1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2023 Rivos Inc 4 * 5 * Authors: 6 * Atish Patra <atishp@rivosinc.com> 7 */ 8 9 #define pr_fmt(fmt) "riscv-kvm-pmu: " fmt 10 #include <linux/errno.h> 11 #include <linux/err.h> 12 #include <linux/kvm_host.h> 13 #include <linux/perf/riscv_pmu.h> 14 #include <asm/csr.h> 15 #include <asm/kvm_vcpu_sbi.h> 16 #include <asm/kvm_vcpu_pmu.h> 17 #include <asm/sbi.h> 18 #include <linux/bitops.h> 19 20 #define kvm_pmu_num_counters(pmu) ((pmu)->num_hw_ctrs + (pmu)->num_fw_ctrs) 21 #define get_event_type(x) (((x) & SBI_PMU_EVENT_IDX_TYPE_MASK) >> 16) 22 #define get_event_code(x) ((x) & SBI_PMU_EVENT_IDX_CODE_MASK) 23 24 static enum perf_hw_id hw_event_perf_map[SBI_PMU_HW_GENERAL_MAX] = { 25 [SBI_PMU_HW_CPU_CYCLES] = PERF_COUNT_HW_CPU_CYCLES, 26 [SBI_PMU_HW_INSTRUCTIONS] = PERF_COUNT_HW_INSTRUCTIONS, 27 [SBI_PMU_HW_CACHE_REFERENCES] = PERF_COUNT_HW_CACHE_REFERENCES, 28 [SBI_PMU_HW_CACHE_MISSES] = PERF_COUNT_HW_CACHE_MISSES, 29 [SBI_PMU_HW_BRANCH_INSTRUCTIONS] = PERF_COUNT_HW_BRANCH_INSTRUCTIONS, 30 [SBI_PMU_HW_BRANCH_MISSES] = PERF_COUNT_HW_BRANCH_MISSES, 31 [SBI_PMU_HW_BUS_CYCLES] = PERF_COUNT_HW_BUS_CYCLES, 32 [SBI_PMU_HW_STALLED_CYCLES_FRONTEND] = PERF_COUNT_HW_STALLED_CYCLES_FRONTEND, 33 [SBI_PMU_HW_STALLED_CYCLES_BACKEND] = PERF_COUNT_HW_STALLED_CYCLES_BACKEND, 34 [SBI_PMU_HW_REF_CPU_CYCLES] = PERF_COUNT_HW_REF_CPU_CYCLES, 35 }; 36 37 static u64 kvm_pmu_get_sample_period(struct kvm_pmc *pmc) 38 { 39 u64 counter_val_mask = GENMASK(pmc->cinfo.width, 0); 40 u64 sample_period; 41 42 if (!pmc->counter_val) 43 sample_period = counter_val_mask; 44 else 45 sample_period = (-pmc->counter_val) & counter_val_mask; 46 47 return sample_period; 48 } 49 50 static u32 kvm_pmu_get_perf_event_type(unsigned long eidx) 51 { 52 enum sbi_pmu_event_type etype = get_event_type(eidx); 53 u32 type = PERF_TYPE_MAX; 54 55 switch (etype) { 56 case SBI_PMU_EVENT_TYPE_HW: 57 type = PERF_TYPE_HARDWARE; 58 break; 59 case SBI_PMU_EVENT_TYPE_CACHE: 60 type = PERF_TYPE_HW_CACHE; 61 break; 62 case SBI_PMU_EVENT_TYPE_RAW: 63 case SBI_PMU_EVENT_TYPE_FW: 64 type = PERF_TYPE_RAW; 65 break; 66 default: 67 break; 68 } 69 70 return type; 71 } 72 73 static bool kvm_pmu_is_fw_event(unsigned long eidx) 74 { 75 return get_event_type(eidx) == SBI_PMU_EVENT_TYPE_FW; 76 } 77 78 static void kvm_pmu_release_perf_event(struct kvm_pmc *pmc) 79 { 80 if (pmc->perf_event) { 81 perf_event_disable(pmc->perf_event); 82 perf_event_release_kernel(pmc->perf_event); 83 pmc->perf_event = NULL; 84 } 85 } 86 87 static u64 kvm_pmu_get_perf_event_hw_config(u32 sbi_event_code) 88 { 89 return hw_event_perf_map[sbi_event_code]; 90 } 91 92 static u64 kvm_pmu_get_perf_event_cache_config(u32 sbi_event_code) 93 { 94 u64 config = U64_MAX; 95 unsigned int cache_type, cache_op, cache_result; 96 97 /* All the cache event masks lie within 0xFF. No separate masking is necessary */ 98 cache_type = (sbi_event_code & SBI_PMU_EVENT_CACHE_ID_CODE_MASK) >> 99 SBI_PMU_EVENT_CACHE_ID_SHIFT; 100 cache_op = (sbi_event_code & SBI_PMU_EVENT_CACHE_OP_ID_CODE_MASK) >> 101 SBI_PMU_EVENT_CACHE_OP_SHIFT; 102 cache_result = sbi_event_code & SBI_PMU_EVENT_CACHE_RESULT_ID_CODE_MASK; 