1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Copyright (C) 2012 Regents of the University of California 4 */ 5 6 #ifndef _ASM_RISCV_PGTABLE_H 7 #define _ASM_RISCV_PGTABLE_H 8 9 #include <linux/mmzone.h> 10 #include <linux/sizes.h> 11 12 #include <asm/pgtable-bits.h> 13 14 #ifndef CONFIG_MMU 15 #define KERNEL_LINK_ADDR PAGE_OFFSET 16 #define KERN_VIRT_SIZE (UL(-1)) 17 #else 18 19 #define ADDRESS_SPACE_END (UL(-1)) 20 21 #ifdef CONFIG_64BIT 22 /* Leave 2GB for kernel and BPF at the end of the address space */ 23 #define KERNEL_LINK_ADDR (ADDRESS_SPACE_END - SZ_2G + 1) 24 #else 25 #define KERNEL_LINK_ADDR PAGE_OFFSET 26 #endif 27 28 /* Number of entries in the page global directory */ 29 #define PTRS_PER_PGD (PAGE_SIZE / sizeof(pgd_t)) 30 /* Number of entries in the page table */ 31 #define PTRS_PER_PTE (PAGE_SIZE / sizeof(pte_t)) 32 33 /* 34 * Half of the kernel address space (1/4 of the entries of the page global 35 * directory) is for the direct mapping. 36 */ 37 #define KERN_VIRT_SIZE ((PTRS_PER_PGD / 2 * PGDIR_SIZE) / 2) 38 39 #define VMALLOC_SIZE (KERN_VIRT_SIZE >> 1) 40 #define VMALLOC_END PAGE_OFFSET 41 #define VMALLOC_START (PAGE_OFFSET - VMALLOC_SIZE) 42 43 #define BPF_JIT_REGION_SIZE (SZ_128M) 44 #ifdef CONFIG_64BIT 45 #define BPF_JIT_REGION_START (BPF_JIT_REGION_END - BPF_JIT_REGION_SIZE) 46 #define BPF_JIT_REGION_END (MODULES_END) 47 #else 48 #define BPF_JIT_REGION_START (PAGE_OFFSET - BPF_JIT_REGION_SIZE) 49 #define BPF_JIT_REGION_END (VMALLOC_END) 50 #endif 51 52 /* Modules always live before the kernel */ 53 #ifdef CONFIG_64BIT 54 /* This is used to define the end of the KASAN shadow region */ 55 #define MODULES_LOWEST_VADDR (KERNEL_LINK_ADDR - SZ_2G) 56 #define MODULES_VADDR (PFN_ALIGN((unsigned long)&_end) - SZ_2G) 57 #define MODULES_END (PFN_ALIGN((unsigned long)&_start)) 58 #else 59 #define MODULES_VADDR VMALLOC_START 60 #define MODULES_END VMALLOC_END 61 #endif 62 63 /* 64 * Roughly size the vmemmap space to be large enough to fit enough 65 * struct pages to map half the virtual address space. Then 66 * position vmemmap directly below the VMALLOC region. 67 */ 68 #define VA_BITS_SV32 32 69 #ifdef CONFIG_64BIT 70 #define VA_BITS_SV39 39 71 #define VA_BITS_SV48 48 72 #define VA_BITS_SV57 57 73 74 #define VA_BITS (pgtable_l5_enabled ? \ 75 VA_BITS_SV57 : (pgtable_l4_enabled ? VA_BITS_SV48 : VA_BITS_SV39)) 76 #else 77 #define VA_BITS VA_BITS_SV32 78 #endif 79 80 #define VMEMMAP_SHIFT \ 81 (VA_BITS - PAGE_SHIFT - 1 + STRUCT_PAGE_MAX_SHIFT) 82 #define VMEMMAP_SIZE BIT(VMEMMAP_SHIFT) 83 #define VMEMMAP_END VMALLOC_START 84 #define VMEMMAP_START (VMALLOC_START - VMEMMAP_SIZE) 85 86 /* 87 * Define vmemmap for pfn_to_page & page_to_pfn calls. Needed if kernel 88 * is configured with CONFIG_SPARSEMEM_VMEMMAP enabled. 89 */ 90 #define vmemmap ((struct page *)VMEMMAP_START - (phys_ram_base >> PAGE_SHIFT)) 91 92 #define PCI_IO_SIZE SZ_16M 93 #define PCI_IO_END VMEMMAP_START 94 #define PCI_IO_START (PCI_IO_END - PCI_IO_SIZE) 95 96 #define FIXADDR_TOP PCI_IO_START 97 #ifdef CONFIG_64BIT 98 #define MAX_FDT_SIZE PMD_SIZE 99 #define FIX_FDT_SIZE (MAX_FDT_SIZE + SZ_2M) 100 #define FIXADDR_SIZE (PMD_SIZE + FIX_FDT_SIZE) 101 #else 102 #define MAX_FDT_SIZE PGDIR_SIZE 103 #define FIX_FDT_SIZE MAX_FDT_SIZE 104 #define FIXADDR_SIZE (PGDIR_SIZE + FIX_FDT_SIZE) 105 #endif 106 #define FIXADDR_START (FIXADDR_TOP - FIXADDR_SIZE) 107 108 #endif 109 110 #ifdef CONFIG_XIP_KERNEL 111 #define XIP_OFFSET SZ_32M 112 #define XIP_OFFSET_MASK (SZ_32M - 1) 113 #else 114 #define XIP_OFFSET 0 115 #endif 116 117 #ifndef __ASSEMBLY__ 118 119 #include <asm/page.h> 120 #include <asm/tlbflush.h> 121 #include <linux/mm_types.h> 122 #include <asm/compat.h> 123 124 #define __page_val_to_pfn(_val) (((_val) & _PAGE_PFN_MASK) >> _PAGE_PFN_SHIFT) 125 126 #ifdef CONFIG_64BIT 127 #include <asm/pgtable-64.h> 128 129 #define VA_USER_SV39 (UL(1) << (VA_BITS_SV39 - 1)) 130 #define VA_USER_SV48 (UL(1) << (VA_BITS_SV48 - 1)) 131 #define VA_USER_SV57 (UL(1) << (VA_BITS_SV57 - 1)) 132 133 #define MMAP_VA_BITS_64 ((VA_BITS >= VA_BITS_SV48) ? VA_BITS_SV48 : VA_BITS) 134 #define MMAP_MIN_VA_BITS_64 (VA_BITS_SV39) 135 #define MMAP_VA_BITS (is_compat_task() ? VA_BITS_SV32 : MMAP_VA_BITS_64) 136 #define MMAP_MIN_VA_BITS (is_compat_task() ? VA_BITS_SV32 : MMAP_MIN_VA_BITS_64) 137 #else 138 #include <asm/pgtable-32.h> 139 #endif /* CONFIG_64BIT */ 140 141 #include <linux/page_table_check.h> 142 143 #ifdef CONFIG_XIP_KERNEL 144 #define XIP_FIXUP(addr) ({ \ 145 uintptr_t __a = (uintptr_t)(addr); \ 146 (__a >= CONFIG_XIP_PHYS_ADDR && \ 147 __a < CONFIG_XIP_PHYS_ADDR + XIP_OFFSET * 2) ? \ 148 __a - CONFIG_XIP_PHYS_ADDR + CONFIG_PHYS_RAM_BASE - XIP_OFFSET :\ 149 __a; \ 150 }) 151 #else 152 #define XIP_FIXUP(addr) (addr) 153 #endif /* CONFIG_XIP_KERNEL */ 154 155 struct pt_alloc_ops { 156 pte_t *(*get_pte_virt)(phys_addr_t pa); 157 phys_addr_t (*alloc_pte)(uintptr_t va); 158 #ifndef __PAGETABLE_PMD_FOLDED 159 pmd_t *(*get_pmd_virt)(phys_addr_t pa); 160 phys_addr_t (*alloc_pmd)(uintptr_t va); 161 pud_t *(*get_pud_virt)(phys_addr_t pa); 162 phys_addr_t (*alloc_pud)(uintptr_t va); 163 p4d_t *(*get_p4d_virt)(phys_addr_t pa); 164 phys_addr_t (*alloc_p4d)(uintptr_t va); 165 #endif 166 }; 167 168 extern struct pt_alloc_ops pt_ops __meminitdata; 169 170 #ifdef CONFIG_MMU 171 /* Number of PGD entries that a user-mode program can use */ 172 #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE) 173 174 /* Page protection bits */ 175 #define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_USER) 176 177 #define PAGE_NONE __pgprot(_PAGE_PROT_NONE | _PAGE_READ) 178 #define PAGE_READ __pgprot(_PAGE_BASE | _PAGE_READ) 179 #define PAGE_WRITE __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_WRITE) 180 #define PAGE_EXEC __pgprot(_PAGE_BASE | _PAGE_EXEC) 181 #define PAGE_READ_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC) 182 #define PAGE_WRITE_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | \ 183 _PAGE_EXEC | _PAGE_WRITE) 184 185 #define PAGE_COPY PAGE_READ 186 #define PAGE_COPY_EXEC PAGE_READ_EXEC 187 #define PAGE_SHARED PAGE_WRITE 188 #define PAGE_SHARED_EXEC PAGE_WRITE_EXEC 189 190 #define _PAGE_KERNEL (_PAGE_READ \ 191 | _PAGE_WRITE \ 192 | _PAGE_PRESENT \ 193 | _PAGE_ACCESSED \ 194 | _PAGE_DIRTY \ 195 | _PAGE_GLOBAL) 196 197 #define PAGE_KERNEL __pgprot(_PAGE_KERNEL) 198 #define PAGE_KERNEL_READ __pgprot(_PAGE_KERNEL & ~_PAGE_WRITE) 199 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_KERNEL | _PAGE_EXEC) 200 #define PAGE_KERNEL_READ_EXEC __pgprot((_PAGE_KERNEL & ~_PAGE_WRITE) \ 201 | _PAGE_EXEC) 202 203 #define PAGE_TABLE __pgprot(_PAGE_TABLE) 204 205 #define _PAGE_IOREMAP ((_PAGE_KERNEL & ~_PAGE_MTMASK) | _PAGE_IO) 206 #define PAGE_KERNEL_IO __pgprot(_PAGE_IOREMAP) 207 208 extern pgd_t swapper_pg_dir[]; 209 extern pgd_t trampoline_pg_dir[]; 210 extern pgd_t early_pg_dir[]; 211 212 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 213 