~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/powerpc/platforms/pseries/ras.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-or-later
  2 /*
  3  * Copyright (C) 2001 Dave Engebretsen IBM Corporation
  4  */
  5 
  6 #include <linux/sched.h>
  7 #include <linux/interrupt.h>
  8 #include <linux/irq.h>
  9 #include <linux/of.h>
 10 #include <linux/fs.h>
 11 #include <linux/reboot.h>
 12 #include <linux/irq_work.h>
 13 
 14 #include <asm/machdep.h>
 15 #include <asm/rtas.h>
 16 #include <asm/firmware.h>
 17 #include <asm/mce.h>
 18 
 19 #include "pseries.h"
 20 
 21 static unsigned char ras_log_buf[RTAS_ERROR_LOG_MAX];
 22 static DEFINE_SPINLOCK(ras_log_buf_lock);
 23 
 24 static int ras_check_exception_token;
 25 
 26 #define EPOW_SENSOR_TOKEN       9
 27 #define EPOW_SENSOR_INDEX       0
 28 
 29 /* EPOW events counter variable */
 30 static int num_epow_events;
 31 
 32 static irqreturn_t ras_hotplug_interrupt(int irq, void *dev_id);
 33 static irqreturn_t ras_epow_interrupt(int irq, void *dev_id);
 34 static irqreturn_t ras_error_interrupt(int irq, void *dev_id);
 35 
 36 /* RTAS pseries MCE errorlog section. */
 37 struct pseries_mc_errorlog {
 38         __be32  fru_id;
 39         __be32  proc_id;
 40         u8      error_type;
 41         /*
 42          * sub_err_type (1 byte). Bit fields depends on error_type
 43          *
 44          *   MSB0
 45          *   |
 46          *   V
 47          *   01234567
 48          *   XXXXXXXX
 49          *
 50          * For error_type == MC_ERROR_TYPE_UE
 51          *   XXXXXXXX
 52          *   X          1: Permanent or Transient UE.
 53          *    X         1: Effective address provided.
 54          *     X        1: Logical address provided.
 55          *      XX      2: Reserved.
 56          *        XXX   3: Type of UE error.
 57          *
 58          * For error_type == MC_ERROR_TYPE_SLB/ERAT/TLB
 59          *   XXXXXXXX
 60          *   X          1: Effective address provided.
 61          *    XXXXX     5: Reserved.
 62          *         XX   2: Type of SLB/ERAT/TLB error.
 63          *
 64          * For error_type == MC_ERROR_TYPE_CTRL_MEM_ACCESS
 65          *   XXXXXXXX
 66          *   X          1: Error causing address provided.
 67          *    XXX       3: Type of error.
 68          *       XXXX   4: Reserved.
 69          */
 70         u8      sub_err_type;
 71         u8      reserved_1[6];
 72         __be64  effective_address;
 73         __be64  logical_address;
 74 } __packed;
 75 
 76 /* RTAS pseries MCE error types */
 77 #define MC_ERROR_TYPE_UE                0x00
 78 #define MC_ERROR_TYPE_SLB               0x01
 79 #define MC_ERROR_TYPE_ERAT              0x02
 80 #define MC_ERROR_TYPE_UNKNOWN           0x03
 81 #define MC_ERROR_TYPE_TLB               0x04
 82 #define MC_ERROR_TYPE_D_CACHE           0x05
 83 #define MC_ERROR_TYPE_I_CACHE           0x07
 84 #define MC_ERROR_TYPE_CTRL_MEM_ACCESS   0x08
 85 
 86 /* RTAS pseries MCE error sub types */
 87 #define MC_ERROR_UE_INDETERMINATE               0
 88 #define MC_ERROR_UE_IFETCH                      1
 89 #define MC_ERROR_UE_PAGE_TABLE_WALK_IFETCH      2
 90 #define MC_ERROR_UE_LOAD_STORE                  3
 91 #define MC_ERROR_UE_PAGE_TABLE_WALK_LOAD_STORE  4
 92 
 93 #define UE_EFFECTIVE_ADDR_PROVIDED              0x40
 94 #define UE_LOGICAL_ADDR_PROVIDED                0x20
 95 #define MC_EFFECTIVE_ADDR_PROVIDED              0x80
 96 
 97 #define MC_ERROR_SLB_PARITY             0
 98 #define MC_ERROR_SLB_MULTIHIT           1
 99 #define MC_ERROR_SLB_INDETERMINATE      2
100 
101 #define MC_ERROR_ERAT_PARITY            1
102 #define MC_ERROR_ERAT_MULTIHIT          2
103 #define MC_ERROR_ERAT_INDETERMINATE     3
104 
105 #define MC_ERROR_TLB_PARITY             1
106 #define MC_ERROR_TLB_MULTIHIT           2
107 #define MC_ERROR_TLB_INDETERMINATE      3
108 
109 #define MC_ERROR_CTRL_MEM_ACCESS_PTABLE_WALK    0
110 #define MC_ERROR_CTRL_MEM_ACCESS_OP_ACCESS      1
111 
112 static inline u8 rtas_mc_error_sub_type(const struct pseries_mc_errorlog *mlog)
113 {
114         switch (mlog->error_type) {
115         case    MC_ERROR_TYPE_UE:
116                 return (mlog->sub_err_type & 0x07);
117         case    MC_ERROR_TYPE_SLB:
118         case    MC_ERROR_TYPE_ERAT:
119         case    MC_ERROR_TYPE_TLB:
120                 return (mlog->sub_err_type & 0x03);
121         case    MC_ERROR_TYPE_CTRL_MEM_ACCESS:
122                 return (mlog->sub_err_type & 0x70) >> 4;
123         default:
124                 return 0;
125         }
126 }
127 
128 /*
129  * Enable the hotplug interrupt late because processing them may touch other
130  * devices or systems (e.g. hugepages) that have not been initialized at the
131  * subsys stage.
