~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/riscv/kvm/mmu.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * Copyright (C) 2019 Western Digital Corporation or its affiliates.
  4  *
  5  * Authors:
  6  *     Anup Patel <anup.patel@wdc.com>
  7  */
  8 
  9 #include <linux/bitops.h>
 10 #include <linux/errno.h>
 11 #include <linux/err.h>
 12 #include <linux/hugetlb.h>
 13 #include <linux/module.h>
 14 #include <linux/uaccess.h>
 15 #include <linux/vmalloc.h>
 16 #include <linux/kvm_host.h>
 17 #include <linux/sched/signal.h>
 18 #include <asm/csr.h>
 19 #include <asm/page.h>
 20 #include <asm/pgtable.h>
 21 
 22 #ifdef CONFIG_64BIT
 23 static unsigned long gstage_mode __ro_after_init = (HGATP_MODE_SV39X4 << HGATP_MODE_SHIFT);
 24 static unsigned long gstage_pgd_levels __ro_after_init = 3;
 25 #define gstage_index_bits       9
 26 #else
 27 static unsigned long gstage_mode __ro_after_init = (HGATP_MODE_SV32X4 << HGATP_MODE_SHIFT);
 28 static unsigned long gstage_pgd_levels __ro_after_init = 2;
 29 #define gstage_index_bits       10
 30 #endif
 31 
 32 #define gstage_pgd_xbits        2
 33 #define gstage_pgd_size (1UL << (HGATP_PAGE_SHIFT + gstage_pgd_xbits))
 34 #define gstage_gpa_bits (HGATP_PAGE_SHIFT + \
 35                          (gstage_pgd_levels * gstage_index_bits) + \
 36                          gstage_pgd_xbits)
 37 #define gstage_gpa_size ((gpa_t)(1ULL << gstage_gpa_bits))
 38 
 39 #define gstage_pte_leaf(__ptep) \
 40         (pte_val(*(__ptep)) & (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC))
 41 
 42 static inline unsigned long gstage_pte_index(gpa_t addr, u32 level)
 43 {
 44         unsigned long mask;
 45         unsigned long shift = HGATP_PAGE_SHIFT + (gstage_index_bits * level);
 46 
 47         if (level == (gstage_pgd_levels - 1))
 48                 mask = (PTRS_PER_PTE * (1UL << gstage_pgd_xbits)) - 1;
 49         else
 50                 mask = PTRS_PER_PTE - 1;
 51 
 52         return (addr >> shift) & mask;
 53 }
 54 
 55 static inline unsigned long gstage_pte_page_vaddr(pte_t pte)
 56 {
 57         return (unsigned long)pfn_to_virt(__page_val_to_pfn(pte_val(pte)));
 58 }
 59 
 60 static int gstage_page_size_to_level(unsigned long page_size, u32 *out_level)
 61 {
 62         u32 i;
 63         unsigned long psz = 1UL << 12;
 64 
 65         for (i = 0; i < gstage_pgd_levels; i++) {
 66                 if (page_size == (psz << (i * gstage_index_bits))) {
 67                         *out_level = i;
 68                         return 0;
 69                 }
 70         }
 71 
 72         return -EINVAL;
 73 }
 74 
 75 static int gstage_level_to_page_order(u32 level, unsigned long *out_pgorder)
 76 {
 77         if (gstage_pgd_levels < level)
 78                 return -EINVAL;
 79 
 80         *out_pgorder = 12 + (level * gstage_index_bits);
 81         return 0;
 82 }
 83 
 84 static int gstage_level_to_page_size(u32 level, unsigned long *out_pgsize)
 85 {
 86         int rc;
 87         unsigned long page_order = PAGE_SHIFT;
 88 
 89         rc = gstage_level_to_page_order(level, &page_order);
 90         if (rc)
 91                 return rc;
 92 
 93         *out_pgsize = BIT(page_order);
 94         return 0;
 95 }
 96 
 97 static bool gstage_get_leaf_entry(struct kvm *kvm, gpa_t addr,
 98                                   pte_t **ptepp, u32 *ptep_level)
 99 {
100         pte_t *ptep;
101         u32 current_level = gstage_pgd_levels - 1;
102 
103         *ptep_level = current_level;
104         ptep = (pte_t *)kvm->arch.pgd;
105         ptep = &ptep[gstage_pte_index(addr, current_level)];
106         while (ptep && pte_val(ptep_get(ptep))) {
107                 if (gstage_pte_leaf(ptep)) {
108                         *ptep_level = current_level;
