1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 Regents of the University of California 4 * Copyright (C) 2019 Western Digital Corporation or its affiliates. 5 * Copyright (C) 2020 FORTH-ICS/CARV 6 * Nick Kossifidis <mick@ics.forth.gr> 7 */ 8 9 #include <linux/init.h> 10 #include <linux/mm.h> 11 #include <linux/memblock.h> 12 #include <linux/initrd.h> 13 #include <linux/swap.h> 14 #include <linux/swiotlb.h> 15 #include <linux/sizes.h> 16 #include <linux/of_fdt.h> 17 #include <linux/of_reserved_mem.h> 18 #include <linux/libfdt.h> 19 #include <linux/set_memory.h> 20 #include <linux/dma-map-ops.h> 21 #include <linux/crash_dump.h> 22 #include <linux/hugetlb.h> 23 #ifdef CONFIG_RELOCATABLE 24 #include <linux/elf.h> 25 #endif 26 #include <linux/kfence.h> 27 #include <linux/execmem.h> 28 29 #include <asm/fixmap.h> 30 #include <asm/io.h> 31 #include <asm/kasan.h> 32 #include <asm/numa.h> 33 #include <asm/pgtable.h> 34 #include <asm/sections.h> 35 #include <asm/soc.h> 36 #include <asm/tlbflush.h> 37 38 #include "../kernel/head.h" 39 40 struct kernel_mapping kernel_map __ro_after_init; 41 EXPORT_SYMBOL(kernel_map); 42 #ifdef CONFIG_XIP_KERNEL 43 #define kernel_map (*(struct kernel_mapping *)XIP_FIXUP(&kernel_map)) 44 #endif 45 46 #ifdef CONFIG_64BIT 47 u64 satp_mode __ro_after_init = !IS_ENABLED(CONFIG_XIP_KERNEL) ? SATP_MODE_57 : SATP_MODE_39; 48 #else 49 u64 satp_mode __ro_after_init = SATP_MODE_32; 50 #endif 51 EXPORT_SYMBOL(satp_mode); 52 53 #ifdef CONFIG_64BIT 54 bool pgtable_l4_enabled __ro_after_init = !IS_ENABLED(CONFIG_XIP_KERNEL); 55 bool pgtable_l5_enabled __ro_after_init = !IS_ENABLED(CONFIG_XIP_KERNEL); 56 EXPORT_SYMBOL(pgtable_l4_enabled); 57 EXPORT_SYMBOL(pgtable_l5_enabled); 58 #endif 59 60 phys_addr_t phys_ram_base __ro_after_init; 61 EXPORT_SYMBOL(phys_ram_base); 62 63 unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)] 64 __page_aligned_bss; 65 EXPORT_SYMBOL(empty_zero_page); 66 67 extern char _start[]; 68 void *_dtb_early_va __initdata; 69 uintptr_t _dtb_early_pa __initdata; 70 71 phys_addr_t dma32_phys_limit __initdata; 72 73 static void __init zone_sizes_init(void) 74 { 75 unsigned long max_zone_pfns[MAX_NR_ZONES] = { 0, }; 76 77 #ifdef CONFIG_ZONE_DMA32 78 max_zone_pfns[ZONE_DMA32] = PFN_DOWN(dma32_phys_limit); 79 #endif 80 max_zone_pfns[ZONE_NORMAL] = max_low_pfn; 81 82 free_area_init(max_zone_pfns); 83 } 84 85 #if defined(CONFIG_MMU) && defined(CONFIG_DEBUG_VM) 86 87 #define LOG2_SZ_1K ilog2(SZ_1K) 88 #define LOG2_SZ_1M ilog2(SZ_1M) 89 #define LOG2_SZ_1G ilog2(SZ_1G) 90 #define LOG2_SZ_1T ilog2(SZ_1T) 91 92 static inline void print_mlk(char *name, unsigned long b, unsigned long t) 93 { 94 pr_notice("%12s : 0x%08lx - 0x%08lx (%4ld kB)\n", name, b, t, 95 (((t) - (b)) >> LOG2_SZ_1K)); 96 } 97 98 static inline void print_mlm(char *name, unsigned long b, unsigned long t) 99 { 100 pr_notice("%12s : 0x%08lx - 0x%08lx (%4ld MB)\n", name, b, t, 101 (((t) - (b)) >> LOG2_SZ_1M)); 102 } 103 104 static inline void print_mlg(char *name, unsigned long b, unsigned long t) 105 { 106 pr_notice("%12s : 0x%08lx - 0x%08lx (%4ld GB)\n", name, b, t, 107 (((t) - (b)) >> LOG2_SZ_1G)); 108 } 109 110 #ifdef CONFIG_64BIT 111 static inline void print_mlt(char *name, unsigned long b, unsigned long t) 112 { 113 pr_notice("%12s : 0x%08lx - 0x%08lx (%4ld TB)\n", name, b, t, 114 (((t) - (b)) >> LOG2_SZ_1T)); 115 } 116 #else 117 #define print_mlt(n, b, t) do {} while (0) 118 #endif 119 120 static inline void print_ml(char *name, unsigned long b, unsigned long t) 121 { 122 unsigned long diff = t - b; 123 124 if (IS_ENABLED(CONFIG_64BIT) && (diff >> LOG2_SZ_1T) >= 10) 125 print_mlt(name, b, t); 126 else if ((diff >> LOG2_SZ_1G) >= 10) 127 print_mlg(name, b, t); 128 else if ((diff >> LOG2_SZ_1M) >= 10) 129 print_mlm(name, b, t); 130 else 131 print_mlk(name, b, t); 132 } 133 134 static void __init print_vm_layout(void) 135 { 136 pr_notice("Virtual kernel memory layout:\n"); 137 print_ml("fixmap", (unsigned long)FIXADDR_START, 138 (unsigned long)FIXADDR_TOP); 139 print_ml("pci io", (unsigned long)PCI_IO_START, 140 (unsigned long)PCI_IO_END); 141 print_ml("vmemmap", (unsigned long)VMEMMAP_START, 142 (unsigned long)VMEMMAP_END); 143 print_ml("vmalloc", (unsigned long)VMALLOC_START, 144 (unsigned long)VMALLOC_END); 145 #ifdef CONFIG_64BIT 146 print_ml("modules", (unsigned long)MODULES_VADDR, 147 (unsigned long)MODULES_END); 148 #endif 149 print_ml("lowmem", (unsigned long)PAGE_OFFSET, 150 (unsigned long)high_memory); 151 if (IS_ENABLED(CONFIG_64BIT)) { 152 #ifdef CONFIG_KASAN 153 print_ml("kasan", KASAN_SHADOW_START, KASAN_SHADOW_END); 154 #endif 155 156 print_ml("kernel", (unsigned long)kernel_map.virt_addr, 157 (unsigned long)ADDRESS_SPACE_END); 158 } 159 } 160 #else 161 static void print_vm_layout(void) { } 162 #endif /* CONFIG_DEBUG_VM */ 163 164 void __init mem_init(void) 165 { 166 bool swiotlb = max_pfn > PFN_DOWN(dma32_phys_limit); 167 #ifdef CONFIG_FLATMEM 168 BUG_ON(!mem_map); 169 #endif /* CONFIG_FLATMEM */ 170 171 if (IS_ENABLED(CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC) && !swiotlb && 172 dma_cache_alignment != 1) { 173 /* 174 * If no bouncing needed for ZONE_DMA, allocate 1MB swiotlb 175 * buffer per 1GB of RAM for kmalloc() bouncing on 176 * non-coherent platforms. 177 */ 178 unsigned long size = 179 DIV_ROUND_UP(memblock_phys_mem_size(), 1024); 180 swiotlb_adjust_size(min(swiotlb_size_or_default(), size)); 181 swiotlb = true; 182 } 183 184 swiotlb_init(swiotlb, SWIOTLB_VERBOSE); 185 memblock_free_all(); 186 187 print_vm_layout(); 188 } 189 190 /* Limit the memory size via mem. */ 191 static phys_addr_t memory_limit; 192 #ifdef CONFIG_XIP_KERNEL 193 #define memory_limit (*(phys_addr_t *)XIP_FIXUP(&memory_limit)) 194 #endif /* CONFIG_XIP_KERNEL */ 195 196 static int __init early_mem(char *p) 197 { 198 u64 size; 199 200 if (!p) 201 return 1; 202 203 size = memparse(p, &p) & PAGE_MASK; 204 memory_limit = min_t(u64, size, memory_limit); 205 206 pr_notice("Memory limited to %lldMB\n", (u64)memory_limit >> 20); 207 208 return 0; 209 } 210 early_param("mem", early_mem); 211 212 static void __init setup_bootmem(void) 213 { 214 phys_addr_t vmlinux_end = __pa_symbol(&_end); 215 phys_addr_t max_mapped_addr; 216 phys_addr_t phys_ram_end, vmlinux_start; 217 218 if (IS_ENABLED(CONFIG_XIP_KERNEL)) 219 vmlinux_start = __pa_symbol(&_sdata); 220 else 221 vmlinux_start = __pa_symbol(&_start); 222 223 memblock_enforce_memory_limit(memory_limit); 224 225 /* 226 * Make sure we align the reservation on PMD_SIZE since we will 227 * map the kernel in the linear mapping as read-only: we do not want 228 * any allocation to happen between _end and the next pmd aligned page. 229 */ 230 if (IS_ENABLED(CONFIG_64BIT) && IS_ENABLED(CONFIG_STRICT_KERNEL_RWX)) 231 vmlinux_end = (vmlinux_end + PMD_SIZE - 1) & PMD_MASK; 232 /* 233 * Reserve from the start of the kernel to the end of the kernel 234 */ 235 memblock_reserve(vmlinux_start, vmlinux_end - vmlinux_start); 236 237 /* 238 * Make sure we align the start of the memory on a PMD boundary so that 239 * at worst, we map the linear mapping with PMD mappings. 