static inline int pmd_present(pmd_t pmd) 214 { 215 /* 216 * Checking for _PAGE_LEAF is needed too because: 217 * When splitting a THP, split_huge_page() will temporarily clear 218 * the present bit, in this situation, pmd_present() and 219 * pmd_trans_huge() still needs to return true. 220 */ 221 return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE | _PAGE_LEAF)); 222 } 223 #else 224 static inline int pmd_present(pmd_t pmd) 225 { 226 return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE)); 227 } 228 #endif 229 230 static inline int pmd_none(pmd_t pmd) 231 { 232 return (pmd_val(pmd) == 0); 233 } 234 235 static inline int pmd_bad(pmd_t pmd) 236 { 237 return !pmd_present(pmd) || (pmd_val(pmd) & _PAGE_LEAF); 238 } 239 240 #define pmd_leaf pmd_leaf 241 static inline bool pmd_leaf(pmd_t pmd) 242 { 243 return pmd_present(pmd) && (pmd_val(pmd) & _PAGE_LEAF); 244 } 245 246 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd) 247 { 248 WRITE_ONCE(*pmdp, pmd); 249 } 250 251 static inline void pmd_clear(pmd_t *pmdp) 252 { 253 set_pmd(pmdp, __pmd(0)); 254 } 255 256 static inline pgd_t pfn_pgd(unsigned long pfn, pgprot_t prot) 257 { 258 unsigned long prot_val = pgprot_val(prot); 259 260 ALT_THEAD_PMA(prot_val); 261 262 return __pgd((pfn << _PAGE_PFN_SHIFT) | prot_val); 263 } 264 265 static inline unsigned long _pgd_pfn(pgd_t pgd) 266 { 267 return __page_val_to_pfn(pgd_val(pgd)); 268 } 269 270 static inline struct page *pmd_page(pmd_t pmd) 271 { 272 return pfn_to_page(__page_val_to_pfn(pmd_val(pmd))); 273 } 274 275 static inline unsigned long pmd_page_vaddr(pmd_t pmd) 276 { 277 return (unsigned long)pfn_to_virt(__page_val_to_pfn(pmd_val(pmd))); 278 } 279 280 static inline pte_t pmd_pte(pmd_t pmd) 281 { 282 return __pte(pmd_val(pmd)); 283 } 284 285 static inline pte_t pud_pte(pud_t pud) 286 { 287 return __pte(pud_val(pud)); 288 } 289 290 #ifdef CONFIG_RISCV_ISA_SVNAPOT 291 #include <asm/cpufeature.h> 292 293 static __always_inline bool has_svnapot(void) 294 { 295 return riscv_has_extension_likely(RISCV_ISA_EXT_SVNAPOT); 296 } 297 298 static inline unsigned long pte_napot(pte_t pte) 299 { 300 return pte_val(pte) & _PAGE_NAPOT; 301 } 302 303 static inline pte_t pte_mknapot(pte_t pte, unsigned int order) 304 { 305 int pos = order - 1 + _PAGE_PFN_SHIFT; 306 unsigned long napot_bit = BIT(pos); 307 unsigned long napot_mask = ~GENMASK(pos, _PAGE_PFN_SHIFT); 308 309 return __pte((pte_val(pte) & napot_mask) | napot_bit | _PAGE_NAPOT); 310 } 311 312 #else 313 314 static __always_inline bool has_svnapot(void) { return false; } 315 316 static inline unsigned long pte_napot(pte_t pte) 317 { 318 return 0; 319 } 320 321 #endif /* CONFIG_RISCV_ISA_SVNAPOT */ 322 323 /* Yields the page frame number (PFN) of a page table entry */ 324 static inline unsigned long pte_pfn(pte_t pte) 325 { 326 unsigned long res = __page_val_to_pfn(pte_val(pte)); 327 328 if (has_svnapot() && pte_napot(pte)) 329 res = res & (res - 1UL); 330 331 return res; 332 } 333 334 #define pte_page(x) pfn_to_page(pte_pfn(x)) 335 336 /* Constructs a page table entry */ 337 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot) 338 { 339 unsigned long prot_val = pgprot_val(prot); 340 341 ALT_THEAD_PMA(prot_val); 342 343 return __pte((pfn << _PAGE_PFN_SHIFT) | prot_val); 344 } 345 346 #define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot) 347 348 static inline int pte_present(pte_t pte) 349 { 350 return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE)); 