~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/powerpc/sysdev/xive/common.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-or-later
  2 /*
  3  * Copyright 2016,2017 IBM Corporation.
  4  */
  5 
  6 #define pr_fmt(fmt) "xive: " fmt
  7 
  8 #include <linux/types.h>
  9 #include <linux/threads.h>
 10 #include <linux/kernel.h>
 11 #include <linux/irq.h>
 12 #include <linux/irqdomain.h>
 13 #include <linux/debugfs.h>
 14 #include <linux/smp.h>
 15 #include <linux/interrupt.h>
 16 #include <linux/seq_file.h>
 17 #include <linux/init.h>
 18 #include <linux/cpu.h>
 19 #include <linux/of.h>
 20 #include <linux/slab.h>
 21 #include <linux/spinlock.h>
 22 #include <linux/msi.h>
 23 #include <linux/vmalloc.h>
 24 
 25 #include <asm/io.h>
 26 #include <asm/smp.h>
 27 #include <asm/machdep.h>
 28 #include <asm/irq.h>
 29 #include <asm/errno.h>
 30 #include <asm/xive.h>
 31 #include <asm/xive-regs.h>
 32 #include <asm/xmon.h>
 33 
 34 #include "xive-internal.h"
 35 
 36 #undef DEBUG_FLUSH
 37 #undef DEBUG_ALL
 38 
 39 #ifdef DEBUG_ALL
 40 #define DBG_VERBOSE(fmt, ...)   pr_devel("cpu %d - " fmt, \
 41                                          smp_processor_id(), ## __VA_ARGS__)
 42 #else
 43 #define DBG_VERBOSE(fmt...)     do { } while(0)
 44 #endif
 45 
 46 bool __xive_enabled;
 47 EXPORT_SYMBOL_GPL(__xive_enabled);
 48 bool xive_cmdline_disabled;
 49 
 50 /* We use only one priority for now */
 51 static u8 xive_irq_priority;
 52 
 53 /* TIMA exported to KVM */
 54 void __iomem *xive_tima;
 55 EXPORT_SYMBOL_GPL(xive_tima);
 56 u32 xive_tima_offset;
 57 
 58 /* Backend ops */
 59 static const struct xive_ops *xive_ops;
 60 
 61 /* Our global interrupt domain */
 62 static struct irq_domain *xive_irq_domain;
 63 
 64 #ifdef CONFIG_SMP
 65 /* The IPIs use the same logical irq number when on the same chip */
 66 static struct xive_ipi_desc {
 67         unsigned int irq;
 68         char name[16];
 69         atomic_t started;
 70 } *xive_ipis;
 71 
 72 /*
 73  * Use early_cpu_to_node() for hot-plugged CPUs
 74  */
 75 static unsigned int xive_ipi_cpu_to_irq(unsigned int cpu)
 76 {
 77         return xive_ipis[early_cpu_to_node(cpu)].irq;
 78 }
 79 #endif
 80 
 81 /* Xive state for each CPU */
 82 static DEFINE_PER_CPU(struct xive_cpu *, xive_cpu);
 83 
 84 /* An invalid CPU target */
 85 #define XIVE_INVALID_TARGET     (-1)
 86 
 87 /*
 88  * Global toggle to switch on/off StoreEOI
 89  */
 90 static bool xive_store_eoi = true;
 91 
 92 static bool xive_is_store_eoi(struct xive_irq_data *xd)
 93 {
 94         return xd->flags & XIVE_IRQ_FLAG_STORE_EOI && xive_store_eoi;
 95 }
 96 
 97 /*
 98  * Read the next entry in a queue, return its content if it's valid
 99  * or 0 if there is no new entry.
100  *
101  * The queue pointer is moved forward unless "just_peek" is set
102  */
103 static u32 xive_read_eq(struct xive_q *q, bool just_peek)
104 {
105         u32 cur;
106 
107         if (!q->qpage)
108                 return 0;
109         cur = be32_to_cpup(q->qpage + q->idx);
110 
111         /* Check valid bit (31) vs current toggle polarity */
112         if ((cur >> 31) == q->toggle)
113                 return 0;
114 
115         /* If consuming from the queue ... */
116         if (!just_peek) {
117                 /* Next entry */
118                 q->idx = (q->idx + 1) & q->msk;
119 
120                 /* Wrap around: flip valid toggle */
121                 if (q->idx == 0)
122                         q->toggle ^= 1;
123         }
124         /* Mask out the valid bit (31) */
125         return cur & 0x7fffffff;
126 }
127 
128 /*
129  * Scans all the queue that may have interrupts in them
130  * (based on "pending_prio") in priority order until an
131  * interrupt is found or all the queues are empty.
132  *
133  * Then updates the CPPR (Current Processor Priority
134  * Register) based on the most favored interrupt found
135  * (0xff if none) and return what was found (0 if none).
136  *
137  * If just_peek is set, return the most favored pending
138  * interrupt if any but don't update the queue pointers.
139  *
140  * Note: This function can operate generically on any number
141  * of queues (up to 8). The current implementation of the XIVE
142  * driver only uses a single queue however.
143  *
144  * Note2: This will also "flush" "the pending_count" of a queue
145  * into the "count" when that queue is observed to be empty.
146  * This is used to keep track of the amount of interrupts
147  * targetting a queue. When an interrupt is moved away from
148  * a queue, we only decrement that queue count once the queue
149  * has been observed empty to avoid races.
150  */
151 static u32 xive_scan_interrupts(struct xive_cpu *xc, bool just_peek)
152 {
153         u32 irq = 0;
154         u8 prio = 0;
155 
156         /* Find highest pending priority */
157         while (xc->pending_prio != 0) {
158                 struct xive_q *q;
159 
160                 prio = ffs(xc->pending_prio) - 1;
161                 DBG_VERBOSE("scan_irq: trying prio %d\n", prio);
162 
163                 /* Try to fetch */
164                 irq = xive_read_eq(&xc->queue[prio], just_peek);
165 
166                 /* Found something ? That's it */
167                 if (irq) {
168                         if (just_peek || irq_to_desc(irq))
169                                 break;
170                         /*
171                          * We should never get here; if we do then we must
172                          * have failed to synchronize the interrupt properly
173                          * when shutting it down.
