1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright 2016,2017 IBM Corporation. 4 */ 5 6 #define pr_fmt(fmt) "xive: " fmt 7 8 #include <linux/types.h> 9 #include <linux/threads.h> 10 #include <linux/kernel.h> 11 #include <linux/irq.h> 12 #include <linux/irqdomain.h> 13 #include <linux/debugfs.h> 14 #include <linux/smp.h> 15 #include <linux/interrupt.h> 16 #include <linux/seq_file.h> 17 #include <linux/init.h> 18 #include <linux/cpu.h> 19 #include <linux/of.h> 20 #include <linux/slab.h> 21 #include <linux/spinlock.h> 22 #include <linux/msi.h> 23 #include <linux/vmalloc.h> 24 25 #include <asm/io.h> 26 #include <asm/smp.h> 27 #include <asm/machdep.h> 28 #include <asm/irq.h> 29 #include <asm/errno.h> 30 #include <asm/xive.h> 31 #include <asm/xive-regs.h> 32 #include <asm/xmon.h> 33 34 #include "xive-internal.h" 35 36 #undef DEBUG_FLUSH 37 #undef DEBUG_ALL 38 39 #ifdef DEBUG_ALL 40 #define DBG_VERBOSE(fmt, ...) pr_devel("cpu %d - " fmt, \ 41 smp_processor_id(), ## __VA_ARGS__) 42 #else 43 #define DBG_VERBOSE(fmt...) do { } while(0) 44 #endif 45 46 bool __xive_enabled; 47 EXPORT_SYMBOL_GPL(__xive_enabled); 48 bool xive_cmdline_disabled; 49 50 /* We use only one priority for now */ 51 static u8 xive_irq_priority; 52 53 /* TIMA exported to KVM */ 54 void __iomem *xive_tima; 55 EXPORT_SYMBOL_GPL(xive_tima); 56 u32 xive_tima_offset; 57 58 /* Backend ops */ 59 static const struct xive_ops *xive_ops; 60 61 /* Our global interrupt domain */ 62 static struct irq_domain *xive_irq_domain; 63 64 #ifdef CONFIG_SMP 65 /* The IPIs use the same logical irq number when on the same chip */ 66 static struct xive_ipi_desc { 67 unsigned int irq; 68 char name[16]; 69 atomic_t started; 70 } *xive_ipis; 71 72 /* 73 * Use early_cpu_to_node() for hot-plugged CPUs 74 */ 75 static unsigned int xive_ipi_cpu_to_irq(unsigned int cpu) 76 { 77 return xive_ipis[early_cpu_to_node(cpu)].irq; 78 } 79 #endif 80 81 /* Xive state for each CPU */ 82 static DEFINE_PER_CPU(struct xive_cpu *, xive_cpu); 83 84 /* An invalid CPU target */ 85 #define XIVE_INVALID_TARGET (-1) 86 87 /* 88 * Global toggle to switch on/off StoreEOI 89 */ 90 static bool xive_store_eoi = true; 91 92 static bool xive_is_store_eoi(struct xive_irq_data *xd) 93 { 94 return xd->flags & XIVE_IRQ_FLAG_STORE_EOI && xive_store_eoi; 95 } 96 97 /* 98 * Read the next entry in a queue, return its content if it's valid 99 * or 0 if there is no new entry. 100 * 101 * The queue pointer is moved forward unless "just_peek" is set 102 */ 103 static u32 xive_read_eq(struct xive_q *q, bool just_peek) 104 { 105 u32 cur; 106 107 if (!q->qpage) 108 return 0; 109 cur = be32_to_cpup(q->qpage + q->idx); 110 111 /* Check valid bit (31) vs current toggle polarity */ 112 if ((cur >> 31) == q->toggle) 113 return 0; 114 115 /* If consuming from the queue ... */ 116 if (!just_peek) { 117 /* Next entry */ 118 q->idx = (q->idx + 1) & q->msk; 119 120 /* Wrap around: flip valid toggle */ 121 if (q->idx == 0) 122 q->toggle ^= 1; 123 } 124 /* Mask out the valid bit (31) */ 125 return cur & 0x7fffffff; 126 } 127 128 /* 129 * Scans all the queue that may have interrupts in them 130 * (based on "pending_prio") in priority order until an 131 * interrupt is found or all the queues are empty. 132 * 133 * Then updates the CPPR (Current Processor Priority 134 * Register) based on the most favored interrupt found 135 * (0xff if none) and return what was found (0 if none). 136 * 137 * If just_peek is set, return the most favored pending 138 * interrupt if any but don't update the queue pointers. 139 * 140 * Note: This function can operate generically on any number 141 * of queues (up to 8). The current implementation of the XIVE 142 * driver only uses a single queue however. 143 * 144 * Note2: This will also "flush" "the pending_count" of a queue 145 * into the "count" when that queue is observed to be empty. 146 * This is used to keep track of the amount of interrupts 147 * targetting a queue. When an interrupt is moved away from 148 * a queue, we only decrement that queue count once the queue 149 * has been observed empty to avoid races. 150 */ 151 static u32 xive_scan_interrupts(struct xive_cpu *xc, bool just_peek) 152 { 153 u32 irq = 0; 154 u8 prio = 0; 155 156 /* Find highest pending priority */ 157 while (xc->pending_prio != 0) { 158 struct xive_q *q; 159 160 prio = ffs(xc->pending_prio) - 1; 161 DBG_VERBOSE("scan_irq: trying prio %d\n", prio); 162 163 /* Try to fetch */ 164 irq = xive_read_eq(&xc->queue[prio], just_peek); 165 166 /* Found something ? That's it */ 167 if (irq) { 168 if (just_peek || irq_to_desc(irq)) 169 break; 170 /* 171 * We should never get here; if we do then we must 172 * have failed to synchronize the interrupt properly 173 * when shutting it down. 174 */ 175 pr_crit("xive: got interrupt %d without descriptor, dropping\n", 176 irq); 177 WARN_ON(1); 178 continue; 179 } 180 181 /* Clear pending bits */ 182 xc->pending_prio &= ~(1 << prio); 183 184 /* 185 * Check if the queue count needs adjusting due to 186 * interrupts being moved away. See description of 187 * xive_dec_target_count() 188 */ 189 q = &xc->queue[prio]; 190 if (atomic_read(&q->pending_count)) { 191 int p = atomic_xchg(&q->pending_count, 0); 192 if (p) { 193 WARN_ON(p > atomic_read(&q->count)); 194 atomic_sub(p, &q->count); 195 } 196 } 197 } 198 199 /* If nothing was found, set CPPR to 0xff */ 200 if (irq == 0) 201 prio = 0xff; 202 203 /* Update HW CPPR to match if necessary */ 204 if (prio != xc->cppr) { 205 DBG_VERBOSE("scan_irq: adjusting CPPR to %d\n", prio); 206 xc->cppr = prio; 207 out_8(xive_tima + xive_tima_offset + TM_CPPR, prio); 208 } 209 210 return irq; 211 } 212 213 /* 214 * This is used to perform the magic loads from an ESB 215 * described in xive-regs.h 216 */ 217 static notrace u8 xive_esb_read(struct xive_irq_data *xd, u32 offset) 218 { 219 u64 val; 220 221 if (offset == XIVE_ESB_SET_PQ_10 && xive_is_store_eoi(xd)) 222 offset |= XIVE_ESB_LD_ST_MO; 223 224 if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw) 225 val = xive_ops->esb_rw(xd->hw_irq, offset, 0, 0); 226 else 227 val = in_be64(xd->eoi_mmio + offset); 228 229 return (u8)val; 230 } 231 232 static void xive_esb_write(struct xive_irq_data *xd, u32 offset, u64 data) 233 { 234 if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw) 235 xive_ops->esb_rw(xd->hw_irq, offset, data, 1); 236 else 237 out_be64(xd->eoi_mmio + offset, data); 238 } 239 240 #if defined(CONFIG_XMON) || defined(CONFIG_DEBUG_FS) 241 static void xive_irq_data_dump(struct xive_irq_data *xd, char *buffer, size_t size) 242 { 243 u64 val = xive_esb_read(xd, XIVE_ESB_GET); 244 245 snprintf(buffer, size, "flags=%c%c%c PQ=%c%c 0x%016llx 0x%016llx", 246 xive_is_store_eoi(xd) ? 