240 */ 241 if (!IS_ENABLED(CONFIG_XIP_KERNEL)) 242 phys_ram_base = memblock_start_of_DRAM() & PMD_MASK; 243 244 /* 245 * In 64-bit, any use of __va/__pa before this point is wrong as we 246 * did not know the start of DRAM before. 247 */ 248 if (IS_ENABLED(CONFIG_64BIT) && IS_ENABLED(CONFIG_MMU)) 249 kernel_map.va_pa_offset = PAGE_OFFSET - phys_ram_base; 250 251 /* 252 * The size of the linear page mapping may restrict the amount of 253 * usable RAM. 254 */ 255 if (IS_ENABLED(CONFIG_64BIT) && IS_ENABLED(CONFIG_MMU)) { 256 max_mapped_addr = __pa(PAGE_OFFSET) + KERN_VIRT_SIZE; 257 memblock_cap_memory_range(phys_ram_base, 258 max_mapped_addr - phys_ram_base); 259 } 260 261 /* 262 * Reserve physical address space that would be mapped to virtual 263 * addresses greater than (void *)(-PAGE_SIZE) because: 264 * - This memory would overlap with ERR_PTR 265 * - This memory belongs to high memory, which is not supported 266 * 267 * This is not applicable to 64-bit kernel, because virtual addresses 268 * after (void *)(-PAGE_SIZE) are not linearly mapped: they are 269 * occupied by kernel mapping. Also it is unrealistic for high memory 270 * to exist on 64-bit platforms. 271 */ 272 if (!IS_ENABLED(CONFIG_64BIT)) { 273 max_mapped_addr = __va_to_pa_nodebug(-PAGE_SIZE); 274 memblock_reserve(max_mapped_addr, (phys_addr_t)-max_mapped_addr); 275 } 276 277 phys_ram_end = memblock_end_of_DRAM(); 278 min_low_pfn = PFN_UP(phys_ram_base); 279 max_low_pfn = max_pfn = PFN_DOWN(phys_ram_end); 280 high_memory = (void *)(__va(PFN_PHYS(max_low_pfn))); 281 282 dma32_phys_limit = min(4UL * SZ_1G, (unsigned long)PFN_PHYS(max_low_pfn)); 283 set_max_mapnr(max_low_pfn - ARCH_PFN_OFFSET); 284 285 reserve_initrd_mem(); 286 287 /* 288 * No allocation should be done before reserving the memory as defined 289 * in the device tree, otherwise the allocation could end up in a 290 * reserved region. 291 */ 292 early_init_fdt_scan_reserved_mem(); 293 294 /* 295 * If DTB is built in, no need to reserve its memblock. 296 * Otherwise, do reserve it but avoid using 297 * early_init_fdt_reserve_self() since __pa() does 298 * not work for DTB pointers that are fixmap addresses 299 */ 300 if (!IS_ENABLED(CONFIG_BUILTIN_DTB)) 301 memblock_reserve(dtb_early_pa, fdt_totalsize(dtb_early_va)); 302 303 dma_contiguous_reserve(dma32_phys_limit); 304 if (IS_ENABLED(CONFIG_64BIT)) 305 hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT); 306 } 307 308 #ifdef CONFIG_MMU 309 struct pt_alloc_ops pt_ops __meminitdata; 310 311 pgd_t swapper_pg_dir[PTRS_PER_PGD] __page_aligned_bss; 312 pgd_t trampoline_pg_dir[PTRS_PER_PGD] __page_aligned_bss; 313 static pte_t fixmap_pte[PTRS_PER_PTE] __page_aligned_bss; 314 315 pgd_t early_pg_dir[PTRS_PER_PGD] __initdata __aligned(PAGE_SIZE); 316 317 #ifdef CONFIG_XIP_KERNEL 318 #define pt_ops (*(struct pt_alloc_ops *)XIP_FIXUP(&pt_ops)) 319 #define trampoline_pg_dir ((pgd_t *)XIP_FIXUP(trampoline_pg_dir)) 320 #define fixmap_pte ((pte_t *)XIP_FIXUP(fixmap_pte)) 321 #define early_pg_dir ((pgd_t *)XIP_FIXUP(early_pg_dir)) 322 #endif /* CONFIG_XIP_KERNEL */ 323 324 static const pgprot_t protection_map[16] = { 325 [VM_NONE] = PAGE_NONE, 326 [VM_READ] = PAGE_READ, 327 [VM_WRITE] = PAGE_COPY, 328 [VM_WRITE | VM_READ] = PAGE_COPY, 329 [VM_EXEC] = PAGE_EXEC, 330 [VM_EXEC | VM_READ] = PAGE_READ_EXEC, 331 [VM_EXEC | VM_WRITE] = PAGE_COPY_EXEC, 332 [VM_EXEC | VM_WRITE | VM_READ] = PAGE_COPY_EXEC, 333 [VM_SHARED] = PAGE_NONE, 334 [VM_SHARED | VM_READ] = PAGE_READ, 335 [VM_SHARED | VM_WRITE] = PAGE_SHARED, 336 [VM_SHARED | VM_WRITE | VM_READ] = PAGE_SHARED, 337 [VM_SHARED | VM_EXEC] = PAGE_EXEC, 338 [VM_SHARED | VM_EXEC | VM_READ] = PAGE_READ_EXEC, 339 [VM_SHARED | VM_EXEC | VM_WRITE] = PAGE_SHARED_EXEC, 340 [VM_SHARED | VM_EXEC | VM_WRITE | VM_READ] = PAGE_SHARED_EXEC 341 }; 342 DECLARE_VM_GET_PAGE_PROT 343 344 void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot) 345 { 346 unsigned long addr = __fix_to_virt(idx); 347 pte_t *ptep; 348 349 BUG_ON(idx <= FIX_HOLE || idx >= __end_of_fixed_addresses); 350 351 ptep = &fixmap_pte[pte_index(addr)]; 352 353 if (pgprot_val(prot)) 354 set_pte(ptep, pfn_pte(phys >> PAGE_SHIFT, prot)); 355 else 356 pte_clear(&init_mm, addr, ptep); 357 local_flush_tlb_page(addr); 358 } 359 360 static inline pte_t *__init get_pte_virt_early(phys_addr_t pa) 361 { 362 return (pte_t *)((uintptr_t)pa); 363 } 364 365 static inline pte_t *__init get_pte_virt_fixmap(phys_addr_t pa) 366 { 367 clear_fixmap(FIX_PTE); 368 return (pte_t *)set_fixmap_offset(FIX_PTE, pa); 369 } 370 371 static inline pte_t *__meminit get_pte_virt_late(phys_addr_t pa) 372 { 373 return (pte_t *) __va(pa); 374 } 375 376 static inline phys_addr_t __init alloc_pte_early(uintptr_t va) 377 { 378 /* 379 * We only create PMD or PGD early mappings so we 380 * should never reach here with MMU disabled. 381 */ 382 BUG(); 383 } 384 385 static inline phys_addr_t __init alloc_pte_fixmap(uintptr_t va) 386 { 387 return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE); 388 } 389 390 static phys_addr_t __meminit alloc_pte_late(uintptr_t va) 391 { 392 struct ptdesc *ptdesc = pagetable_alloc(GFP_KERNEL & ~__GFP_HIGHMEM, 0); 393 394 BUG_ON(!ptdesc || !pagetable_pte_ctor(ptdesc)); 395 return __pa((pte_t *)ptdesc_address(ptdesc)); 396 } 397 398 static void __meminit create_pte_mapping(pte_t *ptep, uintptr_t va, phys_addr_t pa, phys_addr_t sz, 399 pgprot_t prot) 400 { 401 uintptr_t pte_idx = pte_index(va); 402 403 BUG_ON(sz != PAGE_SIZE); 404 405 if (pte_none(ptep[pte_idx])) 406 ptep[pte_idx] = pfn_pte(PFN_DOWN(pa), prot); 407 } 408 409 #ifndef __PAGETABLE_PMD_FOLDED 410 411 static pmd_t trampoline_pmd[PTRS_PER_PMD] __page_aligned_bss; 412 static pmd_t fixmap_pmd[PTRS_PER_PMD] __page_aligned_bss; 413 static pmd_t early_pmd[PTRS_PER_PMD] __initdata __aligned(PAGE_SIZE); 414 415 #ifdef CONFIG_XIP_KERNEL 416 #define trampoline_pmd ((pmd_t *)XIP_FIXUP(trampoline_pmd)) 417 #define fixmap_pmd ((pmd_t *)XIP_FIXUP(fixmap_pmd)) 418 #define early_pmd ((pmd_t *)XIP_FIXUP(early_pmd)) 419 #endif /* CONFIG_XIP_KERNEL */ 420 421 static p4d_t trampoline_p4d[PTRS_PER_P4D] __page_aligned_bss; 422 static p4d_t fixmap_p4d[PTRS_PER_P4D] __page_aligned_bss; 423 static p4d_t early_p4d[PTRS_PER_P4D] __initdata __aligned(PAGE_SIZE); 424 425 #ifdef CONFIG_XIP_KERNEL 426 #define trampoline_p4d ((p4d_t *)XIP_FIXUP(trampoline_p4d)) 427 #define fixmap_p4d ((p4d_t *)XIP_FIXUP(fixmap_p4d)) 428 #define early_p4d ((p4d_t *)XIP_FIXUP(early_p4d)) 429 #endif /* CONFIG_XIP_KERNEL */ 430 431 static pud_t trampoline_pud[PTRS_PER_PUD] __page_aligned_bss; 432 static pud_t fixmap_pud[PTRS_PER_PUD] __page_aligned_bss; 433 static pud_t early_pud[PTRS_PER_PUD] __initdata __aligned(PAGE_SIZE); 434 435 #ifdef CONFIG_XIP_KERNEL 436 #define trampoline_pud ((pud_t *)XIP_FIXUP(trampoline_pud)) 437 #define fixmap_pud ((pud_t *)XIP_FIXUP(fixmap_pud)) 438 #define early_pud ((pud_t *)XIP_FIXUP(early_pud)) 439 #endif /* CONFIG_XIP_KERNEL */ 440 441 static pmd_t *__init