if (!dtl) {
 97                         pr_warn("Failed to allocate dispatch trace log for cpu %d\n",
 98                                 cpu);
 99 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
100                         pr_warn("Stolen time statistics will be unreliable\n");
101 #endif
102                         break;
103                 }
104 
105                 pp->dtl_ridx = 0;
106                 pp->dispatch_log = dtl;
107                 pp->dispatch_log_end = dtl + N_DISPATCH_LOG;
108                 pp->dtl_curr = dtl;
109 
110                 if (time_limit && time_after(jiffies, *time_limit)) {
111                         cond_resched();
112                         *time_limit = jiffies + HZ;
113                 }
114         }
115 }
116 
117 void register_dtl_buffer(int cpu)
118 {
119         long ret;
120         struct paca_struct *pp;
121         struct dtl_entry *dtl;
122         int hwcpu = get_hard_smp_processor_id(cpu);
123 
124         pp = paca_ptrs[cpu];
125         dtl = pp->dispatch_log;
126         if (dtl && dtl_mask) {
127                 pp->dtl_ridx = 0;
128                 pp->dtl_curr = dtl;
129                 lppaca_of(cpu).dtl_idx = 0;
130 
131                 /* hypervisor reads buffer length from this field */
132                 dtl->enqueue_to_dispatch_time = cpu_to_be32(DISPATCH_LOG_BYTES);
133                 ret = register_dtl(hwcpu, __pa(dtl));
134                 if (ret)
135                         pr_err("WARNING: DTL registration of cpu %d (hw %d) failed with %ld\n",
136                                cpu, hwcpu, ret);
137 
138                 lppaca_of(cpu).dtl_enable_mask = dtl_mask;
139         }
140 }
141 
142 #ifdef CONFIG_PPC_SPLPAR
143 struct dtl_worker {
144         struct delayed_work work;
145         int cpu;
146 };
147 
148 struct vcpu_dispatch_data {
149         int last_disp_cpu;
150 
151         int total_disp;
152 
153         int same_cpu_disp;
154         int same_chip_disp;
155         int diff_chip_disp;
156         int far_chip_disp;
157 
158         int numa_home_disp;
159         int numa_remote_disp;
160         int numa_far_disp;
161 };
162 
163 /*
164  * This represents the number of cpus in the hypervisor. Since there is no
165  * architected way to discover the number of processors in the host, we
166  * provision for dealing with NR_CPUS. This is currently 2048 by default, and
167  * is sufficient for our purposes. This will need to be tweaked if
168  * CONFIG_NR_CPUS is changed.
169  */
170 #define NR_CPUS_H       NR_CPUS
171 
172 DEFINE_RWLOCK(dtl_access_lock);
173 static DEFINE_PER_CPU(struct vcpu_dispatch_data, vcpu_disp_data);
174 static DEFINE_PER_CPU(u64, dtl_entry_ridx);
175 static DEFINE_PER_CPU(struct dtl_worker, dtl_workers);
176 static enum cpuhp_state dtl_worker_state;
177 static DEFINE_MUTEX(dtl_enable_mutex);
178 static int vcpudispatch_stats_on __read_mostly;
179 static int vcpudispatch_stats_freq = 50;
180 static __be32 *vcpu_associativity, *pcpu_associativity;
181 
182 
183 static void free_dtl_buffers(unsigned long *time_limit)
184 {
185 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
186         int cpu;
187         struct paca_struct *pp;
188 
189         for_each_possible_cpu(cpu) {
190                 pp = paca_ptrs[cpu];
191                 if (!pp->dispatch_log)
192                         continue;
193                 kmem_cache_free(dtl_cache, pp->dispatch_log);
194                 pp->dtl_ridx = 0;
195                 pp->dispatch_log = NULL;
196                 pp->dispatch_log_end = NULL;
197                 pp->dtl_curr = NULL;
198 
199                 if (time_limit && time_after(jiffies, *time_limit)) {
200                         cond_resched();
201                         *time_limit = jiffies + HZ;
202                 }
203         }
204 #endif
205 }
206 
207 static int init_cpu_associativity(void)
208 {
209         vcpu_associativity = kcalloc(num_possible_cpus() / threads_per_core,
210                         VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL);
211         pcpu_associativity = kcalloc(NR_CPUS_H / threads_per_core,
212                         VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL);
213 
214         if (!vcpu_associativity || !pcpu_associativity) {
215                 pr_err("error allocating memory for associativity information\n");
216                 return -ENOMEM;
217         }
218 
219         return 0;
220 }
221 
222 static void destroy_cpu_associativity(void)
223 {
224         kfree(vcpu_associativity);
225         kfree(pcpu_associativity);
226         vcpu_associativity = pcpu_associativity = NULL;
227 }
228 
229 static __be32 *__get_cpu_associativity(int cpu, __be32 *cpu_assoc, int flag)
230 {
231         __be32 *assoc;
232         int rc = 0;
233 
234         assoc = &cpu_assoc[(int)(cpu / threads_per_core) * VPHN_ASSOC_BUFSIZE];
235         if (!assoc[0]) {
236                 rc = hcall_vphn(cpu, flag, &assoc[0]);
237                 if (rc)
238                         return NULL;
239         }
240 
241         return assoc;
242 }
243 
244 static __be32 *get_pcpu_associativity(int cpu)
245 {
246         return __get_cpu_associativity(cpu, pcpu_associativity, VPHN_FLAG_PCPU);
247 }
248 
249 static __be32 *get_vcpu_associativity(int cpu)
250 {
251         return __get_cpu_associativity(cpu, vcpu_associativity, VPHN_FLAG_VCPU);
252 }
253 
254 static int cpu_relative_dispatch_distance(int last_disp_cpu, int cur_disp_cpu)
255 {
256         __be32 *last_disp_cpu_assoc, *cur_disp_cpu_assoc;
257 
258         if (last_disp_cpu >= NR_CPUS_H || cur_disp_cpu >= NR_CPUS_H)
259                 return -EINVAL;
260 
261         last_disp_cpu_assoc = get_pcpu_associativity(last_disp_cpu);
262         cur_disp_cpu_assoc = get_pcpu_associativity(cur_disp_cpu);
263 
264         if (!last_disp_cpu_assoc || !cur_disp_cpu_assoc)
265                 return -EIO;
266 
267         return cpu_relative_distance(last_disp_cpu_assoc, cur_disp_cpu_assoc);
268 }
269 
270 static int cpu_home_node_dispatch_distance(int disp_cpu)
271 {
272         __be32 *disp_cpu_assoc, *vcpu_assoc;
273         int vcpu_id = smp_processor_id();
274 
275         if (disp_cpu >= NR_CPUS_H) {
276                 pr_debug_ratelimited("vcpu dispatch cpu %d > %d\n",
277                                                 disp_cpu, NR_CPUS_H);
278                 return -EINVAL;
279         }
280 
281         disp_cpu_assoc = get_pcpu_associativity(disp_cpu);
282         vcpu_assoc = get_vcpu_associativity(vcpu_id);
283 
284         if (!disp_cpu_assoc || !vcpu_assoc)
285                 return -EIO;
286 
287         return cpu_relative_distance(disp_cpu_assoc, vcpu_assoc);
288 }
289 
290 static void update_vcpu_disp_stat(int disp_cpu)
291 {
292         struct vcpu_dispatch_data *disp;
293         int distance;
294 
295         disp = this_cpu_ptr(&vcpu_disp_data);
296         if (disp->last_disp_cpu == -1) {
297                 disp->last_disp_cpu = disp_cpu;
298                 return;
299         }
300 
301         disp->total_disp++;
302 
303         if (disp->last_disp_cpu == disp_cpu ||
304                 (cpu_first_thread_sibling(disp->last_disp_cpu) ==
305                                         cpu_first_thread_sibling(disp_cpu)))
306                 disp->same_cpu_disp++;
307         else {
308                 distance = cpu_relative_dispatch_distance(disp->last_disp_cpu,
309                                                                 disp_cpu);
310                 if (distance < 0)
311                         pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n",
312                                         smp_processor_id());
313                 else {
314                         switch (distance) {
315                         case 0:
316                                 disp->same_chip_disp++;
317                                 break;
318                         case 1:
319                                 disp->diff_chip_disp++;
320                                 break;
321                         case 2:
322                                 disp->far_chip_disp++;
323                                 break;
324                         default:
325                                 pr_debug_ratelimited("vcpudispatch_stats: cpu %d (%d -> %d): unexpected relative dispatch distance %d\n",
326                                                  smp_processor_id(),
327                                                  disp->last_disp_cpu,
328                                                  disp_cpu,
329                                                  distance);
330                         }
331                 }
332         }
333 
334         distance = cpu_home_node_dispatch_distance(disp_cpu);
335         if (distance < 0)
336                 pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n",
337                                 smp_processor_id());
338         else {
339                 switch (distance) {
340                 case 0:
341                         disp->numa_home_disp++;
342                         break;
343                 case 1:
344                         disp->numa_remote_disp++;
345                         break;
346                 case 2:
347                         disp->numa_far_disp++;
348                         break;
349                 default:
350                         pr_debug_ratelimited("vcpudispatch_stats: cpu %d on %d: unexpected numa dispatch distance %d\n",
351                                                  smp_processor_id(),
352                                                  disp_cpu,
353                                                  distance);
354                 }
355         }
356 
357         disp->last_disp_cpu = disp_cpu;
358 }
359 
360 static void process_dtl_buffer(struct work_struct *work)
361 {
362         struct dtl_entry dtle;
363         u64 i = __this_cpu_read(dtl_entry_ridx);
364         struct dtl_entry *dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
365         struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
366         struct lppaca *vpa = local_paca->lppaca_ptr;
367         struct dtl_worker *d = container_of(work, struct dtl_worker, work.work);
368 
369         if (!local_paca->dispatch_log)
370                 return;
371 
372         /* if we have been migrated away, we cancel ourself */
373         if (d->cpu != smp_processor_id()) {
374                 pr_debug("vcpudispatch_stats: cpu %d worker migrated -- canceling worker\n",
375                                                 smp_processor_id());
376                 return;