103 104 if (cache_type >= PERF_COUNT_HW_CACHE_MAX || 105 cache_op >= PERF_COUNT_HW_CACHE_OP_MAX || 106 cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 107 return config; 108 109 config = cache_type | (cache_op << 8) | (cache_result << 16); 110 111 return config; 112 } 113 114 static u64 kvm_pmu_get_perf_event_config(unsigned long eidx, uint64_t evt_data) 115 { 116 enum sbi_pmu_event_type etype = get_event_type(eidx); 117 u32 ecode = get_event_code(eidx); 118 u64 config = U64_MAX; 119 120 switch (etype) { 121 case SBI_PMU_EVENT_TYPE_HW: 122 if (ecode < SBI_PMU_HW_GENERAL_MAX) 123 config = kvm_pmu_get_perf_event_hw_config(ecode); 124 break; 125 case SBI_PMU_EVENT_TYPE_CACHE: 126 config = kvm_pmu_get_perf_event_cache_config(ecode); 127 break; 128 case SBI_PMU_EVENT_TYPE_RAW: 129 config = evt_data & RISCV_PMU_RAW_EVENT_MASK; 130 break; 131 case SBI_PMU_EVENT_TYPE_FW: 132 if (ecode < SBI_PMU_FW_MAX) 133 config = (1ULL << 63) | ecode; 134 break; 135 default: 136 break; 137 } 138 139 return config; 140 } 141 142 static int kvm_pmu_get_fixed_pmc_index(unsigned long eidx) 143 { 144 u32 etype = kvm_pmu_get_perf_event_type(eidx); 145 u32 ecode = get_event_code(eidx); 146 147 if (etype != SBI_PMU_EVENT_TYPE_HW) 148 return -EINVAL; 149 150 if (ecode == SBI_PMU_HW_CPU_CYCLES) 151 return 0; 152 else if (ecode == SBI_PMU_HW_INSTRUCTIONS) 153 return 2; 154 else 155 return -EINVAL; 156 } 157 158 static int kvm_pmu_get_programmable_pmc_index(struct kvm_pmu *kvpmu, unsigned long eidx, 159 unsigned long cbase, unsigned long cmask) 160 { 161 int ctr_idx = -1; 162 int i, pmc_idx; 163 int min, max; 164 165 if (kvm_pmu_is_fw_event(eidx)) { 166 /* Firmware counters are mapped 1:1 starting from num_hw_ctrs for simplicity */ 167 min = kvpmu->num_hw_ctrs; 168 max = min + kvpmu->num_fw_ctrs; 169 } else { 170 /* First 3 counters are reserved for fixed counters */ 171 min = 3; 172 max = kvpmu->num_hw_ctrs; 173 } 174 175 for_each_set_bit(i, &cmask, BITS_PER_LONG) { 176 pmc_idx = i + cbase; 177 if ((pmc_idx >= min && pmc_idx < max) && 178 !test_bit(pmc_idx, kvpmu->pmc_in_use)) { 179 ctr_idx = pmc_idx; 180 break; 181 } 182 } 183 184 return ctr_idx; 185 } 186 187 static int pmu_get_pmc_index(struct kvm_pmu *pmu, unsigned long eidx, 188 unsigned long cbase, unsigned long cmask) 189 { 190 int ret; 191 192 /* Fixed counters need to be have fixed mapping as they have different width */ 193 ret = kvm_pmu_get_fixed_pmc_index(eidx); 194 if (ret >= 0) 195 return ret; 196 197 return kvm_pmu_get_programmable_pmc_index(pmu, eidx, cbase, cmask); 198 } 199 200 static int pmu_fw_ctr_read_hi(struct kvm_vcpu *vcpu, unsigned long cidx, 201 unsigned long *out_val) 202 { 203 struct kvm_pmu *kvpmu = vcpu_to_pmu(vcpu); 204 struct kvm_pmc *pmc; 205 int fevent_code; 206 207 if (!IS_ENABLED(CONFIG_32BIT)) { 208 pr_warn("%s: should be invoked for only RV32\n", __func__); 209 return -EINVAL; 210 } 211 212 if (cidx >= kvm_pmu_num_counters(kvpmu) || cidx == 1) { 213 pr_warn("Invalid counter id [%ld]during read\n", cidx); 214 return -EINVAL; 215 } 216 217 pmc = &kvpmu->pmc[cidx]; 218 219 if (pmc->cinfo.type != SBI_PMU_CTR_TYPE_FW) 220 return -EINVAL; 221 222 fevent_code = get_event_code(pmc->event_idx); 223 pmc->counter_val = kvpmu->fw_event[fevent_code].value; 224 225 *out_val = pmc->counter_val >> 32; 226 227 return 0; 228 } 229 230 static int pmu_ctr_read(struct kvm_vcpu *vcpu, unsigned long cidx, 231 unsigned long *out_val) 232 { 233 struct kvm_pmu *kvpmu = vcpu_to_pmu(vcpu); 234 struct kvm_pmc *pmc; 235 u64 enabled, running; 236 int fevent_code; 237 238 if (cidx >= kvm_pmu_num_counters(kvpmu) || cidx == 1) { 239 pr_warn("Invalid counter id [%ld] during read\n", cidx); 240 return -EINVAL; 241 } 242 243 pmc = &kvpmu->pmc[cidx]; 244 245 if (pmc->cinfo.type == SBI_PMU_CTR_TYPE_FW) { 246 fevent_code = get_event_code(pmc->event_idx); 247 pmc->counter_val = kvpmu->fw_event[fevent_code].value; 248 } else if (pmc->perf_event) { 249 pmc->counter_val += perf_event_read_value(pmc->perf_event, &enabled, &running); 250 } else { 251 return -EINVAL; 252 } 253 *out_val = pmc->counter_val; 254 255 return 0; 256 } 257 258 static int kvm_pmu_validate_counter_mask(struct kvm_pmu *kvpmu, unsigned long ctr_base, 259 unsigned long ctr_mask) 260 { 261 /* Make sure the we have a valid counter mask requested from the caller */ 262 if (!ctr_mask || (ctr_base + __fls(ctr_mask) >= kvm_pmu_num_counters(kvpmu))) 263 return -EINVAL; 264 265 return 0; 266 } 267 268 static void kvm_riscv_pmu_overflow(struct perf_event *perf_event, 269 struct perf_sample_data *data, 270 struct pt_regs *regs) 271 { 272 struct kvm_pmc *pmc = perf_event->overflow_handler_context; 273 struct kvm_vcpu *vcpu = pmc->vcpu; 274 struct kvm_pmu *kvpmu = vcpu_to_pmu(vcpu); 275 struct riscv_pmu *rpmu = to_riscv_pmu(perf_event->pmu); 276 u64 period; 277 278 /* 279 * Stop the event counting by directly accessing the perf_event. 280 * Otherwise, this needs to deferred via a workqueue. 281 * That will introduce skew in the counter value because the actual 282 * physical counter would start after returning from this function. 283 * It will be stopped again once the workqueue is scheduled 284 */ 285 rpmu->pmu.stop(perf_event, PERF_EF_UPDATE); 286 287 /* 288 * The hw counter would start automatically when this function returns. 289 * Thus, the host may continue to interrupt and inject it to the guest 290 * even without the guest configuring the next event. Depending on the hardware 291 * the host may have some sluggishness only if privilege mode filtering is not 292 * available. In an ideal world, where qemu is not the only capable hardware, 293 * this can be removed. 294 * FYI: ARM64 does this way while x86 doesn't do anything as such. 295 * TODO: Should we keep it for RISC-V ? 296 */ 297 period = -(local64_read(&perf_event->count)); 298 299 local64_set(&perf_event->hw.period_left, 0); 300 perf_event->attr.sample_period = period; 301 perf_event->hw.sample_period = period; 302 303 set_bit(pmc->idx, kvpmu->pmc_overflown); 304 kvm_riscv_vcpu_set_interrupt(vcpu, IRQ_PMU_OVF); 305 306 rpmu->pmu.start(perf_event, PERF_EF_RELOAD); 307 } 308 309 static long kvm_pmu_create_perf_event(struct kvm_pmc *pmc, struct perf_event_attr *attr, 310 unsigned long flags, unsigned long eidx, 311 unsigned long evtdata) 312 { 313 struct perf_event *event; 314 315 kvm_pmu_release_perf_event(pmc); 