get_pmd_virt_early(phys_addr_t pa) 442 { 443 /* Before MMU is enabled */ 444 return (pmd_t *)((uintptr_t)pa); 445 } 446 447 static pmd_t *__init get_pmd_virt_fixmap(phys_addr_t pa) 448 { 449 clear_fixmap(FIX_PMD); 450 return (pmd_t *)set_fixmap_offset(FIX_PMD, pa); 451 } 452 453 static pmd_t *__meminit get_pmd_virt_late(phys_addr_t pa) 454 { 455 return (pmd_t *) __va(pa); 456 } 457 458 static phys_addr_t __init alloc_pmd_early(uintptr_t va) 459 { 460 BUG_ON((va - kernel_map.virt_addr) >> PUD_SHIFT); 461 462 return (uintptr_t)early_pmd; 463 } 464 465 static phys_addr_t __init alloc_pmd_fixmap(uintptr_t va) 466 { 467 return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE); 468 } 469 470 static phys_addr_t __meminit alloc_pmd_late(uintptr_t va) 471 { 472 struct ptdesc *ptdesc = pagetable_alloc(GFP_KERNEL & ~__GFP_HIGHMEM, 0); 473 474 BUG_ON(!ptdesc || !pagetable_pmd_ctor(ptdesc)); 475 return __pa((pmd_t *)ptdesc_address(ptdesc)); 476 } 477 478 static void __meminit create_pmd_mapping(pmd_t *pmdp, 479 uintptr_t va, phys_addr_t pa, 480 phys_addr_t sz, pgprot_t prot) 481 { 482 pte_t *ptep; 483 phys_addr_t pte_phys; 484 uintptr_t pmd_idx = pmd_index(va); 485 486 if (sz == PMD_SIZE) { 487 if (pmd_none(pmdp[pmd_idx])) 488 pmdp[pmd_idx] = pfn_pmd(PFN_DOWN(pa), prot); 489 return; 490 } 491 492 if (pmd_none(pmdp[pmd_idx])) { 493 pte_phys = pt_ops.alloc_pte(va); 494 pmdp[pmd_idx] = pfn_pmd(PFN_DOWN(pte_phys), PAGE_TABLE); 495 ptep = pt_ops.get_pte_virt(pte_phys); 496 memset(ptep, 0, PAGE_SIZE); 497 } else { 498 pte_phys = PFN_PHYS(_pmd_pfn(pmdp[pmd_idx])); 499 ptep = pt_ops.get_pte_virt(pte_phys); 500 } 501 502 create_pte_mapping(ptep, va, pa, sz, prot); 503 } 504 505 static pud_t *__init get_pud_virt_early(phys_addr_t pa) 506 { 507 return (pud_t *)((uintptr_t)pa); 508 } 509 510 static pud_t *__init get_pud_virt_fixmap(phys_addr_t pa) 511 { 512 clear_fixmap(FIX_PUD); 513 return (pud_t *)set_fixmap_offset(FIX_PUD, pa); 514 } 515 516 static pud_t *__meminit get_pud_virt_late(phys_addr_t pa) 517 { 518 return (pud_t *)__va(pa); 519 } 520 521 static phys_addr_t __init alloc_pud_early(uintptr_t va) 522 { 523 /* Only one PUD is available for early mapping */ 524 BUG_ON((va - kernel_map.virt_addr) >> PGDIR_SHIFT); 525 526 return (uintptr_t)early_pud; 527 } 528 529 static phys_addr_t __init alloc_pud_fixmap(uintptr_t va) 530 { 531 return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE); 532 } 533 534 static phys_addr_t __meminit alloc_pud_late(uintptr_t va) 535 { 536 unsigned long vaddr; 537 538 vaddr = __get_free_page(GFP_KERNEL); 539 BUG_ON(!vaddr); 540 return __pa(vaddr); 541 } 542 543 static p4d_t *__init get_p4d_virt_early(phys_addr_t pa) 544 { 545 return (p4d_t *)((uintptr_t)pa); 546 } 547 548 static p4d_t *__init get_p4d_virt_fixmap(phys_addr_t pa) 549 { 550 clear_fixmap(FIX_P4D); 551 return (p4d_t *)set_fixmap_offset(FIX_P4D, pa); 552 } 553 554 static p4d_t *__meminit get_p4d_virt_late(phys_addr_t pa) 555 { 556 return (p4d_t *)__va(pa); 557 } 558 559 static phys_addr_t __init alloc_p4d_early(uintptr_t va) 560 { 561 /* Only one P4D is available for early mapping */ 562 BUG_ON((va - kernel_map.virt_addr) >> PGDIR_SHIFT); 563 564 return (uintptr_t)early_p4d; 565 } 566 567 static phys_addr_t __init alloc_p4d_fixmap(uintptr_t va) 568 { 569 return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE); 570 } 571 572 static phys_addr_t __meminit alloc_p4d_late(uintptr_t va) 573 { 574 unsigned long vaddr; 575 576 vaddr = __get_free_page(GFP_KERNEL); 577 BUG_ON(!vaddr); 578 return __pa(vaddr); 579 } 580 581 static void __meminit create_pud_mapping(pud_t *pudp, uintptr_t va, phys_addr_t pa, phys_addr_t sz, 582 pgprot_t prot) 583 { 584 pmd_t *nextp; 585 phys_addr_t next_phys; 586 uintptr_t pud_index = pud_index(va); 587 588 if (sz == PUD_SIZE) { 589 if (pud_val(pudp[pud_index]) == 0) 590 pudp[pud_index] = pfn_pud(PFN_DOWN(pa), prot); 591 return; 592 } 593 594 if (pud_val(pudp[pud_index]) == 0) { 595 next_phys = pt_ops.alloc_pmd(va); 596 pudp[pud_index] = pfn_pud(PFN_DOWN(next_phys), PAGE_TABLE); 597 nextp = pt_ops.get_pmd_virt(next_phys); 598 memset(nextp, 0, PAGE_SIZE); 599 } else { 600 next_phys = PFN_PHYS(_pud_pfn(pudp[pud_index])); 601 nextp = pt_ops.get_pmd_virt(next_phys); 602 } 603 604 create_pmd_mapping(nextp, va, pa, sz, prot); 605 } 606 607 static void __meminit create_p4d_mapping(p4d_t *p4dp, uintptr_t va, phys_addr_t pa, phys_addr_t sz, 608 pgprot_t prot) 609 { 610 pud_t *nextp; 611 phys_addr_t next_phys; 612 uintptr_t p4d_index = p4d_index(va); 613 614 if (sz == P4D_SIZE) { 615 if (p4d_val(p4dp[p4d_index]) == 0) 616 p4dp[p4d_index] = pfn_p4d(PFN_DOWN(pa), prot); 617 return; 618 } 619 620 if (p4d_val(p4dp[p4d_index]) == 0) { 621 next_phys = pt_ops.alloc_pud(va); 622 p4dp[p4d_index] = pfn_p4d(PFN_DOWN(next_phys), PAGE_TABLE); 623 nextp = pt_ops.get_pud_virt(next_phys); 624 memset(nextp, 0, PAGE_SIZE); 625 } else { 626 next_phys = PFN_PHYS(_p4d_pfn(p4dp[p4d_index])); 627 nextp = pt_ops.get_pud_virt(next_phys); 628 } 629 630 create_pud_mapping(nextp, va, pa, sz, prot); 631 } 632 633 #define pgd_next_t p4d_t 634 #define alloc_pgd_next(__va) (pgtable_l5_enabled ? \ 635 pt_ops.alloc_p4d(__va) : (pgtable_l4_enabled ? \ 636 pt_ops.alloc_pud(__va) : pt_ops.alloc_pmd(__va))) 637 #define get_pgd_next_virt(__pa) (pgtable_l5_enabled ? \ 638 pt_ops.get_p4d_virt(__pa) : (pgd_next_t *)(pgtable_l4_enabled ? \ 639 pt_ops.get_pud_virt(__pa) : (pud_t *)pt_ops.get_pmd_virt(__pa))) 640 #define create_pgd_next_mapping(__nextp, __va, __pa, __sz, __prot) \ 641 (pgtable_l5_enabled ? \ 642 create_p4d_mapping(__nextp, __va, __pa, __sz, __prot) : \ 643 (pgtable_l4_enabled ? \ 644 create_pud_mapping((pud_t *)__nextp, __va, __pa, __sz, __prot) : \ 645 create_pmd_mapping((pmd_t *)__nextp, __va, __pa, __sz, __prot))) 646 #define fixmap_pgd_next (pgtable_l5_enabled ? \ 647 (uintptr_t)fixmap_p4d : (pgtable_l4_enabled ? \ 648 (uintptr_t)fixmap_pud : (uintptr_t)fixmap_pmd)) 649 #define trampoline_pgd_next (pgtable_l5_enabled ? \ 650 (uintptr_t)trampoline_p4d : (pgtable_l4_enabled ? \ 651 (uintptr_t)trampoline_pud : (uintptr_t)trampoline_pmd)) 652 #else 653 #define pgd_next_t pte_t 654 #define alloc_pgd_next(__va) pt_ops.alloc_pte(__va) 655 #define get_pgd_next_virt(__pa) pt_ops.get_pte_virt(__pa) 656 #define create_pgd_next_mapping(__nextp, __va, __pa, __sz, __prot) \ 657 create_pte_mapping(__nextp, __va, __pa, __sz, __prot) 658 #define fixmap_pgd_next ((uintptr_t)fixmap_pte) 659 #define create_p4d_mapping(__pmdp, __va, __pa, __sz, __prot) do {} while(0) 660 #define create_pud_mapping(__pmdp, __va, __pa, __sz, __prot) do {} while(0) 661 #define create_pmd_mapping(__pmdp, __va, __pa, __sz, __prot) do {} while(0) 662 #endif /* __PAGETABLE_PMD_FOLDED */ 663 664 void __meminit create_pgd_mapping(pgd_t *pgdp, uintptr_t va, phys_addr_t pa, phys_addr_t sz, 665 pgprot_t prot) 666 { 667 pgd_next_t *nextp; 668 phys_addr_t next_phys; 669 uintptr_t pgd_idx = pgd_index(va); 670 671 if (sz == PGDIR_SIZE) { 672 if (pgd_val(pgdp[pgd_idx]) == 0) 673 pgdp[pgd_idx] = pfn_pgd(PFN_DOWN(pa), prot); 674 return; 675 } 676 677 if (pgd_val(pgdp[pgd_idx]) == 0) { 678 next_phys = alloc_pgd_next(va); 679 pgdp[pgd_idx] = pfn_pgd(PFN_DOWN(next_phys), PAGE_TABLE); 680 nextp = get_pgd_next_virt(next_phys); 681 memset(nextp, 0, PAGE_SIZE); 682 } else { 683 next_phys = PFN_PHYS(_pgd_pfn(pgdp[pgd_idx])); 684 nextp = get_pgd_next_virt(next_phys); 685 } 686 687 create_pgd_next_mapping(nextp, va, pa, sz, prot); 688 } 689 690 static uintptr_t __meminit best_map_size(phys_addr_t pa, uintptr_t va, phys_addr_t size) 691 { 692 if (debug_pagealloc_enabled()) 693 return PAGE_SIZE; 694 695 if (pgtable_l5_enabled && 696 !