'S' : ' ', 247 xd->flags & XIVE_IRQ_FLAG_LSI ? 'L' : ' ', 248 xd->flags & XIVE_IRQ_FLAG_H_INT_ESB ? 'H' : ' ', 249 val & XIVE_ESB_VAL_P ? 'P' : '-', 250 val & XIVE_ESB_VAL_Q ? 'Q' : '-', 251 xd->trig_page, xd->eoi_page); 252 } 253 #endif 254 255 #ifdef CONFIG_XMON 256 static notrace void xive_dump_eq(const char *name, struct xive_q *q) 257 { 258 u32 i0, i1, idx; 259 260 if (!q->qpage) 261 return; 262 idx = q->idx; 263 i0 = be32_to_cpup(q->qpage + idx); 264 idx = (idx + 1) & q->msk; 265 i1 = be32_to_cpup(q->qpage + idx); 266 xmon_printf("%s idx=%d T=%d %08x %08x ...", name, 267 q->idx, q->toggle, i0, i1); 268 } 269 270 notrace void xmon_xive_do_dump(int cpu) 271 { 272 struct xive_cpu *xc = per_cpu(xive_cpu, cpu); 273 274 xmon_printf("CPU %d:", cpu); 275 if (xc) { 276 xmon_printf("pp=%02x CPPR=%02x ", xc->pending_prio, xc->cppr); 277 278 #ifdef CONFIG_SMP 279 { 280 char buffer[128]; 281 282 xive_irq_data_dump(&xc->ipi_data, buffer, sizeof(buffer)); 283 xmon_printf("IPI=0x%08x %s", xc->hw_ipi, buffer); 284 } 285 #endif 286 xive_dump_eq("EQ", &xc->queue[xive_irq_priority]); 287 } 288 xmon_printf("\n"); 289 } 290 291 static struct irq_data *xive_get_irq_data(u32 hw_irq) 292 { 293 unsigned int irq = irq_find_mapping(xive_irq_domain, hw_irq); 294 295 return irq ? irq_get_irq_data(irq) : NULL; 296 } 297 298 int xmon_xive_get_irq_config(u32 hw_irq, struct irq_data *d) 299 { 300 int rc; 301 u32 target; 302 u8 prio; 303 u32 lirq; 304 305 rc = xive_ops->get_irq_config(hw_irq, &target, &prio, &lirq); 306 if (rc) { 307 xmon_printf("IRQ 0x%08x : no config rc=%d\n", hw_irq, rc); 308 return rc; 309 } 310 311 xmon_printf("IRQ 0x%08x : target=0x%x prio=%02x lirq=0x%x ", 312 hw_irq, target, prio, lirq); 313 314 if (!d) 315 d = xive_get_irq_data(hw_irq); 316 317 if (d) { 318 char buffer[128]; 319 320 xive_irq_data_dump(irq_data_get_irq_handler_data(d), 321 buffer, sizeof(buffer)); 322 xmon_printf("%s", buffer); 323 } 324 325 xmon_printf("\n"); 326 return 0; 327 } 328 329 void xmon_xive_get_irq_all(void) 330 { 331 unsigned int i; 332 struct irq_desc *desc; 333 334 for_each_irq_desc(i, desc) { 335 struct irq_data *d = irq_domain_get_irq_data(xive_irq_domain, i); 336 337 if (d) 338 xmon_xive_get_irq_config(irqd_to_hwirq(d), d); 339 } 340 } 341 342 #endif /* CONFIG_XMON */ 343 344 static unsigned int xive_get_irq(void) 345 { 346 struct xive_cpu *xc = __this_cpu_read(xive_cpu); 347 u32 irq; 348 349 /* 350 * This can be called either as a result of a HW interrupt or 351 * as a "replay" because EOI decided there was still something 352 * in one of the queues. 353 * 354 * First we perform an ACK cycle in order to update our mask 355 * of pending priorities. This will also have the effect of 356 * updating the CPPR to the most favored pending interrupts. 357 * 358 * In the future, if we have a way to differentiate a first 359 * entry (on HW interrupt) from a replay triggered by EOI, 360 * we could skip this on replays unless we soft-mask tells us 361 * that a new HW interrupt occurred. 362 */ 363 xive_ops->update_pending(xc); 364 365 DBG_VERBOSE("get_irq: pending=%02x\n", xc->pending_prio); 366 367 /* Scan our queue(s) for interrupts */ 368 irq = xive_scan_interrupts(xc, false); 369 370 DBG_VERBOSE("get_irq: got irq 0x%x, new pending=0x%02x\n", 371 irq, xc->pending_prio); 372 373 /* Return pending interrupt if any */ 374 if (irq == XIVE_BAD_IRQ) 375 return 0; 376 return irq; 377 } 378 379 /* 380 * After EOI'ing an interrupt, we need to re-check the queue 381 * to see if another interrupt is pending since multiple 382 * interrupts can coalesce into a single notification to the 383 * CPU. 384 * 385 * If we find that there is indeed more in there, we call 386 * force_external_irq_replay() to make Linux synthesize an 387 * external interrupt on the next call to local_irq_restore(). 388 */ 389 static void xive_do_queue_eoi(struct xive_cpu *xc) 390 { 391 if (xive_scan_interrupts(xc, true) != 0) { 392 DBG_VERBOSE("eoi: pending=0x%02x\n", xc->pending_prio); 393 force_external_irq_replay(); 394 } 395 } 396 397 /* 398 * EOI an interrupt at the source. There are several methods 399 * to do this depending on the HW version and source type 400 */ 401 static void xive_do_source_eoi(struct xive_irq_data *xd) 402 { 403 u8 eoi_val; 404 405 xd->stale_p = false; 406 407 /* If the XIVE supports the new "store EOI facility, use it */ 408 if (xive_is_store_eoi(xd)) { 409 xive_esb_write(xd, XIVE_ESB_STORE_EOI, 0); 410 return; 411 } 412 413 /* 414 * For LSIs, we use the "EOI cycle" special load rather than 415 * PQ bits, as they are automatically re-triggered in HW when 416 * still pending. 417 */ 418 if (xd->flags & XIVE_IRQ_FLAG_LSI) { 419 xive_esb_read(xd, XIVE_ESB_LOAD_EOI); 420 return; 421 } 422 423 /* 424 * Otherwise, we use the special MMIO that does a clear of 425 * both P and Q and returns the old Q. This allows us to then 426 * do a re-trigger if Q was set rather than synthesizing an 427 * interrupt in software 428 */ 429 eoi_val = xive_esb_read(xd, XIVE_ESB_SET_PQ_00); 430 DBG_VERBOSE("eoi_val=%x\n", eoi_val); 431 432 /* Re-trigger if needed */ 433 if ((eoi_val & XIVE_ESB_VAL_Q) && xd->trig_mmio) 434 out_be64(xd->trig_mmio, 0); 435 } 436 437 /* irq_chip eoi callback, called with irq descriptor lock held */ 438 static void xive_irq_eoi(struct irq_data *d) 439 { 440 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 441 struct xive_cpu *xc = __this_cpu_read(xive_cpu); 442 443 DBG_VERBOSE("eoi_irq: irq=%d [0x%lx] pending=%02x\n", 444 d->irq, irqd_to_hwirq(d), xc->pending_prio); 445 446 /* 447 * EOI the source if it hasn't been disabled and hasn't 448 * been passed-through to a KVM guest 449 */ 450 if (!irqd_irq_disabled(d) && !irqd_is_forwarded_to_vcpu(d) && 451 !(xd->flags & XIVE_IRQ_FLAG_NO_EOI)) 452 xive_do_source_eoi(xd); 453 else 454 xd->stale_p = true; 455 456 /* 457 * Clear saved_p to indicate that it's no longer occupying 458 * a queue slot on the target queue 459 */ 460 xd->saved_p = false; 461 462 /* Check for more work in the queue */ 463 xive_do_queue_eoi(xc); 464 } 465 466 /* 467 * Helper used to mask and unmask an interrupt source. 468 */ 469 static void xive_do_source_set_mask(struct xive_irq_data *xd, 470 bool mask) 471 { 472 u64 val; 473 474 pr_debug("%s: HW 0x%x %smask\n", __func__, xd->hw_irq, mask ? "" : "un"); 475 476 /* 477 * If the interrupt had P set, it may be in a queue. 