~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/riscv/kernel/elf_kexec.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * Load ELF vmlinux file for the kexec_file_load syscall.
  4  *
  5  * Copyright (C) 2021 Huawei Technologies Co, Ltd.
  6  *
  7  * Author: Liao Chang (liaochang1@huawei.com)
  8  *
  9  * Based on kexec-tools' kexec-elf-riscv.c, heavily modified
 10  * for kernel.
 11  */
 12 
 13 #define pr_fmt(fmt)     "kexec_image: " fmt
 14 
 15 #include <linux/elf.h>
 16 #include <linux/kexec.h>
 17 #include <linux/slab.h>
 18 #include <linux/of.h>
 19 #include <linux/libfdt.h>
 20 #include <linux/types.h>
 21 #include <linux/memblock.h>
 22 #include <linux/vmalloc.h>
 23 #include <asm/setup.h>
 24 
 25 int arch_kimage_file_post_load_cleanup(struct kimage *image)
 26 {
 27         kvfree(image->arch.fdt);
 28         image->arch.fdt = NULL;
 29 
 30         vfree(image->elf_headers);
 31         image->elf_headers = NULL;
 32         image->elf_headers_sz = 0;
 33 
 34         return kexec_image_post_load_cleanup_default(image);
 35 }
 36 
 37 static int riscv_kexec_elf_load(struct kimage *image, struct elfhdr *ehdr,
 38                                 struct kexec_elf_info *elf_info, unsigned long old_pbase,
 39                                 unsigned long new_pbase)
 40 {
 41         int i;
 42         int ret = 0;
 43         size_t size;
 44         struct kexec_buf kbuf;
 45         const struct elf_phdr *phdr;
 46 
 47         kbuf.image = image;
 48 
 49         for (i = 0; i < ehdr->e_phnum; i++) {
 50                 phdr = &elf_info->proghdrs[i];
 51                 if (phdr->p_type != PT_LOAD)
 52                         continue;
 53 
 54                 size = phdr->p_filesz;
 55                 if (size > phdr->p_memsz)
 56                         size = phdr->p_memsz;
 57 
 58                 kbuf.buffer = (void *) elf_info->buffer + phdr->p_offset;
 59                 kbuf.bufsz = size;
 60                 kbuf.buf_align = phdr->p_align;
 61                 kbuf.mem = phdr->p_paddr - old_pbase + new_pbase;
 62                 kbuf.memsz = phdr->p_memsz;
 63                 kbuf.top_down = false;
 64                 ret = kexec_add_buffer(&kbuf);
 65                 if (ret)
 66                         break;
 67         }
 68 
 69         return ret;
 70 }
 71 
 72 /*
 73  * Go through the available phsyical memory regions and find one that hold
 74  * an image of the specified size.
 75  */
 76 static int elf_find_pbase(struct kimage *image, unsigned long kernel_len,
 77                           struct elfhdr *ehdr, struct kexec_elf_info *elf_info,
 78                           unsigned long *old_pbase, unsigned long *new_pbase)
 79 {
 80         int i;
 81         int ret;
 82         struct kexec_buf kbuf;
 83         const struct elf_phdr *phdr;
 84         unsigned long lowest_paddr = ULONG_MAX;
 85         unsigned long lowest_vaddr = ULONG_MAX;
 86 
 87         for (i = 0; i < ehdr->e_phnum; i++) {
 88                 phdr = &elf_info->proghdrs[i];
 89                 if (phdr->p_type != PT_LOAD)
 90                         continue;
 91 
 92                 if (lowest_paddr > phdr->p_paddr)
 93                         lowest_paddr = phdr->p_paddr;
 94 
 95                 if (lowest_vaddr > phdr->p_vaddr)
 96                         lowest_vaddr = phdr->p_vaddr;
 97         }
 98 
 99         kbuf.image = image;
100         kbuf.buf_min = lowest_paddr;
101         kbuf.buf_max = ULONG_MAX;
102 
103         /*
104          * Current riscv boot protocol requires 2MB alignment for
105          * RV64 and 4MB alignment for RV32
106          *
107          */
108         kbuf.buf_align = PMD_SIZE;
109         kbuf.mem = KEXEC_BUF_MEM_UNKNOWN;