316 attr->config = kvm_pmu_get_perf_event_config(eidx, evtdata); 317 if (flags & SBI_PMU_CFG_FLAG_CLEAR_VALUE) { 318 //TODO: Do we really want to clear the value in hardware counter 319 pmc->counter_val = 0; 320 } 321 322 /* 323 * Set the default sample_period for now. The guest specified value 324 * will be updated in the start call. 325 */ 326 attr->sample_period = kvm_pmu_get_sample_period(pmc); 327 328 event = perf_event_create_kernel_counter(attr, -1, current, kvm_riscv_pmu_overflow, pmc); 329 if (IS_ERR(event)) { 330 pr_debug("kvm pmu event creation failed for eidx %lx: %ld\n", eidx, PTR_ERR(event)); 331 return PTR_ERR(event); 332 } 333 334 pmc->perf_event = event; 335 if (flags & SBI_PMU_CFG_FLAG_AUTO_START) 336 perf_event_enable(pmc->perf_event); 337 338 return 0; 339 } 340 341 int kvm_riscv_vcpu_pmu_incr_fw(struct kvm_vcpu *vcpu, unsigned long fid) 342 { 343 struct kvm_pmu *kvpmu = vcpu_to_pmu(vcpu); 344 struct kvm_fw_event *fevent; 345 346 if (!kvpmu || fid >= SBI_PMU_FW_MAX) 347 return -EINVAL; 348 349 fevent = &kvpmu->fw_event[fid]; 350 if (fevent->started) 351 fevent->value++; 352 353 return 0; 354 } 355 356 int kvm_riscv_vcpu_pmu_read_hpm(struct kvm_vcpu *vcpu, unsigned int csr_num, 357 unsigned long *val, unsigned long new_val, 358 unsigned long wr_mask) 359 { 360 struct kvm_pmu *kvpmu = vcpu_to_pmu(vcpu); 361 int cidx, ret = KVM_INSN_CONTINUE_NEXT_SEPC; 362 363 if (!kvpmu || !kvpmu->init_done) { 364 /* 365 * In absence of sscofpmf in the platform, the guest OS may use 366 * the legacy PMU driver to read cycle/instret. In that case, 367 * just return 0 to avoid any illegal trap. However, any other 368 * hpmcounter access should result in illegal trap as they must 369 * be access through SBI PMU only. 370 */ 371 if (csr_num == CSR_CYCLE || csr_num == CSR_INSTRET) { 372 *val = 0; 373 return ret; 374 } else { 375 return KVM_INSN_ILLEGAL_TRAP; 376 } 377 } 378 379 /* The counter CSR are read only. Thus, any write should result in illegal traps */ 380 if (wr_mask) 381 return KVM_INSN_ILLEGAL_TRAP; 382 383 cidx = csr_num - CSR_CYCLE; 384 385 if (pmu_ctr_read(vcpu, cidx, val) < 0) 386 return KVM_INSN_ILLEGAL_TRAP; 387 388 return ret; 389 } 390 391 static void kvm_pmu_clear_snapshot_area(struct kvm_vcpu *vcpu) 392 { 393 struct kvm_pmu *kvpmu = vcpu_to_pmu(vcpu); 394 395 kfree(kvpmu->sdata); 396 kvpmu->sdata = NULL; 397 kvpmu->snapshot_addr = INVALID_GPA; 398 } 399 400 int kvm_riscv_vcpu_pmu_snapshot_set_shmem(struct kvm_vcpu *vcpu, unsigned long saddr_low, 401 unsigned long saddr_high, unsigned long flags, 402 struct kvm_vcpu_sbi_return *retdata) 403 { 404 struct kvm_pmu *kvpmu = vcpu_to_pmu(vcpu); 405 int snapshot_area_size = sizeof(struct riscv_pmu_snapshot_data); 406 int sbiret = 0; 407 gpa_t saddr; 408 unsigned long hva; 409 bool writable; 410 411 if (!kvpmu || flags) { 412 sbiret = SBI_ERR_INVALID_PARAM; 413 goto out; 414 } 415 416 if (saddr_low == SBI_SHMEM_DISABLE && saddr_high == SBI_SHMEM_DISABLE) { 417 kvm_pmu_clear_snapshot_area(vcpu); 418 return 0; 419 } 420 421 saddr = saddr_low; 422 423 if (saddr_high != 0) { 424 if (IS_ENABLED(CONFIG_32BIT)) 425 saddr |= ((gpa_t)saddr_high << 32); 426 else 427 