478 * 479 * We need to make sure we don't re-enable it until it 480 * has been fetched from that queue and EOId. We keep 481 * a copy of that P state and use it to restore the 482 * ESB accordingly on unmask. 483 */ 484 if (mask) { 485 val = xive_esb_read(xd, XIVE_ESB_SET_PQ_01); 486 if (!xd->stale_p && !!(val & XIVE_ESB_VAL_P)) 487 xd->saved_p = true; 488 xd->stale_p = false; 489 } else if (xd->saved_p) { 490 xive_esb_read(xd, XIVE_ESB_SET_PQ_10); 491 xd->saved_p = false; 492 } else { 493 xive_esb_read(xd, XIVE_ESB_SET_PQ_00); 494 xd->stale_p = false; 495 } 496 } 497 498 /* 499 * Try to chose "cpu" as a new interrupt target. Increments 500 * the queue accounting for that target if it's not already 501 * full. 502 */ 503 static bool xive_try_pick_target(int cpu) 504 { 505 struct xive_cpu *xc = per_cpu(xive_cpu, cpu); 506 struct xive_q *q = &xc->queue[xive_irq_priority]; 507 int max; 508 509 /* 510 * Calculate max number of interrupts in that queue. 511 * 512 * We leave a gap of 1 just in case... 513 */ 514 max = (q->msk + 1) - 1; 515 return !!atomic_add_unless(&q->count, 1, max); 516 } 517 518 /* 519 * Un-account an interrupt for a target CPU. We don't directly 520 * decrement q->count since the interrupt might still be present 521 * in the queue. 522 * 523 * Instead increment a separate counter "pending_count" which 524 * will be substracted from "count" later when that CPU observes 525 * the queue to be empty. 526 */ 527 static void xive_dec_target_count(int cpu) 528 { 529 struct xive_cpu *xc = per_cpu(xive_cpu, cpu); 530 struct xive_q *q = &xc->queue[xive_irq_priority]; 531 532 if (WARN_ON(cpu < 0 || !xc)) { 533 pr_err("%s: cpu=%d xc=%p\n", __func__, cpu, xc); 534 return; 535 } 536 537 /* 538 * We increment the "pending count" which will be used 539 * to decrement the target queue count whenever it's next 540 * processed and found empty. This ensure that we don't 541 * decrement while we still have the interrupt there 542 * occupying a slot. 543 */ 544 atomic_inc(&q->pending_count); 545 } 546 547 /* Find a tentative CPU target in a CPU mask */ 548 static int xive_find_target_in_mask(const struct cpumask *mask, 549 unsigned int fuzz) 550 { 551 int cpu, first, num, i; 552 553 /* Pick up a starting point CPU in the mask based on fuzz */ 554 num = min_t(int, cpumask_weight(mask), nr_cpu_ids); 555 first = fuzz % num; 556 557 /* Locate it */ 558 cpu = cpumask_first(mask); 559 for (i = 0; i < first && cpu < nr_cpu_ids; i++) 560 cpu = cpumask_next(cpu, mask); 561 562 /* Sanity check */ 563 if (WARN_ON(cpu >= nr_cpu_ids)) 564 cpu = cpumask_first(cpu_online_mask); 565 566 /* Remember first one to handle wrap-around */ 567 first = cpu; 568 569 /* 570 * Now go through the entire mask until we find a valid 571 * target. 572 */ 573 do { 574 /* 575 * We re-check online as the fallback case passes us 576 * an untested affinity mask 577 */ 578 if (cpu_online(cpu) && xive_try_pick_target(cpu)) 579 return cpu; 580 cpu = cpumask_next(cpu, mask); 581 /* Wrap around */ 582 if (cpu >= nr_cpu_ids) 583 cpu = cpumask_first(mask); 584 } while (cpu != first); 585 586 return -1; 587 } 588 589 /* 590 * Pick a target CPU for an interrupt. This is done at 591 * startup or if the affinity is changed in a way that 592 * invalidates the current target. 593 */ 594 static int xive_pick_irq_target(struct irq_data *d, 595 const struct cpumask *affinity) 596 { 597 static unsigned int fuzz; 598 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 599 cpumask_var_t mask; 600 int cpu = -1; 601 602 /* 603 * If we have chip IDs, first we try to build a mask of 604 * CPUs matching the CPU and find a target in there 605 */ 606 if (xd->src_chip != XIVE_INVALID_CHIP_ID && 607 zalloc_cpumask_var(&mask, GFP_ATOMIC)) { 608 /* Build a mask of matching chip IDs */ 609 for_each_cpu_and(cpu, affinity, cpu_online_mask) { 610 struct xive_cpu *xc = per_cpu(xive_cpu, cpu); 611 if (xc->chip_id == xd->src_chip) 612 cpumask_set_cpu(cpu, mask); 613 } 614 /* Try to find a target */ 615 if (cpumask_empty(mask)) 616 cpu = -1; 617 else 618 cpu = xive_find_target_in_mask(mask, fuzz++); 619 free_cpumask_var(mask); 620 if (cpu >= 0) 621 return cpu; 622 fuzz--; 623 } 624 625 /* No chip IDs, fallback to using the affinity mask */ 626 return xive_find_target_in_mask(affinity, fuzz++); 627 } 628 629 static unsigned int xive_irq_startup(struct irq_data *d) 630 { 631 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 632 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); 633 int target, rc; 634 635 xd->saved_p = false; 636 xd->stale_p = false; 637 638 pr_debug("%s: irq %d [0x%x] data @%p\n", __func__, d->irq, hw_irq, d); 639 640 /* Pick a target */ 641 target = xive_pick_irq_target(d, irq_data_get_affinity_mask(d)); 642 if (target == XIVE_INVALID_TARGET) { 643 /* Try again breaking affinity */ 644 target = xive_pick_irq_target(d, cpu_online_mask); 645 if (target == XIVE_INVALID_TARGET) 646 return -ENXIO; 647 pr_warn("irq %d started with broken affinity\n", d->irq); 648 } 649 650 /* Sanity check */ 651 if (WARN_ON(target == XIVE_INVALID_TARGET || 652 target >= nr_cpu_ids)) 653 target = smp_processor_id(); 654 655 xd->target = target; 656 657 /* 658 * Configure the logical number to be the Linux IRQ number 659 * and set the target queue 660 */ 661 rc = xive_ops->configure_irq(hw_irq, 662 get_hard_smp_processor_id(target), 663 xive_irq_priority, d->irq); 664 if (rc) 665 return rc; 666 667 /* Unmask the ESB */ 668 xive_do_source_set_mask(xd, false); 669 670 return 0; 671 } 672 673 /* called with irq descriptor lock held */ 674 static void xive_irq_shutdown(struct irq_data *d) 675 { 676 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 677 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); 678 679 pr_debug("%s: irq %d [0x%x] data @%p\n", __func__, d->irq, hw_irq, d); 680 681 if (WARN_ON(xd->target == XIVE_INVALID_TARGET)) 682 return; 683 684 /* Mask the interrupt at the source */ 685 xive_do_source_set_mask(xd, true); 686 687 /* 688 * Mask the interrupt in HW in the IVT/EAS and set the number 689 * to be the "bad" IRQ number 690 */ 691 xive_ops->configure_irq(hw_irq, 692 get_hard_smp_processor_id(xd->target), 693 0xff, XIVE_BAD_IRQ); 694 695 xive_dec_target_count(xd->target); 696 xd->target = XIVE_INVALID_TARGET; 697 } 698 699 static void xive_irq_unmask(struct irq_data *d) 700 { 701 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 702 703 pr_debug("%s: irq %d data @%p\n", __func__, d->irq, xd); 704 705 xive_do_source_set_mask(xd, false); 706 } 707 708 static void xive_irq_mask(struct irq_data *d) 709 { 710 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 711 712 pr_debug("%s: irq %d data @%p\n", __func__, d->irq, xd); 713 714 xive_do_source_set_mask(xd, true); 715 } 716 717 static int xive_irq_set_affinity(struct irq_data *d, 718 const struct cpumask *cpumask, 719 bool force) 720 { 721 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 722 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); 723 u32 target, old_target; 724 int rc = 0; 725 726 pr_debug("%s: irq %d/0x%x\n", __func__, d->irq, hw_irq); 727 728 /* Is this valid ? */ 729 if (cpumask_any_and(cpumask, cpu_online_mask) >= nr_cpu_ids) 730 return -EINVAL; 731 732 /* 733 * If existing target is already in the new mask, and is 734 * online then do nothing. 