377         }
378 
379         if (i == be64_to_cpu(vpa->dtl_idx))
380                 goto out;
381 
382         while (i < be64_to_cpu(vpa->dtl_idx)) {
383                 dtle = *dtl;
384                 barrier();
385                 if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
386                         /* buffer has overflowed */
387                         pr_debug_ratelimited("vcpudispatch_stats: cpu %d lost %lld DTL samples\n",
388                                 d->cpu,
389                                 be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG - i);
390                         i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
391                         dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
392                         continue;
393                 }
394                 update_vcpu_disp_stat(be16_to_cpu(dtle.processor_id));
395                 ++i;
396                 ++dtl;
397                 if (dtl == dtl_end)
398                         dtl = local_paca->dispatch_log;
399         }
400 
401         __this_cpu_write(dtl_entry_ridx, i);
402 
403 out:
404         schedule_delayed_work_on(d->cpu, to_delayed_work(work),
405                                         HZ / vcpudispatch_stats_freq);
406 }
407 
408 static int dtl_worker_online(unsigned int cpu)
409 {
410         struct dtl_worker *d = &per_cpu(dtl_workers, cpu);
411 
412         memset(d, 0, sizeof(*d));
413         INIT_DELAYED_WORK(&d->work, process_dtl_buffer);
414         d->cpu = cpu;
415 
416 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
417         per_cpu(dtl_entry_ridx, cpu) = 0;
418         register_dtl_buffer(cpu);
419 #else
420         per_cpu(dtl_entry_ridx, cpu) = be64_to_cpu(lppaca_of(cpu).dtl_idx);
421 #endif
422 
423         schedule_delayed_work_on(cpu, &d->work, HZ / vcpudispatch_stats_freq);
424         return 0;
425 }
426 
427 static int dtl_worker_offline(unsigned int cpu)
428 {
429         struct dtl_worker *d = &per_cpu(dtl_workers, cpu);
430 
431         cancel_delayed_work_sync(&d->work);
432 
433 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
434         unregister_dtl(get_hard_smp_processor_id(cpu));
435 #endif
436 
437         return 0;
438 }
439 
440 static void set_global_dtl_mask(u8 mask)
441 {
442         int cpu;
443 
444         dtl_mask = mask;
445         for_each_present_cpu(cpu)
446                 lppaca_of(cpu).dtl_enable_mask = dtl_mask;
447 }
448 
449 static void reset_global_dtl_mask(void)
450 {
451         int cpu;
452 
453 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
454         dtl_mask = DTL_LOG_PREEMPT;
455 #else
456         dtl_mask = 0;
457 #endif
458         for_each_present_cpu(cpu)
459                 lppaca_of(cpu).dtl_enable_mask = dtl_mask;
460 }
461 
462 static int dtl_worker_enable(unsigned long *time_limit)
463 {
464         int rc = 0, state;
465 
466         if (!write_trylock(&dtl_access_lock)) {
467                 rc = -EBUSY;
468                 goto out;
469         }
470 
471         set_global_dtl_mask(DTL_LOG_ALL);
472 
473         /* Setup dtl buffers and register those */
474         alloc_dtl_buffers(time_limit);
475 
476         state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "powerpc/dtl:online",
477                                         dtl_worker_online, dtl_worker_offline);
478         if (state < 0) {
479                 pr_err("vcpudispatch_stats: unable to setup workqueue for DTL processing\n");
480                 free_dtl_buffers(time_limit);
481                 reset_global_dtl_mask();
482                 write_unlock(&dtl_access_lock);
483                 rc = -EINVAL;
484                 goto out;
485         }
486         dtl_worker_state = state;
487 
488 out:
489         return rc;
490 }
491 
492 static void dtl_worker_disable(unsigned long *time_limit)
493 {
494         cpuhp_remove_state(dtl_worker_state);
495         free_dtl_buffers(time_limit);
496         reset_global_dtl_mask();
497         write_unlock(&dtl_access_lock);
498 }
499 
500 static ssize_t vcpudispatch_stats_write(struct file *file, const char __user *p,
501                 size_t count, loff_t *ppos)
502 {
503         unsigned long time_limit = jiffies + HZ;
504         struct vcpu_dispatch_data *disp;
505         int rc, cmd, cpu;
506         char buf[16];
507 
508         if (count > 15)
509                 return -EINVAL;
510 
511         if (copy_from_user(buf, p, count))
512                 return -EFAULT;
513 
514         buf[count] = 0;
515         rc = kstrtoint(buf, 0, &cmd);
516         if (rc || cmd < 0 || cmd > 1) {
517                 pr_err("vcpudispatch_stats: please use 0 to disable or 1 to enable dispatch statistics\n");
518                 return rc ? rc : -EINVAL;
519         }
520 
521         mutex_lock(&dtl_enable_mutex);
522 
523         if ((cmd == 0 && !vcpudispatch_stats_on) ||
524                         (cmd == 1 && vcpudispatch_stats_on))
525                 goto out;
526 
527         if (cmd) {
528                 rc = init_cpu_associativity();
529                 if (rc) {
530                         destroy_cpu_associativity();
531                         goto out;
532                 }
533 
534                 for_each_possible_cpu(cpu) {
535                         disp = per_cpu_ptr(&vcpu_disp_data, cpu);
536                         memset(disp, 0, sizeof(*disp));
537                         disp->last_disp_cpu = -1;
538                 }
539 
540                 rc = dtl_worker_enable(&time_limit);
541                 if (rc) {
542                         destroy_cpu_associativity();
543                         goto out;
544                 }
545         } else {
546                 dtl_worker_disable(&time_limit);
547                 destroy_cpu_associativity();
548         }
549 
550         vcpudispatch_stats_on = cmd;
551 
552 out:
553         mutex_unlock(&dtl_enable_mutex);
554         if (rc)
555                 return rc;
556         return count;
557 }
558 
559 static int vcpudispatch_stats_display(struct seq_file *p, void *v)
560 {
561         int cpu;
562         struct vcpu_dispatch_data *disp;
563 
564         if (!vcpudispatch_stats_on) {
565                 seq_puts(p, "off\n");
566                 return 0;
567         }
568 
569         for_each_online_cpu(cpu) {
570                 disp = per_cpu_ptr(&vcpu_disp_data, cpu);
571                 seq_printf(p, "cpu%d", cpu);
572                 seq_put_decimal_ull(p, " ", disp->total_disp);
573                 seq_put_decimal_ull(p, " ", disp->same_cpu_disp);
574                 seq_put_decimal_ull(p, " ", disp->same_chip_disp);
575                 seq_put_decimal_ull(p, " ", disp->diff_chip_disp);
576                 seq_put_decimal_ull(p, " ", disp->far_chip_disp);
577                 seq_put_decimal_ull(p, " ", disp->numa_home_disp);
578                 seq_put_decimal_ull(p, " ", disp->numa_remote_disp);
579                 seq_put_decimal_ull(p, " ", disp->numa_far_disp);
580                 seq_puts(p, "\n");
581         }
582 
583         return 0;
584 }
585 
586 static int vcpudispatch_stats_open(struct inode *inode, struct file *file)
587 {
588         return single_open(file, vcpudispatch_stats_display, NULL);
589 }
590 
591 static const struct proc_ops vcpudispatch_stats_proc_ops = {
592         .proc_open      = vcpudispatch_stats_open,
593         .proc_read      = seq_read,
594         .proc_write     = vcpudispatch_stats_write,
595         .proc_lseek     = seq_lseek,
596         .proc_release   = single_release,
597 };
598 
599 static ssize_t vcpudispatch_stats_freq_write(struct file *file,
600                 const char __user *p, size_t count, loff_t *ppos)
601 {
602         int rc, freq;
603         char buf[16];
604 
605         if (count > 15)
606                 return -EINVAL;
607 
608         if (copy_from_user(buf, p, count))
609                 return -EFAULT;
610 
611         buf[count] = 0;
612         rc = kstrtoint(buf, 0, &freq);
613         if (rc || freq < 1 || freq > HZ) {
614                 pr_err("vcpudispatch_stats_freq: please specify a frequency between 1 and %d\n",
615                                 HZ);
616                 return rc ? rc : -EINVAL;
617         }
618 
619         vcpudispatch_stats_freq = freq;
620 
621         return count;
622 }
623 
624 static int vcpudispatch_stats_freq_display(struct seq_file *p, void *v)
625 {
626         seq_printf(p, "%d\n", vcpudispatch_stats_freq);
627         return 0;
628 }
629 
630 static int vcpudispatch_stats_freq_open(struct inode *inode, struct file *file)
631 {
632         return single_open(file, vcpudispatch_stats_freq_display, NULL);
633 }
634 
635 static const struct proc_ops vcpudispatch_stats_freq_proc_ops = {
636         .proc_open      = vcpudispatch_stats_freq_open,
637         .proc_read      = seq_read,
638         .proc_write     = vcpudispatch_stats_freq_write,
639         .proc_lseek     = seq_lseek,
640         .proc_release   = single_release,
641 };
642 
643 static int __init vcpudispatch_stats_procfs_init(void)
644 {
645         if (!lppaca_shared_proc())
646                 return 0;
647 
648         if (!proc_create("powerpc/vcpudispatch_stats", 0600, NULL,
649                                         &vcpudispatch_stats_proc_ops))
650                 pr_err("vcpudispatch_stats: error creating procfs file\n");
651         else if (!proc_create("powerpc/vcpudispatch_stats_freq", 0600, NULL,
652                                         &vcpudispatch_stats_freq_proc_ops))
653                 pr_err("vcpudispatch_stats_freq: error creating procfs file\n");
654 
655         return 0;
656 }
657 
658 machine_device_initcall(pseries, vcpudispatch_stats_procfs_init);
659 
660 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
661 u64 pseries_paravirt_steal_clock(int cpu)
662 {
663         struct lppaca *lppaca = &lppaca_of(cpu);
664 
665         /*
666          * VPA steal time counters are reported at TB frequency. Hence do a
667          * conversion to ns before returning
668          */
669         return tb_to_ns(be64_to_cpu(READ_ONCE(lppaca->enqueue_dispatch_tb)) +
670                         be64_to_cpu(READ_ONCE(lppaca->ready_enqueue_tb)));
671 }
672 #endif
673 
674 #endif /* CONFIG_PPC_SPLPAR */
675 
676 void vpa_init(int cpu)
677 {
678         int hwcpu = get_hard_smp_processor_id(cpu);
679         unsigned long addr;
680         long ret;
681 
682         /*
683          * The spec says it "may be problematic" if CPU x registers the VPA of
684          * CPU y. We should never do that, but wail if we ever do.