109                         *ptepp = ptep;
110                         return true;
111                 }
112 
113                 if (current_level) {
114                         current_level--;
115                         *ptep_level = current_level;
116                         ptep = (pte_t *)gstage_pte_page_vaddr(ptep_get(ptep));
117                         ptep = &ptep[gstage_pte_index(addr, current_level)];
118                 } else {
119                         ptep = NULL;
120                 }
121         }
122 
123         return false;
124 }
125 
126 static void gstage_remote_tlb_flush(struct kvm *kvm, u32 level, gpa_t addr)
127 {
128         unsigned long order = PAGE_SHIFT;
129 
130         if (gstage_level_to_page_order(level, &order))
131                 return;
132         addr &= ~(BIT(order) - 1);
133 
134         kvm_riscv_hfence_gvma_vmid_gpa(kvm, -1UL, 0, addr, BIT(order), order);
135 }
136 
137 static int gstage_set_pte(struct kvm *kvm, u32 level,
138                            struct kvm_mmu_memory_cache *pcache,
139                            gpa_t addr, const pte_t *new_pte)
140 {
141         u32 current_level = gstage_pgd_levels - 1;
142         pte_t *next_ptep = (pte_t *)kvm->arch.pgd;
143         pte_t *ptep = &next_ptep[gstage_pte_index(addr, current_level)];
144 
145         if (current_level < level)
146                 return -EINVAL;
147 
148         while (current_level != level) {
149                 if (gstage_pte_leaf(ptep))
150                         return -EEXIST;
151 
152                 if (!pte_val(ptep_get(ptep))) {
153                         if (!pcache)
154                                 return -ENOMEM;
155                         next_ptep = kvm_mmu_memory_cache_alloc(pcache);
156                         if (!next_ptep)
157                                 return -ENOMEM;
158                         set_pte(ptep, pfn_pte(PFN_DOWN(__pa(next_ptep)),
159                                               __pgprot(_PAGE_TABLE)));
160                 } else {
161                         if (gstage_pte_leaf(ptep))
162                                 return -EEXIST;
163                         next_ptep = (pte_t *)gstage_pte_page_vaddr(ptep_get(ptep));
164                 }
165 
166                 current_level--;
167                 ptep = &next_ptep[gstage_pte_index(addr, current_level)];
168         }
169 
170         set_pte(ptep, *new_pte);
171         if (gstage_pte_leaf(ptep))
172                 gstage_remote_tlb_flush(kvm, current_level, addr);
173 
174         return 0;
175 }
176 
177 static int gstage_map_page(struct kvm *kvm,
178                            struct kvm_mmu_memory_cache *pcache,
179                            gpa_t gpa, phys_addr_t hpa,
180                            unsigned long page_size,
181                            bool page_rdonly, bool page_exec)
182 {
183         int ret;
184         u32 level = 0;
185         pte_t new_pte;
186         pgprot_t prot;
187 
188         ret = gstage_page_size_to_level(page_size, &level);
189         if (ret)
190                 return ret;
191 
192         /*
193          * A RISC-V implementation can choose to either:
194          * 1) Update 'A' and 'D' PTE bits in hardware
195          * 2) Generate page fault when 'A' and/or 'D' bits are not set
196          *    PTE so that software can update these bits.
197          *
198          * We support both options mentioned above. To achieve this, we
199          * always set 'A' and 'D' PTE bits at time of creating G-stage
200          * mapping. To support KVM dirty page logging with both options
201          * mentioned above, we will write-protect G-stage PTEs to track
202          * dirty pages.
