~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/riscv/mm/init.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * Copyright (C) 2012 Regents of the University of California
  4  * Copyright (C) 2019 Western Digital Corporation or its affiliates.
  5  * Copyright (C) 2020 FORTH-ICS/CARV
  6  *  Nick Kossifidis <mick@ics.forth.gr>
  7  */
  8 
  9 #include <linux/init.h>
 10 #include <linux/mm.h>
 11 #include <linux/memblock.h>
 12 #include <linux/initrd.h>
 13 #include <linux/swap.h>
 14 #include <linux/swiotlb.h>
 15 #include <linux/sizes.h>
 16 #include <linux/of_fdt.h>
 17 #include <linux/of_reserved_mem.h>
 18 #include <linux/libfdt.h>
 19 #include <linux/set_memory.h>
 20 #include <linux/dma-map-ops.h>
 21 #include <linux/crash_dump.h>
 22 #include <linux/hugetlb.h>
 23 #ifdef CONFIG_RELOCATABLE
 24 #include <linux/elf.h>
 25 #endif
 26 #include <linux/kfence.h>
 27 #include <linux/execmem.h>
 28 
 29 #include <asm/fixmap.h>
 30 #include <asm/io.h>
 31 #include <asm/kasan.h>
 32 #include <asm/numa.h>
 33 #include <asm/pgtable.h>
 34 #include <asm/sections.h>
 35 #include <asm/soc.h>
 36 #include <asm/tlbflush.h>
 37 
 38 #include "../kernel/head.h"
 39 
 40 struct kernel_mapping kernel_map __ro_after_init;
 41 EXPORT_SYMBOL(kernel_map);
 42 #ifdef CONFIG_XIP_KERNEL
 43 #define kernel_map      (*(struct kernel_mapping *)XIP_FIXUP(&kernel_map))
 44 #endif
 45 
 46 #ifdef CONFIG_64BIT
 47 u64 satp_mode __ro_after_init = !IS_ENABLED(CONFIG_XIP_KERNEL) ? SATP_MODE_57 : SATP_MODE_39;
 48 #else
 49 u64 satp_mode __ro_after_init = SATP_MODE_32;
 50 #endif
 51 EXPORT_SYMBOL(satp_mode);
 52 
 53 #ifdef CONFIG_64BIT
 54 bool pgtable_l4_enabled __ro_after_init = !IS_ENABLED(CONFIG_XIP_KERNEL);
 55 bool pgtable_l5_enabled __ro_after_init = !IS_ENABLED(CONFIG_XIP_KERNEL);
 56 EXPORT_SYMBOL(pgtable_l4_enabled);
 57 EXPORT_SYMBOL(pgtable_l5_enabled);
 58 #endif
 59 
 60 phys_addr_t phys_ram_base __ro_after_init;
 61 EXPORT_SYMBOL(phys_ram_base);
 62 
 63 unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]
 64                                                         __page_aligned_bss;
 65 EXPORT_SYMBOL(empty_zero_page);
 66 
 67 extern char _start[];
 68 void *_dtb_early_va __initdata;
 69 uintptr_t _dtb_early_pa __initdata;
 70 
 71 phys_addr_t dma32_phys_limit __initdata;
 72 
 73 static void __init zone_sizes_init(void)
 74 {
 75         unsigned long max_zone_pfns[MAX_NR_ZONES] = { 0, };
 76 
 77 #ifdef CONFIG_ZONE_DMA32
 78         max_zone_pfns[ZONE_DMA32] = PFN_DOWN(dma32_phys_limit);
 79 #endif
 80         max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
 81 
 82         free_area_init(max_zone_pfns);
 83 }
 84 
 85 #if defined(CONFIG_MMU) && defined(CONFIG_DEBUG_VM)
 86 
 87 #define LOG2_SZ_1K  ilog2(SZ_1K)
 88 #define LOG2_SZ_1M  ilog2(SZ_1M)
 89 #define LOG2_SZ_1G  ilog2(SZ_1G)
 90 #define LOG2_SZ_1T  ilog2(SZ_1T)
 91 
 92 static inline void print_mlk(char *name, unsigned long b, unsigned long t)
 93 {
 94         pr_notice("%12s : 0x%08lx - 0x%08lx   (%4ld kB)\n", name, b, t,
 95                   (((t) - (b)) >> LOG2_SZ_1K));
 96 }
 97 
 98 static inline void print_mlm(char *name, unsigned long b, unsigned long t)
 99 {
100         pr_notice("%12s : 0x%08lx - 0x%08lx   (%4ld MB)\n", name, b, t,
101                   (((t) - (b)) >> LOG2_SZ_1M));
102 }
103 
104 static inline void print_mlg(char *name, unsigned long b, unsigned long t)
105 {
106         pr_notice("%12s : 0x%08lx - 0x%08lx   (%4ld GB)\n", name, b, t,
107                    (((t) - (b)) >> LOG2_SZ_1G));
108 }
109 
110 #ifdef CONFIG_64BIT
111 static inline void print_mlt(char *name, unsigned long b, unsigned long t)
112 {
113         pr_notice("%12s : 0x%08lx - 0x%08lx   (%4ld TB)\n", name, b, t,
114                    (((t) - (b)) >> LOG2_SZ_1T));
115 }
116 #else
117 #define print_mlt(n, b, t) do {} while (0)
118 #endif
119 
120 static inline void print_ml(char *name, unsigned long b, unsigned long t)