685          */
686         WARN_ON(cpu != smp_processor_id());
687 
688         if (cpu_has_feature(CPU_FTR_ALTIVEC))
689                 lppaca_of(cpu).vmxregs_in_use = 1;
690 
691         if (cpu_has_feature(CPU_FTR_ARCH_207S))
692                 lppaca_of(cpu).ebb_regs_in_use = 1;
693 
694         addr = __pa(&lppaca_of(cpu));
695         ret = register_vpa(hwcpu, addr);
696 
697         if (ret) {
698                 pr_err("WARNING: VPA registration for cpu %d (hw %d) of area "
699                        "%lx failed with %ld\n", cpu, hwcpu, addr, ret);
700                 return;
701         }
702 
703 #ifdef CONFIG_PPC_64S_HASH_MMU
704         /*
705          * PAPR says this feature is SLB-Buffer but firmware never
706          * reports that.  All SPLPAR support SLB shadow buffer.
707          */
708         if (!radix_enabled() && firmware_has_feature(FW_FEATURE_SPLPAR)) {
709                 addr = __pa(paca_ptrs[cpu]->slb_shadow_ptr);
710                 ret = register_slb_shadow(hwcpu, addr);
711                 if (ret)
712                         pr_err("WARNING: SLB shadow buffer registration for "
713                                "cpu %d (hw %d) of area %lx failed with %ld\n",
714                                cpu, hwcpu, addr, ret);
715         }
716 #endif /* CONFIG_PPC_64S_HASH_MMU */
717 
718         /*
719          * Register dispatch trace log, if one has been allocated.
720          */
721         register_dtl_buffer(cpu);
722 }
723 
724 #ifdef CONFIG_PPC_BOOK3S_64
725 
726 static int __init pseries_lpar_register_process_table(unsigned long base,
727                         unsigned long page_size, unsigned long table_size)
728 {
729         long rc;
730         unsigned long flags = 0;
731 
732         if (table_size)
733                 flags |= PROC_TABLE_NEW;
734         if (radix_enabled()) {
735                 flags |= PROC_TABLE_RADIX;
736                 if (mmu_has_feature(MMU_FTR_GTSE))
737                         flags |= PROC_TABLE_GTSE;
738         } else
739                 flags |= PROC_TABLE_HPT_SLB;
740         for (;;) {
741                 rc = plpar_hcall_norets(H_REGISTER_PROC_TBL, flags, base,
742                                         page_size, table_size);
743                 if (!H_IS_LONG_BUSY(rc))
744                         break;
745                 mdelay(get_longbusy_msecs(rc));
746         }
747         if (rc != H_SUCCESS) {
748                 pr_err("Failed to register process table (rc=%ld)\n", rc);
749                 BUG();
750         }
751         return rc;
752 }
753 
754 #ifdef CONFIG_PPC_64S_HASH_MMU
755 
756 static long pSeries_lpar_hpte_insert(unsigned long hpte_group,
757                                      unsigned long vpn, unsigned long pa,
758                                      unsigned long rflags, unsigned long vflags,
759                                      int psize, int apsize, int ssize)
760 {
761         unsigned long lpar_rc;
762         unsigned long flags;
763         unsigned long slot;
764         unsigned long hpte_v, hpte_r;
765 
766         if (!(vflags & HPTE_V_BOLTED))
767                 pr_devel("hpte_insert(group=%lx, vpn=%016lx, "
768                          "pa=%016lx, rflags=%lx, vflags=%lx, psize=%d)\n",
769                          hpte_group, vpn,  pa, rflags, vflags, psize);
770 
771         hpte_v = hpte_encode_v(vpn, psize, apsize, ssize) | vflags | HPTE_V_VALID;
772         hpte_r = hpte_encode_r(pa, psize, apsize) | rflags;
773 
774         if (!(vflags & HPTE_V_BOLTED))
775                 pr_devel(" hpte_v=%016lx, hpte_r=%016lx\n", hpte_v, hpte_r);
776 
777         /* Now fill in the actual HPTE */
778         /* Set CEC cookie to 0         */
779         /* Zero page = 0               */
780         /* I-cache Invalidate = 0      */
781         /* I-cache synchronize = 0     */
782         /* Exact = 0                   */
783         flags = 0;
784 
785         if (firmware_has_feature(FW_FEATURE_XCMO) && !(hpte_r & HPTE_R_N))
786                 flags |= H_COALESCE_CAND;
787 
788         lpar_rc = plpar_pte_enter(flags, hpte_group, hpte_v, hpte_r, &slot);
789         if (unlikely(lpar_rc == H_PTEG_FULL)) {
790                 pr_devel("Hash table group is full\n");
791                 return -1;
792         }
793 
794         /*
795          * Since we try and ioremap PHBs we don't own, the pte insert
796          * will fail. However we must catch the failure in hash_page
797          * or we will loop forever, so return -2 in this case.
798          */
799         if (unlikely(lpar_rc != H_SUCCESS)) {
800                 pr_err("Failed hash pte insert with error %ld\n", lpar_rc);
801                 return -2;
802         }
803         if (!(vflags & HPTE_V_BOLTED))
804                 pr_devel(" -> slot: %lu\n", slot & 7);
805 
806         /* Because of iSeries, we have to pass down the secondary
807          * bucket bit here as well
808          */
809         return (slot & 7) | (!!(vflags & HPTE_V_SECONDARY) << 3);
810 }
811 
812 static DEFINE_SPINLOCK(pSeries_lpar_tlbie_lock);
813 
814 static long pSeries_lpar_hpte_remove(unsigned long hpte_group)
815 {
816         unsigned long slot_offset;
817         unsigned long lpar_rc;
818         int i;
819         unsigned long dummy1, dummy2;
820 
821         /* pick a random slot to start at */
822         slot_offset = mftb() & 0x7;
823 
824         for (i = 0; i < HPTES_PER_GROUP; i++) {
825 
826                 /* don't remove a bolted entry */
827                 lpar_rc = plpar_pte_remove(H_ANDCOND, hpte_group + slot_offset,
828                                            HPTE_V_BOLTED, &dummy1, &dummy2);
829                 if (lpar_rc == H_SUCCESS)
830                         return i;
831 
832                 /*
833                  * The test for adjunct partition is performed before the
834                  * ANDCOND test.  H_RESOURCE may be returned, so we need to
835                  * check for that as well.