203          */
204 
205         if (page_exec) {
206                 if (page_rdonly)
207                         prot = PAGE_READ_EXEC;
208                 else
209                         prot = PAGE_WRITE_EXEC;
210         } else {
211                 if (page_rdonly)
212                         prot = PAGE_READ;
213                 else
214                         prot = PAGE_WRITE;
215         }
216         new_pte = pfn_pte(PFN_DOWN(hpa), prot);
217         new_pte = pte_mkdirty(new_pte);
218 
219         return gstage_set_pte(kvm, level, pcache, gpa, &new_pte);
220 }
221 
222 enum gstage_op {
223         GSTAGE_OP_NOP = 0,      /* Nothing */
224         GSTAGE_OP_CLEAR,        /* Clear/Unmap */
225         GSTAGE_OP_WP,           /* Write-protect */
226 };
227 
228 static void gstage_op_pte(struct kvm *kvm, gpa_t addr,
229                           pte_t *ptep, u32 ptep_level, enum gstage_op op)
230 {
231         int i, ret;
232         pte_t *next_ptep;
233         u32 next_ptep_level;
234         unsigned long next_page_size, page_size;
235 
236         ret = gstage_level_to_page_size(ptep_level, &page_size);
237         if (ret)
238                 return;
239 
240         BUG_ON(addr & (page_size - 1));
241 
242         if (!pte_val(ptep_get(ptep)))
243                 return;
244 
245         if (ptep_level && !gstage_pte_leaf(ptep)) {
246                 next_ptep = (pte_t *)gstage_pte_page_vaddr(ptep_get(ptep));
247                 next_ptep_level = ptep_level - 1;
248                 ret = gstage_level_to_page_size(next_ptep_level,
249                                                 &next_page_size);
250                 if (ret)
251                         return;
252 
253                 if (op == GSTAGE_OP_CLEAR)
254                         set_pte(ptep, __pte(0));
255                 for (i = 0; i < PTRS_PER_PTE; i++)
256                         gstage_op_pte(kvm, addr + i * next_page_size,
257                                         &next_ptep[i], next_ptep_level, op);
258                 if (op == GSTAGE_OP_CLEAR)
259                         put_page(virt_to_page(next_ptep));
260         } else {
261                 if (op == GSTAGE_OP_CLEAR)
262                         set_pte(ptep, __pte(0));
263                 else if (op == GSTAGE_OP_WP)
264                         set_pte(ptep, __pte(pte_val(ptep_get(ptep)) & ~_PAGE_WRITE));
265                 gstage_remote_tlb_flush(kvm, ptep_level, addr);
266         }
267 }
268 
269 static void gstage_unmap_range(struct kvm *kvm, gpa_t start,
270                                gpa_t size, bool may_block)
271 {
272         int ret;
273         pte_t *ptep;
274         u32 ptep_level;
275         bool found_leaf;
276         unsigned long page_size;
277         gpa_t addr = start, end = start + size;
278 
279         while (addr < end) {
280                 found_leaf = gstage_get_leaf_entry(kvm, addr,
281                                                    &ptep, &ptep_level);
282                 ret = gstage_level_to_page_size(ptep_level, &page_size);
283                 if (ret)
284                         break;
285 
286                 if (!found_leaf)
287                         goto next;
288 
289                 if (!(addr & (page_size - 1)) && ((end - addr) >= page_size))
290                         gstage_op_pte(kvm, addr, ptep,
291                                       ptep_level, GSTAGE_OP_CLEAR);
292 
293 next:
294                 addr += page_size;
295 
296                 /*
297                  * If the range is too large, release the kvm->mmu_lock
298                  * to prevent starvation and lockup detector warnings.