121 {
122         unsigned long diff = t - b;
123 
124         if (IS_ENABLED(CONFIG_64BIT) && (diff >> LOG2_SZ_1T) >= 10)
125                 print_mlt(name, b, t);
126         else if ((diff >> LOG2_SZ_1G) >= 10)
127                 print_mlg(name, b, t);
128         else if ((diff >> LOG2_SZ_1M) >= 10)
129                 print_mlm(name, b, t);
130         else
131                 print_mlk(name, b, t);
132 }
133 
134 static void __init print_vm_layout(void)
135 {
136         pr_notice("Virtual kernel memory layout:\n");
137         print_ml("fixmap", (unsigned long)FIXADDR_START,
138                 (unsigned long)FIXADDR_TOP);
139         print_ml("pci io", (unsigned long)PCI_IO_START,
140                 (unsigned long)PCI_IO_END);
141         print_ml("vmemmap", (unsigned long)VMEMMAP_START,
142                 (unsigned long)VMEMMAP_END);
143         print_ml("vmalloc", (unsigned long)VMALLOC_START,
144                 (unsigned long)VMALLOC_END);
145 #ifdef CONFIG_64BIT
146         print_ml("modules", (unsigned long)MODULES_VADDR,
147                 (unsigned long)MODULES_END);
148 #endif
149         print_ml("lowmem", (unsigned long)PAGE_OFFSET,
150                 (unsigned long)high_memory);
151         if (IS_ENABLED(CONFIG_64BIT)) {
152 #ifdef CONFIG_KASAN
153                 print_ml("kasan", KASAN_SHADOW_START, KASAN_SHADOW_END);
154 #endif
155 
156                 print_ml("kernel", (unsigned long)kernel_map.virt_addr,
157                          (unsigned long)ADDRESS_SPACE_END);
158         }
159 }
160 #else
161 static void print_vm_layout(void) { }
162 #endif /* CONFIG_DEBUG_VM */
163 
164 void __init mem_init(void)
165 {
166         bool swiotlb = max_pfn > PFN_DOWN(dma32_phys_limit);
167 #ifdef CONFIG_FLATMEM
168         BUG_ON(!mem_map);
169 #endif /* CONFIG_FLATMEM */
170 
171         if (IS_ENABLED(CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC) && !swiotlb &&
172             dma_cache_alignment != 1) {
173                 /*
174                  * If no bouncing needed for ZONE_DMA, allocate 1MB swiotlb
175                  * buffer per 1GB of RAM for kmalloc() bouncing on
176                  * non-coherent platforms.
177                  */
178                 unsigned long size =
179                         DIV_ROUND_UP(memblock_phys_mem_size(), 1024);
180                 swiotlb_adjust_size(min(swiotlb_size_or_default(), size));
181                 swiotlb = true;
182         }
183 
184         swiotlb_init(swiotlb, SWIOTLB_VERBOSE);
185         memblock_free_all();
186 
187         print_vm_layout();
188 }
189 
190 /* Limit the memory size via mem. */
191 static phys_addr_t memory_limit;
192 #ifdef CONFIG_XIP_KERNEL
193 #define memory_limit    (*(phys_addr_t *)XIP_FIXUP(&memory_limit))
194 #endif /* CONFIG_XIP_KERNEL */
195 
196 static int __init early_mem(char *p)
197 {
198         u64 size;
199 
200         if (!p)
201                 return 1;
202 
203         size = memparse(p, &p) & PAGE_MASK;
204         memory_limit = min_t(u64, size, memory_limit);
205 
206         pr_notice("Memory limited to %lldMB\n", (u64)memory_limit >> 20);
207 
208         return 0;
209 }
210 early_param("mem", early_mem);
211 
212 static void __init setup_bootmem(void)
213 {
214         phys_addr_t vmlinux_end = __pa_symbol(&_end);
215         phys_addr_t max_mapped_addr;
216         phys_addr_t phys_ram_end, vmlinux_start;
217 
218         if (IS_ENABLED(CONFIG_XIP_KERNEL))
219                 vmlinux_start = __pa_symbol(&_sdata);
220         else
221                 vmlinux_start = __pa_symbol(&_start);
222 
223         memblock_enforce_memory_limit(memory_limit);
224 
225         /*
226          * Make sure we align the reservation on PMD_SIZE since we will
227          * map the kernel in the linear mapping as read-only: we do not want
228          * any allocation to happen between _end and the next pmd aligned page.