735 */ 736 if (xd->target != XIVE_INVALID_TARGET && 737 cpu_online(xd->target) && 738 cpumask_test_cpu(xd->target, cpumask)) 739 return IRQ_SET_MASK_OK; 740 741 /* Pick a new target */ 742 target = xive_pick_irq_target(d, cpumask); 743 744 /* No target found */ 745 if (target == XIVE_INVALID_TARGET) 746 return -ENXIO; 747 748 /* Sanity check */ 749 if (WARN_ON(target >= nr_cpu_ids)) 750 target = smp_processor_id(); 751 752 old_target = xd->target; 753 754 /* 755 * Only configure the irq if it's not currently passed-through to 756 * a KVM guest 757 */ 758 if (!irqd_is_forwarded_to_vcpu(d)) 759 rc = xive_ops->configure_irq(hw_irq, 760 get_hard_smp_processor_id(target), 761 xive_irq_priority, d->irq); 762 if (rc < 0) { 763 pr_err("Error %d reconfiguring irq %d\n", rc, d->irq); 764 return rc; 765 } 766 767 pr_debug(" target: 0x%x\n", target); 768 xd->target = target; 769 770 /* Give up previous target */ 771 if (old_target != XIVE_INVALID_TARGET) 772 xive_dec_target_count(old_target); 773 774 return IRQ_SET_MASK_OK; 775 } 776 777 static int xive_irq_set_type(struct irq_data *d, unsigned int flow_type) 778 { 779 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 780 781 /* 782 * We only support these. This has really no effect other than setting 783 * the corresponding descriptor bits mind you but those will in turn 784 * affect the resend function when re-enabling an edge interrupt. 785 * 786 * Set the default to edge as explained in map(). 787 */ 788 if (flow_type == IRQ_TYPE_DEFAULT || flow_type == IRQ_TYPE_NONE) 789 flow_type = IRQ_TYPE_EDGE_RISING; 790 791 if (flow_type != IRQ_TYPE_EDGE_RISING && 792 flow_type != IRQ_TYPE_LEVEL_LOW) 793 return -EINVAL; 794 795 irqd_set_trigger_type(d, flow_type); 796 797 /* 798 * Double check it matches what the FW thinks 799 * 800 * NOTE: We don't know yet if the PAPR interface will provide 801 * the LSI vs MSI information apart from the device-tree so 802 * this check might have to move into an optional backend call 803 * that is specific to the native backend 804 */ 805 if ((flow_type == IRQ_TYPE_LEVEL_LOW) != 806 !!(xd->flags & XIVE_IRQ_FLAG_LSI)) { 807 pr_warn("Interrupt %d (HW 0x%x) type mismatch, Linux says %s, FW says %s\n", 808 d->irq, (u32)irqd_to_hwirq(d), 809 (flow_type == IRQ_TYPE_LEVEL_LOW) ? "Level" : "Edge", 810 (xd->flags & XIVE_IRQ_FLAG_LSI) ? "Level" : "Edge"); 811 } 812 813 return IRQ_SET_MASK_OK_NOCOPY; 814 } 815 816 static int xive_irq_retrigger(struct irq_data *d) 817 { 818 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 819 820 /* This should be only for MSIs */ 821 if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI)) 822 return 0; 823 824 /* 825 * To perform a retrigger, we first set the PQ bits to 826 * 11, then perform an EOI. 827 */ 828 xive_esb_read(xd, XIVE_ESB_SET_PQ_11); 829 xive_do_source_eoi(xd); 830 831 return 1; 832 } 833 834 /* 835 * Caller holds the irq descriptor lock, so this won't be called 836 * concurrently with xive_get_irqchip_state on the same interrupt. 837 */ 838 static int xive_irq_set_vcpu_affinity(struct irq_data *d, void *state) 839 { 840 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 841 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); 842 int rc; 843 u8 pq; 844 845 /* 846 * This is called by KVM with state non-NULL for enabling 847 * pass-through or NULL for disabling it 848 */ 849 if (state) { 850 irqd_set_forwarded_to_vcpu(d); 851 852 /* Set it to PQ=10 state to prevent further sends */ 853 pq = xive_esb_read(xd, XIVE_ESB_SET_PQ_10); 854 if (!xd->stale_p) { 855 xd->saved_p = !!(pq & XIVE_ESB_VAL_P); 856 xd->stale_p = !xd->saved_p; 857 } 858 859 /* No target ? nothing to do */ 860 if (xd->target == XIVE_INVALID_TARGET) { 861 /* 862 * An untargetted interrupt should have been 863 * also masked at the source 864 */ 865 WARN_ON(xd->saved_p); 866 867 return 0; 868 } 869 870 /* 871 * If P was set, adjust state to PQ=11 to indicate 872 * that a resend is needed for the interrupt to reach 873 * the guest. Also remember the value of P. 874 * 875 * This also tells us that it's in flight to a host queue 876 * or has already been fetched but hasn't been EOIed yet 877 * by the host. Thus it's potentially using up a host 878 * queue slot. This is important to know because as long 879 * as this is the case, we must not hard-unmask it when 880 * "returning" that interrupt to the host. 881 * 882 * This saved_p is cleared by the host EOI, when we know 883 * for sure the queue slot is no longer in use. 884 */ 885 if (xd->saved_p) { 886 xive_esb_read(xd, XIVE_ESB_SET_PQ_11); 887 888 /* 889 * Sync the XIVE source HW to ensure the interrupt 890 * has gone through the EAS before we change its 891 * target to the guest. That should guarantee us 892 * that we *will* eventually get an EOI for it on 893 * the host. Otherwise there would be a small window 894 * for P to be seen here but the interrupt going 895 * to the guest queue. 896 */ 897 if (xive_ops->sync_source) 898 xive_ops->sync_source(hw_irq); 899 } 900 } else { 901 irqd_clr_forwarded_to_vcpu(d); 902 903 /* No host target ? hard mask and return */ 904 if (xd->target == XIVE_INVALID_TARGET) { 905 xive_do_source_set_mask(xd, true); 906 return 0; 907 } 908 909 /* 910 * Sync the XIVE source HW to ensure the interrupt 911 * has gone through the EAS before we change its 912 * target to the host. 913 */ 914 if (xive_ops->sync_source) 915 xive_ops->sync_source(hw_irq); 916 917 /* 918 * By convention we are called with the interrupt in 919 * a PQ=10 or PQ=11 state, ie, it won't fire and will 920 * have latched in Q whether there's a pending HW 921 * interrupt or not. 922 * 923 * First reconfigure the target. 