174                          */
175                         pr_crit("xive: got interrupt %d without descriptor, dropping\n",
176                                 irq);
177                         WARN_ON(1);
178                         continue;
179                 }
180 
181                 /* Clear pending bits */
182                 xc->pending_prio &= ~(1 << prio);
183 
184                 /*
185                  * Check if the queue count needs adjusting due to
186                  * interrupts being moved away. See description of
187                  * xive_dec_target_count()
188                  */
189                 q = &xc->queue[prio];
190                 if (atomic_read(&q->pending_count)) {
191                         int p = atomic_xchg(&q->pending_count, 0);
192                         if (p) {
193                                 WARN_ON(p > atomic_read(&q->count));
194                                 atomic_sub(p, &q->count);
195                         }
196                 }
197         }
198 
199         /* If nothing was found, set CPPR to 0xff */
200         if (irq == 0)
201                 prio = 0xff;
202 
203         /* Update HW CPPR to match if necessary */
204         if (prio != xc->cppr) {
205                 DBG_VERBOSE("scan_irq: adjusting CPPR to %d\n", prio);
206                 xc->cppr = prio;
207                 out_8(xive_tima + xive_tima_offset + TM_CPPR, prio);
208         }
209 
210         return irq;
211 }
212 
213 /*
214  * This is used to perform the magic loads from an ESB
215  * described in xive-regs.h
216  */
217 static notrace u8 xive_esb_read(struct xive_irq_data *xd, u32 offset)
218 {
219         u64 val;
220 
221         if (offset == XIVE_ESB_SET_PQ_10 && xive_is_store_eoi(xd))
222                 offset |= XIVE_ESB_LD_ST_MO;
223 
224         if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw)
225                 val = xive_ops->esb_rw(xd->hw_irq, offset, 0, 0);
226         else
227                 val = in_be64(xd->eoi_mmio + offset);
228 
229         return (u8)val;
230 }
231 
232 static void xive_esb_write(struct xive_irq_data *xd, u32 offset, u64 data)
233 {
234         if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw)
235                 xive_ops->esb_rw(xd->hw_irq, offset, data, 1);
236         else
237                 out_be64(xd->eoi_mmio + offset, data);
238 }
239 
240 #if defined(CONFIG_XMON) || defined(CONFIG_DEBUG_FS)
241 static void xive_irq_data_dump(struct xive_irq_data *xd, char *buffer, size_t size)
242 {
243         u64 val = xive_esb_read(xd, XIVE_ESB_GET);
244 
245         snprintf(buffer, size, "flags=%c%c%c PQ=%c%c 0x%016llx 0x%016llx",
246                  xive_is_store_eoi(xd) ? 'S' : ' ',
247                  xd->flags & XIVE_IRQ_FLAG_LSI ? 'L' : ' ',
248                  xd->flags & XIVE_IRQ_FLAG_H_INT_ESB ? 'H' : ' ',
249                  val & XIVE_ESB_VAL_P ? 'P' : '-',
250                  val & XIVE_ESB_VAL_Q ? 'Q' : '-',
251                  xd->trig_page, xd->eoi_page);
252 }
253 #endif
254 
255 #ifdef CONFIG_XMON
256 static notrace void xive_dump_eq(const char *name, struct xive_q *q)
257 {
258         u32 i0, i1, idx;
259 
260         if (!q->qpage)
261                 return;
262         idx = q->idx;
263         i0 = be32_to_cpup(q->qpage + idx);
264         idx = (idx + 1) & q->msk;
265         i1 = be32_to_cpup(q->qpage + idx);
266         xmon_printf("%s idx=%d T=%d %08x %08x ...", name,
267                      q->idx, q->toggle, i0, i1);
268 }
269 
270 notrace void xmon_xive_do_dump(int cpu)
271 {
272         struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
273 
274         xmon_printf("CPU %d:", cpu);
275         if (xc) {
276                 xmon_printf("pp=%02x CPPR=%02x ", xc->pending_prio, xc->cppr);
277 
278 #ifdef CONFIG_SMP
279                 {
280                         char buffer[128];
281 
282                         xive_irq_data_dump(&xc->ipi_data, buffer, sizeof(buffer));
283                         xmon_printf("IPI=0x%08x %s", xc->hw_ipi, buffer);
284                 }
285 #endif
286                 xive_dump_eq("EQ", &xc->queue[xive_irq_priority]);
287         }
288         xmon_printf("\n");
289 }
290 
291 static struct irq_data *xive_get_irq_data(u32 hw_irq)
292 {
293         unsigned int irq = irq_find_mapping(xive_irq_domain, hw_irq);
294 
295         return irq ? irq_get_irq_data(irq) : NULL;
296 }
297 
298 int xmon_xive_get_irq_config(u32 hw_irq, struct irq_data *d)
299 {
300         int rc;
301         u32 target;
302         u8 prio;
303         u32 lirq;
304 
305         rc = xive_ops->get_irq_config(hw_irq, &target, &prio, &lirq);
306         if (rc) {
307                 xmon_printf("IRQ 0x%08x : no config rc=%d\n", hw_irq, rc);
308                 return rc;
309         }
310 
311         xmon_printf("IRQ 0x%08x : target=0x%x prio=%02x lirq=0x%x ",
312                     hw_irq, target, prio, lirq);
313 
314         if (!d)
315                 d = xive_get_irq_data(hw_irq);
316 
317         if (d) {
318                 char buffer[128];
319 
320                 xive_irq_data_dump(irq_data_get_irq_handler_data(d),
321                                    buffer, sizeof(buffer));
322                 xmon_printf("%s", buffer);
323         }
324 
325         xmon_printf("\n");
326         return 0;
327 }
328 
329 void xmon_xive_get_irq_all(void)
330 {
331         unsigned int i;
332         struct irq_desc *desc;
333 
334         for_each_irq_desc(i, desc) {
335                 struct irq_data *d = irq_domain_get_irq_data(xive_irq_domain, i);
336 
337                 if (d)
338                         xmon_xive_get_irq_config(irqd_to_hwirq(d), d);
339         }
340 }
341 
342 #endif /* CONFIG_XMON */
343 
344 static unsigned int xive_get_irq(void)
345 {
346         struct xive_cpu *xc = __this_cpu_read(xive_cpu);
347         u32 irq;
348 
349         /*
350          * This can be called either as a result of a HW interrupt or
351          * as a "replay" because EOI decided there was still something
352          * in one of the queues.
353          *
354          * First we perform an ACK cycle in order to update our mask
355          * of pending priorities. This will also have the effect of
356          * updating the CPPR to the most favored pending interrupts.
357          *
358          * In the future, if we have a way to differentiate a first
359          * entry (on HW interrupt) from a replay triggered by EOI,
360          * we could skip this on replays unless we soft-mask tells us
361          * that a new HW interrupt occurred.
362          */
363         xive_ops->update_pending(xc);
364 
365         DBG_VERBOSE("get_irq: pending=%02x\n", xc->pending_prio);
366 
367         /* Scan our queue(s) for interrupts */
368         irq = xive_scan_interrupts(xc, false);
369 
370         DBG_VERBOSE("get_irq: got irq 0x%x, new pending=0x%02x\n",
371             irq, xc->pending_prio);
372 
373         /* Return pending interrupt if any */
374         if (irq == XIVE_BAD_IRQ)
375                 return 0;
376         return irq;
377 }
378 
379 /*
380  * After EOI'ing an interrupt, we need to re-check the queue
381  * to see if another interrupt is pending since multiple
382  * interrupts can coalesce into a single notification to the
383  * CPU.
384  *
385  * If we find that there is indeed more in there, we call
386  * force_external_irq_replay() to make Linux synthesize an
387  * external interrupt on the next call to local_irq_restore().
388  */
389 static void xive_do_queue_eoi(struct xive_cpu *xc)
390 {
391         if (xive_scan_interrupts(xc, true) != 0) {
392                 DBG_VERBOSE("eoi: pending=0x%02x\n", xc->pending_prio);
393                 force_external_irq_replay();
394         }
395 }
396 
397 /*
398  * EOI an interrupt at the source. There are several methods
399  * to do this depending on the HW version and source type
400  */
401 static void xive_do_source_eoi(struct xive_irq_data *xd)
402 {
403         u8 eoi_val;
404 
405         xd->stale_p = false;
406 
407         /* If the XIVE supports the new "store EOI facility, use it */
408         if (xive_is_store_eoi(xd)) {
409                 xive_esb_write(xd, XIVE_ESB_STORE_EOI, 0);
410                 return;
411         }
412 
413         /*
414          * For LSIs, we use the "EOI cycle" special load rather than
415          * PQ bits, as they are automatically re-triggered in HW when
416          * still pending.
417          */
418         if (xd->flags & XIVE_IRQ_FLAG_LSI) {
419                 xive_esb_read(xd, XIVE_ESB_LOAD_EOI);
420                 return;
421         }
422 
423         /*
424          * Otherwise, we use the special MMIO that does a clear of
425          * both P and Q and returns the old Q. This allows us to then
426          * do a re-trigger if Q was set rather than synthesizing an
427          * interrupt in software
428          */
429         eoi_val = xive_esb_read(xd, XIVE_ESB_SET_PQ_00);
430         DBG_VERBOSE("eoi_val=%x\n", eoi_val);
431 
432         /* Re-trigger if needed */
433         if ((eoi_val & XIVE_ESB_VAL_Q) && xd->trig_mmio)
434                 out_be64(xd->trig_mmio, 0);
435 }
436 
437 /* irq_chip eoi callback, called with irq descriptor lock held */
438 static void xive_irq_eoi(struct irq_data *d)
439 {
440         struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
441         struct xive_cpu *xc = __this_cpu_read(xive_cpu);
442 
443         DBG_VERBOSE("eoi_irq: irq=%d [0x%lx] pending=%02x\n",
444                     d->irq, irqd_to_hwirq(d), xc->pending_prio);
445 
446         /*
447          * EOI the source if it hasn't been disabled and hasn't
448          * been passed-through to a KVM guest
449          */
450         if (!irqd_irq_disabled(d) && !irqd_is_forwarded_to_vcpu(d) &&
451             !(xd->flags & XIVE_IRQ_FLAG_NO_EOI))
452                 xive_do_source_eoi(xd);
453         else
454                 xd->stale_p = true;
455 
456         /*
457          * Clear saved_p to indicate that it's no longer occupying
458          * a queue slot on the target queue
459          */
460         xd->saved_p = false;
461 
462         /* Check for more work in the queue */
463         xive_do_queue_eoi(xc);
464 }
465 
466 /*
467  * Helper used to mask and unmask an interrupt source.
468  */
469 static void xive_do_source_set_mask(struct xive_irq_data *xd,
470                                     bool mask)
471 {
472         u64 val;
473 
474         pr_debug("%s: HW 0x%x %smask\n", __func__, xd->hw_irq, mask ? "" : "un");
475 
476         /*
477          * If the interrupt had P set, it may be in a queue.