836                  */
837                 BUG_ON(lpar_rc != H_NOT_FOUND && lpar_rc != H_RESOURCE);
838 
839                 slot_offset++;
840                 slot_offset &= 0x7;
841         }
842 
843         return -1;
844 }
845 
846 /* Called during kexec sequence with MMU off */
847 static notrace void manual_hpte_clear_all(void)
848 {
849         unsigned long size_bytes = 1UL << ppc64_pft_size;
850         unsigned long hpte_count = size_bytes >> 4;
851         struct {
852                 unsigned long pteh;
853                 unsigned long ptel;
854         } ptes[4];
855         long lpar_rc;
856         unsigned long i, j;
857 
858         /* Read in batches of 4,
859          * invalidate only valid entries not in the VRMA
860          * hpte_count will be a multiple of 4
861          */
862         for (i = 0; i < hpte_count; i += 4) {
863                 lpar_rc = plpar_pte_read_4_raw(0, i, (void *)ptes);
864                 if (lpar_rc != H_SUCCESS) {
865                         pr_info("Failed to read hash page table at %ld err %ld\n",
866                                 i, lpar_rc);
867                         continue;
868                 }
869                 for (j = 0; j < 4; j++){
870                         if ((ptes[j].pteh & HPTE_V_VRMA_MASK) ==
871                                 HPTE_V_VRMA_MASK)
872                                 continue;
873                         if (ptes[j].pteh & HPTE_V_VALID)
874                                 plpar_pte_remove_raw(0, i + j, 0,
875                                         &(ptes[j].pteh), &(ptes[j].ptel));
876                 }
877         }
878 }
879 
880 /* Called during kexec sequence with MMU off */
881 static notrace int hcall_hpte_clear_all(void)
882 {
883         int rc;
884 
885         do {
886                 rc = plpar_hcall_norets(H_CLEAR_HPT);
887         } while (rc == H_CONTINUE);
888 
889         return rc;
890 }
891 
892 /* Called during kexec sequence with MMU off */
893 static notrace void pseries_hpte_clear_all(void)
894 {
895         int rc;
896 
897         rc = hcall_hpte_clear_all();
898         if (rc != H_SUCCESS)
899                 manual_hpte_clear_all();
900 
901 #ifdef __LITTLE_ENDIAN__
902         /*
903          * Reset exceptions to big endian.
904          *
905          * FIXME this is a hack for kexec, we need to reset the exception
906          * endian before starting the new kernel and this is a convenient place
907          * to do it.
908          *
909          * This is also called on boot when a fadump happens. In that case we
910          * must not change the exception endian mode.
911          */
912         if (firmware_has_feature(FW_FEATURE_SET_MODE) && !is_fadump_active())
913                 pseries_big_endian_exceptions();
914 #endif
915 }
916 
917 /*
918  * NOTE: for updatepp ops we are fortunate that the linux "newpp" bits and
919  * the low 3 bits of flags happen to line up.  So no transform is needed.
920  * We can probably optimize here and assume the high bits of newpp are
921  * already zero.  For now I am paranoid.
922  */
923 static long pSeries_lpar_hpte_updatepp(unsigned long slot,
924                                        unsigned long newpp,
925                                        unsigned long vpn,
926                                        int psize, int apsize,
927                                        int ssize, unsigned long inv_flags)
928 {
929         unsigned long lpar_rc;
930         unsigned long flags;
931         unsigned long want_v;
932 
933         want_v = hpte_encode_avpn(vpn, psize, ssize);
934 
935         flags = (newpp & (HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_LO)) | H_AVPN;
936         flags |= (newpp & HPTE_R_KEY_HI) >> 48;
937         if (mmu_has_feature(MMU_FTR_KERNEL_RO))
938                 /* Move pp0 into bit 8 (IBM 55) */
939                 flags |= (newpp & HPTE_R_PP0) >> 55;
940 
941         pr_devel("    update: avpnv=%016lx, hash=%016lx, f=%lx, psize: %d ...",
942                  want_v, slot, flags, psize);
943 
944         lpar_rc = plpar_pte_protect(flags, slot, want_v);
945 
946         if (lpar_rc == H_NOT_FOUND) {
947                 pr_devel("not found !\n");
948                 return -1;
949         }
950 
951         pr_devel("ok\n");
952 
953         BUG_ON(lpar_rc != H_SUCCESS);
954 
955         return 0;
956 }
957 
958 static long __pSeries_lpar_hpte_find(unsigned long want_v, unsigned long hpte_group)
959 {
960         long lpar_rc;
961         unsigned long i, j;
962         struct {
963                 unsigned long pteh;
964                 unsigned long ptel;
965         } ptes[4];
966 
967         for (i = 0; i < HPTES_PER_GROUP; i += 4, hpte_group += 4) {
968 
969                 lpar_rc = plpar_pte_read_4(0, hpte_group, (void *)ptes);
970                 if (lpar_rc != H_SUCCESS) {
971                         pr_info("Failed to read hash page table at %ld err %ld\n",
972                                 hpte_group, lpar_rc);
973                         continue;
974                 }
975 
976                 for (j = 0; j < 4; j++) {
977                         if (HPTE_V_COMPARE(ptes[j].pteh, want_v) &&
978                             (ptes[j].pteh & HPTE_V_VALID))
979                                 return i + j;
980                 }
981         }
982 
983         return -1;
984 }
985 
986 static long pSeries_lpar_hpte_find(unsigned long vpn, int psize, int ssize)
987 {
988         long slot;
989         unsigned long hash;
990         unsigned long want_v;
991         unsigned long hpte_group;
992 
993         hash = hpt_hash(vpn, mmu_psize_defs[psize].shift, ssize);
994         want_v = hpte_encode_avpn(vpn, psize, ssize);
995 
996         /*
997          * We try to keep bolted entries always in primary hash
998          * But in some case we can find them in secondary too.
999          */
1000         hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1001         slot = __pSeries_lpar_hpte_find(want_v, hpte_group);
1002         if (slot < 0) {
1003                 /* Try in secondary */
1004                 hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP;
1005                 slot = __pSeries_lpar_hpte_find(want_v, hpte_group);
1006                 if (slot < 0)
1007                         return -1;
1008         }
1009         return hpte_group + slot;
1010 }
1011 
1012 static void pSeries_lpar_hpte_updateboltedpp(unsigned long newpp,
1013                                              unsigned long ea,
1014                                              int psize, int ssize)
1015 {
1016         unsigned long vpn;
1017         unsigned long lpar_rc, slot, vsid, flags;
1018 
1019         vsid = get_kernel_vsid(ea, ssize);
1020         vpn = hpt_vpn(ea, vsid, ssize);
1021 
1022         slot = pSeries_lpar_hpte_find(vpn, psize, ssize);
1023         BUG_ON(slot == -1);
1024 
1025         flags = newpp & (HPTE_R_PP | HPTE_R_N);
1026         if (mmu_has_feature(MMU_FTR_KERNEL_RO))
1027                 /* Move pp0 into bit 8 (IBM 55) */
1028                 flags |= (newpp & HPTE_R_PP0) >> 55;
1029 
1030         flags |= ((newpp & HPTE_R_KEY_HI) >> 48) | (newpp & HPTE_R_KEY_LO);
1031 
1032         lpar_rc = plpar_pte_protect(flags, slot, 0);
1033 
1034         BUG_ON(lpar_rc != H_SUCCESS);
1035 }
1036 
1037 static void pSeries_lpar_hpte_invalidate(unsigned long slot, unsigned long vpn,
1038                                          int psize, int apsize,
1039                                          int ssize, int local)
1040 {
1041         unsigned long want_v;
1042         unsigned long lpar_rc;
1043         unsigned long dummy1, dummy2;
1044 
1045         pr_devel("    inval : slot=%lx, vpn=%016lx, psize: %d, local: %d\n",
1046                  slot, vpn, psize, local);
1047 
1048         want_v = hpte_encode_avpn(vpn, psize, ssize);
1049         lpar_rc = plpar_pte_remove(H_AVPN, slot, want_v, &dummy1, &dummy2);
1050         if (lpar_rc == H_NOT_FOUND)
1051                 return;
1052 
1053         BUG_ON(lpar_rc != H_SUCCESS);
1054 }
1055 
1056 
1057 /*
1058  * As defined in the PAPR's section 14.5.4.1.8
1059  * The control mask doesn't include the returned reference and change bit from
1060  * the processed PTE.
1061  */
1062 #define HBLKR_AVPN              0x0100000000000000UL
1063 #define HBLKR_CTRL_MASK         0xf800000000000000UL
1064 #define HBLKR_CTRL_SUCCESS      0x8000000000000000UL
1065 #define HBLKR_CTRL_ERRNOTFOUND  0x8800000000000000UL
1066 #define HBLKR_CTRL_ERRBUSY      0xa000000000000000UL
1067 
1068 /*
1069  * Returned true if we are supporting this block size for the specified segment
1070  * base page size and actual page size.
1071  *
1072  * Currently, we only support 8 size block.
1073  */
1074 static inline bool is_supported_hlbkrm(int bpsize, int psize)
1075 {
1076         return (hblkrm_size[bpsize][psize] == HBLKRM_SUPPORTED_BLOCK_SIZE);
1077 }
1078 
1079 /**
1080  * H_BLOCK_REMOVE caller.
1081  * @idx should point to the latest @param entry set with a PTEX.
1082  * If PTE cannot be processed because another CPUs has already locked that
1083  * group, those entries are put back in @param starting at index 1.
1084  * If entries has to be retried and @retry_busy is set to true, these entries
1085  * are retried until success. If @retry_busy is set to false, the returned
1086  * is the number of entries yet to process.