924 */ 925 rc = xive_ops->configure_irq(hw_irq, 926 get_hard_smp_processor_id(xd->target), 927 xive_irq_priority, d->irq); 928 if (rc) 929 return rc; 930 931 /* 932 * Then if saved_p is not set, effectively re-enable the 933 * interrupt with an EOI. If it is set, we know there is 934 * still a message in a host queue somewhere that will be 935 * EOId eventually. 936 * 937 * Note: We don't check irqd_irq_disabled(). Effectively, 938 * we *will* let the irq get through even if masked if the 939 * HW is still firing it in order to deal with the whole 940 * saved_p business properly. If the interrupt triggers 941 * while masked, the generic code will re-mask it anyway. 942 */ 943 if (!xd->saved_p) 944 xive_do_source_eoi(xd); 945 946 } 947 return 0; 948 } 949 950 /* Called with irq descriptor lock held. */ 951 static int xive_get_irqchip_state(struct irq_data *data, 952 enum irqchip_irq_state which, bool *state) 953 { 954 struct xive_irq_data *xd = irq_data_get_irq_handler_data(data); 955 u8 pq; 956 957 switch (which) { 958 case IRQCHIP_STATE_ACTIVE: 959 pq = xive_esb_read(xd, XIVE_ESB_GET); 960 961 /* 962 * The esb value being all 1's means we couldn't get 963 * the PQ state of the interrupt through mmio. It may 964 * happen, for example when querying a PHB interrupt 965 * while the PHB is in an error state. We consider the 966 * interrupt to be inactive in that case. 967 */ 968 *state = (pq != XIVE_ESB_INVALID) && !xd->stale_p && 969 (xd->saved_p || (!!(pq & XIVE_ESB_VAL_P) && 970 !irqd_irq_disabled(data))); 971 return 0; 972 default: 973 return -EINVAL; 974 } 975 } 976 977 static struct irq_chip xive_irq_chip = { 978 .name = "XIVE-IRQ", 979 .irq_startup = xive_irq_startup, 980 .irq_shutdown = xive_irq_shutdown, 981 .irq_eoi = xive_irq_eoi, 982 .irq_mask = xive_irq_mask, 983 .irq_unmask = xive_irq_unmask, 984 .irq_set_affinity = xive_irq_set_affinity, 985 .irq_set_type = xive_irq_set_type, 986 .irq_retrigger = xive_irq_retrigger, 987 .irq_set_vcpu_affinity = xive_irq_set_vcpu_affinity, 988 .irq_get_irqchip_state = xive_get_irqchip_state, 989 }; 990 991 bool is_xive_irq(struct irq_chip *chip) 992 { 993 return chip == &xive_irq_chip; 994 } 995 EXPORT_SYMBOL_GPL(is_xive_irq); 996 997 void xive_cleanup_irq_data(struct xive_irq_data *xd) 998 { 999 pr_debug("%s for HW 0x%x\n", __func__, xd->hw_irq); 1000 1001 if (xd->eoi_mmio) { 1002 iounmap(xd->eoi_mmio); 1003 if (xd->eoi_mmio == xd->trig_mmio) 1004 xd->trig_mmio = NULL; 1005 xd->eoi_mmio = NULL; 1006 } 1007 if (xd->trig_mmio) { 1008 iounmap(xd->trig_mmio); 1009 xd->trig_mmio = NULL; 1010 } 1011 } 1012 EXPORT_SYMBOL_GPL(xive_cleanup_irq_data); 1013 1014 static int xive_irq_alloc_data(unsigned int virq, irq_hw_number_t hw) 1015 { 1016 struct xive_irq_data *xd; 1017 int rc; 1018 1019 xd = kzalloc(sizeof(struct xive_irq_data), GFP_KERNEL); 1020 if (!xd) 1021 return -ENOMEM; 1022 rc = xive_ops->populate_irq_data(hw, xd); 1023 if (rc) { 1024 kfree(xd); 1025 return rc; 1026 } 1027 xd->target = XIVE_INVALID_TARGET; 1028 irq_set_handler_data(virq, xd); 1029 1030 /* 1031 * Turn OFF by default the interrupt being mapped. A side 1032 * effect of this check is the mapping the ESB page of the 1033 * interrupt in the Linux address space. This prevents page 1034 * fault issues in the crash handler which masks all 1035 * interrupts. 1036 */ 1037 xive_esb_read(xd, XIVE_ESB_SET_PQ_01); 1038 1039 return 0; 1040 } 1041 1042 void xive_irq_free_data(unsigned int virq) 1043 { 1044 struct xive_irq_data *xd = irq_get_handler_data(virq); 1045 1046 if (!xd) 1047 return; 1048 irq_set_handler_data(virq, NULL); 1049 xive_cleanup_irq_data(xd); 1050 kfree(xd); 1051 } 1052 EXPORT_SYMBOL_GPL(xive_irq_free_data); 1053 1054 #ifdef CONFIG_SMP 1055 1056 static void xive_cause_ipi(int cpu) 1057 { 1058 struct xive_cpu *xc; 1059 struct xive_irq_data *xd; 1060 1061 xc = per_cpu(xive_cpu, cpu); 1062 1063 DBG_VERBOSE("IPI CPU %d -> %d (HW IRQ 0x%x)\n", 1064 smp_processor_id(), cpu, xc->hw_ipi); 1065 1066 xd = &xc->ipi_data; 1067 if (WARN_ON(!xd->trig_mmio)) 1068 return; 1069 out_be64(xd->trig_mmio, 0); 1070 } 1071 1072 static irqreturn_t xive_muxed_ipi_action(int irq, void *dev_id) 1073 { 1074 return smp_ipi_demux(); 1075 } 1076 1077 static void xive_ipi_eoi(struct irq_data *d) 1078 { 1079 struct xive_cpu *xc = __this_cpu_read(xive_cpu); 1080 1081 /* Handle possible race with unplug and drop stale IPIs */ 1082 if (!xc) 1083 return; 1084 1085 DBG_VERBOSE("IPI eoi: irq=%d [0x%lx] (HW IRQ 0x%x) pending=%02x\n", 1086 d->irq, irqd_to_hwirq(d), xc->hw_ipi, xc->pending_prio); 1087 1088 xive_do_source_eoi(&xc->ipi_data); 1089 xive_do_queue_eoi(xc); 1090 } 1091 1092 static void xive_ipi_do_nothing(struct irq_data *d) 1093 { 1094 /* 1095 * Nothing to do, we never mask/unmask IPIs, but the callback 1096 * has to exist for the struct irq_chip. 1097 */ 1098 } 1099 1100 static struct irq_chip xive_ipi_chip = { 1101 .name = "XIVE-IPI", 1102 .irq_eoi = xive_ipi_eoi, 1103 .irq_mask = xive_ipi_do_nothing, 1104 .irq_unmask = xive_ipi_do_nothing, 1105 }; 1106 1107 /* 1108 * IPIs are marked per-cpu. We use separate HW interrupts under the 1109 * hood but associated with the same "linux" interrupt 1110 */ 1111 struct xive_ipi_alloc_info { 1112 irq_hw_number_t hwirq; 1113 }; 1114 1115 static int xive_ipi_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 1116 unsigned int nr_irqs, void *arg) 1117 { 1118 struct xive_ipi_alloc_info *info = arg; 1119 int i; 1120 1121 for (i = 0; i < nr_irqs; i++) { 1122 irq_domain_set_info(domain, virq + i, info->hwirq + i, &xive_ipi_chip, 1123 domain->host_data, handle_percpu_irq, 1124 NULL, NULL); 1125 } 1126 return 0; 1127 } 1128 1129 static const struct irq_domain_ops xive_ipi_irq_domain_ops = { 1130 .alloc = xive_ipi_irq_domain_alloc, 1131 }; 1132 1133 static int __init xive_init_ipis(void) 1134 { 1135 struct fwnode_handle *fwnode; 1136 struct irq_domain *ipi_domain; 1137 unsigned int node; 1138 int ret = -ENOMEM; 1139 1140 fwnode = irq_domain_alloc_named_fwnode("XIVE-IPI"); 1141 if (!fwnode) 1142 goto out; 1143 1144 ipi_domain = irq_domain_create_linear(fwnode, nr_node_ids, 1145 &xive_ipi_irq_domain_ops, NULL); 1146 if (!ipi_domain) 1147 goto out_free_fwnode; 1148 1149 xive_ipis = kcalloc(nr_node_ids, sizeof(*xive_ipis), GFP_KERNEL | __GFP_NOFAIL); 1150 if (!xive_ipis) 1151 goto out_free_domain; 1152 1153 for_each_node(node) { 1154 struct xive_ipi_desc *xid = &xive_ipis[node]; 1155 struct xive_ipi_alloc_info info = { node }; 1156 1157 /* 1158 * Map one IPI interrupt per node for all cpus of that node. 1159 * Since the HW interrupt number doesn't have any meaning, 1160 * simply use the node number. 