132  */
133 static int __init init_ras_hotplug_IRQ(void)
134 {
135         struct device_node *np;
136 
137         /* Hotplug Events */
138         np = of_find_node_by_path("/event-sources/hot-plug-events");
139         if (np != NULL) {
140                 if (dlpar_workqueue_init() == 0)
141                         request_event_sources_irqs(np, ras_hotplug_interrupt,
142                                                    "RAS_HOTPLUG");
143                 of_node_put(np);
144         }
145 
146         return 0;
147 }
148 machine_late_initcall(pseries, init_ras_hotplug_IRQ);
149 
150 /*
151  * Initialize handlers for the set of interrupts caused by hardware errors
152  * and power system events.
153  */
154 static int __init init_ras_IRQ(void)
155 {
156         struct device_node *np;
157 
158         ras_check_exception_token = rtas_function_token(RTAS_FN_CHECK_EXCEPTION);
159 
160         /* Internal Errors */
161         np = of_find_node_by_path("/event-sources/internal-errors");
162         if (np != NULL) {
163                 request_event_sources_irqs(np, ras_error_interrupt,
164                                            "RAS_ERROR");
165                 of_node_put(np);
166         }
167 
168         /* EPOW Events */
169         np = of_find_node_by_path("/event-sources/epow-events");
170         if (np != NULL) {
171                 request_event_sources_irqs(np, ras_epow_interrupt, "RAS_EPOW");
172                 of_node_put(np);
173         }
174 
175         return 0;
176 }
177 machine_subsys_initcall(pseries, init_ras_IRQ);
178 
179 #define EPOW_SHUTDOWN_NORMAL                            1
180 #define EPOW_SHUTDOWN_ON_UPS                            2
181 #define EPOW_SHUTDOWN_LOSS_OF_CRITICAL_FUNCTIONS        3
182 #define EPOW_SHUTDOWN_AMBIENT_TEMPERATURE_TOO_HIGH      4
183 
184 static void handle_system_shutdown(char event_modifier)
185 {
186         switch (event_modifier) {
187         case EPOW_SHUTDOWN_NORMAL:
188                 pr_emerg("Power off requested\n");
189                 orderly_poweroff(true);
190                 break;
191 
192         case EPOW_SHUTDOWN_ON_UPS:
193                 pr_emerg("Loss of system power detected. System is running on"
194                          " UPS/battery. Check RTAS error log for details\n");
195                 break;
196 
197         case EPOW_SHUTDOWN_LOSS_OF_CRITICAL_FUNCTIONS:
198                 pr_emerg("Loss of system critical functions detected. Check"
199                          " RTAS error log for details\n");
200                 orderly_poweroff(true);
201                 break;
202 
203         case EPOW_SHUTDOWN_AMBIENT_TEMPERATURE_TOO_HIGH:
204                 pr_emerg("High ambient temperature detected. Check RTAS"
205                          " error log for details\n");
206                 orderly_poweroff(true);
207                 break;
208 
209         default:
210                 pr_err("Unknown power/cooling shutdown event (modifier = %d)\n",
211                         event_modifier);
212         }
213 }
214 
215 struct epow_errorlog {
216         unsigned char sensor_value;
217         unsigned char event_modifier;
218         unsigned char extended_modifier;
219         unsigned char reserved;
220         unsigned char platform_reason;
221 };
222 
223 #define EPOW_RESET                      0
224 #define EPOW_WARN_COOLING               1
225 #define EPOW_WARN_POWER                 2
226 #define EPOW_SYSTEM_SHUTDOWN            3
227 #define EPOW_SYSTEM_HALT                4
228 #define EPOW_MAIN_ENCLOSURE             5
229 #define EPOW_POWER_OFF                  7
230 
231 static void rtas_parse_epow_errlog(struct rtas_error_log *log)
232 {
233         struct pseries_errorlog *pseries_log;
234         struct epow_errorlog *epow_log;
235         char action_code;
236         char modifier;
237 
238         pseries_log = get_pseries_errorlog(log, PSERIES_ELOG_SECT_ID_EPOW);
239         if (pseries_log == NULL)
240                 return;
241 
242         epow_log = (struct epow_errorlog *)pseries_log->data;
243         action_code = epow_log->sensor_value & 0xF;     /* bottom 4 bits */