351 } 352 353 #define pte_accessible pte_accessible 354 static inline unsigned long pte_accessible(struct mm_struct *mm, pte_t a) 355 { 356 if (pte_val(a) & _PAGE_PRESENT) 357 return true; 358 359 if ((pte_val(a) & _PAGE_PROT_NONE) && 360 atomic_read(&mm->tlb_flush_pending)) 361 return true; 362 363 return false; 364 } 365 366 static inline int pte_none(pte_t pte) 367 { 368 return (pte_val(pte) == 0); 369 } 370 371 static inline int pte_write(pte_t pte) 372 { 373 return pte_val(pte) & _PAGE_WRITE; 374 } 375 376 static inline int pte_exec(pte_t pte) 377 { 378 return pte_val(pte) & _PAGE_EXEC; 379 } 380 381 static inline int pte_user(pte_t pte) 382 { 383 return pte_val(pte) & _PAGE_USER; 384 } 385 386 static inline int pte_huge(pte_t pte) 387 { 388 return pte_present(pte) && (pte_val(pte) & _PAGE_LEAF); 389 } 390 391 static inline int pte_dirty(pte_t pte) 392 { 393 return pte_val(pte) & _PAGE_DIRTY; 394 } 395 396 static inline int pte_young(pte_t pte) 397 { 398 return pte_val(pte) & _PAGE_ACCESSED; 399 } 400 401 static inline int pte_special(pte_t pte) 402 { 403 return pte_val(pte) & _PAGE_SPECIAL; 404 } 405 406 #ifdef CONFIG_ARCH_HAS_PTE_DEVMAP 407 static inline int pte_devmap(pte_t pte) 408 { 409 return pte_val(pte) & _PAGE_DEVMAP; 410 } 411 #endif 412 413 /* static inline pte_t pte_rdprotect(pte_t pte) */ 414 415 static inline pte_t pte_wrprotect(pte_t pte) 416 { 417 return __pte(pte_val(pte) & ~(_PAGE_WRITE)); 418 } 419 420 /* static inline pte_t pte_mkread(pte_t pte) */ 421 422 static inline pte_t pte_mkwrite_novma(pte_t pte) 423 { 424 return __pte(pte_val(pte) | _PAGE_WRITE); 425 } 426 427 /* static inline pte_t pte_mkexec(pte_t pte) */ 428 429 static inline pte_t pte_mkdirty(pte_t pte) 430 { 431 return __pte(pte_val(pte) | _PAGE_DIRTY); 432 } 433 434 static inline pte_t pte_mkclean(pte_t pte) 435 { 436 return __pte(pte_val(pte) & ~(_PAGE_DIRTY)); 437 } 438 439 static inline pte_t pte_mkyoung(pte_t pte) 440 { 441 return __pte(pte_val(pte) | _PAGE_ACCESSED); 442 } 443 444 static inline pte_t pte_mkold(pte_t pte) 445 { 446 return __pte(pte_val(pte) & ~(_PAGE_ACCESSED)); 447 } 448 449 static inline pte_t pte_mkspecial(pte_t pte) 450 { 451 return __pte(pte_val(pte) | _PAGE_SPECIAL); 452 } 453 454 static inline pte_t pte_mkdevmap(pte_t pte) 455 { 456 return __pte(pte_val(pte) | _PAGE_DEVMAP); 457 } 458 459 static inline pte_t pte_mkhuge(pte_t pte) 460 { 461 return pte; 462 } 463 464 #ifdef CONFIG_RISCV_ISA_SVNAPOT 465 #define pte_leaf_size(pte) (pte_napot(pte) ? \ 466 napot_cont_size(napot_cont_order(pte)) :\ 467 PAGE_SIZE) 468 #endif 469 470 #ifdef CONFIG_NUMA_BALANCING 471 /* 472 * See the comment in include/asm-generic/pgtable.h 473 */ 474 static inline int pte_protnone(pte_t pte) 475 { 476 return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE)) == _PAGE_PROT_NONE; 477 } 478 479 static inline int pmd_protnone(pmd_t pmd) 480 { 481 return pte_protnone(pmd_pte(pmd)); 482 } 483 #endif 484 485 /* Modify page protection bits */ 486 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 487 { 488 unsigned long newprot_val = pgprot_val(newprot); 489 490 ALT_THEAD_PMA(newprot_val); 491 492 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | newprot_val); 493 } 494 495 #define pgd_ERROR(e) \ 496 pr_err("%s:%d: bad pgd " PTE_FMT ".