1161 */ 1162 ret = irq_domain_alloc_irqs(ipi_domain, 1, node, &info); 1163 if (ret < 0) 1164 goto out_free_xive_ipis; 1165 xid->irq = ret; 1166 1167 snprintf(xid->name, sizeof(xid->name), "IPI-%d", node); 1168 } 1169 1170 return ret; 1171 1172 out_free_xive_ipis: 1173 kfree(xive_ipis); 1174 out_free_domain: 1175 irq_domain_remove(ipi_domain); 1176 out_free_fwnode: 1177 irq_domain_free_fwnode(fwnode); 1178 out: 1179 return ret; 1180 } 1181 1182 static int xive_request_ipi(unsigned int cpu) 1183 { 1184 struct xive_ipi_desc *xid = &xive_ipis[early_cpu_to_node(cpu)]; 1185 int ret; 1186 1187 if (atomic_inc_return(&xid->started) > 1) 1188 return 0; 1189 1190 ret = request_irq(xid->irq, xive_muxed_ipi_action, 1191 IRQF_NO_DEBUG | IRQF_PERCPU | IRQF_NO_THREAD, 1192 xid->name, NULL); 1193 1194 WARN(ret < 0, "Failed to request IPI %d: %d\n", xid->irq, ret); 1195 return ret; 1196 } 1197 1198 static int xive_setup_cpu_ipi(unsigned int cpu) 1199 { 1200 unsigned int xive_ipi_irq = xive_ipi_cpu_to_irq(cpu); 1201 struct xive_cpu *xc; 1202 int rc; 1203 1204 pr_debug("Setting up IPI for CPU %d\n", cpu); 1205 1206 xc = per_cpu(xive_cpu, cpu); 1207 1208 /* Check if we are already setup */ 1209 if (xc->hw_ipi != XIVE_BAD_IRQ) 1210 return 0; 1211 1212 /* Register the IPI */ 1213 xive_request_ipi(cpu); 1214 1215 /* Grab an IPI from the backend, this will populate xc->hw_ipi */ 1216 if (xive_ops->get_ipi(cpu, xc)) 1217 return -EIO; 1218 1219 /* 1220 * Populate the IRQ data in the xive_cpu structure and 1221 * configure the HW / enable the IPIs. 1222 */ 1223 rc = xive_ops->populate_irq_data(xc->hw_ipi, &xc->ipi_data); 1224 if (rc) { 1225 pr_err("Failed to populate IPI data on CPU %d\n", cpu); 1226 return -EIO; 1227 } 1228 rc = xive_ops->configure_irq(xc->hw_ipi, 1229 get_hard_smp_processor_id(cpu), 1230 xive_irq_priority, xive_ipi_irq); 1231 if (rc) { 1232 pr_err("Failed to map IPI CPU %d\n", cpu); 1233 return -EIO; 1234 } 1235 pr_debug("CPU %d HW IPI 0x%x, virq %d, trig_mmio=%p\n", cpu, 1236 xc->hw_ipi, xive_ipi_irq, xc->ipi_data.trig_mmio); 1237 1238 /* Unmask it */ 1239 xive_do_source_set_mask(&xc->ipi_data, false); 1240 1241 return 0; 1242 } 1243 1244 noinstr static void xive_cleanup_cpu_ipi(unsigned int cpu, struct xive_cpu *xc) 1245 { 1246 unsigned int xive_ipi_irq = xive_ipi_cpu_to_irq(cpu); 1247 1248 /* Disable the IPI and free the IRQ data */ 1249 1250 /* Already cleaned up ? */ 1251 if (xc->hw_ipi == XIVE_BAD_IRQ) 1252 return; 1253 1254 /* TODO: clear IPI mapping */ 1255 1256 /* Mask the IPI */ 1257 xive_do_source_set_mask(&xc->ipi_data, true); 1258 1259 /* 1260 * Note: We don't call xive_cleanup_irq_data() to free 1261 * the mappings as this is called from an IPI on kexec 1262 * which is not a safe environment to call iounmap() 1263 */ 1264 1265 /* Deconfigure/mask in the backend */ 1266 xive_ops->configure_irq(xc->hw_ipi, hard_smp_processor_id(), 1267 0xff, xive_ipi_irq); 1268 1269 /* Free the IPIs in the backend */ 1270 xive_ops->put_ipi(cpu, xc); 1271 } 1272 1273 void __init xive_smp_probe(void) 1274 { 1275 smp_ops->cause_ipi = xive_cause_ipi; 1276 1277 /* Register the IPI */ 1278 xive_init_ipis(); 1279 1280 /* Allocate and setup IPI for the boot CPU */ 1281 xive_setup_cpu_ipi(smp_processor_id()); 1282 } 1283 1284 #endif /* CONFIG_SMP */ 1285 1286 static int xive_irq_domain_map(struct irq_domain *h, unsigned int virq, 1287 irq_hw_number_t hw) 1288 { 1289 int rc; 1290 1291 /* 1292 * Mark interrupts as edge sensitive by default so that resend 1293 * actually works. Will fix that up below if needed. 1294 */ 1295 irq_clear_status_flags(virq, IRQ_LEVEL); 1296 1297 rc = xive_irq_alloc_data(virq, hw); 1298 if (rc) 1299 return rc; 1300 1301 irq_set_chip_and_handler(virq, &xive_irq_chip, handle_fasteoi_irq); 1302 1303 return 0; 1304 } 1305 1306 static void xive_irq_domain_unmap(struct irq_domain *d, unsigned int virq) 1307 { 1308 xive_irq_free_data(virq); 1309 } 1310 1311 static int xive_irq_domain_xlate(struct irq_domain *h, struct device_node *ct, 1312 const u32 *intspec, unsigned int intsize, 1313 irq_hw_number_t *out_hwirq, unsigned int *out_flags) 1314 1315 { 1316 *out_hwirq = intspec[0]; 1317 1318 /* 1319 * If intsize is at least 2, we look for the type in the second cell, 1320 * we assume the LSB indicates a level interrupt. 1321 */ 1322 if (intsize > 1) { 1323 if (intspec[1] & 1) 1324 *out_flags = IRQ_TYPE_LEVEL_LOW; 1325 else 1326 *out_flags = IRQ_TYPE_EDGE_RISING; 1327 } else 1328 *out_flags = IRQ_TYPE_LEVEL_LOW; 1329 1330 return 0; 1331 } 1332 1333 static int xive_irq_domain_match(struct irq_domain *h, struct device_node *node, 1334 enum irq_domain_bus_token bus_token) 1335 { 1336 return xive_ops->match(node); 1337 } 1338 1339 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS 1340 static const char * const esb_names[] = { "RESET", "OFF", "PENDING", "QUEUED" }; 1341 1342 static const struct { 1343 u64 mask; 1344 char *name; 1345 } xive_irq_flags[] = { 1346 { XIVE_IRQ_FLAG_STORE_EOI, "STORE_EOI" }, 1347 { XIVE_IRQ_FLAG_LSI, "LSI" }, 1348 { XIVE_IRQ_FLAG_H_INT_ESB, "H_INT_ESB" }, 1349 { XIVE_IRQ_FLAG_NO_EOI, "NO_EOI" }, 1350 }; 1351 1352 static void xive_irq_domain_debug_show(struct seq_file *m, struct irq_domain *d, 1353 struct irq_data *irqd, int ind) 1354 { 1355 struct xive_irq_data *xd; 1356 u64 val; 1357 int i; 1358 1359 /* No IRQ domain level information. To be done */ 1360 if (!irqd) 1361 return; 1362 1363 if (!is_xive_irq(irq_data_get_irq_chip(irqd))) 1364 return; 1365 1366 seq_printf(m, "%*sXIVE:\n", ind, ""); 1367 ind++; 1368 1369 xd = irq_data_get_irq_handler_data(irqd); 1370 if (!xd) { 1371 seq_printf(m, "%*snot assigned\n", ind, ""); 1372 return; 1373 } 1374 1375 val = xive_esb_read(xd, XIVE_ESB_GET); 1376 seq_printf(m, "%*sESB: %s\n", ind, "", esb_names[val & 0x3]); 1377 seq_printf(m, "%*sPstate: %s %s\n", ind, "", xd->stale_p ? "stale" : "", 1378 xd->saved_p ? "saved" : ""); 1379 seq_printf(m, "%*sTarget: %d\n", ind, "", xd->target); 1380 seq_printf(m, "%*sChip: %d\n", ind, "", xd->src_chip); 1381 seq_printf(m, "%*sTrigger: 0x%016llx\n", ind, "", xd->trig_page); 1382 seq_printf(m, "%*sEOI: 0x%016llx\n", ind, "", xd->eoi_page); 1383 seq_printf(m, "%*sFlags: 0x%llx\n", ind, "", xd->flags); 1384 for (i = 0; i < ARRAY_SIZE(xive_irq_flags); i++) { 1385 if (xd->flags & xive_irq_flags[i].mask) 1386 seq_printf(m, "%*s%s\n", ind + 12, "", xive_irq_flags[i].name); 1387 } 1388 } 1389 #endif 1390 1391 