(pa & (P4D_SIZE - 1)) && !(va & (P4D_SIZE - 1)) && size >= P4D_SIZE) 697 return P4D_SIZE; 698 699 if (pgtable_l4_enabled && 700 !(pa & (PUD_SIZE - 1)) && !(va & (PUD_SIZE - 1)) && size >= PUD_SIZE) 701 return PUD_SIZE; 702 703 if (IS_ENABLED(CONFIG_64BIT) && 704 !(pa & (PMD_SIZE - 1)) && !(va & (PMD_SIZE - 1)) && size >= PMD_SIZE) 705 return PMD_SIZE; 706 707 return PAGE_SIZE; 708 } 709 710 #ifdef CONFIG_XIP_KERNEL 711 #define phys_ram_base (*(phys_addr_t *)XIP_FIXUP(&phys_ram_base)) 712 extern char _xiprom[], _exiprom[], __data_loc; 713 714 /* called from head.S with MMU off */ 715 asmlinkage void __init __copy_data(void) 716 { 717 void *from = (void *)(&__data_loc); 718 void *to = (void *)CONFIG_PHYS_RAM_BASE; 719 size_t sz = (size_t)((uintptr_t)(&_end) - (uintptr_t)(&_sdata)); 720 721 memcpy(to, from, sz); 722 } 723 #endif 724 725 #ifdef CONFIG_STRICT_KERNEL_RWX 726 static __meminit pgprot_t pgprot_from_va(uintptr_t va) 727 { 728 if (is_va_kernel_text(va)) 729 return PAGE_KERNEL_READ_EXEC; 730 731 /* 732 * In 64-bit kernel, the kernel mapping is outside the linear mapping so 733 * we must protect its linear mapping alias from being executed and 734 * written. 735 * And rodata section is marked readonly in mark_rodata_ro. 736 */ 737 if (IS_ENABLED(CONFIG_64BIT) && is_va_kernel_lm_alias_text(va)) 738 return PAGE_KERNEL_READ; 739 740 return PAGE_KERNEL; 741 } 742 743 void mark_rodata_ro(void) 744 { 745 set_kernel_memory(__start_rodata, _data, set_memory_ro); 746 if (IS_ENABLED(CONFIG_64BIT)) 747 set_kernel_memory(lm_alias(__start_rodata), lm_alias(_data), 748 set_memory_ro); 749 } 750 #else 751 static __meminit pgprot_t pgprot_from_va(uintptr_t va) 752 { 753 if (IS_ENABLED(CONFIG_64BIT) && !is_kernel_mapping(va)) 754 return PAGE_KERNEL; 755 756 return PAGE_KERNEL_EXEC; 757 } 758 #endif /* CONFIG_STRICT_KERNEL_RWX */ 759 760 #if defined(CONFIG_64BIT) && !defined(CONFIG_XIP_KERNEL) 761 u64 __pi_set_satp_mode_from_cmdline(uintptr_t dtb_pa); 762 763 static void __init disable_pgtable_l5(void) 764 { 765 pgtable_l5_enabled = false; 766 kernel_map.page_offset = PAGE_OFFSET_L4; 767 satp_mode = SATP_MODE_48; 768 } 769 770 static void __init disable_pgtable_l4(void) 771 { 772 pgtable_l4_enabled = false; 773 kernel_map.page_offset = PAGE_OFFSET_L3; 774 satp_mode = SATP_MODE_39; 775 } 776 777 static int __init print_no4lvl(char *p) 778 { 779 pr_info("Disabled 4-level and 5-level paging"); 780 return 0; 781 } 782 early_param("no4lvl", print_no4lvl); 783 784 static int __init print_no5lvl(char *p) 785 { 786 pr_info("Disabled 5-level paging"); 787 return 0; 788 } 789 early_param("no5lvl", print_no5lvl); 790 791 static void __init set_mmap_rnd_bits_max(void) 792 { 793 mmap_rnd_bits_max = MMAP_VA_BITS - PAGE_SHIFT - 3; 794 } 795 796 /* 797 * There is a simple way to determine if 4-level is supported by the 798 * underlying hardware: establish 1:1 mapping in 4-level page table mode 799 * then read SATP to see if the configuration was taken into account 800 * meaning sv48 is supported. 801 */ 802 static __init void set_satp_mode(uintptr_t dtb_pa) 803 { 804 u64 identity_satp, hw_satp; 805 uintptr_t set_satp_mode_pmd = ((unsigned long)set_satp_mode) & PMD_MASK; 806 u64 satp_mode_cmdline = __pi_set_satp_mode_from_cmdline(dtb_pa); 807 808 if (satp_mode_cmdline == SATP_MODE_57) { 809 disable_pgtable_l5(); 810 } else if (satp_mode_cmdline == SATP_MODE_48) { 811 disable_pgtable_l5(); 812 disable_pgtable_l4(); 813 return; 814 } 815 816 create_p4d_mapping(early_p4d, 817 set_satp_mode_pmd, (uintptr_t)early_pud, 818 P4D_SIZE, PAGE_TABLE); 819 create_pud_mapping(early_pud, 820 set_satp_mode_pmd, (uintptr_t)early_pmd, 821 PUD_SIZE, PAGE_TABLE); 822 /* Handle the case where set_satp_mode straddles 2 PMDs */ 823 create_pmd_mapping(early_pmd, 824 set_satp_mode_pmd, set_satp_mode_pmd, 825 PMD_SIZE, PAGE_KERNEL_EXEC); 826 create_pmd_mapping(early_pmd, 827 set_satp_mode_pmd + PMD_SIZE, 828 set_satp_mode_pmd + PMD_SIZE, 829 PMD_SIZE, PAGE_KERNEL_EXEC); 830 retry: 831 create_pgd_mapping(early_pg_dir, 832 set_satp_mode_pmd, 833 pgtable_l5_enabled ? 834 (uintptr_t)early_p4d : (uintptr_t)early_pud, 835 PGDIR_SIZE, PAGE_TABLE); 836 837 identity_satp = PFN_DOWN((uintptr_t)&early_pg_dir) | satp_mode; 838 839 local_flush_tlb_all(); 840 csr_write(CSR_SATP, identity_satp); 841 hw_satp = csr_swap(CSR_SATP, 0ULL); 842 local_flush_tlb_all(); 843 844 if (hw_satp != identity_satp) { 845 if (pgtable_l5_enabled) { 846 disable_pgtable_l5(); 847 memset(early_pg_dir, 0, PAGE_SIZE); 848 goto retry; 849 } 850 disable_pgtable_l4(); 851 } 852 853 memset(early_pg_dir, 0, PAGE_SIZE); 854 memset(early_p4d, 0, PAGE_SIZE); 855 memset(early_pud, 0, PAGE_SIZE); 856 memset(early_pmd, 0, PAGE_SIZE); 857 } 858 #endif 859 860 /* 861 * setup_vm() is called from head.S with MMU-off. 862 * 863 * Following requirements should be honoured for setup_vm() to work 864 * correctly: 865 * 1) It should use PC-relative addressing for accessing kernel symbols. 866 * To achieve this we always use GCC cmodel=medany. 867 * 2) The compiler instrumentation for FTRACE will not work for setup_vm() 868 * so disable compiler instrumentation when FTRACE is enabled. 869 * 870 * Currently, the above requirements are honoured by using custom CFLAGS 871 * for init.o in mm/Makefile. 872 */ 873 874 #ifndef __riscv_cmodel_medany 875 #error "setup_vm() is called from head.S before relocate so it should not use absolute addressing." 876 #endif 877 878 #ifdef CONFIG_RELOCATABLE 879 extern unsigned long __rela_dyn_start, __rela_dyn_end; 880 881 static void __init relocate_kernel(void) 882 { 883 Elf64_Rela *rela = (Elf64_Rela *)&__rela_dyn_start; 884 /* 885 * This holds the offset between the linked virtual address and the 886 * relocated virtual address. 887 */ 888 uintptr_t reloc_offset = kernel_map.virt_addr - KERNEL_LINK_ADDR; 889 /* 890 * This holds the offset between kernel linked virtual address and 891 * physical address. 892 */ 893 uintptr_t va_kernel_link_pa_offset = KERNEL_LINK_ADDR - kernel_map.phys_addr; 894 895 for ( ; rela < (Elf64_Rela *)&__rela_dyn_end; rela++) { 896 Elf64_Addr addr = (rela->r_offset - va_kernel_link_pa_offset); 897 Elf64_Addr relocated_addr = rela->r_addend; 898 899 if (rela->r_info != R_RISCV_RELATIVE) 900 continue; 901 902 /* 903 * Make sure to not relocate vdso symbols like rt_sigreturn 904 * which are linked from the address 0 in vmlinux since 905 * vdso symbol addresses are actually used as an offset from 906 * mm->context.vdso in VDSO_OFFSET macro. 