1087  */
1088 static unsigned long call_block_remove(unsigned long idx, unsigned long *param,
1089                                        bool retry_busy)
1090 {
1091         unsigned long i, rc, new_idx;
1092         unsigned long retbuf[PLPAR_HCALL9_BUFSIZE];
1093 
1094         if (idx < 2) {
1095                 pr_warn("Unexpected empty call to H_BLOCK_REMOVE");
1096                 return 0;
1097         }
1098 again:
1099         new_idx = 0;
1100         if (idx > PLPAR_HCALL9_BUFSIZE) {
1101                 pr_err("Too many PTEs (%lu) for H_BLOCK_REMOVE", idx);
1102                 idx = PLPAR_HCALL9_BUFSIZE;
1103         } else if (idx < PLPAR_HCALL9_BUFSIZE)
1104                 param[idx] = HBR_END;
1105 
1106         rc = plpar_hcall9(H_BLOCK_REMOVE, retbuf,
1107                           param[0], /* AVA */
1108                           param[1],  param[2],  param[3],  param[4], /* TS0-7 */
1109                           param[5],  param[6],  param[7],  param[8]);
1110         if (rc == H_SUCCESS)
1111                 return 0;
1112 
1113         BUG_ON(rc != H_PARTIAL);
1114 
1115         /* Check that the unprocessed entries were 'not found' or 'busy' */
1116         for (i = 0; i < idx-1; i++) {
1117                 unsigned long ctrl = retbuf[i] & HBLKR_CTRL_MASK;
1118 
1119                 if (ctrl == HBLKR_CTRL_ERRBUSY) {
1120                         param[++new_idx] = param[i+1];
1121                         continue;
1122                 }
1123 
1124                 BUG_ON(ctrl != HBLKR_CTRL_SUCCESS
1125                        && ctrl != HBLKR_CTRL_ERRNOTFOUND);
1126         }
1127 
1128         /*
1129          * If there were entries found busy, retry these entries if requested,
1130          * of if all the entries have to be retried.
1131          */
1132         if (new_idx && (retry_busy || new_idx == (PLPAR_HCALL9_BUFSIZE-1))) {
1133                 idx = new_idx + 1;
1134                 goto again;
1135         }
1136 
1137         return new_idx;
1138 }
1139 
1140 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1141 /*
1142  * Limit iterations holding pSeries_lpar_tlbie_lock to 3. We also need
1143  * to make sure that we avoid bouncing the hypervisor tlbie lock.
1144  */
1145 #define PPC64_HUGE_HPTE_BATCH 12
1146 
1147 static void hugepage_block_invalidate(unsigned long *slot, unsigned long *vpn,
1148                                       int count, int psize, int ssize)
1149 {
1150         unsigned long param[PLPAR_HCALL9_BUFSIZE];
1151         unsigned long shift, current_vpgb, vpgb;
1152         int i, pix = 0;
1153 
1154         shift = mmu_psize_defs[psize].shift;
1155 
1156         for (i = 0; i < count; i++) {
1157                 /*
1158                  * Shifting 3 bits more on the right to get a
1159                  * 8 pages aligned virtual addresse.
1160                  */
1161                 vpgb = (vpn[i] >> (shift - VPN_SHIFT + 3));
1162                 if (!pix || vpgb != current_vpgb) {
1163                         /*
1164                          * Need to start a new 8 pages block, flush
1165                          * the current one if needed.
1166                          */
1167                         if (pix)
1168                                 (void)call_block_remove(pix, param, true);
1169                         current_vpgb = vpgb;
1170                         param[0] = hpte_encode_avpn(vpn[i], psize, ssize);
1171                         pix = 1;
1172                 }
1173 
1174                 param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot[i];
1175                 if (pix == PLPAR_HCALL9_BUFSIZE) {
1176                         pix = call_block_remove(pix, param, false);
1177                         /*
1178                          * pix = 0 means that all the entries were
1179                          * removed, we can start a new block.
1180                          * Otherwise, this means that there are entries
1181                          * to retry, and pix points to latest one, so
1182                          * we should increment it and try to continue
1183                          * the same block.
1184                          */
1185                         if (pix)
1186                                 pix++;
1187                 }
1188         }
1189         if (pix)
1190                 (void)call_block_remove(pix, param, true);
1191 }
1192 
1193 static void hugepage_bulk_invalidate(unsigned long *slot, unsigned long *vpn,
1194                                      int count, int psize, int ssize)
1195 {
1196         unsigned long param[PLPAR_HCALL9_BUFSIZE];
1197         int i = 0, pix = 0, rc;
1198 
1199         for (i = 0; i < count; i++) {
1200 
1201                 if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) {
1202                         pSeries_lpar_hpte_invalidate(slot[i], vpn[i], psize, 0,
1203                                                      ssize, 0);
1204                 } else {
1205                         param[pix] = HBR_REQUEST | HBR_AVPN | slot[i];
1206                         param[pix+1] = hpte_encode_avpn(vpn[i], psize, ssize);
1207                         pix += 2;
1208                         if (pix == 8) {
1209                                 rc = plpar_hcall9(H_BULK_REMOVE, param,
1210                                                   param[0], param[1], param[2],
1211                                                   param[3], param[4], param[5],
1212                                                   param[6], param[7]);
1213                                 BUG_ON(rc != H_SUCCESS);
1214                                 pix = 0;
1215                         }
1216                 }
1217         }
1218         if (pix) {
1219                 param[pix] = HBR_END;
1220                 rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1],
1221                                   param[2], param[3], param[4], param[5],
1222                                   param[6], param[7]);
1223                 BUG_ON(rc != H_SUCCESS);
1224         }
1225 }
1226 
1227 static inline void __pSeries_lpar_hugepage_invalidate(unsigned long *slot,
1228                                                       unsigned long *vpn,
1229                                                       int count, int psize,
1230                                                       int ssize)
1231 {
1232         unsigned long flags = 0;
1233         int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE);
1234 
1235         if (lock_tlbie)
1236                 spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags);
1237 
1238         /* Assuming THP size is 16M */
1239         if (is_supported_hlbkrm(psize, MMU_PAGE_16M))
1240                 hugepage_block_invalidate(slot, vpn, count, psize, ssize);
1241         else
1242                 hugepage_bulk_invalidate(slot, vpn, count, psize, ssize);
1243 
1244         if (lock_tlbie)
1245                 spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags);
1246 }
1247 
1248 static void pSeries_lpar_hugepage_invalidate(unsigned long vsid,
1249                                              unsigned long addr,
1250                                              unsigned char *hpte_slot_array,
1251                                              int psize, int ssize, int local)
1252 {
1253         int i, index = 0;
1254         unsigned long s_addr = addr;
1255         unsigned int max_hpte_count, valid;
1256         unsigned long vpn_array[PPC64_HUGE_HPTE_BATCH];
1257         unsigned long slot_array[PPC64_HUGE_HPTE_BATCH];
1258         unsigned long shift, hidx, vpn = 0, hash, slot;
1259 
1260         shift = mmu_psize_defs[psize].shift;
1261         max_hpte_count = 1U << (PMD_SHIFT - shift);
1262 
1263         for (i = 0; i < max_hpte_count; i++) {
1264                 valid = hpte_valid(hpte_slot_array, i);
1265                 if (!valid)
1266                         continue;
1267                 hidx =  hpte_hash_index(hpte_slot_array, i);
1268 
1269                 /* get the vpn */
1270                 addr = s_addr + (i * (1ul << shift));
1271                 vpn = hpt_vpn(addr, vsid, ssize);
1272                 hash = hpt_hash(vpn, shift, ssize);
1273                 if (hidx & _PTEIDX_SECONDARY)
1274                         hash = ~hash;
1275 
1276                 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1277                 slot += hidx & _PTEIDX_GROUP_IX;
1278 
1279                 slot_array[index] = slot;
1280                 vpn_array[index] = vpn;
1281                 if (index == PPC64_HUGE_HPTE_BATCH - 1) {
1282                         /*
1283                          * Now do a bluk invalidate
1284                          */
1285                         __pSeries_lpar_hugepage_invalidate(slot_array,
1286                                                            vpn_array,
1287                                                            PPC64_HUGE_HPTE_BATCH,
1288                                                            psize, ssize);
1289                         index = 0;
1290                 } else
1291                         index++;
1292         }
1293         if (index)
1294                 __pSeries_lpar_hugepage_invalidate(slot_array, vpn_array,
1295                                                    index, psize, ssize);
1296 }
1297 #else
1298 static void pSeries_lpar_hugepage_invalidate(unsigned long vsid,
1299                                              unsigned long addr,
1300                                              unsigned char *hpte_slot_array,
1301                                              int psize, int ssize, int local)
1302 {
1303         WARN(1, "%s called without THP support\n", __func__);
1304 }
1305 #endif
1306 
1307 static int pSeries_lpar_hpte_removebolted(unsigned long ea,
1308                                           int psize, int ssize)
1309 {
1310         unsigned long vpn;
1311         unsigned long slot, vsid;
1312 
1313         vsid = get_kernel_vsid(ea, ssize);
1314         vpn = hpt_vpn(ea, vsid, ssize);
1315 
1316         slot = pSeries_lpar_hpte_find(vpn, psize, ssize);
1317         if (slot == -1)
1318                 return -ENOENT;
1319 
1320         /*
1321          * lpar doesn't use the passed actual page size
1322          */
1323         pSeries_lpar_hpte_invalidate(slot, vpn, psize, 0, ssize, 0);
1324         return 0;
1325 }
1326 
1327 
1328 static inline unsigned long compute_slot(real_pte_t pte,
1329                                          unsigned long vpn,
1330                                          unsigned long index,
1331                                          unsigned long shift,
1332                                          int ssize)
1333 {
1334         unsigned long slot, hash, hidx;
1335 
1336         hash = hpt_hash(vpn, shift, ssize);
1337         hidx = __rpte_to_hidx(pte, index);
1338         if (hidx & _PTEIDX_SECONDARY)
1339                 hash = ~hash;
1340         slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1341         slot += hidx & _PTEIDX_GROUP_IX;
1342         return slot;
1343 }
1344 
1345 /**
1346  * The hcall H_BLOCK_REMOVE implies that the virtual pages to processed are
1347  * "all within the same naturally aligned 8 page virtual address block".