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 1392 static int xive_irq_domain_translate(struct irq_domain *d, 1393 struct irq_fwspec *fwspec, 1394 unsigned long *hwirq, 1395 unsigned int *type) 1396 { 1397 return xive_irq_domain_xlate(d, to_of_node(fwspec->fwnode), 1398 fwspec->param, fwspec->param_count, 1399 hwirq, type); 1400 } 1401 1402 static int xive_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 1403 unsigned int nr_irqs, void *arg) 1404 { 1405 struct irq_fwspec *fwspec = arg; 1406 irq_hw_number_t hwirq; 1407 unsigned int type = IRQ_TYPE_NONE; 1408 int i, rc; 1409 1410 rc = xive_irq_domain_translate(domain, fwspec, &hwirq, &type); 1411 if (rc) 1412 return rc; 1413 1414 pr_debug("%s %d/0x%lx #%d\n", __func__, virq, hwirq, nr_irqs); 1415 1416 for (i = 0; i < nr_irqs; i++) { 1417 /* TODO: call xive_irq_domain_map() */ 1418 1419 /* 1420 * Mark interrupts as edge sensitive by default so that resend 1421 * actually works. Will fix that up below if needed. 1422 */ 1423 irq_clear_status_flags(virq, IRQ_LEVEL); 1424 1425 /* allocates and sets handler data */ 1426 rc = xive_irq_alloc_data(virq + i, hwirq + i); 1427 if (rc) 1428 return rc; 1429 1430 irq_domain_set_hwirq_and_chip(domain, virq + i, hwirq + i, 1431 &xive_irq_chip, domain->host_data); 1432 irq_set_handler(virq + i, handle_fasteoi_irq); 1433 } 1434 1435 return 0; 1436 } 1437 1438 static void xive_irq_domain_free(struct irq_domain *domain, 1439 unsigned int virq, unsigned int nr_irqs) 1440 { 1441 int i; 1442 1443 pr_debug("%s %d #%d\n", __func__, virq, nr_irqs); 1444 1445 for (i = 0; i < nr_irqs; i++) 1446 xive_irq_free_data(virq + i); 1447 } 1448 #endif 1449 1450 static const struct irq_domain_ops xive_irq_domain_ops = { 1451 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 1452 .alloc = xive_irq_domain_alloc, 1453 .free = xive_irq_domain_free, 1454 .translate = xive_irq_domain_translate, 1455 #endif 1456 .match = xive_irq_domain_match, 1457 .map = xive_irq_domain_map, 1458 .unmap = xive_irq_domain_unmap, 1459 .xlate = xive_irq_domain_xlate, 1460 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS 1461 .debug_show = xive_irq_domain_debug_show, 1462 #endif 1463 }; 1464 1465 static void __init xive_init_host(struct device_node *np) 1466 { 1467 xive_irq_domain = irq_domain_add_tree(np, &xive_irq_domain_ops, NULL); 1468 if (WARN_ON(xive_irq_domain == NULL)) 1469 return; 1470 irq_set_default_host(xive_irq_domain); 1471 } 1472 1473 static void xive_cleanup_cpu_queues(unsigned int cpu, struct xive_cpu *xc) 1474 { 1475 if (xc->queue[xive_irq_priority].qpage) 1476 xive_ops->cleanup_queue(cpu, xc, xive_irq_priority); 1477 } 1478 1479 static int xive_setup_cpu_queues(unsigned int cpu, struct xive_cpu *xc) 1480 { 1481 int rc = 0; 1482 1483 /* We setup 1 queues for now with a 64k page */ 1484 if (!xc->queue[xive_irq_priority].qpage) 1485 rc = xive_ops->setup_queue(cpu, xc, xive_irq_priority); 1486 1487 return rc; 1488 } 1489 1490 static int xive_prepare_cpu(unsigned int cpu) 1491 { 1492 struct xive_cpu *xc; 1493 1494 xc = per_cpu(xive_cpu, cpu); 1495 if (!xc) { 1496 xc = kzalloc_node(sizeof(struct xive_cpu), 1497 GFP_KERNEL, cpu_to_node(cpu)); 1498 if (!xc) 1499 return -ENOMEM; 1500 xc->hw_ipi = XIVE_BAD_IRQ; 1501 xc->chip_id = XIVE_INVALID_CHIP_ID; 1502 if (xive_ops->prepare_cpu) 1503 xive_ops->prepare_cpu(cpu, xc); 1504 1505 per_cpu(xive_cpu, cpu) = xc; 1506 } 1507 1508 /* Setup EQs if not already */ 1509 return xive_setup_cpu_queues(cpu, xc); 1510 } 1511 1512 static void xive_setup_cpu(void) 1513 { 1514 struct xive_cpu *xc = __this_cpu_read(xive_cpu); 1515 1516 /* The backend might have additional things to do */ 1517 if (xive_ops->setup_cpu) 1518 xive_ops->setup_cpu(smp_processor_id(), xc); 1519 1520 /* Set CPPR to 0xff to enable flow of interrupts */ 1521 xc->cppr = 0xff; 1522 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff); 1523 } 1524 1525 #ifdef CONFIG_SMP 1526 void xive_smp_setup_cpu(void) 1527 { 1528 pr_debug("SMP setup CPU %d\n", smp_processor_id()); 1529 1530 /* This will have already been done on the boot CPU */ 1531 if (smp_processor_id() != boot_cpuid) 1532 xive_setup_cpu(); 1533 1534 } 1535 1536 int xive_smp_prepare_cpu(unsigned int cpu) 1537 { 1538 int rc; 1539 1540 /* Allocate per-CPU data and queues */ 1541 rc = xive_prepare_cpu(cpu); 1542 if (rc) 1543 return rc; 1544 1545 /* Allocate and setup IPI for the new CPU */ 1546 return xive_setup_cpu_ipi(cpu); 1547 } 1548 1549 #ifdef CONFIG_HOTPLUG_CPU 1550 static void xive_flush_cpu_queue(unsigned int cpu, struct xive_cpu *xc) 1551 { 1552 u32 irq; 1553 1554 /* We assume local irqs are disabled */ 1555 WARN_ON(!irqs_disabled()); 1556 1557 /* Check what's already in the CPU queue */ 1558 while ((irq = xive_scan_interrupts(xc, false)) != 0) { 1559 /* 1560 * We need to re-route that interrupt to its new destination. 1561 * First get and lock the descriptor 1562 */ 1563 struct irq_desc *desc = irq_to_desc(irq); 1564 struct irq_data *d = irq_desc_get_irq_data(desc); 1565 struct xive_irq_data *xd; 1566 1567 /* 1568 * Ignore anything that isn't a XIVE irq and ignore 1569 * IPIs, so can just be dropped. 1570 */ 1571 if (d->domain != xive_irq_domain) 1572 continue; 1573 1574 /* 1575 * The IRQ should have already been re-routed, it's just a 1576 * stale in the old queue, so re-trigger it in order to make 1577 * it reach is new destination. 1578 */ 1579 #ifdef DEBUG_FLUSH 1580 pr_info("CPU %d: Got irq %d while offline, re-sending...\n", 1581 cpu, irq); 1582 #endif 1583 raw_spin_lock(&desc->lock); 1584 xd = irq_desc_get_handler_data(desc); 1585 1586 /* 1587 * Clear saved_p to indicate that it's no longer pending 1588 */ 1589 xd->saved_p = false; 1590 1591 /* 1592 * For LSIs, we EOI, this will cause a resend if it's 1593 * still asserted. Otherwise do an MSI retrigger. 