sbiret = SBI_ERR_INVALID_ADDRESS; 428 goto out; 429 } 430 431 hva = kvm_vcpu_gfn_to_hva_prot(vcpu, saddr >> PAGE_SHIFT, &writable); 432 if (kvm_is_error_hva(hva) || !writable) { 433 sbiret = SBI_ERR_INVALID_ADDRESS; 434 goto out; 435 } 436 437 kvpmu->sdata = kzalloc(snapshot_area_size, GFP_ATOMIC); 438 if (!kvpmu->sdata) 439 return -ENOMEM; 440 441 if (kvm_vcpu_write_guest(vcpu, saddr, kvpmu->sdata, snapshot_area_size)) { 442 kfree(kvpmu->sdata); 443 sbiret = SBI_ERR_FAILURE; 444 goto out; 445 } 446 447 kvpmu->snapshot_addr = saddr; 448 449 out: 450 retdata->err_val = sbiret; 451 452 return 0; 453 } 454 455 int kvm_riscv_vcpu_pmu_num_ctrs(struct kvm_vcpu *vcpu, 456 struct kvm_vcpu_sbi_return *retdata) 457 { 458 struct kvm_pmu *kvpmu = vcpu_to_pmu(vcpu); 459 460 retdata->out_val = kvm_pmu_num_counters(kvpmu); 461 462 return 0; 463 } 464 465 int kvm_riscv_vcpu_pmu_ctr_info(struct kvm_vcpu *vcpu, unsigned long cidx, 466 struct kvm_vcpu_sbi_return *retdata) 467 { 468 struct kvm_pmu *kvpmu = vcpu_to_pmu(vcpu); 469 470 if (cidx > RISCV_KVM_MAX_COUNTERS || cidx == 1) { 471 retdata->err_val = SBI_ERR_INVALID_PARAM; 472 return 0; 473 } 474 475 retdata->out_val = kvpmu->pmc[cidx].cinfo.value; 476 477 return 0; 478 } 479 480 int kvm_riscv_vcpu_pmu_ctr_start(struct kvm_vcpu *vcpu, unsigned long ctr_base, 481 unsigned long ctr_mask, unsigned long flags, u64 ival, 482 struct kvm_vcpu_sbi_return *retdata) 483 { 484 struct kvm_pmu *kvpmu = vcpu_to_pmu(vcpu); 485 int i, pmc_index, sbiret = 0; 486 struct kvm_pmc *pmc; 487 int fevent_code; 488 bool snap_flag_set = flags & SBI_PMU_START_FLAG_INIT_SNAPSHOT; 489 490 if (kvm_pmu_validate_counter_mask(kvpmu, ctr_base, ctr_mask) < 0) { 491 sbiret = SBI_ERR_INVALID_PARAM; 492 goto out; 493 } 494 495 if (snap_flag_set) { 496 if (kvpmu->snapshot_addr == INVALID_GPA) { 497 sbiret = SBI_ERR_NO_SHMEM; 498 goto out; 499 } 500 if (kvm_vcpu_read_guest(vcpu, kvpmu->snapshot_addr, kvpmu->sdata, 501 sizeof(struct riscv_pmu_snapshot_data))) { 502 pr_warn("Unable to read snapshot shared memory while starting counters\n"); 503 sbiret = SBI_ERR_FAILURE; 504 goto out; 505 } 506 } 507 /* Start the counters that have been configured and requested by the guest */ 508 for_each_set_bit(i, &ctr_mask, RISCV_MAX_COUNTERS) { 509 pmc_index = i + ctr_base; 510 if (!test_bit(pmc_index, kvpmu->pmc_in_use)) 511 continue; 512 /* The guest started the counter again. Reset the overflow status */ 513 clear_bit(pmc_index, kvpmu->pmc_overflown); 514 pmc = &kvpmu->pmc[pmc_index]; 515 if (flags & SBI_PMU_START_FLAG_SET_INIT_VALUE) { 516 pmc->counter_val = ival; 517 } else if (snap_flag_set) { 518 /* The counter index in the snapshot are relative to the counter base */ 519 pmc->counter_val = kvpmu->sdata->ctr_values[i]; 520 } 521 522 if (pmc->cinfo.type == SBI_PMU_CTR_TYPE_FW) { 523 fevent_code = get_event_code(pmc->event_idx); 524 if (fevent_code >= SBI_PMU_FW_MAX) { 525 sbiret = SBI_ERR_INVALID_PARAM; 526 goto out; 527 } 528 529 /* Check if the counter was already started for some reason */ 530 if (kvpmu->fw_event[fevent_code].started) { 531 sbiret = SBI_ERR_ALREADY_STARTED; 532 continue; 533 } 534 535 kvpmu->fw_event[fevent_code].started = true; 536 kvpmu->fw_event[fevent_code].value = pmc->counter_val; 537 } else if (pmc->perf_event) { 538 if (unlikely(pmc->started)) { 539 sbiret = SBI_ERR_ALREADY_STARTED; 540 continue; 541 } 542 perf_event_period(pmc->perf_event, kvm_pmu_get_sample_period(pmc)); 543 perf_event_enable(pmc->perf_event); 544 pmc->started = true; 545 } else { 546 sbiret = SBI_ERR_INVALID_PARAM; 547 } 548 } 549 550 out: 551 retdata->err_val = sbiret; 552 553 return 0; 554 } 555 556 int kvm_riscv_vcpu_pmu_ctr_stop(struct kvm_vcpu *vcpu, unsigned long ctr_base, 557 unsigned long ctr_mask, unsigned long flags, 558 struct kvm_vcpu_sbi_return *retdata) 559 { 560 struct kvm_pmu *kvpmu = vcpu_to_pmu(vcpu); 561 int i, pmc_index, sbiret = 0; 562 u64 enabled, running; 563 struct kvm_pmc *pmc; 564 int fevent_code; 565 bool snap_flag_set = flags & SBI_PMU_STOP_FLAG_TAKE_SNAPSHOT; 566 bool shmem_needs_update = false; 567 568 if (kvm_pmu_validate_counter_mask(kvpmu, ctr_base, ctr_mask) < 0) { 569 sbiret = SBI_ERR_INVALID_PARAM; 570 goto out; 571 } 572 573 if (snap_flag_set && kvpmu->snapshot_addr == INVALID_GPA) { 574 sbiret = SBI_ERR_NO_SHMEM; 575 goto out; 576 } 577 578 /* Stop the counters that have been configured and requested by the guest */ 579 for_each_set_bit(i, &ctr_mask, RISCV_MAX_COUNTERS) { 580 pmc_index = i + ctr_base; 581 if (!test_bit(pmc_index, kvpmu->pmc_in_use)) 582 continue; 583 pmc = &kvpmu->pmc[pmc_index]; 584 if (pmc->cinfo.type == SBI_PMU_CTR_TYPE_FW) { 585 fevent_code = get_event_code(pmc->event_idx); 586 if (fevent_code >= SBI_PMU_FW_MAX) { 587 sbiret = SBI_ERR_INVALID_PARAM; 588 goto out; 589 } 590 591 if (!kvpmu->fw_event[fevent_code].started) 592 sbiret = SBI_ERR_ALREADY_STOPPED; 593 594 kvpmu->fw_event[fevent_code].started = false; 595 } else if (pmc->perf_event) { 596 if (pmc->started) { 597 /* Stop counting the counter */ 598 perf_event_disable(pmc->perf_event); 599 pmc->started = false; 600 } else { 601 sbiret = SBI_ERR_ALREADY_STOPPED; 602 } 603 604 if (flags & SBI_PMU_STOP_FLAG_RESET) 605 /* Release the counter if this is a reset request */ 606 kvm_pmu_release_perf_event(pmc); 607 } else { 608 sbiret = SBI_ERR_INVALID_PARAM; 609 } 610 611 if (snap_flag_set && !sbiret) { 612 if (pmc->cinfo.type == SBI_PMU_CTR_TYPE_FW) 613 pmc->counter_val = kvpmu->fw_event[fevent_code].value; 614 else if (pmc->perf_event) 615 pmc->counter_val += perf_event_read_value(pmc->perf_event, 616 &enabled, &running); 617 /* 618 * The counter and overflow indicies in the snapshot region are w.r.to 619 * cbase. Modify the set bit in the counter mask instead of the pmc_index 620 * which indicates the absolute counter index. 621 */ 622 if (test_bit(pmc_index, kvpmu->pmc_overflown)) 623 kvpmu->sdata->ctr_overflow_mask |= BIT(i); 624 kvpmu->sdata->ctr_values[i] = pmc->counter_val; 625 shmem_needs_update = true; 626 } 627 628 if (flags & SBI_PMU_STOP_FLAG_RESET) { 629 pmc->event_idx = SBI_PMU_EVENT_IDX_INVALID; 630 clear_bit(pmc_index, kvpmu->pmc_in_use); 631 clear_bit(pmc_index, kvpmu->pmc_overflown); 632 if (snap_flag_set) { 633 /* 634 * Only clear the given counter as the caller is responsible to 635 * validate both the overflow mask and configured counters. 