478          *
479          * We need to make sure we don't re-enable it until it
480          * has been fetched from that queue and EOId. We keep
481          * a copy of that P state and use it to restore the
482          * ESB accordingly on unmask.
483          */
484         if (mask) {
485                 val = xive_esb_read(xd, XIVE_ESB_SET_PQ_01);
486                 if (!xd->stale_p && !!(val & XIVE_ESB_VAL_P))
487                         xd->saved_p = true;
488                 xd->stale_p = false;
489         } else if (xd->saved_p) {
490                 xive_esb_read(xd, XIVE_ESB_SET_PQ_10);
491                 xd->saved_p = false;
492         } else {
493                 xive_esb_read(xd, XIVE_ESB_SET_PQ_00);
494                 xd->stale_p = false;
495         }
496 }
497 
498 /*
499  * Try to chose "cpu" as a new interrupt target. Increments
500  * the queue accounting for that target if it's not already
501  * full.
502  */
503 static bool xive_try_pick_target(int cpu)
504 {
505         struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
506         struct xive_q *q = &xc->queue[xive_irq_priority];
507         int max;
508 
509         /*
510          * Calculate max number of interrupts in that queue.
511          *
512          * We leave a gap of 1 just in case...
513          */
514         max = (q->msk + 1) - 1;
515         return !!atomic_add_unless(&q->count, 1, max);
516 }
517 
518 /*
519  * Un-account an interrupt for a target CPU. We don't directly
520  * decrement q->count since the interrupt might still be present
521  * in the queue.
522  *
523  * Instead increment a separate counter "pending_count" which
524  * will be substracted from "count" later when that CPU observes
525  * the queue to be empty.
526  */
527 static void xive_dec_target_count(int cpu)
528 {
529         struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
530         struct xive_q *q = &xc->queue[xive_irq_priority];
531 
532         if (WARN_ON(cpu < 0 || !xc)) {
533                 pr_err("%s: cpu=%d xc=%p\n", __func__, cpu, xc);
534                 return;
535         }
536 
537         /*
538          * We increment the "pending count" which will be used
539          * to decrement the target queue count whenever it's next
540          * processed and found empty. This ensure that we don't
541          * decrement while we still have the interrupt there
542          * occupying a slot.
543          */
544         atomic_inc(&q->pending_count);
545 }
546 
547 /* Find a tentative CPU target in a CPU mask */
548 static int xive_find_target_in_mask(const struct cpumask *mask,
549                                     unsigned int fuzz)
550 {
551         int cpu, first, num, i;
552 
553         /* Pick up a starting point CPU in the mask based on  fuzz */
554         num = min_t(int, cpumask_weight(mask), nr_cpu_ids);
555         first = fuzz % num;
556 
557         /* Locate it */
558         cpu = cpumask_first(mask);
559         for (i = 0; i < first && cpu < nr_cpu_ids; i++)
560                 cpu = cpumask_next(cpu, mask);
561 
562         /* Sanity check */
563         if (WARN_ON(cpu >= nr_cpu_ids))
564                 cpu = cpumask_first(cpu_online_mask);
565 
566         /* Remember first one to handle wrap-around */
567         first = cpu;
568 
569         /*
570          * Now go through the entire mask until we find a valid
571          * target.
572          */
573         do {
574                 /*
575                  * We re-check online as the fallback case passes us
576                  * an untested affinity mask
577                  */
578                 if (cpu_online(cpu) && xive_try_pick_target(cpu))
579                         return cpu;
580                 cpu = cpumask_next(cpu, mask);
581                 /* Wrap around */
582                 if (cpu >= nr_cpu_ids)
583                         cpu = cpumask_first(mask);
584         } while (cpu != first);
585 
586         return -1;
587 }
588 
589 /*
590  * Pick a target CPU for an interrupt. This is done at
591  * startup or if the affinity is changed in a way that
592  * invalidates the current target.
593  */
594 static int xive_pick_irq_target(struct irq_data *d,
595                                 const struct cpumask *affinity)
596 {
597         static unsigned int fuzz;
598         struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
599         cpumask_var_t mask;
600         int cpu = -1;
601 
602         /*
603          * If we have chip IDs, first we try to build a mask of
604          * CPUs matching the CPU and find a target in there
605          */
606         if (xd->src_chip != XIVE_INVALID_CHIP_ID &&
607                 zalloc_cpumask_var(&mask, GFP_ATOMIC)) {
608                 /* Build a mask of matching chip IDs */
609                 for_each_cpu_and(cpu, affinity, cpu_online_mask) {
610                         struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
611                         if (xc->chip_id == xd->src_chip)
612                                 cpumask_set_cpu(cpu, mask);
613                 }
614                 /* Try to find a target */
615                 if (cpumask_empty(mask))
616                         cpu = -1;
617                 else
618                         cpu = xive_find_target_in_mask(mask, fuzz++);
619                 free_cpumask_var(mask);
620                 if (cpu >= 0)
621                         return cpu;
622                 fuzz--;
623         }
624 
625         /* No chip IDs, fallback to using the affinity mask */
626         return xive_find_target_in_mask(affinity, fuzz++);
627 }
628 
629 static unsigned int xive_irq_startup(struct irq_data *d)
630 {
631         struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
632         unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
633         int target, rc;
634 
635         xd->saved_p = false;
636         xd->stale_p = false;
637 
638         pr_debug("%s: irq %d [0x%x] data @%p\n", __func__, d->irq, hw_irq, d);
639 
640         /* Pick a target */
641         target = xive_pick_irq_target(d, irq_data_get_affinity_mask(d));
642         if (target == XIVE_INVALID_TARGET) {
643                 /* Try again breaking affinity */
644                 target = xive_pick_irq_target(d, cpu_online_mask);
645                 if (target == XIVE_INVALID_TARGET)
646                         return -ENXIO;
647                 pr_warn("irq %d started with broken affinity\n", d->irq);
648         }
649 
650         /* Sanity check */
651         if (WARN_ON(target == XIVE_INVALID_TARGET ||
652                     target >= nr_cpu_ids))
653                 target = smp_processor_id();
654 
655         xd->target = target;
656 
657         /*
658          * Configure the logical number to be the Linux IRQ number
659          * and set the target queue
660          */
661         rc = xive_ops->configure_irq(hw_irq,
662                                      get_hard_smp_processor_id(target),
663                                      xive_irq_priority, d->irq);
664         if (rc)
665                 return rc;
666 
667         /* Unmask the ESB */
668         xive_do_source_set_mask(xd, false);
669 
670         return 0;
671 }
672 
673 /* called with irq descriptor lock held */
674 static void xive_irq_shutdown(struct irq_data *d)
675 {
676         struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
677         unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
678 
679         pr_debug("%s: irq %d [0x%x] data @%p\n", __func__, d->irq, hw_irq, d);
680 
681         if (WARN_ON(xd->target == XIVE_INVALID_TARGET))
682                 return;
683 
684         /* Mask the interrupt at the source */
685         xive_do_source_set_mask(xd, true);
686 
687         /*
688          * Mask the interrupt in HW in the IVT/EAS and set the number
689          * to be the "bad" IRQ number
690          */
691         xive_ops->configure_irq(hw_irq,
692                                 get_hard_smp_processor_id(xd->target),
693                                 0xff, XIVE_BAD_IRQ);
694 
695         xive_dec_target_count(xd->target);
696         xd->target = XIVE_INVALID_TARGET;
697 }
698 
699 static void xive_irq_unmask(struct irq_data *d)
700 {
701         struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
702 
703         pr_debug("%s: irq %d data @%p\n", __func__, d->irq, xd);
704 
705         xive_do_source_set_mask(xd, false);
706 }
707 
708 static void xive_irq_mask(struct irq_data *d)
709 {
710         struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
711 
712         pr_debug("%s: irq %d data @%p\n", __func__, d->irq, xd);
713 
714         xive_do_source_set_mask(xd, true);
715 }
716 
717 static int xive_irq_set_affinity(struct irq_data *d,
718                                  const struct cpumask *cpumask,
719                                  bool force)
720 {
721         struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
722         unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
723         u32 target, old_target;
724         int rc = 0;
725 
726         pr_debug("%s: irq %d/0x%x\n", __func__, d->irq, hw_irq);
727 
728         /* Is this valid ? */
729         if (cpumask_any_and(cpumask, cpu_online_mask) >= nr_cpu_ids)
730                 return -EINVAL;
731 
732         /*
733          * If existing target is already in the new mask, and is
734          * online then do nothing.