110         kbuf.memsz = ALIGN(kernel_len, PAGE_SIZE);
111         kbuf.top_down = false;
112         ret = arch_kexec_locate_mem_hole(&kbuf);
113         if (!ret) {
114                 *old_pbase = lowest_paddr;
115                 *new_pbase = kbuf.mem;
116                 image->start = ehdr->e_entry - lowest_vaddr + kbuf.mem;
117         }
118         return ret;
119 }
120 
121 #ifdef CONFIG_CRASH_DUMP
122 static int get_nr_ram_ranges_callback(struct resource *res, void *arg)
123 {
124         unsigned int *nr_ranges = arg;
125 
126         (*nr_ranges)++;
127         return 0;
128 }
129 
130 static int prepare_elf64_ram_headers_callback(struct resource *res, void *arg)
131 {
132         struct crash_mem *cmem = arg;
133 
134         cmem->ranges[cmem->nr_ranges].start = res->start;
135         cmem->ranges[cmem->nr_ranges].end = res->end;
136         cmem->nr_ranges++;
137 
138         return 0;
139 }
140 
141 static int prepare_elf_headers(void **addr, unsigned long *sz)
142 {
143         struct crash_mem *cmem;
144         unsigned int nr_ranges;
145         int ret;
146 
147         nr_ranges = 1; /* For exclusion of crashkernel region */
148         walk_system_ram_res(0, -1, &nr_ranges, get_nr_ram_ranges_callback);
149 
150         cmem = kmalloc(struct_size(cmem, ranges, nr_ranges), GFP_KERNEL);
151         if (!cmem)
152                 return -ENOMEM;
153 
154         cmem->max_nr_ranges = nr_ranges;
155         cmem->nr_ranges = 0;
156         ret = walk_system_ram_res(0, -1, cmem, prepare_elf64_ram_headers_callback);
157         if (ret)
158                 goto out;
159 
160         /* Exclude crashkernel region */
161         ret = crash_exclude_mem_range(cmem, crashk_res.start, crashk_res.end);
162         if (!ret)
163                 ret = crash_prepare_elf64_headers(cmem, true, addr, sz);
164 
165 out:
166         kfree(cmem);
167         return ret;
168 }
169 
170 static char *setup_kdump_cmdline(struct kimage *image, char *cmdline,
171                                  unsigned long cmdline_len)
172 {
173         int elfcorehdr_strlen;
174         char *cmdline_ptr;
175 
176         cmdline_ptr = kzalloc(COMMAND_LINE_SIZE, GFP_KERNEL);
177         if (!cmdline_ptr)
178                 return NULL;
179 
180         elfcorehdr_strlen = sprintf(cmdline_ptr, "elfcorehdr=0x%lx ",
181                 image->elf_load_addr);
182 
183         if (elfcorehdr_strlen + cmdline_len > COMMAND_LINE_SIZE) {
184                 pr_err("Appending elfcorehdr=<addr> exceeds cmdline size\n");
185                 kfree(cmdline_ptr);
186                 return NULL;
187         }
188 
189         memcpy(cmdline_ptr + elfcorehdr_strlen, cmdline, cmdline_len);
190         /* Ensure it's nul terminated */
191         cmdline_ptr[COMMAND_LINE_SIZE - 1] = '\0';
192         return cmdline_ptr;
193 }
194 #endif
195 
196 static void *elf_kexec_load(struct kimage *image, char *kernel_buf,
197                             unsigned long kernel_len, char *initrd,
198                             unsigned long initrd_len, char *cmdline,
199                             unsigned long cmdline_len)
200 {
201         int ret;
202         void *fdt;
203         unsigned long old_kernel_pbase = ULONG_MAX;
204         unsigned long new_kernel_pbase = 0UL;
205         unsigned long initrd_pbase = 0UL;
206         unsigned long kernel_start;
207         struct elfhdr ehdr;
208         struct kexec_buf kbuf;
209         struct kexec_elf_info elf_info;
210         char *modified_cmdline = NULL;
211 
212         ret = kexec_build_elf_info(kernel_buf, kernel_len, &ehdr, &elf_info);
213         if (ret)
214                 return ERR_PTR(ret);
215 
216         ret = elf_find_pbase(image, kernel_len, &ehdr, &elf_info,