299                  */
300                 if (may_block && addr < end)
301                         cond_resched_lock(&kvm->mmu_lock);
302         }
303 }
304 
305 static void gstage_wp_range(struct kvm *kvm, gpa_t start, gpa_t end)
306 {
307         int ret;
308         pte_t *ptep;
309         u32 ptep_level;
310         bool found_leaf;
311         gpa_t addr = start;
312         unsigned long page_size;
313 
314         while (addr < end) {
315                 found_leaf = gstage_get_leaf_entry(kvm, addr,
316                                                    &ptep, &ptep_level);
317                 ret = gstage_level_to_page_size(ptep_level, &page_size);
318                 if (ret)
319                         break;
320 
321                 if (!found_leaf)
322                         goto next;
323 
324                 if (!(addr & (page_size - 1)) && ((end - addr) >= page_size))
325                         gstage_op_pte(kvm, addr, ptep,
326                                       ptep_level, GSTAGE_OP_WP);
327 
328 next:
329                 addr += page_size;
330         }
331 }
332 
333 static void gstage_wp_memory_region(struct kvm *kvm, int slot)
334 {
335         struct kvm_memslots *slots = kvm_memslots(kvm);
336         struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
337         phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
338         phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
339 
340         spin_lock(&kvm->mmu_lock);
341         gstage_wp_range(kvm, start, end);
342         spin_unlock(&kvm->mmu_lock);
343         kvm_flush_remote_tlbs(kvm);
344 }
345 
346 int kvm_riscv_gstage_ioremap(struct kvm *kvm, gpa_t gpa,
347                              phys_addr_t hpa, unsigned long size,
348                              bool writable, bool in_atomic)
349 {
350         pte_t pte;
351         int ret = 0;
352         unsigned long pfn;
353         phys_addr_t addr, end;
354         struct kvm_mmu_memory_cache pcache = {
355                 .gfp_custom = (in_atomic) ? GFP_ATOMIC | __GFP_ACCOUNT : 0,
356                 .gfp_zero = __GFP_ZERO,
357         };
358 
359         end = (gpa + size + PAGE_SIZE - 1) & PAGE_MASK;
360         pfn = __phys_to_pfn(hpa);
361 
362         for (addr = gpa; addr < end; addr += PAGE_SIZE) {
363                 pte = pfn_pte(pfn, PAGE_KERNEL_IO);
364 
365                 if (!writable)
366                         pte = pte_wrprotect(pte);
367 
368                 ret = kvm_mmu_topup_memory_cache(&pcache, gstage_pgd_levels);
369                 if (ret)
370                         goto out;
371 
372                 spin_lock(&kvm->mmu_lock);
373                 ret = gstage_set_pte(kvm, 0, &pcache, addr, &pte);
374                 spin_unlock(&kvm->mmu_lock);
375                 if (ret)
376                         goto out;
377 
378                 pfn++;
379         }
380 
381 out:
382         kvm_mmu_free_memory_cache(&pcache);
383         return ret;
384 }
385 
386 void kvm_riscv_gstage_iounmap(struct kvm *kvm, gpa_t gpa, unsigned long size)
387 {
388         spin_lock(&kvm->mmu_lock);
389         gstage_unmap_range(kvm, gpa, size, false);
390         spin_unlock(&kvm->mmu_lock);
391 }
392 
393 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
394                                              struct kvm_memory_slot *slot,
395                                              gfn_t gfn_offset,
396                                              unsigned long mask)
397 {
398         phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
399         phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
400         phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
401 
402         gstage_wp_range(kvm, start, end);
403 }
404 
405 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
406 {
407 }
408 
409 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free)
410 {
411 }
412 
413 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
414 {
415 }
416 
417 void kvm_arch_flush_shadow_all(struct kvm *kvm)
418 {
419         kvm_riscv_gstage_free_pgd(kvm);
420 }
421 
422 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
423                                    struct kvm_memory_slot *slot)
424 {
425         gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
426         phys_addr_t size = slot->npages << PAGE_SHIFT;
427 
428         spin_lock(&kvm->mmu_lock);
429         gstage_unmap_range(kvm, gpa, size, false);
430         spin_unlock(&kvm->mmu_lock);
431 }
432 
433 void kvm_arch_commit_memory_region(struct kvm *kvm,
434                                 struct kvm_memory_slot *old,
435                                 const struct kvm_memory_slot *new,
436                                 enum kvm_mr_change change)
437 {
438         /*
439          * At this point memslot has been committed and there is an
440          * allocated dirty_bitmap[], dirty pages will be tracked while
441          * the memory slot is write protected.