1348  */
1349 static void do_block_remove(unsigned long number, struct ppc64_tlb_batch *batch,
1350                             unsigned long *param)
1351 {
1352         unsigned long vpn;
1353         unsigned long i, pix = 0;
1354         unsigned long index, shift, slot, current_vpgb, vpgb;
1355         real_pte_t pte;
1356         int psize, ssize;
1357 
1358         psize = batch->psize;
1359         ssize = batch->ssize;
1360 
1361         for (i = 0; i < number; i++) {
1362                 vpn = batch->vpn[i];
1363                 pte = batch->pte[i];
1364                 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1365                         /*
1366                          * Shifting 3 bits more on the right to get a
1367                          * 8 pages aligned virtual addresse.
1368                          */
1369                         vpgb = (vpn >> (shift - VPN_SHIFT + 3));
1370                         if (!pix || vpgb != current_vpgb) {
1371                                 /*
1372                                  * Need to start a new 8 pages block, flush
1373                                  * the current one if needed.
1374                                  */
1375                                 if (pix)
1376                                         (void)call_block_remove(pix, param,
1377                                                                 true);
1378                                 current_vpgb = vpgb;
1379                                 param[0] = hpte_encode_avpn(vpn, psize,
1380                                                             ssize);
1381                                 pix = 1;
1382                         }
1383 
1384                         slot = compute_slot(pte, vpn, index, shift, ssize);
1385                         param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot;
1386 
1387                         if (pix == PLPAR_HCALL9_BUFSIZE) {
1388                                 pix = call_block_remove(pix, param, false);
1389                                 /*
1390                                  * pix = 0 means that all the entries were
1391                                  * removed, we can start a new block.
1392                                  * Otherwise, this means that there are entries
1393                                  * to retry, and pix points to latest one, so
1394                                  * we should increment it and try to continue
1395                                  * the same block.
1396                                  */
1397                                 if (pix)
1398                                         pix++;
1399                         }
1400                 } pte_iterate_hashed_end();
1401         }
1402 
1403         if (pix)
1404                 (void)call_block_remove(pix, param, true);
1405 }
1406 
1407 /*
1408  * TLB Block Invalidate Characteristics
1409  *
1410  * These characteristics define the size of the block the hcall H_BLOCK_REMOVE
1411  * is able to process for each couple segment base page size, actual page size.
1412  *
1413  * The ibm,get-system-parameter properties is returning a buffer with the
1414  * following layout:
1415  *
1416  * [ 2 bytes size of the RTAS buffer (excluding these 2 bytes) ]
1417  * -----------------
1418  * TLB Block Invalidate Specifiers:
1419  * [ 1 byte LOG base 2 of the TLB invalidate block size being specified ]
1420  * [ 1 byte Number of page sizes (N) that are supported for the specified
1421  *          TLB invalidate block size ]
1422  * [ 1 byte Encoded segment base page size and actual page size
1423  *          MSB=0 means 4k segment base page size and actual page size
1424  *          MSB=1 the penc value in mmu_psize_def ]
1425  * ...
1426  * -----------------
1427  * Next TLB Block Invalidate Specifiers...
1428  * -----------------
1429  * [ 0 ]
1430  */
1431 static inline void set_hblkrm_bloc_size(int bpsize, int psize,
1432                                         unsigned int block_size)
1433 {
1434         if (block_size > hblkrm_size[bpsize][psize])
1435                 hblkrm_size[bpsize][psize] = block_size;
1436 }
1437 
1438 /*
1439  * Decode the Encoded segment base page size and actual page size.
1440  * PAPR specifies:
1441  *   - bit 7 is the L bit
1442  *   - bits 0-5 are the penc value
1443  * If the L bit is 0, this means 4K segment base page size and actual page size
1444  * otherwise the penc value should be read.
1445  */
1446 #define HBLKRM_L_MASK           0x80
1447 #define HBLKRM_PENC_MASK        0x3f
1448 static inline void __init check_lp_set_hblkrm(unsigned int lp,
1449                                               unsigned int block_size)
1450 {
1451         unsigned int bpsize, psize;
1452 
1453         /* First, check the L bit, if not set, this means 4K */
1454         if ((lp & HBLKRM_L_MASK) == 0) {
1455                 set_hblkrm_bloc_size(MMU_PAGE_4K, MMU_PAGE_4K, block_size);
1456                 return;
1457         }
1458 
1459         lp &= HBLKRM_PENC_MASK;
1460         for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++) {
1461                 struct mmu_psize_def *def = &mmu_psize_defs[bpsize];
1462 
1463                 for (psize = 0; psize < MMU_PAGE_COUNT; psize++) {
1464                         if (def->penc[psize] == lp) {
1465                                 set_hblkrm_bloc_size(bpsize, psize, block_size);
1466                                 return;
1467                         }
1468                 }
1469         }
1470 }
1471 
1472 /*
1473  * The size of the TLB Block Invalidate Characteristics is variable. But at the
1474  * maximum it will be the number of possible page sizes *2 + 10 bytes.
1475  * Currently MMU_PAGE_COUNT is 16, which means 42 bytes. Use a cache line size
1476  * (128 bytes) for the buffer to get plenty of space.
1477  */
1478 #define SPLPAR_TLB_BIC_MAXLENGTH        128
1479 
1480 void __init pseries_lpar_read_hblkrm_characteristics(void)
1481 {
1482         static struct papr_sysparm_buf buf __initdata;
1483         int len, idx, bpsize;
1484 
1485         if (!firmware_has_feature(FW_FEATURE_BLOCK_REMOVE))
1486                 return;
1487 
1488         if (papr_sysparm_get(PAPR_SYSPARM_TLB_BLOCK_INVALIDATE_ATTRS, &buf))
1489                 return;
1490 
1491         len = be16_to_cpu(buf.len);
1492         if (len > SPLPAR_TLB_BIC_MAXLENGTH) {
1493                 pr_warn("%s too large returned buffer %d", __func__, len);
1494                 return;
1495         }
1496 
1497         idx = 0;
1498         while (idx < len) {
1499                 u8 block_shift = buf.val[idx++];
1500                 u32 block_size;
1501                 unsigned int npsize;
1502 
1503                 if (!block_shift)
1504                         break;
1505 
1506                 block_size = 1 << block_shift;
1507 
1508                 for (npsize = buf.val[idx++];
1509                      npsize > 0 && idx < len; npsize--)
1510                         check_lp_set_hblkrm((unsigned int)buf.val[idx++],
1511                                             block_size);
1512         }
1513 
1514         for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
1515                 for (idx = 0; idx < MMU_PAGE_COUNT; idx++)
1516                         if (hblkrm_size[bpsize][idx])
1517                                 pr_info("H_BLOCK_REMOVE supports base psize:%d psize:%d block size:%d",
1518                                         bpsize, idx, hblkrm_size[bpsize][idx]);
1519 }
1520 
1521 /*
1522  * Take a spinlock around flushes to avoid bouncing the hypervisor tlbie
1523  * lock.