735          */
736         if (xd->target != XIVE_INVALID_TARGET &&
737             cpu_online(xd->target) &&
738             cpumask_test_cpu(xd->target, cpumask))
739                 return IRQ_SET_MASK_OK;
740 
741         /* Pick a new target */
742         target = xive_pick_irq_target(d, cpumask);
743 
744         /* No target found */
745         if (target == XIVE_INVALID_TARGET)
746                 return -ENXIO;
747 
748         /* Sanity check */
749         if (WARN_ON(target >= nr_cpu_ids))
750                 target = smp_processor_id();
751 
752         old_target = xd->target;
753 
754         /*
755          * Only configure the irq if it's not currently passed-through to
756          * a KVM guest
757          */
758         if (!irqd_is_forwarded_to_vcpu(d))
759                 rc = xive_ops->configure_irq(hw_irq,
760                                              get_hard_smp_processor_id(target),
761                                              xive_irq_priority, d->irq);
762         if (rc < 0) {
763                 pr_err("Error %d reconfiguring irq %d\n", rc, d->irq);
764                 return rc;
765         }
766 
767         pr_debug("  target: 0x%x\n", target);
768         xd->target = target;
769 
770         /* Give up previous target */
771         if (old_target != XIVE_INVALID_TARGET)
772             xive_dec_target_count(old_target);
773 
774         return IRQ_SET_MASK_OK;
775 }
776 
777 static int xive_irq_set_type(struct irq_data *d, unsigned int flow_type)
778 {
779         struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
780 
781         /*
782          * We only support these. This has really no effect other than setting
783          * the corresponding descriptor bits mind you but those will in turn
784          * affect the resend function when re-enabling an edge interrupt.
785          *
786          * Set the default to edge as explained in map().
787          */
788         if (flow_type == IRQ_TYPE_DEFAULT || flow_type == IRQ_TYPE_NONE)
789                 flow_type = IRQ_TYPE_EDGE_RISING;
790 
791         if (flow_type != IRQ_TYPE_EDGE_RISING &&
792             flow_type != IRQ_TYPE_LEVEL_LOW)
793                 return -EINVAL;
794 
795         irqd_set_trigger_type(d, flow_type);
796 
797         /*
798          * Double check it matches what the FW thinks
799          *
800          * NOTE: We don't know yet if the PAPR interface will provide
801          * the LSI vs MSI information apart from the device-tree so
802          * this check might have to move into an optional backend call
803          * that is specific to the native backend
804          */
805         if ((flow_type == IRQ_TYPE_LEVEL_LOW) !=
806             !!(xd->flags & XIVE_IRQ_FLAG_LSI)) {
807                 pr_warn("Interrupt %d (HW 0x%x) type mismatch, Linux says %s, FW says %s\n",
808                         d->irq, (u32)irqd_to_hwirq(d),
809                         (flow_type == IRQ_TYPE_LEVEL_LOW) ? "Level" : "Edge",
810                         (xd->flags & XIVE_IRQ_FLAG_LSI) ? "Level" : "Edge");
811         }
812 
813         return IRQ_SET_MASK_OK_NOCOPY;
814 }
815 
816 static int xive_irq_retrigger(struct irq_data *d)
817 {
818         struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
819 
820         /* This should be only for MSIs */
821         if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI))
822                 return 0;
823 
824         /*
825          * To perform a retrigger, we first set the PQ bits to
826          * 11, then perform an EOI.
827          */
828         xive_esb_read(xd, XIVE_ESB_SET_PQ_11);
829         xive_do_source_eoi(xd);
830 
831         return 1;
832 }
833 
834 /*
835  * Caller holds the irq descriptor lock, so this won't be called
836  * concurrently with xive_get_irqchip_state on the same interrupt.
837  */
838 static int xive_irq_set_vcpu_affinity(struct irq_data *d, void *state)
839 {
840         struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
841         unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
842         int rc;
843         u8 pq;
844 
845         /*
846          * This is called by KVM with state non-NULL for enabling
847          * pass-through or NULL for disabling it
848          */
849         if (state) {
850                 irqd_set_forwarded_to_vcpu(d);
851 
852                 /* Set it to PQ=10 state to prevent further sends */
853                 pq = xive_esb_read(xd, XIVE_ESB_SET_PQ_10);
854                 if (!xd->stale_p) {
855                         xd->saved_p = !!(pq & XIVE_ESB_VAL_P);
856                         xd->stale_p = !xd->saved_p;
857                 }
858 
859                 /* No target ? nothing to do */
860                 if (xd->target == XIVE_INVALID_TARGET) {
861                         /*
862                          * An untargetted interrupt should have been
863                          * also masked at the source
864                          */
865                         WARN_ON(xd->saved_p);
866 
867                         return 0;
868                 }
869 
870                 /*
871                  * If P was set, adjust state to PQ=11 to indicate
872                  * that a resend is needed for the interrupt to reach
873                  * the guest. Also remember the value of P.
874                  *
875                  * This also tells us that it's in flight to a host queue
876                  * or has already been fetched but hasn't been EOIed yet
877                  * by the host. Thus it's potentially using up a host
878                  * queue slot. This is important to know because as long
879                  * as this is the case, we must not hard-unmask it when
880                  * "returning" that interrupt to the host.
881                  *
882                  * This saved_p is cleared by the host EOI, when we know
883                  * for sure the queue slot is no longer in use.
884                  */
885                 if (xd->saved_p) {
886                         xive_esb_read(xd, XIVE_ESB_SET_PQ_11);
887 
888                         /*
889                          * Sync the XIVE source HW to ensure the interrupt
890                          * has gone through the EAS before we change its
891                          * target to the guest. That should guarantee us
892                          * that we *will* eventually get an EOI for it on
893                          * the host. Otherwise there would be a small window
894                          * for P to be seen here but the interrupt going
895                          * to the guest queue.
896                          */
897                         if (xive_ops->sync_source)
898                                 xive_ops->sync_source(hw_irq);
899                 }
900         } else {
901                 irqd_clr_forwarded_to_vcpu(d);
902 
903                 /* No host target ? hard mask and return */
904                 if (xd->target == XIVE_INVALID_TARGET) {
905                         xive_do_source_set_mask(xd, true);
906                         return 0;
907                 }
908 
909                 /*
910                  * Sync the XIVE source HW to ensure the interrupt
911                  * has gone through the EAS before we change its
912                  * target to the host.
913                  */
914                 if (xive_ops->sync_source)
915                         xive_ops->sync_source(hw_irq);
916 
917                 /*
918                  * By convention we are called with the interrupt in
919                  * a PQ=10 or PQ=11 state, ie, it won't fire and will
920                  * have latched in Q whether there's a pending HW
921                  * interrupt or not.
922                  *
923                  * First reconfigure the target.
924                  */
925                 rc = xive_ops->configure_irq(hw_irq,
926                                              get_hard_smp_processor_id(xd->target),
927                                              xive_irq_priority, d->irq);
928                 if (rc)
929                         return rc;
930 
931                 /*
932                  * Then if saved_p is not set, effectively re-enable the
933                  * interrupt with an EOI. If it is set, we know there is
934                  * still a message in a host queue somewhere that will be
935                  * EOId eventually.
936                  *
937                  * Note: We don't check irqd_irq_disabled(). Effectively,
938                  * we *will* let the irq get through even if masked if the
939                  * HW is still firing it in order to deal with the whole
940                  * saved_p business properly. If the interrupt triggers
941                  * while masked, the generic code will re-mask it anyway.
942                  */
943                 if (!xd->saved_p)
944                         xive_do_source_eoi(xd);
945 
946         }
947         return 0;
948 }
949 
950 /* Called with irq descriptor lock held. */
951 static int xive_get_irqchip_state(struct irq_data *data,
952                                   enum irqchip_irq_state which, bool *state)
953 {
954         struct xive_irq_data *xd = irq_data_get_irq_handler_data(data);
955         u8 pq;
956 
957         switch (which) {
958         case IRQCHIP_STATE_ACTIVE:
959                 pq = xive_esb_read(xd, XIVE_ESB_GET);
960 
961                 /*
962                  * The esb value being all 1's means we couldn't get
963                  * the PQ state of the interrupt through mmio. It may
964                  * happen, for example when querying a PHB interrupt
965                  * while the PHB is in an error state. We consider the
966                  * interrupt to be inactive in that case.