244         modifier = epow_log->event_modifier & 0xF;      /* bottom 4 bits */
245 
246         switch (action_code) {
247         case EPOW_RESET:
248                 if (num_epow_events) {
249                         pr_info("Non critical power/cooling issue cleared\n");
250                         num_epow_events--;
251                 }
252                 break;
253 
254         case EPOW_WARN_COOLING:
255                 pr_info("Non-critical cooling issue detected. Check RTAS error"
256                         " log for details\n");
257                 break;
258 
259         case EPOW_WARN_POWER:
260                 pr_info("Non-critical power issue detected. Check RTAS error"
261                         " log for details\n");
262                 break;
263 
264         case EPOW_SYSTEM_SHUTDOWN:
265                 handle_system_shutdown(modifier);
266                 break;
267 
268         case EPOW_SYSTEM_HALT:
269                 pr_emerg("Critical power/cooling issue detected. Check RTAS"
270                          " error log for details. Powering off.\n");
271                 orderly_poweroff(true);
272                 break;
273 
274         case EPOW_MAIN_ENCLOSURE:
275         case EPOW_POWER_OFF:
276                 pr_emerg("System about to lose power. Check RTAS error log "
277                          " for details. Powering off immediately.\n");
278                 emergency_sync();
279                 kernel_power_off();
280                 break;
281 
282         default:
283                 pr_err("Unknown power/cooling event (action code  = %d)\n",
284                         action_code);
285         }
286 
287         /* Increment epow events counter variable */
288         if (action_code != EPOW_RESET)
289                 num_epow_events++;
290 }
291 
292 static irqreturn_t ras_hotplug_interrupt(int irq, void *dev_id)
293 {
294         struct pseries_errorlog *pseries_log;
295         struct pseries_hp_errorlog *hp_elog;
296 
297         spin_lock(&ras_log_buf_lock);
298 
299         rtas_call(ras_check_exception_token, 6, 1, NULL,
300                   RTAS_VECTOR_EXTERNAL_INTERRUPT, virq_to_hw(irq),
301                   RTAS_HOTPLUG_EVENTS, 0, __pa(&ras_log_buf),
302                   rtas_get_error_log_max());
303 
304         pseries_log = get_pseries_errorlog((struct rtas_error_log *)ras_log_buf,
305                                            PSERIES_ELOG_SECT_ID_HOTPLUG);
306         hp_elog = (struct pseries_hp_errorlog *)pseries_log->data;
307 
308         /*
309          * Since PCI hotplug is not currently supported on pseries, put PCI
310          * hotplug events on the ras_log_buf to be handled by rtas_errd.
311          */
312         if (hp_elog->resource == PSERIES_HP_ELOG_RESOURCE_MEM ||
313             hp_elog->resource == PSERIES_HP_ELOG_RESOURCE_CPU ||
314             hp_elog->resource == PSERIES_HP_ELOG_RESOURCE_PMEM)
315                 queue_hotplug_event(hp_elog);
316         else
317                 log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, 0);
318 
319         spin_unlock(&ras_log_buf_lock);
320         return IRQ_HANDLED;
321 }
322 
323 /* Handle environmental and power warning (EPOW) interrupts. */
324 static irqreturn_t ras_epow_interrupt(int irq, void *dev_id)
325 {
326         int state;
327         int critical;
328 
329         rtas_get_sensor_fast(EPOW_SENSOR_TOKEN, EPOW_SENSOR_INDEX, &state);
330 
331         if (state > 3)
332                 critical = 1;           /* Time Critical */
333         else
334                 critical = 0;
335 
336         spin_lock(&ras_log_buf_lock);
337 
338         rtas_call(ras_check_exception_token, 6, 1, NULL, RTAS_VECTOR_EXTERNAL_INTERRUPT,
339                   virq_to_hw(irq), RTAS_EPOW_WARNING, critical, __pa(&ras_log_buf),
340                   rtas_get_error_log_max());
341 
342         log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, 0);
343 
344         rtas_parse_epow_errlog((struct rtas_error_log *)ras_log_buf);
345 
346         spin_unlock(&ras_log_buf_lock);
347         return IRQ_HANDLED;
348 }
349 
350 /*
351  * Handle hardware error interrupts.