\n", __FILE__, __LINE__, pgd_val(e)) 497 498 499 /* Commit new configuration to MMU hardware */ 500 static inline void update_mmu_cache_range(struct vm_fault *vmf, 501 struct vm_area_struct *vma, unsigned long address, 502 pte_t *ptep, unsigned int nr) 503 { 504 /* 505 * The kernel assumes that TLBs don't cache invalid entries, but 506 * in RISC-V, SFENCE.VMA specifies an ordering constraint, not a 507 * cache flush; it is necessary even after writing invalid entries. 508 * Relying on flush_tlb_fix_spurious_fault would suffice, but 509 * the extra traps reduce performance. So, eagerly SFENCE.VMA. 510 */ 511 while (nr--) 512 local_flush_tlb_page(address + nr * PAGE_SIZE); 513 } 514 #define update_mmu_cache(vma, addr, ptep) \ 515 update_mmu_cache_range(NULL, vma, addr, ptep, 1) 516 517 #define update_mmu_tlb_range(vma, addr, ptep, nr) \ 518 update_mmu_cache_range(NULL, vma, addr, ptep, nr) 519 520 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma, 521 unsigned long address, pmd_t *pmdp) 522 { 523 pte_t *ptep = (pte_t *)pmdp; 524 525 update_mmu_cache(vma, address, ptep); 526 } 527 528 #define __HAVE_ARCH_PTE_SAME 529 static inline int pte_same(pte_t pte_a, pte_t pte_b) 530 { 531 return pte_val(pte_a) == pte_val(pte_b); 532 } 533 534 /* 535 * Certain architectures need to do special things when PTEs within 536 * a page table are directly modified. Thus, the following hook is 537 * made available. 538 */ 539 static inline void set_pte(pte_t *ptep, pte_t pteval) 540 { 541 WRITE_ONCE(*ptep, pteval); 542 } 543 544 void flush_icache_pte(struct mm_struct *mm, pte_t pte); 545 546 static inline void __set_pte_at(struct mm_struct *mm, pte_t *ptep, pte_t pteval) 547 { 548 if (pte_present(pteval) && pte_exec(pteval)) 549 flush_icache_pte(mm, pteval); 550 551 set_pte(ptep, pteval); 552 } 553 554 #define PFN_PTE_SHIFT _PAGE_PFN_SHIFT 555 556 static inline void set_ptes(struct mm_struct *mm, unsigned long addr, 557 pte_t *ptep, pte_t pteval, unsigned int nr) 558 { 559 page_table_check_ptes_set(mm, ptep, pteval, nr); 560 561 for (;;) { 562 __set_pte_at(mm, ptep, pteval); 563 if (--nr == 0) 564 break; 565 ptep++; 566 pte_val(pteval) += 1 << _PAGE_PFN_SHIFT; 567 } 568 } 569 #define set_ptes set_ptes 570 571 static inline void pte_clear(struct mm_struct *mm, 572 unsigned long addr, pte_t *ptep) 573 { 574 __set_pte_at(mm, ptep, __pte(0)); 575 } 576 577 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS /* defined in mm/pgtable.c */ 578 extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address, 579 pte_t *ptep, pte_t entry, int dirty); 580 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG /* defined in mm/pgtable.c */ 581 extern int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long address, 582 pte_t *ptep); 583 584 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR 585 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 586 unsigned long address, pte_t *ptep) 587 { 588 pte_t pte = __pte(atomic_long_xchg((atomic_long_t *)ptep, 0)); 589 590 page_table_check_pte_clear(mm, pte); 591 592 return pte; 593 } 594 595 #define __HAVE_ARCH_PTEP_SET_WRPROTECT 596 static inline void ptep_set_wrprotect(struct mm_struct *mm, 597 unsigned long address, pte_t *ptep) 598 { 599 atomic_long_and(~(unsigned long)_PAGE_WRITE, (atomic_long_t *)ptep); 600 } 601 602 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 603 static inline int ptep_clear_flush_young(struct vm_area_struct *vma, 604 unsigned long address, pte_t *ptep) 605 { 606 /* 607 * This comment is borrowed from x86, but applies equally to RISC-V: 608 * 609 * Clearing the accessed bit without a TLB flush 610 * doesn't