967                  */
968                 *state = (pq != XIVE_ESB_INVALID) && !xd->stale_p &&
969                         (xd->saved_p || (!!(pq & XIVE_ESB_VAL_P) &&
970                          !irqd_irq_disabled(data)));
971                 return 0;
972         default:
973                 return -EINVAL;
974         }
975 }
976 
977 static struct irq_chip xive_irq_chip = {
978         .name = "XIVE-IRQ",
979         .irq_startup = xive_irq_startup,
980         .irq_shutdown = xive_irq_shutdown,
981         .irq_eoi = xive_irq_eoi,
982         .irq_mask = xive_irq_mask,
983         .irq_unmask = xive_irq_unmask,
984         .irq_set_affinity = xive_irq_set_affinity,
985         .irq_set_type = xive_irq_set_type,
986         .irq_retrigger = xive_irq_retrigger,
987         .irq_set_vcpu_affinity = xive_irq_set_vcpu_affinity,
988         .irq_get_irqchip_state = xive_get_irqchip_state,
989 };
990 
991 bool is_xive_irq(struct irq_chip *chip)
992 {
993         return chip == &xive_irq_chip;
994 }
995 EXPORT_SYMBOL_GPL(is_xive_irq);
996 
997 void xive_cleanup_irq_data(struct xive_irq_data *xd)
998 {
999         pr_debug("%s for HW 0x%x\n", __func__, xd->hw_irq);
1000 
1001         if (xd->eoi_mmio) {
1002                 iounmap(xd->eoi_mmio);
1003                 if (xd->eoi_mmio == xd->trig_mmio)
1004                         xd->trig_mmio = NULL;
1005                 xd->eoi_mmio = NULL;
1006         }
1007         if (xd->trig_mmio) {
1008                 iounmap(xd->trig_mmio);
1009                 xd->trig_mmio = NULL;
1010         }
1011 }
1012 EXPORT_SYMBOL_GPL(xive_cleanup_irq_data);
1013 
1014 static int xive_irq_alloc_data(unsigned int virq, irq_hw_number_t hw)
1015 {
1016         struct xive_irq_data *xd;
1017         int rc;
1018 
1019         xd = kzalloc(sizeof(struct xive_irq_data), GFP_KERNEL);
1020         if (!xd)
1021                 return -ENOMEM;
1022         rc = xive_ops->populate_irq_data(hw, xd);
1023         if (rc) {
1024                 kfree(xd);
1025                 return rc;
1026         }
1027         xd->target = XIVE_INVALID_TARGET;
1028         irq_set_handler_data(virq, xd);
1029 
1030         /*
1031          * Turn OFF by default the interrupt being mapped. A side
1032          * effect of this check is the mapping the ESB page of the
1033          * interrupt in the Linux address space. This prevents page
1034          * fault issues in the crash handler which masks all
1035          * interrupts.
1036          */
1037         xive_esb_read(xd, XIVE_ESB_SET_PQ_01);
1038 
1039         return 0;
1040 }
1041 
1042 void xive_irq_free_data(unsigned int virq)
1043 {
1044         struct xive_irq_data *xd = irq_get_handler_data(virq);
1045 
1046         if (!xd)
1047                 return;
1048         irq_set_handler_data(virq, NULL);
1049         xive_cleanup_irq_data(xd);
1050         kfree(xd);
1051 }
1052 EXPORT_SYMBOL_GPL(xive_irq_free_data);
1053 
1054 #ifdef CONFIG_SMP
1055 
1056 static void xive_cause_ipi(int cpu)
1057 {
1058         struct xive_cpu *xc;
1059         struct xive_irq_data *xd;
1060 
1061         xc = per_cpu(xive_cpu, cpu);
1062 
1063         DBG_VERBOSE("IPI CPU %d -> %d (HW IRQ 0x%x)\n",
1064                     smp_processor_id(), cpu, xc->hw_ipi);
1065 
1066         xd = &xc->ipi_data;
1067         if (WARN_ON(!xd->trig_mmio))
1068                 return;
1069         out_be64(xd->trig_mmio, 0);
1070 }
1071 
1072 static irqreturn_t xive_muxed_ipi_action(int irq, void *dev_id)
1073 {
1074         return smp_ipi_demux();
1075 }
1076 
1077 static void xive_ipi_eoi(struct irq_data *d)
1078 {
1079         struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1080 
1081         /* Handle possible race with unplug and drop stale IPIs */
1082         if (!xc)
1083                 return;
1084 
1085         DBG_VERBOSE("IPI eoi: irq=%d [0x%lx] (HW IRQ 0x%x) pending=%02x\n",
1086                     d->irq, irqd_to_hwirq(d), xc->hw_ipi, xc->pending_prio);
1087 
1088         xive_do_source_eoi(&xc->ipi_data);
1089         xive_do_queue_eoi(xc);
1090 }
1091 
1092 static void xive_ipi_do_nothing(struct irq_data *d)
1093 {
1094         /*
1095          * Nothing to do, we never mask/unmask IPIs, but the callback
1096          * has to exist for the struct irq_chip.
1097          */
1098 }
1099 
1100 static struct irq_chip xive_ipi_chip = {
1101         .name = "XIVE-IPI",
1102         .irq_eoi = xive_ipi_eoi,
1103         .irq_mask = xive_ipi_do_nothing,
1104         .irq_unmask = xive_ipi_do_nothing,
1105 };
1106 
1107 /*
1108  * IPIs are marked per-cpu. We use separate HW interrupts under the
1109  * hood but associated with the same "linux" interrupt
1110  */
1111 struct xive_ipi_alloc_info {
1112         irq_hw_number_t hwirq;
1113 };
1114 
1115 static int xive_ipi_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1116                                      unsigned int nr_irqs, void *arg)
1117 {
1118         struct xive_ipi_alloc_info *info = arg;
1119         int i;
1120 
1121         for (i = 0; i < nr_irqs; i++) {
1122                 irq_domain_set_info(domain, virq + i, info->hwirq + i, &xive_ipi_chip,
1123                                     domain->host_data, handle_percpu_irq,
1124                                     NULL, NULL);
1125         }
1126         return 0;
1127 }
1128 
1129 static const struct irq_domain_ops xive_ipi_irq_domain_ops = {
1130         .alloc  = xive_ipi_irq_domain_alloc,
1131 };
1132 
1133 static int __init xive_init_ipis(void)
1134 {
1135         struct fwnode_handle *fwnode;
1136         struct irq_domain *ipi_domain;
1137         unsigned int node;
1138         int ret = -ENOMEM;
1139 
1140         fwnode = irq_domain_alloc_named_fwnode("XIVE-IPI");
1141         if (!fwnode)
1142                 goto out;
1143 
1144         ipi_domain = irq_domain_create_linear(fwnode, nr_node_ids,
1145                                               &xive_ipi_irq_domain_ops, NULL);
1146         if (!ipi_domain)
1147                 goto out_free_fwnode;
1148 
1149         xive_ipis = kcalloc(nr_node_ids, sizeof(*xive_ipis), GFP_KERNEL | __GFP_NOFAIL);
1150         if (!xive_ipis)
1151                 goto out_free_domain;
1152 
1153         for_each_node(node) {
1154                 struct xive_ipi_desc *xid = &xive_ipis[node];
1155                 struct xive_ipi_alloc_info info = { node };
1156 
1157                 /*
1158                  * Map one IPI interrupt per node for all cpus of that node.
1159                  * Since the HW interrupt number doesn't have any meaning,
1160                  * simply use the node number.