352  *
353  * RTAS check-exception is called to collect data on the exception.  If
354  * the error is deemed recoverable, we log a warning and return.
355  * For nonrecoverable errors, an error is logged and we stop all processing
356  * as quickly as possible in order to prevent propagation of the failure.
357  */
358 static irqreturn_t ras_error_interrupt(int irq, void *dev_id)
359 {
360         struct rtas_error_log *rtas_elog;
361         int status;
362         int fatal;
363 
364         spin_lock(&ras_log_buf_lock);
365 
366         status = rtas_call(ras_check_exception_token, 6, 1, NULL,
367                            RTAS_VECTOR_EXTERNAL_INTERRUPT,
368                            virq_to_hw(irq),
369                            RTAS_INTERNAL_ERROR, 1 /* Time Critical */,
370                            __pa(&ras_log_buf),
371                                 rtas_get_error_log_max());
372 
373         rtas_elog = (struct rtas_error_log *)ras_log_buf;
374 
375         if (status == 0 &&
376             rtas_error_severity(rtas_elog) >= RTAS_SEVERITY_ERROR_SYNC)
377                 fatal = 1;
378         else
379                 fatal = 0;
380 
381         /* format and print the extended information */
382         log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, fatal);
383 
384         if (fatal) {
385                 pr_emerg("Fatal hardware error detected. Check RTAS error"
386                          " log for details. Powering off immediately\n");
387                 emergency_sync();
388                 kernel_power_off();
389         } else {
390                 pr_err("Recoverable hardware error detected\n");
391         }
392 
393         spin_unlock(&ras_log_buf_lock);
394         return IRQ_HANDLED;
395 }
396 
397 /*
398  * Some versions of FWNMI place the buffer inside the 4kB page starting at
399  * 0x7000. Other versions place it inside the rtas buffer. We check both.
400  * Minimum size of the buffer is 16 bytes.
401  */
402 #define VALID_FWNMI_BUFFER(A) \
403         ((((A) >= 0x7000) && ((A) <= 0x8000 - 16)) || \
404         (((A) >= rtas.base) && ((A) <= (rtas.base + rtas.size - 16))))
405 
406 static inline struct rtas_error_log *fwnmi_get_errlog(void)
407 {
408         return (struct rtas_error_log *)local_paca->mce_data_buf;
409 }
410 
411 static __be64 *fwnmi_get_savep(struct pt_regs *regs)
412 {
413         unsigned long savep_ra;
414 
415         /* Mask top two bits */
416         savep_ra = regs->gpr[3] & ~(0x3UL << 62);
417         if (!VALID_FWNMI_BUFFER(savep_ra)) {
418                 printk(KERN_ERR "FWNMI: corrupt r3 0x%016lx\n", regs->gpr[3]);
419                 return NULL;
420         }
421 
422         return __va(savep_ra);
423 }
424 
425 /*
426  * Get the error information for errors coming through the
427  * FWNMI vectors.  The pt_regs' r3 will be updated to reflect
428  * the actual r3 if possible, and a ptr to the error log entry
429  * will be returned if found.
430  *
431  * Use one buffer mce_data_buf per cpu to store RTAS error.
432  *
433  * The mce_data_buf does not have any locks or protection around it,
434  * if a second machine check comes in, or a system reset is done
435  * before we have logged the error, then we will get corruption in the
436  * error log.  This is preferable over holding off on calling
437  * ibm,nmi-interlock which would result in us checkstopping if a
438  * second machine check did come in.
439  */
440 static struct rtas_error_log *fwnmi_get_errinfo(struct pt_regs *regs)
441 {
442         struct rtas_error_log *h;
443         __be64 *savep;
444 
445         savep = fwnmi_get_savep(regs);
446         if (!savep)
447                 return NULL;
448 
449         regs->gpr[3] = be64_to_cpu(savep[0]); /* restore original r3 */
450 
451         h = (struct rtas_error_log *)&savep[1];
452         /* Use the per cpu buffer from paca to store rtas error log */
453         memset(local_paca->mce_data_buf, 0, RTAS_ERROR_LOG_MAX);
454         if (!rtas_error_extended(h)) {
455                 memcpy(local_paca->mce_data_buf, h, sizeof(__u64));
456         } else {
457                 int len, error_log_length;
458 
459                 error_log_length = 8 + rtas_error_extended_log_length(h);
460                 len = min_t(int, error_log_length, RTAS_ERROR_LOG_MAX);
461                 memcpy(local_paca->mce_data_buf, h, len);
462         }
463 
464         return (struct rtas_error_log *)local_paca->mce_data_buf;
465 }
466 
467 /* Call this when done with the data returned by FWNMI_get_errinfo.