442          */
443         if (change != KVM_MR_DELETE && new->flags & KVM_MEM_LOG_DIRTY_PAGES)
444                 gstage_wp_memory_region(kvm, new->id);
445 }
446 
447 int kvm_arch_prepare_memory_region(struct kvm *kvm,
448                                 const struct kvm_memory_slot *old,
449                                 struct kvm_memory_slot *new,
450                                 enum kvm_mr_change change)
451 {
452         hva_t hva, reg_end, size;
453         gpa_t base_gpa;
454         bool writable;
455         int ret = 0;
456 
457         if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
458                         change != KVM_MR_FLAGS_ONLY)
459                 return 0;
460 
461         /*
462          * Prevent userspace from creating a memory region outside of the GPA
463          * space addressable by the KVM guest GPA space.
464          */
465         if ((new->base_gfn + new->npages) >=
466             (gstage_gpa_size >> PAGE_SHIFT))
467                 return -EFAULT;
468 
469         hva = new->userspace_addr;
470         size = new->npages << PAGE_SHIFT;
471         reg_end = hva + size;
472         base_gpa = new->base_gfn << PAGE_SHIFT;
473         writable = !(new->flags & KVM_MEM_READONLY);
474 
475         mmap_read_lock(current->mm);
476 
477         /*
478          * A memory region could potentially cover multiple VMAs, and
479          * any holes between them, so iterate over all of them to find
480          * out if we can map any of them right now.
481          *
482          *     +--------------------------------------------+
483          * +---------------+----------------+   +----------------+
484          * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
485          * +---------------+----------------+   +----------------+
486          *     |               memory region                |
487          *     +--------------------------------------------+
488          */
489         do {
490                 struct vm_area_struct *vma = find_vma(current->mm, hva);
491                 hva_t vm_start, vm_end;
492 
493                 if (!vma || vma->vm_start >= reg_end)
494                         break;
495 
496                 /*
497                  * Mapping a read-only VMA is only allowed if the
498                  * memory region is configured as read-only.
499                  */
500                 if (writable && !(vma->vm_flags & VM_WRITE)) {
501                         ret = -EPERM;
502                         break;
503                 }
504 
505                 /* Take the intersection of this VMA with the memory region */
506                 vm_start = max(hva, vma->vm_start);
507                 vm_end = min(reg_end, vma->vm_end);
508 
509                 if (vma->vm_flags & VM_PFNMAP) {
510                         gpa_t gpa = base_gpa + (vm_start - hva);
511                         phys_addr_t pa;
512 
513                         pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
514                         pa += vm_start - vma->vm_start;
515 
516                         /* IO region dirty page logging not allowed */
517                         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
518                                 ret = -EINVAL;
519                                 goto out;
520                         }
521 
522                         ret = kvm_riscv_gstage_ioremap(kvm, gpa, pa,
523                                                        vm_end - vm_start,
524                                                        writable, false);
525                         if (ret)
526                                 break;
527                 }
528                 hva = vm_end;
529         } while (hva < reg_end);
530 
531         if (change == KVM_MR_FLAGS_ONLY)
532                 goto out;
533 
534         if (ret)
535                 kvm_riscv_gstage_iounmap(kvm, base_gpa, size);
536 
537 out:
538         mmap_read_unlock(current->mm);
539         return ret;
540 }
541 
542 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
543 {
544         if (!kvm->arch.pgd)
545                 return false;
546 
547         gstage_unmap_range(kvm, range->start << PAGE_SHIFT,