1161                  */
1162                 ret = irq_domain_alloc_irqs(ipi_domain, 1, node, &info);
1163                 if (ret < 0)
1164                         goto out_free_xive_ipis;
1165                 xid->irq = ret;
1166 
1167                 snprintf(xid->name, sizeof(xid->name), "IPI-%d", node);
1168         }
1169 
1170         return ret;
1171 
1172 out_free_xive_ipis:
1173         kfree(xive_ipis);
1174 out_free_domain:
1175         irq_domain_remove(ipi_domain);
1176 out_free_fwnode:
1177         irq_domain_free_fwnode(fwnode);
1178 out:
1179         return ret;
1180 }
1181 
1182 static int xive_request_ipi(unsigned int cpu)
1183 {
1184         struct xive_ipi_desc *xid = &xive_ipis[early_cpu_to_node(cpu)];
1185         int ret;
1186 
1187         if (atomic_inc_return(&xid->started) > 1)
1188                 return 0;
1189 
1190         ret = request_irq(xid->irq, xive_muxed_ipi_action,
1191                           IRQF_NO_DEBUG | IRQF_PERCPU | IRQF_NO_THREAD,
1192                           xid->name, NULL);
1193 
1194         WARN(ret < 0, "Failed to request IPI %d: %d\n", xid->irq, ret);
1195         return ret;
1196 }
1197 
1198 static int xive_setup_cpu_ipi(unsigned int cpu)
1199 {
1200         unsigned int xive_ipi_irq = xive_ipi_cpu_to_irq(cpu);
1201         struct xive_cpu *xc;
1202         int rc;
1203 
1204         pr_debug("Setting up IPI for CPU %d\n", cpu);
1205 
1206         xc = per_cpu(xive_cpu, cpu);
1207 
1208         /* Check if we are already setup */
1209         if (xc->hw_ipi != XIVE_BAD_IRQ)
1210                 return 0;
1211 
1212         /* Register the IPI */
1213         xive_request_ipi(cpu);
1214 
1215         /* Grab an IPI from the backend, this will populate xc->hw_ipi */
1216         if (xive_ops->get_ipi(cpu, xc))
1217                 return -EIO;
1218 
1219         /*
1220          * Populate the IRQ data in the xive_cpu structure and
1221          * configure the HW / enable the IPIs.
1222          */
1223         rc = xive_ops->populate_irq_data(xc->hw_ipi, &xc->ipi_data);
1224         if (rc) {
1225                 pr_err("Failed to populate IPI data on CPU %d\n", cpu);
1226                 return -EIO;
1227         }
1228         rc = xive_ops->configure_irq(xc->hw_ipi,
1229                                      get_hard_smp_processor_id(cpu),
1230                                      xive_irq_priority, xive_ipi_irq);
1231         if (rc) {
1232                 pr_err("Failed to map IPI CPU %d\n", cpu);
1233                 return -EIO;
1234         }
1235         pr_debug("CPU %d HW IPI 0x%x, virq %d, trig_mmio=%p\n", cpu,
1236                  xc->hw_ipi, xive_ipi_irq, xc->ipi_data.trig_mmio);
1237 
1238         /* Unmask it */
1239         xive_do_source_set_mask(&xc->ipi_data, false);
1240 
1241         return 0;
1242 }
1243 
1244 noinstr static void xive_cleanup_cpu_ipi(unsigned int cpu, struct xive_cpu *xc)
1245 {
1246         unsigned int xive_ipi_irq = xive_ipi_cpu_to_irq(cpu);
1247 
1248         /* Disable the IPI and free the IRQ data */
1249 
1250         /* Already cleaned up ? */
1251         if (xc->hw_ipi == XIVE_BAD_IRQ)
1252                 return;
1253 
1254         /* TODO: clear IPI mapping */
1255 
1256         /* Mask the IPI */
1257         xive_do_source_set_mask(&xc->ipi_data, true);
1258 
1259         /*
1260          * Note: We don't call xive_cleanup_irq_data() to free
1261          * the mappings as this is called from an IPI on kexec
1262          * which is not a safe environment to call iounmap()
1263          */
1264 
1265         /* Deconfigure/mask in the backend */
1266         xive_ops->configure_irq(xc->hw_ipi, hard_smp_processor_id(),
1267                                 0xff, xive_ipi_irq);
1268 
1269         /* Free the IPIs in the backend */
1270         xive_ops->put_ipi(cpu, xc);
1271 }
1272 
1273 void __init xive_smp_probe(void)
1274 {
1275         smp_ops->cause_ipi = xive_cause_ipi;
1276 
1277         /* Register the IPI */
1278         xive_init_ipis();
1279 
1280         /* Allocate and setup IPI for the boot CPU */
1281         xive_setup_cpu_ipi(smp_processor_id());
1282 }
1283 
1284 #endif /* CONFIG_SMP */
1285 
1286 static int xive_irq_domain_map(struct irq_domain *h, unsigned int virq,
1287                                irq_hw_number_t hw)
1288 {
1289         int rc;
1290 
1291         /*
1292          * Mark interrupts as edge sensitive by default so that resend
1293          * actually works. Will fix that up below if needed.
1294          */
1295         irq_clear_status_flags(virq, IRQ_LEVEL);
1296 
1297         rc = xive_irq_alloc_data(virq, hw);
1298         if (rc)
1299                 return rc;
1300 
1301         irq_set_chip_and_handler(virq, &xive_irq_chip, handle_fasteoi_irq);
1302 
1303         return 0;
1304 }
1305 
1306 static void xive_irq_domain_unmap(struct irq_domain *d, unsigned int virq)
1307 {
1308         xive_irq_free_data(virq);
1309 }
1310 
1311 static int xive_irq_domain_xlate(struct irq_domain *h, struct device_node *ct,
1312                                  const u32 *intspec, unsigned int intsize,
1313                                  irq_hw_number_t *out_hwirq, unsigned int *out_flags)
1314 
1315 {
1316         *out_hwirq = intspec[0];
1317 
1318         /*
1319          * If intsize is at least 2, we look for the type in the second cell,
1320          * we assume the LSB indicates a level interrupt.
1321          */
1322         if (intsize > 1) {
1323                 if (intspec[1] & 1)
1324                         *out_flags = IRQ_TYPE_LEVEL_LOW;
1325                 else
1326                         *out_flags = IRQ_TYPE_EDGE_RISING;
1327         } else
1328                 *out_flags = IRQ_TYPE_LEVEL_LOW;
1329 
1330         return 0;
1331 }
1332 
1333 static int xive_irq_domain_match(struct irq_domain *h, struct device_node *node,
1334                                  enum irq_domain_bus_token bus_token)
1335 {
1336         return xive_ops->match(node);
1337 }
1338 
1339 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS
1340 static const char * const esb_names[] = { "RESET", "OFF", "PENDING", "QUEUED" };
1341 
1342 static const struct {
1343         u64  mask;
1344         char *name;
1345 } xive_irq_flags[] = {
1346         { XIVE_IRQ_FLAG_STORE_EOI, "STORE_EOI" },
1347         { XIVE_IRQ_FLAG_LSI,       "LSI"       },
1348         { XIVE_IRQ_FLAG_H_INT_ESB, "H_INT_ESB" },
1349         { XIVE_IRQ_FLAG_NO_EOI,    "NO_EOI"    },
1350 };
1351 
1352 static void xive_irq_domain_debug_show(struct seq_file *m, struct irq_domain *d,
1353                                        struct irq_data *irqd, int ind)
1354 {
1355         struct xive_irq_data *xd;
1356         u64 val;
1357         int i;
1358 
1359         /* No IRQ domain level information. To be done */
1360         if (!irqd)
1361                 return;
1362 
1363         if (!is_xive_irq(irq_data_get_irq_chip(irqd)))
1364                 return;
1365 
1366         seq_printf(m, "%*sXIVE:\n", ind, "");
1367         ind++;
1368 
1369         xd = irq_data_get_irq_handler_data(irqd);
1370         if (!xd) {
1371                 seq_printf(m, "%*snot assigned\n", ind, "");
1372                 return;
1373         }
1374 
1375         val = xive_esb_read(xd, XIVE_ESB_GET);
1376         seq_printf(m, "%*sESB:      %s\n", ind, "", esb_names[val & 0x3]);
1377         seq_printf(m, "%*sPstate:   %s %s\n", ind, "", xd->stale_p ? "stale" : "",
1378                    xd->saved_p ? "saved" : "");
1379         seq_printf(m, "%*sTarget:   %d\n", ind, "", xd->target);
1380         seq_printf(m, "%*sChip:     %d\n", ind, "", xd->src_chip);
1381         seq_printf(m, "%*sTrigger:  0x%016llx\n", ind, "", xd->trig_page);
1382         seq_printf(m, "%*sEOI:      0x%016llx\n", ind, "", xd->eoi_page);
1383         seq_printf(m, "%*sFlags:    0x%llx\n", ind, "", xd->flags);
1384         for (i = 0; i < ARRAY_SIZE(xive_irq_flags); i++) {
1385                 if (xd->flags & xive_irq_flags[i].mask)
1386                         seq_printf(m, "%*s%s\n", ind + 12, "", xive_irq_flags[i].name);
1387         }
1388 }
1389 #endif
1390 
1391 #ifdef  CONFIG_IRQ_DOMAIN_HIERARCHY
1392 static int xive_irq_domain_translate(struct irq_domain *d,
1393                                      struct irq_fwspec *fwspec,
1394                                      unsigned long *hwirq,
1395                                      unsigned int *type)
1396 {
1397         return xive_irq_domain_xlate(d, to_of_node(fwspec->fwnode),
1398                                      fwspec->param, fwspec->param_count,
1399                                      hwirq, type);
1400 }
1401 
1402 static int xive_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1403                                  unsigned int nr_irqs, void *arg)
1404 {
1405         struct irq_fwspec *fwspec = arg;
1406         irq_hw_number_t hwirq;
1407         unsigned int type = IRQ_TYPE_NONE;
1408         int i, rc;
1409 
1410         rc = xive_irq_domain_translate(domain, fwspec, &hwirq, &type);
1411         if (rc)
1412                 return rc;
1413 
1414         pr_debug("%s %d/0x%lx #%d\n", __func__, virq, hwirq, nr_irqs);
1415 
1416         for (i = 0; i < nr_irqs; i++) {
1417                 /* TODO: call xive_irq_domain_map() */
1418 
1419                 /*
1420                  * Mark interrupts as edge sensitive by default so that resend
1421                  * actually works. Will fix that up below if needed.