468  * It will release the saved data area for other CPUs in the
469  * partition to receive FWNMI errors.
470  */
471 static void fwnmi_release_errinfo(void)
472 {
473         struct rtas_args rtas_args;
474         int ret;
475 
476         /*
477          * On pseries, the machine check stack is limited to under 4GB, so
478          * args can be on-stack.
479          */
480         rtas_call_unlocked(&rtas_args, ibm_nmi_interlock_token, 0, 1, NULL);
481         ret = be32_to_cpu(rtas_args.rets[0]);
482         if (ret != 0)
483                 printk(KERN_ERR "FWNMI: nmi-interlock failed: %d\n", ret);
484 }
485 
486 int pSeries_system_reset_exception(struct pt_regs *regs)
487 {
488 #ifdef __LITTLE_ENDIAN__
489         /*
490          * Some firmware byteswaps SRR registers and gives incorrect SRR1. Try
491          * to detect the bad SRR1 pattern here. Flip the NIP back to correct
492          * endian for reporting purposes. Unfortunately the MSR can't be fixed,
493          * so clear it. It will be missing MSR_RI so we won't try to recover.
494          */
495         if ((be64_to_cpu(regs->msr) &
496                         (MSR_LE|MSR_RI|MSR_DR|MSR_IR|MSR_ME|MSR_PR|
497                          MSR_ILE|MSR_HV|MSR_SF)) == (MSR_DR|MSR_SF)) {
498                 regs_set_return_ip(regs, be64_to_cpu((__be64)regs->nip));
499                 regs_set_return_msr(regs, 0);
500         }
501 #endif
502 
503         if (fwnmi_active) {
504                 __be64 *savep;
505 
506                 /*
507                  * Firmware (PowerVM and KVM) saves r3 to a save area like
508                  * machine check, which is not exactly what PAPR (2.9)
509                  * suggests but there is no way to detect otherwise, so this
510                  * is the interface now.
511                  *
512                  * System resets do not save any error log or require an
513                  * "ibm,nmi-interlock" rtas call to release.
514                  */
515 
516                 savep = fwnmi_get_savep(regs);
517                 if (savep)
518                         regs->gpr[3] = be64_to_cpu(savep[0]); /* restore original r3 */
519         }
520 
521         if (smp_handle_nmi_ipi(regs))
522                 return 1;
523 
524         return 0; /* need to perform reset */
525 }
526 
527 static int mce_handle_err_realmode(int disposition, u8 error_type)
528 {
529 #ifdef CONFIG_PPC_BOOK3S_64
530         if (disposition == RTAS_DISP_NOT_RECOVERED) {
531                 switch (error_type) {
532                 case    MC_ERROR_TYPE_ERAT:
533                         flush_erat();
534                         disposition = RTAS_DISP_FULLY_RECOVERED;
535                         break;
536                 case    MC_ERROR_TYPE_SLB:
537 #ifdef CONFIG_PPC_64S_HASH_MMU
538                         /*
539                          * Store the old slb content in paca before flushing.
540                          * Print this when we go to virtual mode.
541                          * There are chances that we may hit MCE again if there
542                          * is a parity error on the SLB entry we trying to read
543                          * for saving. Hence limit the slb saving to single
544                          * level of recursion.