1524  */
1525 static void pSeries_lpar_flush_hash_range(unsigned long number, int local)
1526 {
1527         unsigned long vpn;
1528         unsigned long i, pix, rc;
1529         unsigned long flags = 0;
1530         struct ppc64_tlb_batch *batch = this_cpu_ptr(&ppc64_tlb_batch);
1531         int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE);
1532         unsigned long param[PLPAR_HCALL9_BUFSIZE];
1533         unsigned long index, shift, slot;
1534         real_pte_t pte;
1535         int psize, ssize;
1536 
1537         if (lock_tlbie)
1538                 spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags);
1539 
1540         if (is_supported_hlbkrm(batch->psize, batch->psize)) {
1541                 do_block_remove(number, batch, param);
1542                 goto out;
1543         }
1544 
1545         psize = batch->psize;
1546         ssize = batch->ssize;
1547         pix = 0;
1548         for (i = 0; i < number; i++) {
1549                 vpn = batch->vpn[i];
1550                 pte = batch->pte[i];
1551                 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1552                         slot = compute_slot(pte, vpn, index, shift, ssize);
1553                         if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) {
1554                                 /*
1555                                  * lpar doesn't use the passed actual page size
1556                                  */
1557                                 pSeries_lpar_hpte_invalidate(slot, vpn, psize,
1558                                                              0, ssize, local);
1559                         } else {
1560                                 param[pix] = HBR_REQUEST | HBR_AVPN | slot;
1561                                 param[pix+1] = hpte_encode_avpn(vpn, psize,
1562                                                                 ssize);
1563                                 pix += 2;
1564                                 if (pix == 8) {
1565                                         rc = plpar_hcall9(H_BULK_REMOVE, param,
1566                                                 param[0], param[1], param[2],
1567                                                 param[3], param[4], param[5],
1568                                                 param[6], param[7]);
1569                                         BUG_ON(rc != H_SUCCESS);
1570                                         pix = 0;
1571                                 }
1572                         }
1573                 } pte_iterate_hashed_end();
1574         }
1575         if (pix) {
1576                 param[pix] = HBR_END;
1577                 rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1],
1578                                   param[2], param[3], param[4], param[5],
1579                                   param[6], param[7]);
1580                 BUG_ON(rc != H_SUCCESS);
1581         }
1582 
1583 out:
1584         if (lock_tlbie)
1585                 spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags);
1586 }
1587 
1588 static int __init disable_bulk_remove(char *str)
1589 {
1590         if (strcmp(str, "off") == 0 &&
1591             firmware_has_feature(FW_FEATURE_BULK_REMOVE)) {
1592                 pr_info("Disabling BULK_REMOVE firmware feature");
1593                 powerpc_firmware_features &= ~FW_FEATURE_BULK_REMOVE;
1594         }
1595         return 1;
1596 }
1597 
1598 __setup("bulk_remove=", disable_bulk_remove);
1599 
1600 #define HPT_RESIZE_TIMEOUT      10000 /* ms */
1601 
1602 struct hpt_resize_state {
1603         unsigned long shift;
1604         int commit_rc;
1605 };
1606 
1607 static int pseries_lpar_resize_hpt_commit(void *data)
1608 {
1609         struct hpt_resize_state *state = data;
1610 
1611         state->commit_rc = plpar_resize_hpt_commit(0, state->shift);
1612         if (state->commit_rc != H_SUCCESS)
1613                 return -EIO;
1614 
1615         /* Hypervisor has transitioned the HTAB, update our globals */
1616         ppc64_pft_size = state->shift;
1617         htab_size_bytes = 1UL << ppc64_pft_size;
1618         htab_hash_mask = (htab_size_bytes >> 7) - 1;
1619 
1620         return 0;
1621 }
1622 
1623 /*
1624  * Must be called in process context. The caller must hold the
1625  * cpus_lock.
1626  */
1627 static int pseries_lpar_resize_hpt(unsigned long shift)
1628 {
1629         struct hpt_resize_state state = {
1630                 .shift = shift,
1631                 .commit_rc = H_FUNCTION,
1632         };
1633         unsigned int delay, total_delay = 0;
1634         int rc;
1635         ktime_t t0, t1, t2;
1636 
1637         might_sleep();
1638 
1639         if (!firmware_has_feature(FW_FEATURE_HPT_RESIZE))
1640                 return -ENODEV;
1641 
1642         pr_info("Attempting to resize HPT to shift %lu\n", shift);
1643 
1644         t0 = ktime_get();
1645 
1646         rc = plpar_resize_hpt_prepare(0, shift);
1647         while (H_IS_LONG_BUSY(rc)) {
1648                 delay = get_longbusy_msecs(rc);
1649                 total_delay += delay;
1650                 if (total_delay > HPT_RESIZE_TIMEOUT) {
1651                         /* prepare with shift==0 cancels an in-progress resize */
1652                         rc = plpar_resize_hpt_prepare(0, 0);
1653                         if (rc != H_SUCCESS)
1654                                 pr_warn("Unexpected error %d cancelling timed out HPT resize\n",
1655                                        rc);
1656                         return -ETIMEDOUT;
1657                 }
1658                 msleep(delay);
1659                 rc = plpar_resize_hpt_prepare(0, shift);
1660         }
1661 
1662         switch (rc) {
1663         case H_SUCCESS:
1664                 /* Continue on */
1665                 break;
1666 
1667         case H_PARAMETER:
1668                 pr_warn("Invalid argument from H_RESIZE_HPT_PREPARE\n");
1669                 return -EINVAL;
1670         case H_RESOURCE:
1671                 pr_warn("Operation not permitted from H_RESIZE_HPT_PREPARE\n");
1672                 return -EPERM;
1673         default:
1674                 pr_warn("Unexpected error %d from H_RESIZE_HPT_PREPARE\n", rc);
1675                 return -EIO;
1676         }
1677 
1678         t1 = ktime_get();
1679 
1680         rc = stop_machine_cpuslocked(pseries_lpar_resize_hpt_commit,
1681                                      &state, NULL);
1682 
1683         t2 = ktime_get();
1684 
1685         if (rc != 0) {
1686                 switch (state.commit_rc) {
1687                 case H_PTEG_FULL:
1688                         return -ENOSPC;
1689 
1690                 default:
1691                         pr_warn("Unexpected error %d from H_RESIZE_HPT_COMMIT\n",
1692                                 state.commit_rc);
1693                         return -EIO;
1694                 };
1695         }
1696 
1697         pr_info("HPT resize to shift %lu complete (%lld ms / %lld ms)\n",
1698                 shift, (long long) ktime_ms_delta(t1, t0),
1699                 (long long) ktime_ms_delta(t2, t1));
1700 
1701         return 0;
1702 }
1703 
1704 void __init hpte_init_pseries(void)
1705 {
1706         mmu_hash_ops.hpte_invalidate     = pSeries_lpar_hpte_invalidate;
1707         mmu_hash_ops.hpte_updatepp       = pSeries_lpar_hpte_updatepp;
1708         mmu_hash_ops.hpte_updateboltedpp = pSeries_lpar_hpte_updateboltedpp;
1709         mmu_hash_ops.hpte_insert         = pSeries_lpar_hpte_insert;
1710         mmu_hash_ops.hpte_remove         = pSeries_lpar_hpte_remove;
1711         mmu_hash_ops.hpte_removebolted   = pSeries_lpar_hpte_removebolted;
1712         mmu_hash_ops.flush_hash_range    = pSeries_lpar_flush_hash_range;
1713         mmu_hash_ops.hpte_clear_all      = pseries_hpte_clear_all;
1714         mmu_hash_ops.hugepage_invalidate = pSeries_lpar_hugepage_invalidate;
1715 
1716         if (firmware_has_feature(FW_FEATURE_HPT_RESIZE))
1717                 mmu_hash_ops.resize_hpt = pseries_lpar_resize_hpt;
1718 
1719         /*
1720          * On POWER9, we need to do a H_REGISTER_PROC_TBL hcall
1721          * to inform the hypervisor that we wish to use the HPT.
1722          */
1723         if (cpu_has_feature(CPU_FTR_ARCH_300))
1724                 pseries_lpar_register_process_table(0, 0, 0);
1725 }
1726 #endif /* CONFIG_PPC_64S_HASH_MMU */
1727 
1728 #ifdef CONFIG_PPC_RADIX_MMU
1729 void __init radix_init_pseries(void)
1730 {
1731         pr_info("Using radix MMU under hypervisor\n");
1732 
1733         pseries_lpar_register_process_table(__pa(process_tb),
1734                                                 0, PRTB_SIZE_SHIFT - 12);
1735 }
1736 #endif
1737 
1738 #ifdef CONFIG_PPC_SMLPAR
1739 #define CMO_FREE_HINT_DEFAULT 1
1740 static int cmo_free_hint_flag = CMO_FREE_HINT_DEFAULT;
1741 
1742 static int __init cmo_free_hint(char *str)
1743 {
1744         char *parm;
1745         parm = strstrip(str);
1746 
1747         if (strcasecmp(parm, "no") == 0 || strcasecmp(parm, "off") == 0) {
1748                 pr_info("%s: CMO free page hinting is not active.\n", __func__);
1749                 cmo_free_hint_flag = 0;
1750                 return 1;
1751         }
1752 
1753         cmo_free_hint_flag = 1;
1754         pr_info("%s: CMO free page hinting is active.\n", __func__);
1755 
1756         if (strcasecmp(parm, "yes") == 0 || strcasecmp(parm, "on") == 0)
1757                 return 1;
1758 
1759         return 0;
1760 }
1761 
1762 __setup("cmo_free_hint=", cmo_free_hint);
1763 
1764 static void pSeries_set_page_state(struct page *page, int order,
1765                                    unsigned long state)
1766 {
1767         int i, j;
1768         unsigned long cmo_page_sz, addr;
1769 
1770         cmo_page_sz = cmo_get_page_size();
1771         addr = __pa((unsigned long)page_address(page));
1772 
1773         for (i = 0; i < (1 << order); i++, addr += PAGE_SIZE) {
1774                 for (j = 0; j < PAGE_SIZE; j += cmo_page_sz)
1775                         plpar_hcall_norets(H_PAGE_INIT, state, addr + j, 0);
1776         }
1777 }
1778 
1779 void arch_free_page(struct page *page, int order)
1780 {
1781         if (radix_enabled())
1782                 return;
1783         if (!cmo_free_hint_flag || !firmware_has_feature(FW_FEATURE_CMO))
1784                 return;
1785 
1786         pSeries_set_page_state(page, order, H_PAGE_SET_UNUSED);
1787 }
1788 EXPORT_SYMBOL(arch_free_page);
1789 
1790 #endif /* CONFIG_PPC_SMLPAR */
1791 #endif /* CONFIG_PPC_BOOK3S_64 */
1792 
1793 #ifdef CONFIG_TRACEPOINTS
1794 #ifdef CONFIG_JUMP_LABEL
1795 struct static_key hcall_tracepoint_key = STATIC_KEY_INIT;
1796 
1797 int hcall_tracepoint_regfunc(void)
1798 {
1799         static_key_slow_inc(&hcall_tracepoint_key);
1800         return 0;
1801 }
1802 
1803 void hcall_tracepoint_unregfunc(void)
1804 {
1805         static_key_slow_dec(&hcall_tracepoint_key);
1806 }
1807 #else
1808 /*
1809  * We optimise our hcall path by placing hcall_tracepoint_refcount
1810  * directly in the TOC so we can check if the hcall tracepoints are
1811  * enabled via a single load.