907 */ 908 if (relocated_addr >= KERNEL_LINK_ADDR) 909 relocated_addr += reloc_offset; 910 911 *(Elf64_Addr *)addr = relocated_addr; 912 } 913 } 914 #endif /* CONFIG_RELOCATABLE */ 915 916 #ifdef CONFIG_XIP_KERNEL 917 static void __init create_kernel_page_table(pgd_t *pgdir, 918 __always_unused bool early) 919 { 920 uintptr_t va, end_va; 921 922 /* Map the flash resident part */ 923 end_va = kernel_map.virt_addr + kernel_map.xiprom_sz; 924 for (va = kernel_map.virt_addr; va < end_va; va += PMD_SIZE) 925 create_pgd_mapping(pgdir, va, 926 kernel_map.xiprom + (va - kernel_map.virt_addr), 927 PMD_SIZE, PAGE_KERNEL_EXEC); 928 929 /* Map the data in RAM */ 930 end_va = kernel_map.virt_addr + kernel_map.size; 931 for (va = kernel_map.virt_addr + XIP_OFFSET; va < end_va; va += PMD_SIZE) 932 create_pgd_mapping(pgdir, va, 933 kernel_map.phys_addr + (va - (kernel_map.virt_addr + XIP_OFFSET)), 934 PMD_SIZE, PAGE_KERNEL); 935 } 936 #else 937 static void __init create_kernel_page_table(pgd_t *pgdir, bool early) 938 { 939 uintptr_t va, end_va; 940 941 end_va = kernel_map.virt_addr + kernel_map.size; 942 for (va = kernel_map.virt_addr; va < end_va; va += PMD_SIZE) 943 create_pgd_mapping(pgdir, va, 944 kernel_map.phys_addr + (va - kernel_map.virt_addr), 945 PMD_SIZE, 946 early ? 947 PAGE_KERNEL_EXEC : pgprot_from_va(va)); 948 } 949 #endif 950 951 /* 952 * Setup a 4MB mapping that encompasses the device tree: for 64-bit kernel, 953 * this means 2 PMD entries whereas for 32-bit kernel, this is only 1 PGDIR 954 * entry. 955 */ 956 static void __init create_fdt_early_page_table(uintptr_t fix_fdt_va, 957 uintptr_t dtb_pa) 958 { 959 #ifndef CONFIG_BUILTIN_DTB 960 uintptr_t pa = dtb_pa & ~(PMD_SIZE - 1); 961 962 /* Make sure the fdt fixmap address is always aligned on PMD size */ 963 BUILD_BUG_ON(FIX_FDT % (PMD_SIZE / PAGE_SIZE)); 964 965 /* In 32-bit only, the fdt lies in its own PGD */ 966 if (!IS_ENABLED(CONFIG_64BIT)) { 967 create_pgd_mapping(early_pg_dir, fix_fdt_va, 968 pa, MAX_FDT_SIZE, PAGE_KERNEL); 969 } else { 970 create_pmd_mapping(fixmap_pmd, fix_fdt_va, 971 pa, PMD_SIZE, PAGE_KERNEL); 972 create_pmd_mapping(fixmap_pmd, fix_fdt_va + PMD_SIZE, 973 pa + PMD_SIZE, PMD_SIZE, PAGE_KERNEL); 974 } 975 976 dtb_early_va = (void *)fix_fdt_va + (dtb_pa & (PMD_SIZE - 1)); 977 #else 978 /* 979 * For 64-bit kernel, __va can't be used since it would return a linear 980 * mapping address whereas dtb_early_va will be used before 981 * setup_vm_final installs the linear mapping. For 32-bit kernel, as the 982 * kernel is mapped in the linear mapping, that makes no difference. 983 */ 984 dtb_early_va = kernel_mapping_pa_to_va(dtb_pa); 985 #endif 986 987 dtb_early_pa = dtb_pa; 988 } 989 990 /* 991 * MMU is not enabled, the page tables are allocated directly using 992 * early_pmd/pud/p4d and the address returned is the physical one. 993 */ 994 static void __init pt_ops_set_early(void) 995 { 996 pt_ops.alloc_pte = alloc_pte_early; 997 pt_ops.get_pte_virt = get_pte_virt_early; 998 #ifndef __PAGETABLE_PMD_FOLDED 999 pt_ops.alloc_pmd = alloc_pmd_early; 1000 pt_ops.get_pmd_virt = get_pmd_virt_early; 1001 pt_ops.alloc_pud = alloc_pud_early; 1002 pt_ops.get_pud_virt = get_pud_virt_early; 1003 pt_ops.alloc_p4d = alloc_p4d_early; 1004 pt_ops.get_p4d_virt = get_p4d_virt_early; 1005 #endif 1006 } 1007 1008 /* 1009 * MMU is enabled but page table setup is not complete yet. 1010 * fixmap page table alloc functions must be used as a means to temporarily 1011 * map the allocated physical pages since the linear mapping does not exist yet. 1012 * 1013 * Note that this is called with MMU disabled, hence kernel_mapping_pa_to_va, 1014 * but it will be used as described above. 1015 */ 1016 static void __init pt_ops_set_fixmap(void) 1017 { 1018 pt_ops.alloc_pte = kernel_mapping_pa_to_va(alloc_pte_fixmap); 1019 pt_ops.get_pte_virt = kernel_mapping_pa_to_va(get_pte_virt_fixmap); 1020 #ifndef __PAGETABLE_PMD_FOLDED 1021 pt_ops.alloc_pmd = kernel_mapping_pa_to_va(alloc_pmd_fixmap); 1022 pt_ops.get_pmd_virt = kernel_mapping_pa_to_va(get_pmd_virt_fixmap); 1023 pt_ops.alloc_pud = kernel_mapping_pa_to_va(alloc_pud_fixmap); 1024 pt_ops.get_pud_virt = kernel_mapping_pa_to_va(get_pud_virt_fixmap); 1025 pt_ops.alloc_p4d = kernel_mapping_pa_to_va(alloc_p4d_fixmap); 1026 pt_ops.get_p4d_virt = kernel_mapping_pa_to_va(get_p4d_virt_fixmap); 1027 #endif 1028 } 1029 1030 /* 1031 * MMU is enabled and page table setup is complete, so from now, we can use 1032 * generic page allocation functions to setup page table. 1033 */ 1034 static void __init pt_ops_set_late(void) 1035 { 1036 pt_ops.alloc_pte = alloc_pte_late; 1037 pt_ops.get_pte_virt = get_pte_virt_late; 1038 #ifndef __PAGETABLE_PMD_FOLDED 1039 pt_ops.alloc_pmd = alloc_pmd_late; 1040 pt_ops.get_pmd_virt = get_pmd_virt_late; 1041 pt_ops.alloc_pud = alloc_pud_late; 1042 pt_ops.get_pud_virt = get_pud_virt_late; 1043 pt_ops.alloc_p4d = alloc_p4d_late; 1044 pt_ops.get_p4d_virt = get_p4d_virt_late; 1045 #endif 1046 } 1047 1048 #ifdef CONFIG_RANDOMIZE_BASE 1049 extern bool __init __pi_set_nokaslr_from_cmdline(uintptr_t dtb_pa); 1050 extern u64 __init __pi_get_kaslr_seed(uintptr_t dtb_pa); 1051 1052 static int __init print_nokaslr(char *p) 1053 { 1054 pr_info("Disabled KASLR"); 1055 return 0; 1056 } 1057 early_param("nokaslr", print_nokaslr); 1058 1059 unsigned long kaslr_offset(void) 1060 { 1061 return kernel_map.virt_offset; 1062 } 1063 #endif 1064 1065 asmlinkage void __init setup_vm(uintptr_t dtb_pa) 1066 { 1067 pmd_t __maybe_unused fix_bmap_spmd, fix_bmap_epmd; 1068 1069 #ifdef CONFIG_RANDOMIZE_BASE 1070 if (!__pi_set_nokaslr_from_cmdline(dtb_pa)) { 1071 u64 kaslr_seed = __pi_get_kaslr_seed(dtb_pa); 1072 u32 kernel_size = (uintptr_t)(&_end) - (uintptr_t)(&_start); 1073 u32 nr_pos; 1074 1075 /* 1076 * Compute the number of positions available: we are limited 1077 * by the early page table that only has one PUD and we must 1078 * be aligned on PMD_SIZE. 1079 */ 1080 nr_pos = (PUD_SIZE - kernel_size) / PMD_SIZE; 1081 1082 kernel_map.virt_offset = (kaslr_seed % nr_pos) * PMD_SIZE; 1083 } 1084 #endif 1085 1086 kernel_map.virt_addr = KERNEL_LINK_ADDR + kernel_map.virt_offset; 1087 1088 #ifdef CONFIG_XIP_KERNEL 1089 #ifdef CONFIG_64BIT 1090 kernel_map.page_offset = PAGE_OFFSET_L3; 1091 #else 1092 kernel_map.page_offset = _AC(CONFIG_PAGE_OFFSET, UL); 1093 #endif 1094 kernel_map.xiprom = (uintptr_t)CONFIG_XIP_PHYS_ADDR; 1095 kernel_map.xiprom_sz = (uintptr_t)(&_exiprom) - (uintptr_t)(&_xiprom); 1096 1097 phys_ram_base = CONFIG_PHYS_RAM_BASE; 1098 kernel_map.phys_addr = (uintptr_t)CONFIG_PHYS_RAM_BASE; 1099 kernel_map.size = (uintptr_t)(&_end) - (uintptr_t)(&_start); 1100 1101 kernel_map.va_kernel_xip_pa_offset = kernel_map.virt_addr - kernel_map.xiprom; 1102 #else 1103 kernel_map.page_offset = _AC(CONFIG_PAGE_OFFSET, UL); 1104 kernel_map.phys_addr = (uintptr_t)(&_start); 1105 kernel_map.size = (uintptr_t)(&_end) - kernel_map.phys_addr; 1106 #endif 1107 1108 #if defined(CONFIG_64BIT) && !defined(CONFIG_XIP_KERNEL) 1109 set_satp_mode(dtb_pa); 1110 set_mmap_rnd_bits_max(); 1111 #endif 1112 1113 /* 1114 * In 64-bit, we defer the setup of va_pa_offset to setup_bootmem, 1115 * where we have the system memory layout: this allows us to align 1116 * the physical and virtual mappings and then make use of PUD/P4D/PGD 1117 * for the linear mapping. This is only possible because the kernel 1118 * mapping lies outside the linear mapping. 