545                          */
546                         if (local_paca->in_mce == 1)
547                                 slb_save_contents(local_paca->mce_faulty_slbs);
548                         flush_and_reload_slb();
549                         disposition = RTAS_DISP_FULLY_RECOVERED;
550 #endif
551                         break;
552                 default:
553                         break;
554                 }
555         } else if (disposition == RTAS_DISP_LIMITED_RECOVERY) {
556                 /* Platform corrected itself but could be degraded */
557                 pr_err("MCE: limited recovery, system may be degraded\n");
558                 disposition = RTAS_DISP_FULLY_RECOVERED;
559         }
560 #endif
561         return disposition;
562 }
563 
564 static int mce_handle_err_virtmode(struct pt_regs *regs,
565                                    struct rtas_error_log *errp,
566                                    struct pseries_mc_errorlog *mce_log,
567                                    int disposition)
568 {
569         struct mce_error_info mce_err = { 0 };
570         int initiator = rtas_error_initiator(errp);
571         int severity = rtas_error_severity(errp);
572         unsigned long eaddr = 0, paddr = 0;
573         u8 error_type, err_sub_type;
574 
575         if (!mce_log)
576                 goto out;
577 
578         error_type = mce_log->error_type;
579         err_sub_type = rtas_mc_error_sub_type(mce_log);
580 
581         if (initiator == RTAS_INITIATOR_UNKNOWN)
582                 mce_err.initiator = MCE_INITIATOR_UNKNOWN;
583         else if (initiator == RTAS_INITIATOR_CPU)
584                 mce_err.initiator = MCE_INITIATOR_CPU;
585         else if (initiator == RTAS_INITIATOR_PCI)
586                 mce_err.initiator = MCE_INITIATOR_PCI;
587         else if (initiator == RTAS_INITIATOR_ISA)
588                 mce_err.initiator = MCE_INITIATOR_ISA;
589         else if (initiator == RTAS_INITIATOR_MEMORY)
590                 mce_err.initiator = MCE_INITIATOR_MEMORY;
591         else if (initiator == RTAS_INITIATOR_POWERMGM)
592                 mce_err.initiator = MCE_INITIATOR_POWERMGM;
593         else
594                 mce_err.initiator = MCE_INITIATOR_UNKNOWN;
595 
596         if (severity == RTAS_SEVERITY_NO_ERROR)
597                 mce_err.severity = MCE_SEV_NO_ERROR;
598         else if (severity == RTAS_SEVERITY_EVENT)
599                 mce_err.severity = MCE_SEV_WARNING;
600         else if (severity == RTAS_SEVERITY_WARNING)
601                 mce_err.severity = MCE_SEV_WARNING;
602         else if (severity == RTAS_SEVERITY_ERROR_SYNC)
603                 mce_err.severity = MCE_SEV_SEVERE;
604         else if (severity == RTAS_SEVERITY_ERROR)
605                 mce_err.severity = MCE_SEV_SEVERE;
606         else
607                 mce_err.severity = MCE_SEV_FATAL;
608 
609         if (severity <= RTAS_SEVERITY_ERROR_SYNC)
610                 mce_err.sync_error = true;
611         else
612                 mce_err.sync_error = false;
613 
614         mce_err.error_type = MCE_ERROR_TYPE_UNKNOWN;
615         mce_err.error_class = MCE_ECLASS_UNKNOWN;
616 
617         switch (error_type) {
618         case MC_ERROR_TYPE_UE:
619                 mce_err.error_type = MCE_ERROR_TYPE_UE;
620                 mce_common_process_ue(regs, &mce_err);
621                 if (mce_err.ignore_event)
622                         disposition = RTAS_DISP_FULLY_RECOVERED;
623                 switch (err_sub_type) {
624                 case MC_ERROR_UE_IFETCH:
625                         mce_err.u.ue_error_type = MCE_UE_ERROR_IFETCH;
626                         break;
627                 case MC_ERROR_UE_PAGE_TABLE_WALK_IFETCH:
628                         mce_err.u.ue_error_type = MCE_UE_ERROR_PAGE_TABLE_WALK_IFETCH;
629                         break;
630                 case MC_ERROR_UE_LOAD_STORE:
631                         mce_err.u.ue_error_type = MCE_UE_ERROR_LOAD_STORE;
632                         break;
633                 case MC_ERROR_UE_PAGE_TABLE_WALK_LOAD_STORE:
634                         mce_err.u.ue_error_type = MCE_UE_ERROR_PAGE_TABLE_WALK_LOAD_STORE;
635                         break;
636                 case MC_ERROR_UE_INDETERMINATE:
637                 default:
638                         mce_err.u.ue_error_type = MCE_UE_ERROR_INDETERMINATE;
639                         break;
640                 }
641                 if (mce_log->sub_err_type & UE_EFFECTIVE_ADDR_PROVIDED)
642                         eaddr = be64_to_cpu(mce_log->effective_address);
643 
644                 if (mce_log->sub_err_type & UE_LOGICAL_ADDR_PROVIDED) {
645                         paddr = be64_to_cpu(mce_log->logical_address);
646                 } else if (mce_log->sub_err_type & UE_EFFECTIVE_ADDR_PROVIDED) {
647                         unsigned long pfn;
648 
649                         pfn = addr_to_pfn(regs, eaddr);
650                         if (pfn != ULONG_MAX)
651                                 paddr = pfn << PAGE_SHIFT;