548                            (range->end - range->start) << PAGE_SHIFT,
549                            range->may_block);
550         return false;
551 }
552 
553 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
554 {
555         pte_t *ptep;
556         u32 ptep_level = 0;
557         u64 size = (range->end - range->start) << PAGE_SHIFT;
558 
559         if (!kvm->arch.pgd)
560                 return false;
561 
562         WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
563 
564         if (!gstage_get_leaf_entry(kvm, range->start << PAGE_SHIFT,
565                                    &ptep, &ptep_level))
566                 return false;
567 
568         return ptep_test_and_clear_young(NULL, 0, ptep);
569 }
570 
571 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
572 {
573         pte_t *ptep;
574         u32 ptep_level = 0;
575         u64 size = (range->end - range->start) << PAGE_SHIFT;
576 
577         if (!kvm->arch.pgd)
578                 return false;
579 
580         WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
581 
582         if (!gstage_get_leaf_entry(kvm, range->start << PAGE_SHIFT,
583                                    &ptep, &ptep_level))
584                 return false;
585 
586         return pte_young(ptep_get(ptep));
587 }
588 
589 int kvm_riscv_gstage_map(struct kvm_vcpu *vcpu,
590                          struct kvm_memory_slot *memslot,
591                          gpa_t gpa, unsigned long hva, bool is_write)
592 {
593         int ret;
594         kvm_pfn_t hfn;
595         bool writable;
596         short vma_pageshift;
597         gfn_t gfn = gpa >> PAGE_SHIFT;
598         struct vm_area_struct *vma;
599         struct kvm *kvm = vcpu->kvm;
600         struct kvm_mmu_memory_cache *pcache = &vcpu->arch.mmu_page_cache;
601         bool logging = (memslot->dirty_bitmap &&
602                         !(memslot->flags & KVM_MEM_READONLY)) ? true : false;
603         unsigned long vma_pagesize, mmu_seq;
604 
605         /* We need minimum second+third level pages */
606         ret = kvm_mmu_topup_memory_cache(pcache, gstage_pgd_levels);
607         if (ret) {
608                 kvm_err("Failed to topup G-stage cache\n");
609                 return ret;
610         }
611 
612         mmap_read_lock(current->mm);
613 
614         vma = vma_lookup(current->mm, hva);
615         if (unlikely(!vma)) {
616                 kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
617                 mmap_read_unlock(current->mm);
618                 return -EFAULT;
619         }
620 
621         if (is_vm_hugetlb_page(vma))
622                 vma_pageshift = huge_page_shift(hstate_vma(vma));
623         else
624                 vma_pageshift = PAGE_SHIFT;
625         vma_pagesize = 1ULL << vma_pageshift;
626         if (logging || (vma->vm_flags & VM_PFNMAP))
627                 vma_pagesize = PAGE_SIZE;
628 
629         if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE)
630                 gfn = (gpa & huge_page_mask(hstate_vma(vma))) >> PAGE_SHIFT;
631 
632         /*
633          * Read mmu_invalidate_seq so that KVM can detect if the results of
634          * vma_lookup() or gfn_to_pfn_prot() become stale priort to acquiring
635          * kvm->mmu_lock.
636          *
637          * Rely on mmap_read_unlock() for an implicit smp_rmb(), which pairs
638          * with the smp_wmb() in kvm_mmu_invalidate_end().
639          */
640         mmu_seq = kvm->mmu_invalidate_seq;
641         mmap_read_unlock(current->mm);
642 
643         if (vma_pagesize != PUD_SIZE &&
644             vma_pagesize != PMD_SIZE &&
645             vma_pagesize != PAGE_SIZE) {
646                 kvm_err("Invalid VMA page size 0x%lx\n", vma_pagesize);
647                 return -EFAULT;
648         }
649 
650         hfn = gfn_to_pfn_prot(kvm, gfn, is_write, &writable);
651         if (hfn == KVM_PFN_ERR_HWPOISON) {
652                 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)hva,
653                                 vma_pageshift, current);
654                 return 0;
655         }
656         if (is_error_noslot_pfn(hfn))
657                 return -EFAULT;
658 
659         /*
660          * If logging is active then we allow writable pages only
661          * for write faults.