217                              &old_kernel_pbase, &new_kernel_pbase);
218         if (ret)
219                 goto out;
220         kernel_start = image->start;
221 
222         /* Add the kernel binary to the image */
223         ret = riscv_kexec_elf_load(image, &ehdr, &elf_info,
224                                    old_kernel_pbase, new_kernel_pbase);
225         if (ret)
226                 goto out;
227 
228         kbuf.image = image;
229         kbuf.buf_min = new_kernel_pbase + kernel_len;
230         kbuf.buf_max = ULONG_MAX;
231 
232 #ifdef CONFIG_CRASH_DUMP
233         /* Add elfcorehdr */
234         if (image->type == KEXEC_TYPE_CRASH) {
235                 void *headers;
236                 unsigned long headers_sz;
237                 ret = prepare_elf_headers(&headers, &headers_sz);
238                 if (ret) {
239                         pr_err("Preparing elf core header failed\n");
240                         goto out;
241                 }
242 
243                 kbuf.buffer = headers;
244                 kbuf.bufsz = headers_sz;
245                 kbuf.mem = KEXEC_BUF_MEM_UNKNOWN;
246                 kbuf.memsz = headers_sz;
247                 kbuf.buf_align = ELF_CORE_HEADER_ALIGN;
248                 kbuf.top_down = true;
249 
250                 ret = kexec_add_buffer(&kbuf);
251                 if (ret) {
252                         vfree(headers);
253                         goto out;
254                 }
255                 image->elf_headers = headers;
256                 image->elf_load_addr = kbuf.mem;
257                 image->elf_headers_sz = headers_sz;
258 
259                 kexec_dprintk("Loaded elf core header at 0x%lx bufsz=0x%lx memsz=0x%lx\n",
260                               image->elf_load_addr, kbuf.bufsz, kbuf.memsz);
261 
262                 /* Setup cmdline for kdump kernel case */
263                 modified_cmdline = setup_kdump_cmdline(image, cmdline,
264                                                        cmdline_len);
265                 if (!modified_cmdline) {
266                         pr_err("Setting up cmdline for kdump kernel failed\n");
267                         ret = -EINVAL;
268                         goto out;
269                 }
270                 cmdline = modified_cmdline;
271         }
272 #endif
273 
274 #ifdef CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY
275         /* Add purgatory to the image */
276         kbuf.top_down = true;
277         kbuf.mem = KEXEC_BUF_MEM_UNKNOWN;
278         ret = kexec_load_purgatory(image, &kbuf);
279         if (ret) {
280                 pr_err("Error loading purgatory ret=%d\n", ret);
281                 goto out;
282         }
283         kexec_dprintk("Loaded purgatory at 0x%lx\n", kbuf.mem);
284 
285         ret = kexec_purgatory_get_set_symbol(image, "riscv_kernel_entry",
286                                              &kernel_start,
287                                              sizeof(kernel_start), 0);
288         if (ret)
289                 pr_err("Error update purgatory ret=%d\n", ret);
290 #endif /* CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY */
291 
292         /* Add the initrd to the image */
293         if (initrd != NULL) {
294                 kbuf.buffer = initrd;
295                 kbuf.bufsz = kbuf.memsz = initrd_len;
296                 kbuf.buf_align = PAGE_SIZE;
297                 kbuf.top_down = true;
298                 kbuf.mem = KEXEC_BUF_MEM_UNKNOWN;
299                 ret = kexec_add_buffer(&kbuf);
300                 if (ret)
301                         goto out;
302                 initrd_pbase = kbuf.mem;
303                 kexec_dprintk("Loaded initrd at 0x%lx\n", initrd_pbase);
304         }
305 
306         /* Add the DTB to the image */