652                 }
653 
654                 break;
655         case MC_ERROR_TYPE_SLB:
656                 mce_err.error_type = MCE_ERROR_TYPE_SLB;
657                 switch (err_sub_type) {
658                 case MC_ERROR_SLB_PARITY:
659                         mce_err.u.slb_error_type = MCE_SLB_ERROR_PARITY;
660                         break;
661                 case MC_ERROR_SLB_MULTIHIT:
662                         mce_err.u.slb_error_type = MCE_SLB_ERROR_MULTIHIT;
663                         break;
664                 case MC_ERROR_SLB_INDETERMINATE:
665                 default:
666                         mce_err.u.slb_error_type = MCE_SLB_ERROR_INDETERMINATE;
667                         break;
668                 }
669                 if (mce_log->sub_err_type & MC_EFFECTIVE_ADDR_PROVIDED)
670                         eaddr = be64_to_cpu(mce_log->effective_address);
671                 break;
672         case MC_ERROR_TYPE_ERAT:
673                 mce_err.error_type = MCE_ERROR_TYPE_ERAT;
674                 switch (err_sub_type) {
675                 case MC_ERROR_ERAT_PARITY:
676                         mce_err.u.erat_error_type = MCE_ERAT_ERROR_PARITY;
677                         break;
678                 case MC_ERROR_ERAT_MULTIHIT:
679                         mce_err.u.erat_error_type = MCE_ERAT_ERROR_MULTIHIT;
680                         break;
681                 case MC_ERROR_ERAT_INDETERMINATE:
682                 default:
683                         mce_err.u.erat_error_type = MCE_ERAT_ERROR_INDETERMINATE;
684                         break;
685                 }
686                 if (mce_log->sub_err_type & MC_EFFECTIVE_ADDR_PROVIDED)
687                         eaddr = be64_to_cpu(mce_log->effective_address);
688                 break;
689         case MC_ERROR_TYPE_TLB:
690                 mce_err.error_type = MCE_ERROR_TYPE_TLB;
691                 switch (err_sub_type) {
692                 case MC_ERROR_TLB_PARITY:
693                         mce_err.u.tlb_error_type = MCE_TLB_ERROR_PARITY;
694                         break;
695                 case MC_ERROR_TLB_MULTIHIT:
696                         mce_err.u.tlb_error_type = MCE_TLB_ERROR_MULTIHIT;
697                         break;
698                 case MC_ERROR_TLB_INDETERMINATE:
699                 default:
700                         mce_err.u.tlb_error_type = MCE_TLB_ERROR_INDETERMINATE;
701                         break;
702                 }
703                 if (mce_log->sub_err_type & MC_EFFECTIVE_ADDR_PROVIDED)
704                         eaddr = be64_to_cpu(mce_log->effective_address);
705                 break;
706         case MC_ERROR_TYPE_D_CACHE:
707                 mce_err.error_type = MCE_ERROR_TYPE_DCACHE;
708                 break;
709         case MC_ERROR_TYPE_I_CACHE:
710                 mce_err.error_type = MCE_ERROR_TYPE_ICACHE;
711                 break;
712         case MC_ERROR_TYPE_CTRL_MEM_ACCESS:
713                 mce_err.error_type = MCE_ERROR_TYPE_RA;
714                 switch (err_sub_type) {
715                 case MC_ERROR_CTRL_MEM_ACCESS_PTABLE_WALK:
716                         mce_err.u.ra_error_type =
717                                 MCE_RA_ERROR_PAGE_TABLE_WALK_LOAD_STORE_FOREIGN;
718                         break;
719                 case MC_ERROR_CTRL_MEM_ACCESS_OP_ACCESS:
720                         mce_err.u.ra_error_type =
721                                 MCE_RA_ERROR_LOAD_STORE_FOREIGN;
722                         break;
723                 }
724                 if (mce_log->sub_err_type & MC_EFFECTIVE_ADDR_PROVIDED)
725                         eaddr = be64_to_cpu(mce_log->effective_address);
726                 break;
727         case MC_ERROR_TYPE_UNKNOWN:
728         default:
729                 mce_err.error_type = MCE_ERROR_TYPE_UNKNOWN;
730                 break;
731         }
732 out:
733         save_mce_event(regs, disposition == RTAS_DISP_FULLY_RECOVERED,
734                        &mce_err, regs->nip, eaddr, paddr);
735         return disposition;
736 }
737 
738 static int mce_handle_error(struct pt_regs *regs, struct rtas_error_log *errp)
739 {
740         struct pseries_errorlog *pseries_log;
741         struct pseries_mc_errorlog *mce_log = NULL;
742         int disposition = rtas_error_disposition(errp);
743         u8 error_type;
744 
745         if (!rtas_error_extended(errp))
746                 goto out;
747 
748         pseries_log = get_pseries_errorlog(errp, PSERIES_ELOG_SECT_ID_MCE);
749         if (!pseries_log)
750                 goto out;
751 
752         mce_log = (struct pseries_mc_errorlog *)pseries_log->data;
753         error_type = mce_log->error_type;
754 
755         disposition = mce_handle_err_realmode(disposition, error_type);
756 out:
757         disposition = mce_handle_err_virtmode(regs, errp, mce_log,
758                                               disposition);
759         return disposition;
760 }
761 
762 /*
763  * Process MCE rtas errlog event.