1422                  */
1423                 irq_clear_status_flags(virq, IRQ_LEVEL);
1424 
1425                 /* allocates and sets handler data */
1426                 rc = xive_irq_alloc_data(virq + i, hwirq + i);
1427                 if (rc)
1428                         return rc;
1429 
1430                 irq_domain_set_hwirq_and_chip(domain, virq + i, hwirq + i,
1431                                               &xive_irq_chip, domain->host_data);
1432                 irq_set_handler(virq + i, handle_fasteoi_irq);
1433         }
1434 
1435         return 0;
1436 }
1437 
1438 static void xive_irq_domain_free(struct irq_domain *domain,
1439                                  unsigned int virq, unsigned int nr_irqs)
1440 {
1441         int i;
1442 
1443         pr_debug("%s %d #%d\n", __func__, virq, nr_irqs);
1444 
1445         for (i = 0; i < nr_irqs; i++)
1446                 xive_irq_free_data(virq + i);
1447 }
1448 #endif
1449 
1450 static const struct irq_domain_ops xive_irq_domain_ops = {
1451 #ifdef  CONFIG_IRQ_DOMAIN_HIERARCHY
1452         .alloc  = xive_irq_domain_alloc,
1453         .free   = xive_irq_domain_free,
1454         .translate = xive_irq_domain_translate,
1455 #endif
1456         .match = xive_irq_domain_match,
1457         .map = xive_irq_domain_map,
1458         .unmap = xive_irq_domain_unmap,
1459         .xlate = xive_irq_domain_xlate,
1460 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS
1461         .debug_show = xive_irq_domain_debug_show,
1462 #endif
1463 };
1464 
1465 static void __init xive_init_host(struct device_node *np)
1466 {
1467         xive_irq_domain = irq_domain_add_tree(np, &xive_irq_domain_ops, NULL);
1468         if (WARN_ON(xive_irq_domain == NULL))
1469                 return;
1470         irq_set_default_host(xive_irq_domain);
1471 }
1472 
1473 static void xive_cleanup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
1474 {
1475         if (xc->queue[xive_irq_priority].qpage)
1476                 xive_ops->cleanup_queue(cpu, xc, xive_irq_priority);
1477 }
1478 
1479 static int xive_setup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
1480 {
1481         int rc = 0;
1482 
1483         /* We setup 1 queues for now with a 64k page */
1484         if (!xc->queue[xive_irq_priority].qpage)
1485                 rc = xive_ops->setup_queue(cpu, xc, xive_irq_priority);
1486 
1487         return rc;
1488 }
1489 
1490 static int xive_prepare_cpu(unsigned int cpu)
1491 {
1492         struct xive_cpu *xc;
1493 
1494         xc = per_cpu(xive_cpu, cpu);
1495         if (!xc) {
1496                 xc = kzalloc_node(sizeof(struct xive_cpu),
1497                                   GFP_KERNEL, cpu_to_node(cpu));
1498                 if (!xc)
1499                         return -ENOMEM;
1500                 xc->hw_ipi = XIVE_BAD_IRQ;
1501                 xc->chip_id = XIVE_INVALID_CHIP_ID;
1502                 if (xive_ops->prepare_cpu)
1503                         xive_ops->prepare_cpu(cpu, xc);
1504 
1505                 per_cpu(xive_cpu, cpu) = xc;
1506         }
1507 
1508         /* Setup EQs if not already */
1509         return xive_setup_cpu_queues(cpu, xc);
1510 }
1511 
1512 static void xive_setup_cpu(void)
1513 {
1514         struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1515 
1516         /* The backend might have additional things to do */
1517         if (xive_ops->setup_cpu)
1518                 xive_ops->setup_cpu(smp_processor_id(), xc);
1519 
1520         /* Set CPPR to 0xff to enable flow of interrupts */
1521         xc->cppr = 0xff;
1522         out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
1523 }
1524 
1525 #ifdef CONFIG_SMP
1526 void xive_smp_setup_cpu(void)
1527 {
1528         pr_debug("SMP setup CPU %d\n", smp_processor_id());
1529 
1530         /* This will have already been done on the boot CPU */
1531         if (smp_processor_id() != boot_cpuid)
1532                 xive_setup_cpu();
1533 
1534 }
1535 
1536 int xive_smp_prepare_cpu(unsigned int cpu)
1537 {
1538         int rc;
1539 
1540         /* Allocate per-CPU data and queues */
1541         rc = xive_prepare_cpu(cpu);
1542         if (rc)
1543                 return rc;
1544 
1545         /* Allocate and setup IPI for the new CPU */
1546         return xive_setup_cpu_ipi(cpu);
1547 }
1548 
1549 #ifdef CONFIG_HOTPLUG_CPU
1550 static void xive_flush_cpu_queue(unsigned int cpu, struct xive_cpu *xc)
1551 {
1552         u32 irq;
1553 
1554         /* We assume local irqs are disabled */
1555         WARN_ON(!irqs_disabled());
1556 
1557         /* Check what's already in the CPU queue */
1558         while ((irq = xive_scan_interrupts(xc, false)) != 0) {
1559                 /*
1560                  * We need to re-route that interrupt to its new destination.
1561                  * First get and lock the descriptor
1562                  */
1563                 struct irq_desc *desc = irq_to_desc(irq);
1564                 struct irq_data *d = irq_desc_get_irq_data(desc);
1565                 struct xive_irq_data *xd;
1566 
1567                 /*
1568                  * Ignore anything that isn't a XIVE irq and ignore
1569                  * IPIs, so can just be dropped.
1570                  */
1571                 if (d->domain != xive_irq_domain)
1572                         continue;
1573 
1574                 /*
1575                  * The IRQ should have already been re-routed, it's just a
1576                  * stale in the old queue, so re-trigger it in order to make
1577                  * it reach is new destination.
1578                  */
1579 #ifdef DEBUG_FLUSH
1580                 pr_info("CPU %d: Got irq %d while offline, re-sending...\n",
1581                         cpu, irq);
1582 #endif
1583                 raw_spin_lock(&desc->lock);
1584                 xd = irq_desc_get_handler_data(desc);
1585 
1586                 /*
1587                  * Clear saved_p to indicate that it's no longer pending
1588                  */
1589                 xd->saved_p = false;
1590 
1591                 /*
1592                  * For LSIs, we EOI, this will cause a resend if it's
1593                  * still asserted. Otherwise do an MSI retrigger.