1812  */
1813 
1814 /* NB: reg/unreg are called while guarded with the tracepoints_mutex */
1815 extern long hcall_tracepoint_refcount;
1816 
1817 int hcall_tracepoint_regfunc(void)
1818 {
1819         hcall_tracepoint_refcount++;
1820         return 0;
1821 }
1822 
1823 void hcall_tracepoint_unregfunc(void)
1824 {
1825         hcall_tracepoint_refcount--;
1826 }
1827 #endif
1828 
1829 /*
1830  * Keep track of hcall tracing depth and prevent recursion. Warn if any is
1831  * detected because it may indicate a problem. This will not catch all
1832  * problems with tracing code making hcalls, because the tracing might have
1833  * been invoked from a non-hcall, so the first hcall could recurse into it
1834  * without warning here, but this better than nothing.
1835  *
1836  * Hcalls with specific problems being traced should use the _notrace
1837  * plpar_hcall variants.
1838  */
1839 static DEFINE_PER_CPU(unsigned int, hcall_trace_depth);
1840 
1841 
1842 notrace void __trace_hcall_entry(unsigned long opcode, unsigned long *args)
1843 {
1844         unsigned long flags;
1845         unsigned int *depth;
1846 
1847         local_irq_save(flags);
1848 
1849         depth = this_cpu_ptr(&hcall_trace_depth);
1850 
1851         if (WARN_ON_ONCE(*depth))
1852                 goto out;
1853 
1854         (*depth)++;
1855         preempt_disable();
1856         trace_hcall_entry(opcode, args);
1857         (*depth)--;
1858 
1859 out:
1860         local_irq_restore(flags);
1861 }
1862 
1863 notrace void __trace_hcall_exit(long opcode, long retval, unsigned long *retbuf)
1864 {
1865         unsigned long flags;
1866         unsigned int *depth;
1867 
1868         local_irq_save(flags);
1869 
1870         depth = this_cpu_ptr(&hcall_trace_depth);
1871 
1872         if (*depth) /* Don't warn again on the way out */
1873                 goto out;
1874 
1875         (*depth)++;
1876         trace_hcall_exit(opcode, retval, retbuf);
1877         preempt_enable();
1878         (*depth)--;
1879 
1880 out:
1881         local_irq_restore(flags);
1882 }
1883 #endif
1884 
1885 /**
1886  * h_get_mpp
1887  * H_GET_MPP hcall returns info in 7 parms
1888  */
1889 long h_get_mpp(struct hvcall_mpp_data *mpp_data)
1890 {
1891         unsigned long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
1892         long rc;
1893 
1894         rc = plpar_hcall9(H_GET_MPP, retbuf);
1895 
1896         mpp_data->entitled_mem = retbuf[0];
1897         mpp_data->mapped_mem = retbuf[1];
1898 
1899         mpp_data->group_num = (retbuf[2] >> 2 * 8) & 0xffff;
1900         mpp_data->pool_num = retbuf[2] & 0xffff;
1901 
1902         mpp_data->mem_weight = (retbuf[3] >> 7 * 8) & 0xff;
1903         mpp_data->unallocated_mem_weight = (retbuf[3] >> 6 * 8) & 0xff;
1904         mpp_data->unallocated_entitlement = retbuf[3] & 0xffffffffffffUL;
1905 
1906         mpp_data->pool_size = retbuf[4];
1907         mpp_data->loan_request = retbuf[5];
1908         mpp_data->backing_mem = retbuf[6];
1909 
1910         return rc;
1911 }
1912 EXPORT_SYMBOL(h_get_mpp);
1913 
1914 int h_get_mpp_x(struct hvcall_mpp_x_data *mpp_x_data)
1915 {
1916         int rc;
1917         unsigned long retbuf[PLPAR_HCALL9_BUFSIZE] = { 0 };
1918 
1919         rc = plpar_hcall9(H_GET_MPP_X, retbuf);
1920 
1921         mpp_x_data->coalesced_bytes = retbuf[0];
1922         mpp_x_data->pool_coalesced_bytes = retbuf[1];
1923         mpp_x_data->pool_purr_cycles = retbuf[2];
1924         mpp_x_data->pool_spurr_cycles = retbuf[3];
1925 
1926         return rc;
1927 }
1928 
1929 #ifdef CONFIG_PPC_64S_HASH_MMU
1930 static unsigned long __init vsid_unscramble(unsigned long vsid, int ssize)
1931 {
1932         unsigned long protovsid;
1933         unsigned long va_bits = VA_BITS;
1934         unsigned long modinv, vsid_modulus;
1935         unsigned long max_mod_inv, tmp_modinv;
1936 
1937         if (!mmu_has_feature(MMU_FTR_68_BIT_VA))
1938                 va_bits = 65;
1939 
1940         if (ssize == MMU_SEGSIZE_256M) {
1941                 modinv = VSID_MULINV_256M;
1942                 vsid_modulus = ((1UL << (va_bits - SID_SHIFT)) - 1);
1943         } else {
1944                 modinv = VSID_MULINV_1T;
1945                 vsid_modulus = ((1UL << (va_bits - SID_SHIFT_1T)) - 1);
1946         }
1947 
1948         /*
1949          * vsid outside our range.
1950          */
1951         if (vsid >= vsid_modulus)
1952                 return 0;
1953 
1954         /*
1955          * If modinv is the modular multiplicate inverse of (x % vsid_modulus)
1956          * and vsid = (protovsid * x) % vsid_modulus, then we say:
1957          *   protovsid = (vsid * modinv) % vsid_modulus
1958          */
1959 
1960         /* Check if (vsid * modinv) overflow (63 bits) */
1961         max_mod_inv = 0x7fffffffffffffffull / vsid;
1962         if (modinv < max_mod_inv)
1963                 return (vsid * modinv) % vsid_modulus;
1964 
1965         tmp_modinv = modinv/max_mod_inv;
1966         modinv %= max_mod_inv;
1967 
1968         protovsid = (((vsid * max_mod_inv) % vsid_modulus) * tmp_modinv) % vsid_modulus;
1969         protovsid = (protovsid + vsid * modinv) % vsid_modulus;
1970 
1971         return protovsid;
1972 }
1973 
1974 static int __init reserve_vrma_context_id(void)
1975 {
1976         unsigned long protovsid;
1977 
1978         /*
1979          * Reserve context ids which map to reserved virtual addresses. For now
1980          * we only reserve the context id which maps to the VRMA VSID. We ignore
1981          * the addresses in "ibm,adjunct-virtual-addresses" because we don't
1982          * enable adjunct support via the "ibm,client-architecture-support"
1983          * interface.
1984          */
1985         protovsid = vsid_unscramble(VRMA_VSID, MMU_SEGSIZE_1T);
1986         hash__reserve_context_id(protovsid >> ESID_BITS_1T);
1987         return 0;
1988 }
1989 machine_device_initcall(pseries, reserve_vrma_context_id);
1990 #endif
1991 
1992 #ifdef CONFIG_DEBUG_FS
1993 /* debugfs file interface for vpa data */
1994 static ssize_t vpa_file_read(struct file *filp, char __user *buf, size_t len,
1995                               loff_t *pos)
1996 {
1997         int cpu = (long)filp->private_data;
1998         struct lppaca *lppaca = &lppaca_of(cpu);
1999 
2000         return simple_read_from_buffer(buf, len, pos, lppaca,
2001                                 sizeof(struct lppaca));
2002 }
2003 
2004 static const struct file_operations vpa_fops = {
2005         .open           = simple_open,
2006         .read           = vpa_file_read,
2007         .llseek         = default_llseek,
2008 };
2009 
2010 static int __init vpa_debugfs_init(void)
2011 {
2012         char name[16];
2013         long i;
2014         struct dentry *vpa_dir;
2015 
2016         if (!firmware_has_feature(FW_FEATURE_SPLPAR))
2017                 return 0;
2018 
2019         vpa_dir = debugfs_create_dir("vpa", arch_debugfs_dir);
2020 
2021         /* set up the per-cpu vpa file*/
2022         for_each_possible_cpu(i) {
2023                 sprintf(name, "cpu-%ld", i);
2024                 debugfs_create_file(name, 0400, vpa_dir, (void *)i, &vpa_fops);
2025         }
2026 
2027         return 0;
2028 }
2029 machine_arch_initcall(pseries, vpa_debugfs_init);
2030 #endif /* CONFIG_DEBUG_FS */
2031 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php