764  */
765 void pSeries_machine_check_log_err(void)
766 {
767         struct rtas_error_log *err;
768 
769         err = fwnmi_get_errlog();
770         log_error((char *)err, ERR_TYPE_RTAS_LOG, 0);
771 }
772 
773 /*
774  * See if we can recover from a machine check exception.
775  * This is only called on power4 (or above) and only via
776  * the Firmware Non-Maskable Interrupts (fwnmi) handler
777  * which provides the error analysis for us.
778  *
779  * Return 1 if corrected (or delivered a signal).
780  * Return 0 if there is nothing we can do.
781  */
782 static int recover_mce(struct pt_regs *regs, struct machine_check_event *evt)
783 {
784         int recovered = 0;
785 
786         if (regs_is_unrecoverable(regs)) {
787                 /* If MSR_RI isn't set, we cannot recover */
788                 pr_err("Machine check interrupt unrecoverable: MSR(RI=0)\n");
789                 recovered = 0;
790         } else if (evt->disposition == MCE_DISPOSITION_RECOVERED) {
791                 /* Platform corrected itself */
792                 recovered = 1;
793         } else if (evt->severity == MCE_SEV_FATAL) {
794                 /* Fatal machine check */
795                 pr_err("Machine check interrupt is fatal\n");
796                 recovered = 0;
797         }
798 
799         if (!recovered && evt->sync_error) {
800                 /*
801                  * Try to kill processes if we get a synchronous machine check
802                  * (e.g., one caused by execution of this instruction). This
803                  * will devolve into a panic if we try to kill init or are in
804                  * an interrupt etc.
805                  *
806                  * TODO: Queue up this address for hwpoisioning later.
807                  * TODO: This is not quite right for d-side machine
808                  *       checks ->nip is not necessarily the important
809                  *       address.
810                  */
811                 if ((user_mode(regs))) {
812                         _exception(SIGBUS, regs, BUS_MCEERR_AR, regs->nip);
813                         recovered = 1;
814                 } else if (die_will_crash()) {
815                         /*
816                          * die() would kill the kernel, so better to go via
817                          * the platform reboot code that will log the
818                          * machine check.
819                          */
820                         recovered = 0;
821                 } else {
822                         die_mce("Machine check", regs, SIGBUS);
823                         recovered = 1;
824                 }
825         }
826 
827         return recovered;
828 }
829 
830 /*
831  * Handle a machine check.
832  *
833  * Note that on Power 4 and beyond Firmware Non-Maskable Interrupts (fwnmi)
834  * should be present.  If so the handler which called us tells us if the
835  * error was recovered (never true if RI=0).
836  *
837  * On hardware prior to Power 4 these exceptions were asynchronous which
838  * means we can't tell exactly where it occurred and so we can't recover.
839  */
840 int pSeries_machine_check_exception(struct pt_regs *regs)
841 {
842         struct machine_check_event evt;
843 
844         if (!get_mce_event(&evt, MCE_EVENT_RELEASE))
845                 return 0;
846 
847         /* Print things out */
848         if (evt.version != MCE_V1) {
849                 pr_err("Machine Check Exception, Unknown event version %d !\n",
850                        evt.version);
851                 return 0;
852         }
853         machine_check_print_event_info(&evt, user_mode(regs), false);
854 
855         if (recover_mce(regs, &evt))
856                 return 1;
857 
858         return 0;
859 }
860 
861 long pseries_machine_check_realmode(struct pt_regs *regs)
862 {
863         struct rtas_error_log *errp;
864         int disposition;
865 
866         if (fwnmi_active) {
867                 errp = fwnmi_get_errinfo(regs);
868                 /*
869                  * Call to fwnmi_release_errinfo() in real mode causes kernel
870                  * to panic. Hence we will call it as soon as we go into
871                  * virtual mode.
872                  */
873                 disposition = mce_handle_error(regs, errp);
874 
875                 fwnmi_release_errinfo();
876 
877                 if (disposition == RTAS_DISP_FULLY_RECOVERED)
878                         return 1;
879         }
880 
881         return 0;
882 }
883 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php