1119 * In 32-bit however, as the kernel resides in the linear mapping, 1120 * setup_vm_final can not change the mapping established here, 1121 * otherwise the same kernel addresses would get mapped to different 1122 * physical addresses (if the start of dram is different from the 1123 * kernel physical address start). 1124 */ 1125 kernel_map.va_pa_offset = IS_ENABLED(CONFIG_64BIT) ? 1126 0UL : PAGE_OFFSET - kernel_map.phys_addr; 1127 kernel_map.va_kernel_pa_offset = kernel_map.virt_addr - kernel_map.phys_addr; 1128 1129 /* 1130 * The default maximal physical memory size is KERN_VIRT_SIZE for 32-bit 1131 * kernel, whereas for 64-bit kernel, the end of the virtual address 1132 * space is occupied by the modules/BPF/kernel mappings which reduces 1133 * the available size of the linear mapping. 1134 */ 1135 memory_limit = KERN_VIRT_SIZE - (IS_ENABLED(CONFIG_64BIT) ? SZ_4G : 0); 1136 1137 /* Sanity check alignment and size */ 1138 BUG_ON((PAGE_OFFSET % PGDIR_SIZE) != 0); 1139 BUG_ON((kernel_map.phys_addr % PMD_SIZE) != 0); 1140 1141 #ifdef CONFIG_64BIT 1142 /* 1143 * The last 4K bytes of the addressable memory can not be mapped because 1144 * of IS_ERR_VALUE macro. 1145 */ 1146 BUG_ON((kernel_map.virt_addr + kernel_map.size) > ADDRESS_SPACE_END - SZ_4K); 1147 #endif 1148 1149 #ifdef CONFIG_RELOCATABLE 1150 /* 1151 * Early page table uses only one PUD, which makes it possible 1152 * to map PUD_SIZE aligned on PUD_SIZE: if the relocation offset 1153 * makes the kernel cross over a PUD_SIZE boundary, raise a bug 1154 * since a part of the kernel would not get mapped. 1155 */ 1156 BUG_ON(PUD_SIZE - (kernel_map.virt_addr & (PUD_SIZE - 1)) < kernel_map.size); 1157 relocate_kernel(); 1158 #endif 1159 1160 apply_early_boot_alternatives(); 1161 pt_ops_set_early(); 1162 1163 /* Setup early PGD for fixmap */ 1164 create_pgd_mapping(early_pg_dir, FIXADDR_START, 1165 fixmap_pgd_next, PGDIR_SIZE, PAGE_TABLE); 1166 1167 #ifndef __PAGETABLE_PMD_FOLDED 1168 /* Setup fixmap P4D and PUD */ 1169 if (pgtable_l5_enabled) 1170 create_p4d_mapping(fixmap_p4d, FIXADDR_START, 1171 (uintptr_t)fixmap_pud, P4D_SIZE, PAGE_TABLE); 1172 /* Setup fixmap PUD and PMD */ 1173 if (pgtable_l4_enabled) 1174 create_pud_mapping(fixmap_pud, FIXADDR_START, 1175 (uintptr_t)fixmap_pmd, PUD_SIZE, PAGE_TABLE); 1176 create_pmd_mapping(fixmap_pmd, FIXADDR_START, 1177 (uintptr_t)fixmap_pte, PMD_SIZE, PAGE_TABLE); 1178 /* Setup trampoline PGD and PMD */ 1179 create_pgd_mapping(trampoline_pg_dir, kernel_map.virt_addr, 1180 trampoline_pgd_next, PGDIR_SIZE, PAGE_TABLE); 1181 if (pgtable_l5_enabled) 1182 create_p4d_mapping(trampoline_p4d, kernel_map.virt_addr, 1183 (uintptr_t)trampoline_pud, P4D_SIZE, PAGE_TABLE); 1184 if (pgtable_l4_enabled) 1185 create_pud_mapping(trampoline_pud, kernel_map.virt_addr, 1186 (uintptr_t)trampoline_pmd, PUD_SIZE, PAGE_TABLE); 1187 #ifdef CONFIG_XIP_KERNEL 1188 create_pmd_mapping(trampoline_pmd, kernel_map.virt_addr, 1189 kernel_map.xiprom, PMD_SIZE, PAGE_KERNEL_EXEC); 1190 #else 1191 create_pmd_mapping(trampoline_pmd, kernel_map.virt_addr, 1192 kernel_map.phys_addr, PMD_SIZE, PAGE_KERNEL_EXEC); 1193 #endif 1194 #else 1195 /* Setup trampoline PGD */ 1196 create_pgd_mapping(trampoline_pg_dir, kernel_map.virt_addr, 1197 kernel_map.phys_addr, PGDIR_SIZE, PAGE_KERNEL_EXEC); 1198 #endif 1199 1200 /* 1201 * Setup early PGD covering entire kernel which will allow 1202 * us to reach paging_init(). We map all memory banks later 1203 * in setup_vm_final() below. 1204 */ 1205 create_kernel_page_table(early_pg_dir, true); 1206 1207 /* Setup early mapping for FDT early scan */ 1208 create_fdt_early_page_table(__fix_to_virt(FIX_FDT), dtb_pa); 1209 1210 /* 1211 * Bootime fixmap only can handle PMD_SIZE mapping. Thus, boot-ioremap 1212 * range can not span multiple pmds. 1213 */ 1214 BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT) 1215 != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT)); 1216 1217 #ifndef __PAGETABLE_PMD_FOLDED 1218 /* 1219 * Early ioremap fixmap is already created as it lies within first 2MB 1220 * of fixmap region. We always map PMD_SIZE. Thus, both FIX_BTMAP_END 1221 * FIX_BTMAP_BEGIN should lie in the same pmd. Verify that and warn 1222 * the user if not. 1223 */ 1224 fix_bmap_spmd = fixmap_pmd[pmd_index(__fix_to_virt(FIX_BTMAP_BEGIN))]; 1225 fix_bmap_epmd = fixmap_pmd[pmd_index(__fix_to_virt(FIX_BTMAP_END))]; 1226 if (pmd_val(fix_bmap_spmd) != pmd_val(fix_bmap_epmd)) { 1227 WARN_ON(1); 1228 pr_warn("fixmap btmap start [%08lx] != end [%08lx]\n", 1229 pmd_val(fix_bmap_spmd), pmd_val(fix_bmap_epmd)); 1230 pr_warn("fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n", 1231 fix_to_virt(FIX_BTMAP_BEGIN)); 1232 pr_warn("fix_to_virt(FIX_BTMAP_END): %08lx\n", 1233 fix_to_virt(FIX_BTMAP_END)); 1234 1235 pr_warn("FIX_BTMAP_END: %d\n", FIX_BTMAP_END); 1236 pr_warn("FIX_BTMAP_BEGIN: %d\n", FIX_BTMAP_BEGIN); 1237 } 1238 #endif 1239 1240 pt_ops_set_fixmap(); 1241 } 1242 1243 static void __meminit create_linear_mapping_range(phys_addr_t start, phys_addr_t end, 1244 uintptr_t fixed_map_size, const pgprot_t *pgprot) 1245 { 1246 phys_addr_t pa; 1247 uintptr_t va, map_size; 1248 1249 for (pa = start; pa < end; pa += map_size) { 1250 va = (uintptr_t)__va(pa); 1251 map_size = fixed_map_size ? fixed_map_size : 1252 best_map_size(pa, va, end - pa); 1253 1254 create_pgd_mapping(swapper_pg_dir, va, pa, map_size, 1255 pgprot ? *pgprot : pgprot_from_va(va)); 1256 } 1257 } 1258 1259 static void __init create_linear_mapping_page_table(void) 1260 { 1261 phys_addr_t start, end; 1262 phys_addr_t kfence_pool __maybe_unused; 1263 u64 i; 1264 1265 #ifdef CONFIG_STRICT_KERNEL_RWX 1266 phys_addr_t ktext_start = __pa_symbol(_start); 1267 phys_addr_t ktext_size = __init_data_begin - _start; 1268 phys_addr_t krodata_start = __pa_symbol(__start_rodata); 1269 phys_addr_t krodata_size = _data - __start_rodata; 1270 1271 /* Isolate kernel text and rodata so they don't get mapped with a PUD */ 1272 memblock_mark_nomap(ktext_start, ktext_size); 1273 memblock_mark_nomap(krodata_start, krodata_size); 1274 #endif 1275 1276 #ifdef CONFIG_KFENCE 1277 /* 1278 * kfence pool must be backed by PAGE_SIZE mappings, so allocate it 1279 * before we setup the linear mapping so that we avoid using hugepages 1280 * for this region. 