307         fdt = of_kexec_alloc_and_setup_fdt(image, initrd_pbase,
308                                            initrd_len, cmdline, 0);
309         if (!fdt) {
310                 pr_err("Error setting up the new device tree.\n");
311                 ret = -EINVAL;
312                 goto out;
313         }
314 
315         fdt_pack(fdt);
316         kbuf.buffer = fdt;
317         kbuf.bufsz = kbuf.memsz = fdt_totalsize(fdt);
318         kbuf.buf_align = PAGE_SIZE;
319         kbuf.mem = KEXEC_BUF_MEM_UNKNOWN;
320         kbuf.top_down = true;
321         ret = kexec_add_buffer(&kbuf);
322         if (ret) {
323                 pr_err("Error add DTB kbuf ret=%d\n", ret);
324                 goto out_free_fdt;
325         }
326         /* Cache the fdt buffer address for memory cleanup */
327         image->arch.fdt = fdt;
328         kexec_dprintk("Loaded device tree at 0x%lx\n", kbuf.mem);
329         goto out;
330 
331 out_free_fdt:
332         kvfree(fdt);
333 out:
334         kfree(modified_cmdline);
335         kexec_free_elf_info(&elf_info);
336         return ret ? ERR_PTR(ret) : NULL;
337 }
338 
339 #define RV_X(x, s, n)  (((x) >> (s)) & ((1 << (n)) - 1))
340 #define RISCV_IMM_BITS 12
341 #define RISCV_IMM_REACH (1LL << RISCV_IMM_BITS)
342 #define RISCV_CONST_HIGH_PART(x) \
343         (((x) + (RISCV_IMM_REACH >> 1)) & ~(RISCV_IMM_REACH - 1))
344 #define RISCV_CONST_LOW_PART(x) ((x) - RISCV_CONST_HIGH_PART(x))
345 
346 #define ENCODE_ITYPE_IMM(x) \
347         (RV_X(x, 0, 12) << 20)
348 #define ENCODE_BTYPE_IMM(x) \
349         ((RV_X(x, 1, 4) << 8) | (RV_X(x, 5, 6) << 25) | \
350         (RV_X(x, 11, 1) << 7) | (RV_X(x, 12, 1) << 31))
351 #define ENCODE_UTYPE_IMM(x) \
352         (RV_X(x, 12, 20) << 12)
353 #define ENCODE_JTYPE_IMM(x) \
354         ((RV_X(x, 1, 10) << 21) | (RV_X(x, 11, 1) << 20) | \
355         (RV_X(x, 12, 8) << 12) | (RV_X(x, 20, 1) << 31))
356 #define ENCODE_CBTYPE_IMM(x) \
357         ((RV_X(x, 1, 2) << 3) | (RV_X(x, 3, 2) << 10) | (RV_X(x, 5, 1) << 2) | \
358         (RV_X(x, 6, 2) << 5) | (RV_X(x, 8, 1) << 12))
359 #define ENCODE_CJTYPE_IMM(x) \
360         ((RV_X(x, 1, 3) << 3) | (RV_X(x, 4, 1) << 11) | (RV_X(x, 5, 1) << 2) | \
361         (RV_X(x, 6, 1) << 7) | (RV_X(x, 7, 1) << 6) | (RV_X(x, 8, 2) << 9) | \
362         (RV_X(x, 10, 1) << 8) | (RV_X(x, 11, 1) << 12))
363 #define ENCODE_UJTYPE_IMM(x) \
364         (ENCODE_UTYPE_IMM(RISCV_CONST_HIGH_PART(x)) | \
365         (ENCODE_ITYPE_IMM(RISCV_CONST_LOW_PART(x)) << 32))
366 #define ENCODE_UITYPE_IMM(x) \
367         (ENCODE_UTYPE_IMM(x) | (ENCODE_ITYPE_IMM(x) << 32))
368 
369 #define CLEAN_IMM(type, x) \
370         ((~ENCODE_##type##_IMM((uint64_t)(-1))) & (x))
371 
372 int arch_kexec_apply_relocations_add(struct purgatory_info *pi,
373                                      Elf_Shdr *section,
374                                      const Elf_Shdr *relsec,
375                                      const Elf_Shdr *symtab)
376 {
377         const char *strtab, *name, *shstrtab;
378         const Elf_Shdr *sechdrs;
379         Elf64_Rela *relas;
380         int i, r_type;
381 
382         /* String & section header string table */
383         sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
384         strtab = (char *)pi->ehdr + sechdrs[symtab->sh_link].sh_offset;
385         shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset;
386 
387         relas = (void *)pi->ehdr + relsec->sh_offset;
388 
389         for (i = 0; i < relsec->sh_size / sizeof(*relas); i++) {
390                 const Elf_Sym *sym;     /* symbol to relocate */
391                 unsigned long addr;     /* final location after relocation */
392                 unsigned long val;      /* relocated symbol value */