662          */
663         if (logging && !is_write)
664                 writable = false;
665 
666         spin_lock(&kvm->mmu_lock);
667 
668         if (mmu_invalidate_retry(kvm, mmu_seq))
669                 goto out_unlock;
670 
671         if (writable) {
672                 kvm_set_pfn_dirty(hfn);
673                 mark_page_dirty(kvm, gfn);
674                 ret = gstage_map_page(kvm, pcache, gpa, hfn << PAGE_SHIFT,
675                                       vma_pagesize, false, true);
676         } else {
677                 ret = gstage_map_page(kvm, pcache, gpa, hfn << PAGE_SHIFT,
678                                       vma_pagesize, true, true);
679         }
680 
681         if (ret)
682                 kvm_err("Failed to map in G-stage\n");
683 
684 out_unlock:
685         spin_unlock(&kvm->mmu_lock);
686         kvm_set_pfn_accessed(hfn);
687         kvm_release_pfn_clean(hfn);
688         return ret;
689 }
690 
691 int kvm_riscv_gstage_alloc_pgd(struct kvm *kvm)
692 {
693         struct page *pgd_page;
694 
695         if (kvm->arch.pgd != NULL) {
696                 kvm_err("kvm_arch already initialized?\n");
697                 return -EINVAL;
698         }
699 
700         pgd_page = alloc_pages(GFP_KERNEL | __GFP_ZERO,
701                                 get_order(gstage_pgd_size));
702         if (!pgd_page)
703                 return -ENOMEM;
704         kvm->arch.pgd = page_to_virt(pgd_page);
705         kvm->arch.pgd_phys = page_to_phys(pgd_page);
706 
707         return 0;
708 }
709 
710 void kvm_riscv_gstage_free_pgd(struct kvm *kvm)
711 {
712         void *pgd = NULL;
713 
714         spin_lock(&kvm->mmu_lock);
715         if (kvm->arch.pgd) {
716                 gstage_unmap_range(kvm, 0UL, gstage_gpa_size, false);
717                 pgd = READ_ONCE(kvm->arch.pgd);
718                 kvm->arch.pgd = NULL;
719                 kvm->arch.pgd_phys = 0;
720         }
721         spin_unlock(&kvm->mmu_lock);
722 
723         if (pgd)
724                 free_pages((unsigned long)pgd, get_order(gstage_pgd_size));
725 }
726 
727 void kvm_riscv_gstage_update_hgatp(struct kvm_vcpu *vcpu)
728 {
729         unsigned long hgatp = gstage_mode;
730         struct kvm_arch *k = &vcpu->kvm->arch;
731 
732         hgatp |= (READ_ONCE(k->vmid.vmid) << HGATP_VMID_SHIFT) & HGATP_VMID;
733         hgatp |= (k->pgd_phys >> PAGE_SHIFT) & HGATP_PPN;
734 
735         csr_write(CSR_HGATP, hgatp);
736 
737         if (!kvm_riscv_gstage_vmid_bits())
738                 kvm_riscv_local_hfence_gvma_all();
739 }
740 
741 void __init kvm_riscv_gstage_mode_detect(void)
742 {
743 #ifdef CONFIG_64BIT
744         /* Try Sv57x4 G-stage mode */
745         csr_write(CSR_HGATP, HGATP_MODE_SV57X4 << HGATP_MODE_SHIFT);
746         if ((csr_read(CSR_HGATP) >> HGATP_MODE_SHIFT) == HGATP_MODE_SV57X4) {
747                 gstage_mode = (HGATP_MODE_SV57X4 << HGATP_MODE_SHIFT);
748                 gstage_pgd_levels = 5;
749                 goto skip_sv48x4_test;
750         }
751 
752         /* Try Sv48x4 G-stage mode */
753         csr_write(CSR_HGATP, HGATP_MODE_SV48X4 << HGATP_MODE_SHIFT);
754         if ((csr_read(CSR_HGATP) >> HGATP_MODE_SHIFT) == HGATP_MODE_SV48X4) {
755                 gstage_mode = (HGATP_MODE_SV48X4 << HGATP_MODE_SHIFT);
756                 gstage_pgd_levels = 4;
757         }
758 skip_sv48x4_test:
759 
760         csr_write(CSR_HGATP, 0);
761         kvm_riscv_local_hfence_gvma_all();
762 #endif
763 }
764 
765 unsigned long __init kvm_riscv_gstage_mode(void)
766 {
767         return gstage_mode >> HGATP_MODE_SHIFT;
768 }
769 
770 int kvm_riscv_gstage_gpa_bits(void)
771 {
772         return gstage_gpa_bits;
773 }
774 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php