1281 */ 1282 kfence_pool = memblock_phys_alloc(KFENCE_POOL_SIZE, PAGE_SIZE); 1283 BUG_ON(!kfence_pool); 1284 1285 memblock_mark_nomap(kfence_pool, KFENCE_POOL_SIZE); 1286 __kfence_pool = __va(kfence_pool); 1287 #endif 1288 1289 /* Map all memory banks in the linear mapping */ 1290 for_each_mem_range(i, &start, &end) { 1291 if (start >= end) 1292 break; 1293 if (start <= __pa(PAGE_OFFSET) && 1294 __pa(PAGE_OFFSET) < end) 1295 start = __pa(PAGE_OFFSET); 1296 1297 create_linear_mapping_range(start, end, 0, NULL); 1298 } 1299 1300 #ifdef CONFIG_STRICT_KERNEL_RWX 1301 create_linear_mapping_range(ktext_start, ktext_start + ktext_size, 0, NULL); 1302 create_linear_mapping_range(krodata_start, krodata_start + krodata_size, 0, NULL); 1303 1304 memblock_clear_nomap(ktext_start, ktext_size); 1305 memblock_clear_nomap(krodata_start, krodata_size); 1306 #endif 1307 1308 #ifdef CONFIG_KFENCE 1309 create_linear_mapping_range(kfence_pool, kfence_pool + KFENCE_POOL_SIZE, PAGE_SIZE, NULL); 1310 1311 memblock_clear_nomap(kfence_pool, KFENCE_POOL_SIZE); 1312 #endif 1313 } 1314 1315 static void __init setup_vm_final(void) 1316 { 1317 /* Setup swapper PGD for fixmap */ 1318 #if !defined(CONFIG_64BIT) 1319 /* 1320 * In 32-bit, the device tree lies in a pgd entry, so it must be copied 1321 * directly in swapper_pg_dir in addition to the pgd entry that points 1322 * to fixmap_pte. 1323 */ 1324 unsigned long idx = pgd_index(__fix_to_virt(FIX_FDT)); 1325 1326 set_pgd(&swapper_pg_dir[idx], early_pg_dir[idx]); 1327 #endif 1328 create_pgd_mapping(swapper_pg_dir, FIXADDR_START, 1329 __pa_symbol(fixmap_pgd_next), 1330 PGDIR_SIZE, PAGE_TABLE); 1331 1332 /* Map the linear mapping */ 1333 create_linear_mapping_page_table(); 1334 1335 /* Map the kernel */ 1336 if (IS_ENABLED(CONFIG_64BIT)) 1337 create_kernel_page_table(swapper_pg_dir, false); 1338 1339 #ifdef CONFIG_KASAN 1340 kasan_swapper_init(); 1341 #endif 1342 1343 /* Clear fixmap PTE and PMD mappings */ 1344 clear_fixmap(FIX_PTE); 1345 clear_fixmap(FIX_PMD); 1346 clear_fixmap(FIX_PUD); 1347 clear_fixmap(FIX_P4D); 1348 1349 /* Move to swapper page table */ 1350 csr_write(CSR_SATP, PFN_DOWN(__pa_symbol(swapper_pg_dir)) | satp_mode); 1351 local_flush_tlb_all(); 1352 1353 pt_ops_set_late(); 1354 } 1355 #else 1356 asmlinkage void __init setup_vm(uintptr_t dtb_pa) 1357 { 1358 dtb_early_va = (void *)dtb_pa; 1359 dtb_early_pa = dtb_pa; 1360 } 1361 1362 static inline void setup_vm_final(void) 1363 { 1364 } 1365 #endif /* CONFIG_MMU */ 1366 1367 /* 1368 * reserve_crashkernel() - reserves memory for crash kernel 1369 * 1370 * This function reserves memory area given in "crashkernel=" kernel command 1371 * line parameter. The memory reserved is used by dump capture kernel when 1372 * primary kernel is crashing. 1373 */ 1374 static void __init arch_reserve_crashkernel(void) 1375 { 1376 unsigned long long low_size = 0; 1377 unsigned long long crash_base, crash_size; 1378 char *cmdline = boot_command_line; 1379 bool high = false; 1380 int ret; 1381 1382 if (!IS_ENABLED(CONFIG_CRASH_RESERVE)) 1383 return; 1384 1385 ret = parse_crashkernel(cmdline, memblock_phys_mem_size(), 1386 &crash_size, &crash_base, 1387 &low_size, &high); 1388 if (ret) 1389 return; 1390 1391 reserve_crashkernel_generic(cmdline, crash_size, crash_base, 1392 low_size, high); 1393 } 1394 1395 void __init paging_init(void) 1396 { 1397 setup_bootmem(); 1398 setup_vm_final(); 1399 1400 /* Depend on that Linear Mapping is ready */ 1401 memblock_allow_resize(); 1402 } 1403 1404 void __init misc_mem_init(void) 1405 { 1406 early_memtest(min_low_pfn << PAGE_SHIFT, max_low_pfn << PAGE_SHIFT); 1407 arch_numa_init(); 1408 sparse_init(); 1409 #ifdef CONFIG_SPARSEMEM_VMEMMAP 1410 /* The entire VMEMMAP region has been populated. Flush TLB for this region */ 1411 local_flush_tlb_kernel_range(VMEMMAP_START, VMEMMAP_END); 1412 #endif 1413 zone_sizes_init(); 1414 arch_reserve_crashkernel(); 1415 memblock_dump_all(); 1416 } 1417 1418 #ifdef CONFIG_SPARSEMEM_VMEMMAP 1419 void __meminit vmemmap_set_pmd(pmd_t *pmd, void *p, int node, 1420 unsigned long addr, unsigned long next) 1421 { 1422 pmd_set_huge(pmd, virt_to_phys(p), PAGE_KERNEL); 1423 } 1424 1425 int __meminit vmemmap_check_pmd(pmd_t *pmdp, int node, 1426 unsigned long addr, unsigned long next) 1427 { 1428 vmemmap_verify((pte_t *)pmdp, node, addr, next); 1429 return 1; 1430 } 1431 1432 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node, 1433 struct vmem_altmap *altmap) 1434 { 1435 /* 1436 * Note that SPARSEMEM_VMEMMAP is only selected for rv64 and that we 1437 * can't use hugepage mappings for 2-level page table because in case of 1438 * memory hotplug, we are not able to update all the page tables with 1439 * the new PMDs. 1440 */ 1441 return vmemmap_populate_hugepages(start, end, node, altmap); 1442 } 1443 #endif 1444 1445 #if defined(CONFIG_MMU) && defined(CONFIG_64BIT) 1446 /* 1447 * Pre-allocates page-table pages for a specific area in the kernel 1448 * page-table. Only the level which needs to be synchronized between 1449 * all page-tables is allocated because the synchronization can be 1450 * expensive. 1451 */ 1452 static void __init preallocate_pgd_pages_range(unsigned long start, unsigned long end, 1453 const char *area) 1454 { 1455 unsigned long addr; 1456 const char *lvl; 1457 1458 for (addr = start; addr < end && addr >= start; addr = ALIGN(addr + 1, PGDIR_SIZE)) { 1459 pgd_t *pgd = pgd_offset_k(addr); 1460 p4d_t *p4d; 1461 pud_t *pud; 1462 pmd_t *pmd; 1463 1464 lvl = "p4d"; 1465 p4d = p4d_alloc(&init_mm, pgd, addr); 1466 if (!p4d) 1467 goto failed; 1468 1469 if (pgtable_l5_enabled) 1470 continue; 1471 1472 lvl = "pud"; 1473 pud = pud_alloc(&init_mm, p4d, addr); 1474 if (!pud) 1475 goto failed; 1476 1477 if (pgtable_l4_enabled) 1478 continue; 1479 1480 lvl = "pmd"; 1481 pmd = pmd_alloc(&init_mm, pud, addr); 1482 if (!pmd) 1483 goto failed; 1484 } 1485 return; 1486 1487 failed: 1488 /* 1489 * The pages have to be there now or they will be missing in 1490 * process page-tables later. 1491 */ 1492 panic("Failed to pre-allocate %s pages for %s area\n", lvl, area); 1493 } 1494 1495 #define PAGE_END KASAN_SHADOW_START 1496 1497 void __init pgtable_cache_init(void) 1498 { 1499 preallocate_pgd_pages_range(VMALLOC_START, VMALLOC_END, "vmalloc"); 1500 if (IS_ENABLED(CONFIG_MODULES)) 1501 preallocate_pgd_pages_range(MODULES_VADDR, MODULES_END, "bpf/modules"); 1502 if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG)) { 1503 preallocate_pgd_pages_range(VMEMMAP_START, VMEMMAP_END, "vmemmap"); 1504 preallocate_pgd_pages_range(PAGE_OFFSET, PAGE_END, "direct map"); 1505 if (IS_ENABLED(CONFIG_KASAN)) 1506 preallocate_pgd_pages_range(KASAN_SHADOW_START, KASAN_SHADOW_END, "kasan"); 1507 } 1508 } 1509 #endif 1510 1511 #ifdef CONFIG_EXECMEM 1512 #ifdef CONFIG_MMU 1513 static struct execmem_info execmem_info __ro_after_init; 1514 1515 struct execmem_info __init *execmem_arch_setup(void) 1516 { 1517 execmem_info = (struct execmem_info){ 1518 .ranges = { 1519 [EXECMEM_DEFAULT] = { 1520 .start = MODULES_VADDR, 1521 .end = MODULES_END, 1522 .pgprot = PAGE_KERNEL, 1523 .alignment = 1, 1524 }, 1525 [EXECMEM_KPROBES] = { 1526 .start = VMALLOC_START, 1527 .end = VMALLOC_END, 1528 .pgprot = PAGE_KERNEL_READ_EXEC, 1529 .alignment = 1, 1530 }, 1531 [EXECMEM_BPF] = { 1532 .start = BPF_JIT_REGION_START, 1533 .end = BPF_JIT_REGION_END, 1534 .pgprot = PAGE_KERNEL, 