636 */ 637 kvpmu->sdata->ctr_overflow_mask &= ~BIT(i); 638 shmem_needs_update = true; 639 } 640 } 641 } 642 643 if (shmem_needs_update) 644 kvm_vcpu_write_guest(vcpu, kvpmu->snapshot_addr, kvpmu->sdata, 645 sizeof(struct riscv_pmu_snapshot_data)); 646 647 out: 648 retdata->err_val = sbiret; 649 650 return 0; 651 } 652 653 int kvm_riscv_vcpu_pmu_ctr_cfg_match(struct kvm_vcpu *vcpu, unsigned long ctr_base, 654 unsigned long ctr_mask, unsigned long flags, 655 unsigned long eidx, u64 evtdata, 656 struct kvm_vcpu_sbi_return *retdata) 657 { 658 int ctr_idx, sbiret = 0; 659 long ret; 660 bool is_fevent; 661 unsigned long event_code; 662 u32 etype = kvm_pmu_get_perf_event_type(eidx); 663 struct kvm_pmu *kvpmu = vcpu_to_pmu(vcpu); 664 struct kvm_pmc *pmc = NULL; 665 struct perf_event_attr attr = { 666 .type = etype, 667 .size = sizeof(struct perf_event_attr), 668 .pinned = true, 669 /* 670 * It should never reach here if the platform doesn't support the sscofpmf 671 * extension as mode filtering won't work without it. 672 */ 673 .exclude_host = true, 674 .exclude_hv = true, 675 .exclude_user = !!(flags & SBI_PMU_CFG_FLAG_SET_UINH), 676 .exclude_kernel = !!(flags & SBI_PMU_CFG_FLAG_SET_SINH), 677 .config1 = RISCV_PMU_CONFIG1_GUEST_EVENTS, 678 }; 679 680 if (kvm_pmu_validate_counter_mask(kvpmu, ctr_base, ctr_mask) < 0) { 681 sbiret = SBI_ERR_INVALID_PARAM; 682 goto out; 683 } 684 685 event_code = get_event_code(eidx); 686 is_fevent = kvm_pmu_is_fw_event(eidx); 687 if (is_fevent && event_code >= SBI_PMU_FW_MAX) { 688 sbiret = SBI_ERR_NOT_SUPPORTED; 689 goto out; 690 } 691 692 /* 693 * SKIP_MATCH flag indicates the caller is aware of the assigned counter 694 * for this event. Just do a sanity check if it already marked used. 695 */ 696 if (flags & SBI_PMU_CFG_FLAG_SKIP_MATCH) { 697 if (!test_bit(ctr_base + __ffs(ctr_mask), kvpmu->pmc_in_use)) { 698 sbiret = SBI_ERR_FAILURE; 699 goto out; 700 } 701 ctr_idx = ctr_base + __ffs(ctr_mask); 702 } else { 703 ctr_idx = pmu_get_pmc_index(kvpmu, eidx, ctr_base, ctr_mask); 704 if (ctr_idx < 0) { 705 sbiret = SBI_ERR_NOT_SUPPORTED; 706 goto out; 707 } 708 } 709 710 pmc = &kvpmu->pmc[ctr_idx]; 711 pmc->idx = ctr_idx; 712 713 if (is_fevent) { 714 if (flags & SBI_PMU_CFG_FLAG_AUTO_START) 715 kvpmu->fw_event[event_code].started = true; 716 } else { 717 ret = kvm_pmu_create_perf_event(pmc, &attr, flags, eidx, evtdata); 718 if (ret) { 719 sbiret = SBI_ERR_NOT_SUPPORTED; 720 goto out; 721 } 722 } 723 724 set_bit(ctr_idx, kvpmu->pmc_in_use); 725 pmc->event_idx = eidx; 726 retdata->out_val = ctr_idx; 727 out: 728 retdata->err_val = sbiret; 729 730 return 0; 731 } 732 733 int kvm_riscv_vcpu_pmu_fw_ctr_read_hi(struct kvm_vcpu *vcpu, unsigned long cidx, 734 struct kvm_vcpu_sbi_return *retdata) 735 { 736 int ret; 737 738 ret = pmu_fw_ctr_read_hi(vcpu, cidx, &retdata->out_val); 739 if (ret == -EINVAL) 740 retdata->err_val = SBI_ERR_INVALID_PARAM; 741 742 return 0; 743 } 744 745 int kvm_riscv_vcpu_pmu_fw_ctr_read(struct kvm_vcpu *vcpu, unsigned long cidx, 746 struct kvm_vcpu_sbi_return *retdata) 747 { 748 int ret; 749 750 ret = pmu_ctr_read(vcpu, cidx, &retdata->out_val); 751 if (ret == -EINVAL) 752 