1594 */ 1595 if (xd->flags & XIVE_IRQ_FLAG_LSI) 1596 xive_do_source_eoi(xd); 1597 else 1598 xive_irq_retrigger(d); 1599 1600 raw_spin_unlock(&desc->lock); 1601 } 1602 } 1603 1604 void xive_smp_disable_cpu(void) 1605 { 1606 struct xive_cpu *xc = __this_cpu_read(xive_cpu); 1607 unsigned int cpu = smp_processor_id(); 1608 1609 /* Migrate interrupts away from the CPU */ 1610 irq_migrate_all_off_this_cpu(); 1611 1612 /* Set CPPR to 0 to disable flow of interrupts */ 1613 xc->cppr = 0; 1614 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0); 1615 1616 /* Flush everything still in the queue */ 1617 xive_flush_cpu_queue(cpu, xc); 1618 1619 /* Re-enable CPPR */ 1620 xc->cppr = 0xff; 1621 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff); 1622 } 1623 1624 void xive_flush_interrupt(void) 1625 { 1626 struct xive_cpu *xc = __this_cpu_read(xive_cpu); 1627 unsigned int cpu = smp_processor_id(); 1628 1629 /* Called if an interrupt occurs while the CPU is hot unplugged */ 1630 xive_flush_cpu_queue(cpu, xc); 1631 } 1632 1633 #endif /* CONFIG_HOTPLUG_CPU */ 1634 1635 #endif /* CONFIG_SMP */ 1636 1637 noinstr void xive_teardown_cpu(void) 1638 { 1639 struct xive_cpu *xc = __this_cpu_read(xive_cpu); 1640 unsigned int cpu = smp_processor_id(); 1641 1642 /* Set CPPR to 0 to disable flow of interrupts */ 1643 xc->cppr = 0; 1644 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0); 1645 1646 if (xive_ops->teardown_cpu) 1647 xive_ops->teardown_cpu(cpu, xc); 1648 1649 #ifdef CONFIG_SMP 1650 /* Get rid of IPI */ 1651 xive_cleanup_cpu_ipi(cpu, xc); 1652 #endif 1653 1654 /* Disable and free the queues */ 1655 xive_cleanup_cpu_queues(cpu, xc); 1656 } 1657 1658 void xive_shutdown(void) 1659 { 1660 xive_ops->shutdown(); 1661 } 1662 1663 bool __init xive_core_init(struct device_node *np, const struct xive_ops *ops, 1664 void __iomem *area, u32 offset, u8 max_prio) 1665 { 1666 xive_tima = area; 1667 xive_tima_offset = offset; 1668 xive_ops = ops; 1669 xive_irq_priority = max_prio; 1670 1671 ppc_md.get_irq = xive_get_irq; 1672 __xive_enabled = true; 1673 1674 pr_debug("Initializing host..\n"); 1675 xive_init_host(np); 1676 1677 pr_debug("Initializing boot CPU..\n"); 1678 1679 /* Allocate per-CPU data and queues */ 1680 xive_prepare_cpu(smp_processor_id()); 1681 1682 /* Get ready for interrupts */ 1683 xive_setup_cpu(); 1684 1685 pr_info("Interrupt handling initialized with %s backend\n", 1686 xive_ops->name); 1687 pr_info("Using priority %d for all interrupts\n", max_prio); 1688 1689 return true; 1690 } 1691 1692 __be32 *xive_queue_page_alloc(unsigned int cpu, u32 queue_shift) 1693 { 1694 unsigned int alloc_order; 1695 struct page *pages; 1696 __be32 *qpage; 1697 1698 alloc_order = xive_alloc_order(queue_shift); 1699 pages = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, alloc_order); 1700 if (!pages) 1701 return ERR_PTR(-ENOMEM); 1702 qpage = (__be32 *)page_address(pages); 1703 memset(qpage, 0, 1 << queue_shift); 1704 1705 return qpage; 1706 } 1707 1708 static int __init xive_off(char *arg) 1709 { 1710 xive_cmdline_disabled = true; 1711 return 1; 1712 } 1713 __setup("xive=off", xive_off); 1714 1715 static int __init xive_store_eoi_cmdline(char *arg) 1716 { 1717 if (!arg) 1718 return 1; 1719 1720 if (strncmp(arg, "off", 3) == 0) { 1721 pr_info("StoreEOI disabled on kernel command line\n"); 1722 xive_store_eoi = false; 1723 } 1724 return 1; 1725 } 1726 __setup("xive.store-eoi=", xive_store_eoi_cmdline); 1727 1728 #ifdef CONFIG_DEBUG_FS 1729 static void xive_debug_show_ipi(struct seq_file *m, int cpu) 1730 { 1731 struct xive_cpu *xc = per_cpu(xive_cpu, cpu); 1732 1733 seq_printf(m, "CPU %d: ", cpu); 1734 if (xc) { 1735 seq_printf(m, "pp=%02x CPPR=%02x ", xc->pending_prio, xc->cppr); 1736 1737 #ifdef CONFIG_SMP 1738 { 1739 char buffer[128]; 1740 1741 xive_irq_data_dump(&xc->ipi_data, buffer, sizeof(buffer)); 1742 seq_printf(m, "IPI=0x%08x %s", xc->hw_ipi, buffer); 1743 } 1744 #endif 1745 } 1746 seq_puts(m, "\n"); 1747 } 1748 1749 static void xive_debug_show_irq(struct seq_file *m, struct irq_data *d) 1750 { 1751 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); 1752 int rc; 1753 u32 target; 1754 u8 prio; 1755 u32 lirq; 1756 char buffer[128]; 1757 1758 rc = xive_ops->get_irq_config(hw_irq, &target, &prio, &lirq); 1759 if (rc) { 1760 seq_printf(m, "IRQ 0x%08x : no config rc=%d\n", hw_irq, rc); 1761 return; 1762 } 1763 1764 seq_printf(m, "IRQ 0x%08x : target=0x%x prio=%02x lirq=0x%x ", 1765 hw_irq, target, prio, lirq); 1766 1767 xive_irq_data_dump(irq_data_get_irq_handler_data(d), buffer, sizeof(buffer)); 1768 seq_puts(m, buffer); 1769 seq_puts(m, "\n"); 1770 } 1771 1772 static int xive_irq_debug_show(struct seq_file *m, void *private) 1773 { 1774 unsigned int i; 1775 struct irq_desc *desc; 1776 1777 for_each_irq_desc(i, desc) { 1778 struct irq_data *d = irq_domain_get_irq_data(xive_irq_domain, i); 1779 1780 if (d) 1781 xive_debug_show_irq(m, d); 1782 } 1783 return 0; 1784 } 1785 DEFINE_SHOW_ATTRIBUTE(xive_irq_debug); 1786 1787 static int xive_ipi_debug_show(struct seq_file *m, void *private) 1788 { 1789 int cpu; 1790 1791 if (xive_ops->debug_show) 1792 xive_ops->debug_show(m, private); 1793 1794 for_each_online_cpu(cpu) 1795 xive_debug_show_ipi(m, cpu); 1796 return 0; 1797 } 1798 DEFINE_SHOW_ATTRIBUTE(xive_ipi_debug); 1799 1800 static void xive_eq_debug_show_one(struct seq_file *m, struct xive_q *q, u8 prio) 1801 { 1802 int i; 1803 1804 seq_printf(m, "EQ%d idx=%d T=%d\n", prio, q->idx, q->toggle); 1805 if (q->qpage) { 1806 for (i = 0; i < q->msk + 1; i++) { 1807 if (!(i % 8)) 1808 seq_printf(m, "%05d ", i); 1809 seq_printf(m, "%08x%s", be32_to_cpup(q->qpage + i), 1810 (i + 1) % 8 ? " " : "\n"); 1811 } 1812 } 1813 seq_puts(m, "\n"); 1814 } 1815 1816 static int xive_eq_debug_show(struct seq_file *m, void *private) 1817 { 1818 int cpu = (long)m->private; 1819 struct xive_cpu *xc = per_cpu(xive_cpu, cpu); 1820 1821 if (xc) 1822 xive_eq_debug_show_one(m, &xc->queue[xive_irq_priority], 1823 xive_irq_priority); 1824 return 0; 1825 } 1826 DEFINE_SHOW_ATTRIBUTE(xive_eq_debug); 1827 1828 static void xive_core_debugfs_create(void) 1829 { 1830 struct dentry *xive_dir; 1831 struct dentry *xive_eq_dir; 1832 long cpu; 1833 char name[16]; 1834 1835 xive_dir = debugfs_create_dir("xive", arch_debugfs_dir); 1836 if (IS_ERR(xive_dir)) 1837 return; 1838 1839 debugfs_create_file("ipis", 0400, xive_dir, 1840 NULL, &xive_ipi_debug_fops); 1841 debugfs_create_file("interrupts", 0400, xive_dir, 1842 NULL, &xive_irq_debug_fops); 1843 xive_eq_dir = debugfs_create_dir("eqs", xive_dir); 1844 for_each_possible_cpu(cpu) { 1845 snprintf(name, sizeof(name), "cpu%ld", cpu); 1846 debugfs_create_file(name, 0400, xive_eq_dir, (void *)cpu, 1847 &xive_eq_debug_fops); 1848 } 1849 debugfs_create_bool("store-eoi", 0600, xive_dir, &xive_store_eoi); 1850 1851 if (xive_ops->debug_create) 1852 xive_ops->debug_create(xive_dir); 1853 } 1854 #else 1855 static inline void xive_core_debugfs_create(void) { } 1856 #endif /* CONFIG_DEBUG_FS */ 1857 1858 int xive_core_debug_init(void) 1859 { 1860 if (xive_enabled() && IS_ENABLED(CONFIG_DEBUG_FS)) 1861 xive_core_debugfs_create(); 1862 1863 return 0; 1864 } 1865
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.