cause data corruption. [ It could cause incorrect 611 * page aging and the (mistaken) reclaim of hot pages, but the 612 * chance of that should be relatively low. ] 613 * 614 * So as a performance optimization don't flush the TLB when 615 * clearing the accessed bit, it will eventually be flushed by 616 * a context switch or a VM operation anyway. [ In the rare 617 * event of it not getting flushed for a long time the delay 618 * shouldn't really matter because there's no real memory 619 * pressure for swapout to react to. ] 620 */ 621 return ptep_test_and_clear_young(vma, address, ptep); 622 } 623 624 #define pgprot_nx pgprot_nx 625 static inline pgprot_t pgprot_nx(pgprot_t _prot) 626 { 627 return __pgprot(pgprot_val(_prot) & ~_PAGE_EXEC); 628 } 629 630 #define pgprot_noncached pgprot_noncached 631 static inline pgprot_t pgprot_noncached(pgprot_t _prot) 632 { 633 unsigned long prot = pgprot_val(_prot); 634 635 prot &= ~_PAGE_MTMASK; 636 prot |= _PAGE_IO; 637 638 return __pgprot(prot); 639 } 640 641 #define pgprot_writecombine pgprot_writecombine 642 static inline pgprot_t pgprot_writecombine(pgprot_t _prot) 643 { 644 unsigned long prot = pgprot_val(_prot); 645 646 prot &= ~_PAGE_MTMASK; 647 prot |= _PAGE_NOCACHE; 648 649 return __pgprot(prot); 650 } 651 652 /* 653 * THP functions 654 */ 655 static inline pmd_t pte_pmd(pte_t pte) 656 { 657 return __pmd(pte_val(pte)); 658 } 659 660 static inline pmd_t pmd_mkhuge(pmd_t pmd) 661 { 662 return pmd; 663 } 664 665 static inline pmd_t pmd_mkinvalid(pmd_t pmd) 666 { 667 return __pmd(pmd_val(pmd) & ~(_PAGE_PRESENT|_PAGE_PROT_NONE)); 668 } 669 670 #define __pmd_to_phys(pmd) (__page_val_to_pfn(pmd_val(pmd)) << PAGE_SHIFT) 671 672 static inline unsigned long pmd_pfn(pmd_t pmd) 673 { 674 return ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT); 675 } 676 677 #define __pud_to_phys(pud) (__page_val_to_pfn(pud_val(pud)) << PAGE_SHIFT) 678 679 #define pud_pfn pud_pfn 680 static inline unsigned long pud_pfn(pud_t pud) 681 { 682 return ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT); 683 } 684 685 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 686 { 687 return pte_pmd(pte_modify(pmd_pte(pmd), newprot)); 688 } 689 690 #define pmd_write pmd_write 691 static inline int pmd_write(pmd_t pmd) 692 { 693 return pte_write(pmd_pte(pmd)); 694 } 695 696 #define pud_write pud_write 697 static inline int pud_write(pud_t pud) 698 { 699 return pte_write(pud_pte(pud)); 700 } 701 702 #define pmd_dirty pmd_dirty 703 static inline int pmd_dirty(pmd_t pmd) 704 { 705 return pte_dirty(pmd_pte(pmd)); 706 } 707 708 #define pmd_young pmd_young 709 static inline int pmd_young(pmd_t pmd) 710 { 711 return pte_young(pmd_pte(pmd)); 712 } 713 714 static inline int pmd_user(pmd_t pmd) 715 { 716 return pte_user(pmd_pte(pmd)); 717 } 718 719 static inline pmd_t pmd_mkold(pmd_t pmd) 720 { 721 return pte_pmd(pte_mkold(pmd_pte(pmd))); 722 } 723 724 static inline pmd_t pmd_mkyoung(pmd_t pmd) 725 { 726 return pte_pmd(pte_mkyoung(pmd_pte(pmd))); 727 } 728 729 static inline pmd_t pmd_mkwrite_novma(pmd_t pmd) 730 { 731 return pte_pmd(pte_mkwrite_novma(pmd_pte(pmd))); 732 } 733 734 static inline pmd_t pmd_wrprotect(pmd_t pmd) 735 { 736 return pte_pmd(pte_wrprotect(pmd_pte(pmd))); 737 } 738 739 static inline pmd_t pmd_mkclean(pmd_t pmd) 740 { 741 return pte_pmd(pte_mkclean(pmd_pte(pmd))); 742 } 743 744 static inline pmd_t pmd_mkdirty(pmd_t pmd) 745 { 746 return pte_pmd(pte_mkdirty(pmd_pte(pmd))); 747 } 