retdata->err_val = SBI_ERR_INVALID_PARAM; 753 754 return 0; 755 } 756 757 void kvm_riscv_vcpu_pmu_init(struct kvm_vcpu *vcpu) 758 { 759 int i = 0, ret, num_hw_ctrs = 0, hpm_width = 0; 760 struct kvm_pmu *kvpmu = vcpu_to_pmu(vcpu); 761 struct kvm_pmc *pmc; 762 763 /* 764 * PMU functionality should be only available to guests if privilege mode 765 * filtering is available in the host. Otherwise, guest will always count 766 * events while the execution is in hypervisor mode. 767 */ 768 if (!riscv_isa_extension_available(NULL, SSCOFPMF)) 769 return; 770 771 ret = riscv_pmu_get_hpm_info(&hpm_width, &num_hw_ctrs); 772 if (ret < 0 || !hpm_width || !num_hw_ctrs) 773 return; 774 775 /* 776 * Increase the number of hardware counters to offset the time counter. 777 */ 778 kvpmu->num_hw_ctrs = num_hw_ctrs + 1; 779 kvpmu->num_fw_ctrs = SBI_PMU_FW_MAX; 780 memset(&kvpmu->fw_event, 0, SBI_PMU_FW_MAX * sizeof(struct kvm_fw_event)); 781 kvpmu->snapshot_addr = INVALID_GPA; 782 783 if (kvpmu->num_hw_ctrs > RISCV_KVM_MAX_HW_CTRS) { 784 pr_warn_once("Limiting the hardware counters to 32 as specified by the ISA"); 785 kvpmu->num_hw_ctrs = RISCV_KVM_MAX_HW_CTRS; 786 } 787 788 /* 789 * There is no correlation between the logical hardware counter and virtual counters. 790 * However, we need to encode a hpmcounter CSR in the counter info field so that 791 * KVM can trap n emulate the read. This works well in the migration use case as 792 * KVM doesn't care if the actual hpmcounter is available in the hardware or not. 793 */ 794 for (i = 0; i < kvm_pmu_num_counters(kvpmu); i++) { 795 /* TIME CSR shouldn't be read from perf interface */ 796 if (i == 1) 797 continue; 798 pmc = &kvpmu->pmc[i]; 799 pmc->idx = i; 800 pmc->event_idx = SBI_PMU_EVENT_IDX_INVALID; 801 pmc->vcpu = vcpu; 802 if (i < kvpmu->num_hw_ctrs) { 803 pmc->cinfo.type = SBI_PMU_CTR_TYPE_HW; 804 if (i < 3) 805 /* CY, IR counters */ 806 pmc->cinfo.width = 63; 807 else 808 pmc->cinfo.width = hpm_width; 809 /* 810 * The CSR number doesn't have any relation with the logical 811 * hardware counters. The CSR numbers are encoded sequentially 812 * to avoid maintaining a map between the virtual counter 813 * and CSR number. 814 */ 815 pmc->cinfo.csr = CSR_CYCLE + i; 816 } else { 817 pmc->cinfo.type = SBI_PMU_CTR_TYPE_FW; 818 pmc->cinfo.width = 63; 819 } 820 } 821 822 kvpmu->init_done = true; 823 } 824 825 void kvm_riscv_vcpu_pmu_deinit(struct kvm_vcpu *vcpu) 826 { 827 struct kvm_pmu *kvpmu = vcpu_to_pmu(vcpu); 828 struct kvm_pmc *pmc; 829 int i; 830 831 if (!kvpmu) 832 return; 833 834 for_each_set_bit(i, kvpmu->pmc_in_use, RISCV_KVM_MAX_COUNTERS) { 835 pmc = &kvpmu->pmc[i]; 836 pmc->counter_val = 0; 837 kvm_pmu_release_perf_event(pmc); 838 pmc->event_idx = SBI_PMU_EVENT_IDX_INVALID; 839 } 840 bitmap_zero(kvpmu->pmc_in_use, RISCV_KVM_MAX_COUNTERS); 841 bitmap_zero(kvpmu->pmc_overflown, RISCV_KVM_MAX_COUNTERS); 842 memset(&kvpmu->fw_event, 0, SBI_PMU_FW_MAX * sizeof(struct kvm_fw_event)); 843 kvm_pmu_clear_snapshot_area(vcpu); 844 } 845 846 void kvm_riscv_vcpu_pmu_reset(struct kvm_vcpu *vcpu) 847 { 848 kvm_riscv_vcpu_pmu_deinit(vcpu); 849 } 850
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.