1594                  */
1595                 if (xd->flags & XIVE_IRQ_FLAG_LSI)
1596                         xive_do_source_eoi(xd);
1597                 else
1598                         xive_irq_retrigger(d);
1599 
1600                 raw_spin_unlock(&desc->lock);
1601         }
1602 }
1603 
1604 void xive_smp_disable_cpu(void)
1605 {
1606         struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1607         unsigned int cpu = smp_processor_id();
1608 
1609         /* Migrate interrupts away from the CPU */
1610         irq_migrate_all_off_this_cpu();
1611 
1612         /* Set CPPR to 0 to disable flow of interrupts */
1613         xc->cppr = 0;
1614         out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1615 
1616         /* Flush everything still in the queue */
1617         xive_flush_cpu_queue(cpu, xc);
1618 
1619         /* Re-enable CPPR  */
1620         xc->cppr = 0xff;
1621         out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
1622 }
1623 
1624 void xive_flush_interrupt(void)
1625 {
1626         struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1627         unsigned int cpu = smp_processor_id();
1628 
1629         /* Called if an interrupt occurs while the CPU is hot unplugged */
1630         xive_flush_cpu_queue(cpu, xc);
1631 }
1632 
1633 #endif /* CONFIG_HOTPLUG_CPU */
1634 
1635 #endif /* CONFIG_SMP */
1636 
1637 noinstr void xive_teardown_cpu(void)
1638 {
1639         struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1640         unsigned int cpu = smp_processor_id();
1641 
1642         /* Set CPPR to 0 to disable flow of interrupts */
1643         xc->cppr = 0;
1644         out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1645 
1646         if (xive_ops->teardown_cpu)
1647                 xive_ops->teardown_cpu(cpu, xc);
1648 
1649 #ifdef CONFIG_SMP
1650         /* Get rid of IPI */
1651         xive_cleanup_cpu_ipi(cpu, xc);
1652 #endif
1653 
1654         /* Disable and free the queues */
1655         xive_cleanup_cpu_queues(cpu, xc);
1656 }
1657 
1658 void xive_shutdown(void)
1659 {
1660         xive_ops->shutdown();
1661 }
1662 
1663 bool __init xive_core_init(struct device_node *np, const struct xive_ops *ops,
1664                            void __iomem *area, u32 offset, u8 max_prio)
1665 {
1666         xive_tima = area;
1667         xive_tima_offset = offset;
1668         xive_ops = ops;
1669         xive_irq_priority = max_prio;
1670 
1671         ppc_md.get_irq = xive_get_irq;
1672         __xive_enabled = true;
1673 
1674         pr_debug("Initializing host..\n");
1675         xive_init_host(np);
1676 
1677         pr_debug("Initializing boot CPU..\n");
1678 
1679         /* Allocate per-CPU data and queues */
1680         xive_prepare_cpu(smp_processor_id());
1681 
1682         /* Get ready for interrupts */
1683         xive_setup_cpu();
1684 
1685         pr_info("Interrupt handling initialized with %s backend\n",
1686                 xive_ops->name);
1687         pr_info("Using priority %d for all interrupts\n", max_prio);
1688 
1689         return true;
1690 }
1691 
1692 __be32 *xive_queue_page_alloc(unsigned int cpu, u32 queue_shift)
1693 {
1694         unsigned int alloc_order;
1695         struct page *pages;
1696         __be32 *qpage;
1697 
1698         alloc_order = xive_alloc_order(queue_shift);
1699         pages = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, alloc_order);
1700         if (!pages)
1701                 return ERR_PTR(-ENOMEM);
1702         qpage = (__be32 *)page_address(pages);
1703         memset(qpage, 0, 1 << queue_shift);
1704 
1705         return qpage;
1706 }
1707 
1708 static int __init xive_off(char *arg)
1709 {
1710         xive_cmdline_disabled = true;
1711         return 1;
1712 }
1713 __setup("xive=off", xive_off);
1714 
1715 static int __init xive_store_eoi_cmdline(char *arg)
1716 {
1717         if (!arg)
1718                 return 1;
1719 
1720         if (strncmp(arg, "off", 3) == 0) {
1721                 pr_info("StoreEOI disabled on kernel command line\n");
1722                 xive_store_eoi = false;
1723         }
1724         return 1;
1725 }
1726 __setup("xive.store-eoi=", xive_store_eoi_cmdline);
1727 
1728 #ifdef CONFIG_DEBUG_FS
1729 static void xive_debug_show_ipi(struct seq_file *m, int cpu)
1730 {
1731         struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
1732 
1733         seq_printf(m, "CPU %d: ", cpu);
1734         if (xc) {
1735                 seq_printf(m, "pp=%02x CPPR=%02x ", xc->pending_prio, xc->cppr);
1736 
1737 #ifdef CONFIG_SMP
1738                 {
1739                         char buffer[128];
1740 
1741                         xive_irq_data_dump(&xc->ipi_data, buffer, sizeof(buffer));
1742                         seq_printf(m, "IPI=0x%08x %s", xc->hw_ipi, buffer);
1743                 }
1744 #endif
1745         }
1746         seq_puts(m, "\n");
1747 }
1748 
1749 static void xive_debug_show_irq(struct seq_file *m, struct irq_data *d)
1750 {
1751         unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
1752         int rc;
1753         u32 target;
1754         u8 prio;
1755         u32 lirq;
1756         char buffer[128];
1757 
1758         rc = xive_ops->get_irq_config(hw_irq, &target, &prio, &lirq);
1759         if (rc) {
1760                 seq_printf(m, "IRQ 0x%08x : no config rc=%d\n", hw_irq, rc);
1761                 return;
1762         }
1763 
1764         seq_printf(m, "IRQ 0x%08x : target=0x%x prio=%02x lirq=0x%x ",
1765                    hw_irq, target, prio, lirq);
1766 
1767         xive_irq_data_dump(irq_data_get_irq_handler_data(d), buffer, sizeof(buffer));
1768         seq_puts(m, buffer);
1769         seq_puts(m, "\n");
1770 }
1771 
1772 static int xive_irq_debug_show(struct seq_file *m, void *private)
1773 {
1774         unsigned int i;
1775         struct irq_desc *desc;
1776 
1777         for_each_irq_desc(i, desc) {
1778                 struct irq_data *d = irq_domain_get_irq_data(xive_irq_domain, i);
1779 
1780                 if (d)
1781                         xive_debug_show_irq(m, d);
1782         }
1783         return 0;
1784 }
1785 DEFINE_SHOW_ATTRIBUTE(xive_irq_debug);
1786 
1787 static int xive_ipi_debug_show(struct seq_file *m, void *private)
1788 {
1789         int cpu;
1790 
1791         if (xive_ops->debug_show)
1792                 xive_ops->debug_show(m, private);
1793 
1794         for_each_online_cpu(cpu)
1795                 xive_debug_show_ipi(m, cpu);
1796         return 0;
1797 }
1798 DEFINE_SHOW_ATTRIBUTE(xive_ipi_debug);
1799 
1800 static void xive_eq_debug_show_one(struct seq_file *m, struct xive_q *q, u8 prio)
1801 {
1802         int i;
1803 
1804         seq_printf(m, "EQ%d idx=%d T=%d\n", prio, q->idx, q->toggle);
1805         if (q->qpage) {
1806                 for (i = 0; i < q->msk + 1; i++) {
1807                         if (!(i % 8))
1808                                 seq_printf(m, "%05d ", i);
1809                         seq_printf(m, "%08x%s", be32_to_cpup(q->qpage + i),
1810                                    (i + 1) % 8 ? " " : "\n");
1811                 }
1812         }
1813         seq_puts(m, "\n");
1814 }
1815 
1816 static int xive_eq_debug_show(struct seq_file *m, void *private)
1817 {
1818         int cpu = (long)m->private;
1819         struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
1820 
1821         if (xc)
1822                 xive_eq_debug_show_one(m, &xc->queue[xive_irq_priority],
1823                                        xive_irq_priority);
1824         return 0;
1825 }
1826 DEFINE_SHOW_ATTRIBUTE(xive_eq_debug);
1827 
1828 static void xive_core_debugfs_create(void)
1829 {
1830         struct dentry *xive_dir;
1831         struct dentry *xive_eq_dir;
1832         long cpu;
1833         char name[16];
1834 
1835         xive_dir = debugfs_create_dir("xive", arch_debugfs_dir);
1836         if (IS_ERR(xive_dir))
1837                 return;
1838 
1839         debugfs_create_file("ipis", 0400, xive_dir,
1840                             NULL, &xive_ipi_debug_fops);
1841         debugfs_create_file("interrupts", 0400, xive_dir,
1842                             NULL, &xive_irq_debug_fops);
1843         xive_eq_dir = debugfs_create_dir("eqs", xive_dir);
1844         for_each_possible_cpu(cpu) {
1845                 snprintf(name, sizeof(name), "cpu%ld", cpu);
1846                 debugfs_create_file(name, 0400, xive_eq_dir, (void *)cpu,
1847                                     &xive_eq_debug_fops);
1848         }
1849         debugfs_create_bool("store-eoi", 0600, xive_dir, &xive_store_eoi);
1850 
1851         if (xive_ops->debug_create)
1852                 xive_ops->debug_create(xive_dir);
1853 }
1854 #else
1855 static inline void xive_core_debugfs_create(void) { }
1856 #endif /* CONFIG_DEBUG_FS */
1857 
1858 int xive_core_debug_init(void)
1859 {
1860         if (xive_enabled() && IS_ENABLED(CONFIG_DEBUG_FS))
1861                 xive_core_debugfs_create();
1862 
1863         return 0;
1864 }
1865 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php