748 749 static inline pmd_t pmd_mkdevmap(pmd_t pmd) 750 { 751 return pte_pmd(pte_mkdevmap(pmd_pte(pmd))); 752 } 753 754 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr, 755 pmd_t *pmdp, pmd_t pmd) 756 { 757 page_table_check_pmd_set(mm, pmdp, pmd); 758 return __set_pte_at(mm, (pte_t *)pmdp, pmd_pte(pmd)); 759 } 760 761 static inline void set_pud_at(struct mm_struct *mm, unsigned long addr, 762 pud_t *pudp, pud_t pud) 763 { 764 page_table_check_pud_set(mm, pudp, pud); 765 return __set_pte_at(mm, (pte_t *)pudp, pud_pte(pud)); 766 } 767 768 #ifdef CONFIG_PAGE_TABLE_CHECK 769 static inline bool pte_user_accessible_page(pte_t pte) 770 { 771 return pte_present(pte) && pte_user(pte); 772 } 773 774 static inline bool pmd_user_accessible_page(pmd_t pmd) 775 { 776 return pmd_leaf(pmd) && pmd_user(pmd); 777 } 778 779 static inline bool pud_user_accessible_page(pud_t pud) 780 { 781 return pud_leaf(pud) && pud_user(pud); 782 } 783 #endif 784 785 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 786 static inline int pmd_trans_huge(pmd_t pmd) 787 { 788 return pmd_leaf(pmd); 789 } 790 791 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 792 static inline int pmdp_set_access_flags(struct vm_area_struct *vma, 793 unsigned long address, pmd_t *pmdp, 794 pmd_t entry, int dirty) 795 { 796 return ptep_set_access_flags(vma, address, (pte_t *)pmdp, pmd_pte(entry), dirty); 797 } 798 799 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 800 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 801 unsigned long address, pmd_t *pmdp) 802 { 803 return ptep_test_and_clear_young(vma, address, (pte_t *)pmdp); 804 } 805 806 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 807 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, 808 unsigned long address, pmd_t *pmdp) 809 { 810 pmd_t pmd = __pmd(atomic_long_xchg((atomic_long_t *)pmdp, 0)); 811 812 page_table_check_pmd_clear(mm, pmd); 813 814 return pmd; 815 } 816 817 #define __HAVE_ARCH_PMDP_SET_WRPROTECT 818 static inline void pmdp_set_wrprotect(struct mm_struct *mm, 819 unsigned long address, pmd_t *pmdp) 820 { 821 ptep_set_wrprotect(mm, address, (pte_t *)pmdp); 822 } 823 824 #define pmdp_establish pmdp_establish 825 static inline pmd_t pmdp_establish(struct vm_area_struct *vma, 826 unsigned long address, pmd_t *pmdp, pmd_t pmd) 827 { 828 page_table_check_pmd_set(vma->vm_mm, pmdp, pmd); 829 return __pmd(atomic_long_xchg((atomic_long_t *)pmdp, pmd_val(pmd))); 830 } 831 832 #define pmdp_collapse_flush pmdp_collapse_flush 833 extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 834 unsigned long address, pmd_t *pmdp); 835 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 836 837 /* 838 * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that 839 * are !pte_none() && !pte_present(). 840 * 841 * Format of swap PTE: 842 * bit 0: _PAGE_PRESENT (zero) 843 * bit 1 to 3: _PAGE_LEAF (zero) 844 * bit 5: _PAGE_PROT_NONE (zero) 845 * bit 6: exclusive marker 846 * bits 7 to 11: swap type 847 * bits 12 to XLEN-1: swap offset 848 */ 849 #define __SWP_TYPE_SHIFT 7 850 #define __SWP_TYPE_BITS 5 851 #define __SWP_TYPE_MASK ((1UL << __SWP_TYPE_BITS) - 1) 852 #define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT) 853 854 #define MAX_SWAPFILES_CHECK() \ 855 BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS) 856 857 #define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK) 858 #define __swp_offset(x) ((x).val >> __SWP_OFFSET_SHIFT) 859 #define __swp_entry(type, offset) ((swp_entry_t) \ 860 { (((type) & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT) | \ 861 ((offset) << __SWP_OFFSET_SHIFT) }) 862 863 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 864 #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 865 866 static inline int pte_swp_exclusive(pte_t pte) 867 { 868 return pte_val(pte) & _PAGE_SWP_EXCLUSIVE; 869 } 870 871 static inline pte_t pte_swp_mkexclusive(pte_t pte) 872 { 873 return __pte(pte_val(pte) | _PAGE_SWP_EXCLUSIVE); 874 } 875 876 static inline pte_t pte_swp_clear_exclusive(pte_t pte) 877 { 878 return __pte(pte_val(pte) & ~_PAGE_SWP_EXCLUSIVE); 879 } 880 881 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 882 #define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val(pmd) }) 883 #define __swp_entry_to_pmd(swp) __pmd((swp).val) 884 #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */ 885 886 /* 887 * In the RV64 Linux scheme, we give the user half of the virtual-address space 888 * and give the kernel the other (upper) half. 889 */ 890 #ifdef CONFIG_64BIT 891 #define KERN_VIRT_START (-(BIT(VA_BITS)) + TASK_SIZE) 892 #else 893 #define KERN_VIRT_START FIXADDR_START 894 #endif 895 896 /* 897 * Task size is 0x4000000000 for RV64 or 0x9fc00000 for RV32. 898 * Note that PGDIR_SIZE must evenly divide TASK_SIZE. 899 * Task size is: 900 * - 0x9fc00000 (~2.5GB) for RV32. 901 * - 0x4000000000 ( 256GB) for RV64 using SV39 mmu 902 * - 0x800000000000 ( 128TB) for RV64 using SV48 mmu 903 * - 0x100000000000000 ( 64PB) for RV64 using SV57 mmu 904 * 905 * Note that PGDIR_SIZE must evenly divide TASK_SIZE since "RISC-V 906 * Instruction Set Manual Volume II: Privileged Architecture" states that 907 * "load and store effective addresses, which are 64bits, must have bits 908 * 63–48 all equal to bit 47, or else a page-fault exception will occur." 909 * Similarly for SV57, bits 63–57 must be equal to bit 56. 910 */ 911 #ifdef CONFIG_64BIT 912 #define TASK_SIZE_64 (PGDIR_SIZE * PTRS_PER_PGD / 2) 913 #define TASK_SIZE_MAX LONG_MAX 914 915 #ifdef CONFIG_COMPAT 916 #define TASK_SIZE_32 (_AC(0x80000000, UL) - PAGE_SIZE) 917 #define TASK_SIZE (is_compat_task() ? \ 918 TASK_SIZE_32 : TASK_SIZE_64) 919 #else 920 #define TASK_SIZE TASK_SIZE_64 921 #endif 922 923 #else 924 #define TASK_SIZE FIXADDR_START 925 #endif 926 927 #else /* CONFIG_MMU */ 928 929 #define PAGE_SHARED __pgprot(0) 930 #define PAGE_KERNEL __pgprot(0) 931 #define swapper_pg_dir NULL 932 #define TASK_SIZE _AC(-1, UL) 933 #define VMALLOC_START _AC(0, UL) 934 #define VMALLOC_END TASK_SIZE 935 936 #endif /* !CONFIG_MMU */ 937 938 extern char _start[]; 939 extern void *_dtb_early_va; 940 extern uintptr_t _dtb_early_pa; 941 #if defined(CONFIG_XIP_KERNEL) && defined(CONFIG_MMU) 942 #define dtb_early_va (*(void **)XIP_FIXUP(&_dtb_early_va)) 943 #define dtb_early_pa (*(uintptr_t *)XIP_FIXUP(&_dtb_early_pa)) 944 #else 945 #define dtb_early_va _dtb_early_va 946 #define dtb_early_pa _dtb_early_pa 947 #endif /* CONFIG_XIP_KERNEL */ 948 extern u64 satp_mode; 949 950 void paging_init(void); 951 void misc_mem_init(void); 952 953 /* 954 * ZERO_PAGE is a global shared page that is always zero, 955 * used for zero-mapped memory areas, etc. 956 */ 957 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]; 958 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 959 960 #endif /* !__ASSEMBLY__ */ 961 962 #endif /* _ASM_RISCV_PGTABLE_H */ 963
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.