393                 unsigned long sec_base; /* relocated symbol value */
394                 void *loc;              /* tmp location to modify */
395 
396                 sym = (void *)pi->ehdr + symtab->sh_offset;
397                 sym += ELF64_R_SYM(relas[i].r_info);
398 
399                 if (sym->st_name)
400                         name = strtab + sym->st_name;
401                 else
402                         name = shstrtab + sechdrs[sym->st_shndx].sh_name;
403 
404                 loc = pi->purgatory_buf;
405                 loc += section->sh_offset;
406                 loc += relas[i].r_offset;
407 
408                 if (sym->st_shndx == SHN_ABS)
409                         sec_base = 0;
410                 else if (sym->st_shndx >= pi->ehdr->e_shnum) {
411                         pr_err("Invalid section %d for symbol %s\n",
412                                sym->st_shndx, name);
413                         return -ENOEXEC;
414                 } else
415                         sec_base = pi->sechdrs[sym->st_shndx].sh_addr;
416 
417                 val = sym->st_value;
418                 val += sec_base;
419                 val += relas[i].r_addend;
420 
421                 addr = section->sh_addr + relas[i].r_offset;
422 
423                 r_type = ELF64_R_TYPE(relas[i].r_info);
424 
425                 switch (r_type) {
426                 case R_RISCV_BRANCH:
427                         *(u32 *)loc = CLEAN_IMM(BTYPE, *(u32 *)loc) |
428                                  ENCODE_BTYPE_IMM(val - addr);
429                         break;
430                 case R_RISCV_JAL:
431                         *(u32 *)loc = CLEAN_IMM(JTYPE, *(u32 *)loc) |
432                                  ENCODE_JTYPE_IMM(val - addr);
433                         break;
434                 /*
435                  * With no R_RISCV_PCREL_LO12_S, R_RISCV_PCREL_LO12_I
436                  * sym is expected to be next to R_RISCV_PCREL_HI20
437                  * in purgatory relsec. Handle it like R_RISCV_CALL
438                  * sym, instead of searching the whole relsec.
439                  */
440                 case R_RISCV_PCREL_HI20:
441                 case R_RISCV_CALL_PLT:
442                 case R_RISCV_CALL:
443                         *(u64 *)loc = CLEAN_IMM(UITYPE, *(u64 *)loc) |
444                                  ENCODE_UJTYPE_IMM(val - addr);
445                         break;
446                 case R_RISCV_RVC_BRANCH:
447                         *(u32 *)loc = CLEAN_IMM(CBTYPE, *(u32 *)loc) |
448                                  ENCODE_CBTYPE_IMM(val - addr);
449                         break;
450                 case R_RISCV_RVC_JUMP:
451                         *(u32 *)loc = CLEAN_IMM(CJTYPE, *(u32 *)loc) |
452                                  ENCODE_CJTYPE_IMM(val - addr);
453                         break;
454                 case R_RISCV_ADD32:
455                         *(u32 *)loc += val;
456                         break;
457                 case R_RISCV_SUB32:
458                         *(u32 *)loc -= val;
459                         break;
460                 /* It has been applied by R_RISCV_PCREL_HI20 sym */
461                 case R_RISCV_PCREL_LO12_I:
462                 case R_RISCV_ALIGN:
463                 case R_RISCV_RELAX:
464                         break;
465                 default:
466                         pr_err("Unknown rela relocation: %d\n", r_type);
467                         return -ENOEXEC;
468                 }
469         }
470         return 0;
471 }
472 
473 const struct kexec_file_ops elf_kexec_ops = {
474         .probe = kexec_elf_probe,
475         .load  = elf_kexec_load,
476 };
477 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php