1535 .alignment = PAGE_SIZE, 1536 }, 1537 }, 1538 }; 1539 1540 return &execmem_info; 1541 } 1542 #endif /* CONFIG_MMU */ 1543 #endif /* CONFIG_EXECMEM */ 1544 1545 #ifdef CONFIG_MEMORY_HOTPLUG 1546 static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd) 1547 { 1548 struct page *page = pmd_page(*pmd); 1549 struct ptdesc *ptdesc = page_ptdesc(page); 1550 pte_t *pte; 1551 int i; 1552 1553 for (i = 0; i < PTRS_PER_PTE; i++) { 1554 pte = pte_start + i; 1555 if (!pte_none(*pte)) 1556 return; 1557 } 1558 1559 pagetable_pte_dtor(ptdesc); 1560 if (PageReserved(page)) 1561 free_reserved_page(page); 1562 else 1563 pagetable_free(ptdesc); 1564 pmd_clear(pmd); 1565 } 1566 1567 static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud) 1568 { 1569 struct page *page = pud_page(*pud); 1570 struct ptdesc *ptdesc = page_ptdesc(page); 1571 pmd_t *pmd; 1572 int i; 1573 1574 for (i = 0; i < PTRS_PER_PMD; i++) { 1575 pmd = pmd_start + i; 1576 if (!pmd_none(*pmd)) 1577 return; 1578 } 1579 1580 pagetable_pmd_dtor(ptdesc); 1581 if (PageReserved(page)) 1582 free_reserved_page(page); 1583 else 1584 pagetable_free(ptdesc); 1585 pud_clear(pud); 1586 } 1587 1588 static void __meminit free_pud_table(pud_t *pud_start, p4d_t *p4d) 1589 { 1590 struct page *page = p4d_page(*p4d); 1591 pud_t *pud; 1592 int i; 1593 1594 for (i = 0; i < PTRS_PER_PUD; i++) { 1595 pud = pud_start + i; 1596 if (!pud_none(*pud)) 1597 return; 1598 } 1599 1600 if (PageReserved(page)) 1601 free_reserved_page(page); 1602 else 1603 free_pages((unsigned long)page_address(page), 0); 1604 p4d_clear(p4d); 1605 } 1606 1607 static void __meminit free_vmemmap_storage(struct page *page, size_t size, 1608 struct vmem_altmap *altmap) 1609 { 1610 int order = get_order(size); 1611 1612 if (altmap) { 1613 vmem_altmap_free(altmap, size >> PAGE_SHIFT); 1614 return; 1615 } 1616 1617 if (PageReserved(page)) { 1618 unsigned int nr_pages = 1 << order; 1619 1620 while (nr_pages--) 1621 free_reserved_page(page++); 1622 return; 1623 } 1624 1625 free_pages((unsigned long)page_address(page), order); 1626 } 1627 1628 static void __meminit remove_pte_mapping(pte_t *pte_base, unsigned long addr, unsigned long end, 1629 bool is_vmemmap, struct vmem_altmap *altmap) 1630 { 1631 unsigned long next; 1632 pte_t *ptep, pte; 1633 1634 for (; addr < end; addr = next) { 1635 next = (addr + PAGE_SIZE) & PAGE_MASK; 1636 if (next > end) 1637 next = end; 1638 1639 ptep = pte_base + pte_index(addr); 1640 pte = ptep_get(ptep); 1641 if (!pte_present(*ptep)) 1642 continue; 1643 1644 pte_clear(&init_mm, addr, ptep); 1645 if (is_vmemmap) 1646 free_vmemmap_storage(pte_page(pte), PAGE_SIZE, altmap); 1647 } 1648 } 1649 1650 static void __meminit remove_pmd_mapping(pmd_t *pmd_base, unsigned long addr, unsigned long end, 1651 bool is_vmemmap, struct vmem_altmap *altmap) 1652 { 1653 unsigned long next; 1654 pte_t *pte_base; 1655 pmd_t *pmdp, pmd; 1656 1657 for (; addr < end; addr = next) { 1658 next = pmd_addr_end(addr, end); 1659 pmdp = pmd_base + pmd_index(addr); 1660 pmd = pmdp_get(pmdp); 1661 if (!pmd_present(pmd)) 1662 continue; 1663 1664 if (pmd_leaf(pmd)) { 1665 pmd_clear(pmdp); 1666 if (is_vmemmap) 1667 free_vmemmap_storage(pmd_page(pmd), PMD_SIZE, altmap); 1668 continue; 1669 } 1670 1671 pte_base = (pte_t *)pmd_page_vaddr(*pmdp); 1672 remove_pte_mapping(pte_base, addr, next, is_vmemmap, altmap); 1673 free_pte_table(pte_base, pmdp); 1674 } 1675 } 1676 1677 static void __meminit remove_pud_mapping(pud_t *pud_base, unsigned long addr, unsigned long end, 1678 bool is_vmemmap, struct vmem_altmap *altmap) 1679 { 1680 unsigned long next; 1681 pud_t *pudp, pud; 1682 pmd_t *pmd_base; 1683 1684 for (; addr < end; addr = next) { 1685 next = pud_addr_end(addr, end); 1686 pudp = pud_base + pud_index(addr); 1687 pud = pudp_get(pudp); 1688 if (!pud_present(pud)) 1689 continue; 1690 1691 if (pud_leaf(pud)) { 1692 if (pgtable_l4_enabled) { 1693 pud_clear(pudp); 1694 if (is_vmemmap) 1695 free_vmemmap_storage(pud_page(pud), PUD_SIZE, altmap); 1696 } 1697 continue; 1698 } 1699 1700 pmd_base = pmd_offset(pudp, 0); 1701 remove_pmd_mapping(pmd_base, addr, next, is_vmemmap, altmap); 1702 1703 if (pgtable_l4_enabled) 1704 free_pmd_table(pmd_base, pudp); 1705 } 1706 } 1707 1708 static void __meminit remove_p4d_mapping(p4d_t *p4d_base, unsigned long addr, unsigned long end, 1709 bool is_vmemmap, struct vmem_altmap *altmap) 1710 { 1711 unsigned long next; 1712 p4d_t *p4dp, p4d; 1713 pud_t *pud_base; 1714 1715 for (; addr < end; addr = next) { 1716 next = p4d_addr_end(addr, end); 1717 p4dp = p4d_base + p4d_index(addr); 1718 p4d = p4dp_get(p4dp); 1719 if (!p4d_present(p4d)) 1720 continue; 1721 1722 if (p4d_leaf(p4d)) { 1723 if (pgtable_l5_enabled) { 1724 p4d_clear(p4dp); 1725 if (is_vmemmap) 1726 free_vmemmap_storage(p4d_page(p4d), P4D_SIZE, altmap); 1727 } 1728 continue; 1729 } 1730 1731 pud_base = pud_offset(p4dp, 0); 1732 remove_pud_mapping(pud_base, addr, next, is_vmemmap, altmap); 1733 1734 if (pgtable_l5_enabled) 1735 free_pud_table(pud_base, p4dp); 1736 } 1737 } 1738 1739 static void __meminit remove_pgd_mapping(unsigned long va, unsigned long end, bool is_vmemmap, 1740 struct vmem_altmap *altmap) 1741 { 1742 unsigned long addr, next; 1743 p4d_t *p4d_base; 1744 pgd_t *pgd; 1745 1746 for (addr = va; addr < end; addr = next) { 1747 next = pgd_addr_end(addr, end); 1748 pgd = pgd_offset_k(addr); 1749 1750 if (!pgd_present(*pgd)) 1751 continue; 1752 1753 if (pgd_leaf(*pgd)) 1754 continue; 1755 1756 p4d_base = p4d_offset(pgd, 0); 1757 remove_p4d_mapping(p4d_base, addr, next, is_vmemmap, altmap); 1758 } 1759 1760 flush_tlb_all(); 1761 } 1762 1763 static void __meminit remove_linear_mapping(phys_addr_t start, u64 size) 1764 { 1765 unsigned long va = (unsigned long)__va(start); 1766 unsigned long end = (unsigned long)__va(start + size); 1767 1768 remove_pgd_mapping(va, end, false, NULL); 1769 } 1770 1771 struct range arch_get_mappable_range(void) 1772 { 1773 struct range mhp_range; 1774 1775 mhp_range.start = __pa(PAGE_OFFSET); 1776 mhp_range.end = __pa(PAGE_END - 1); 1777 return mhp_range; 1778 } 1779 1780 int __ref arch_add_memory(int nid, u64 start, u64 size, struct mhp_params *params) 1781 { 1782 int ret = 0; 1783 1784 create_linear_mapping_range(start, start + size, 0, ¶ms->pgprot); 1785 ret = __add_pages(nid, start >> PAGE_SHIFT, size >> PAGE_SHIFT, params); 1786 if (ret) { 1787 remove_linear_mapping(start, size); 1788 goto out; 1789 } 1790 1791 max_pfn = PFN_UP(start + size); 1792 max_low_pfn = max_pfn; 1793 1794 out: 1795 flush_tlb_all(); 1796 return ret; 1797 } 1798 1799 void __ref arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap) 1800 { 1801 __remove_pages(start >> PAGE_SHIFT, size >> PAGE_SHIFT, altmap); 1802 remove_linear_mapping(start, size); 1803 flush_tlb_all(); 1804 } 1805 1806 void __ref vmemmap_free(unsigned long start, unsigned long end, struct vmem_altmap *altmap) 1807 { 1808 remove_pgd_mapping(start, end, true, altmap); 1809 } 1810 #endif /* CONFIG_MEMORY_HOTPLUG */ 1811
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.