229          */
230         if (IS_ENABLED(CONFIG_64BIT) && IS_ENABLED(CONFIG_STRICT_KERNEL_RWX))
231                 vmlinux_end = (vmlinux_end + PMD_SIZE - 1) & PMD_MASK;
232         /*
233          * Reserve from the start of the kernel to the end of the kernel
234          */
235         memblock_reserve(vmlinux_start, vmlinux_end - vmlinux_start);
236 
237         /*
238          * Make sure we align the start of the memory on a PMD boundary so that
239          * at worst, we map the linear mapping with PMD mappings.
240          */
241         if (!IS_ENABLED(CONFIG_XIP_KERNEL))
242                 phys_ram_base = memblock_start_of_DRAM() & PMD_MASK;
243 
244         /*
245          * In 64-bit, any use of __va/__pa before this point is wrong as we
246          * did not know the start of DRAM before.
247          */
248         if (IS_ENABLED(CONFIG_64BIT) && IS_ENABLED(CONFIG_MMU))
249                 kernel_map.va_pa_offset = PAGE_OFFSET - phys_ram_base;
250 
251         /*
252          * The size of the linear page mapping may restrict the amount of
253          * usable RAM.
254          */
255         if (IS_ENABLED(CONFIG_64BIT) && IS_ENABLED(CONFIG_MMU)) {
256                 max_mapped_addr = __pa(PAGE_OFFSET) + KERN_VIRT_SIZE;
257                 memblock_cap_memory_range(phys_ram_base,
258                                           max_mapped_addr - phys_ram_base);
259         }
260 
261         /*
262          * Reserve physical address space that would be mapped to virtual
263          * addresses greater than (void *)(-PAGE_SIZE) because:
264          *  - This memory would overlap with ERR_PTR
265          *  - This memory belongs to high memory, which is not supported
266          *
267          * This is not applicable to 64-bit kernel, because virtual addresses
268          * after (void *)(-PAGE_SIZE) are not linearly mapped: they are
269          * occupied by kernel mapping. Also it is unrealistic for high memory
270          * to exist on 64-bit platforms.
271          */
272         if (!IS_ENABLED(CONFIG_64BIT)) {
273                 max_mapped_addr = __va_to_pa_nodebug(-PAGE_SIZE);
274                 memblock_reserve(max_mapped_addr, (phys_addr_t)-max_mapped_addr);
275         }
276 
277         phys_ram_end = memblock_end_of_DRAM();
278         min_low_pfn = PFN_UP(phys_ram_base);
279         max_low_pfn = max_pfn = PFN_DOWN(phys_ram_end);
280         high_memory = (void *)(__va(PFN_PHYS(max_low_pfn)));
281 
282         dma32_phys_limit = min(4UL * SZ_1G, (unsigned long)PFN_PHYS(max_low_pfn));
283         set_max_mapnr(max_low_pfn - ARCH_PFN_OFFSET);
284 
285         reserve_initrd_mem();
286 
287         /*
288          * No allocation should be done before reserving the memory as defined
289          * in the device tree, otherwise the allocation could end up in a
290          * reserved region.
291          */
292         early_init_fdt_scan_reserved_mem();
293 
294         /*
295          * If DTB is built in, no need to reserve its memblock.
296          * Otherwise, do reserve it but avoid using
297          * early_init_fdt_reserve_self() since __pa() does
298          * not work for DTB pointers that are fixmap addresses
299          */
300         if (!IS_ENABLED(CONFIG_BUILTIN_DTB))
301                 memblock_reserve(dtb_early_pa, fdt_totalsize(dtb_early_va));
302 
303         dma_contiguous_reserve(dma32_phys_limit);
304         if (IS_ENABLED(CONFIG_64BIT))
305                 hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT);
306 }
307 
308 #ifdef CONFIG_MMU
309 struct pt_alloc_ops pt_ops __meminitdata;
310 
311 pgd_t swapper_pg_dir[PTRS_PER_PGD] __page_aligned_bss;
312 pgd_t trampoline_pg_dir[PTRS_PER_PGD] __page_aligned_bss;
313 static pte_t fixmap_pte[PTRS_PER_PTE] __page_aligned_bss;
314 
315 pgd_t early_pg_dir[PTRS_PER_PGD] __initdata __aligned(PAGE_SIZE);
316 
317 #ifdef CONFIG_XIP_KERNEL
318 #define pt_ops                  (*(struct pt_alloc_ops *)XIP_FIXUP(&pt_ops))
319 #define trampoline_pg_dir      ((pgd_t *)XIP_FIXUP(trampoline_pg_dir))
320 #define fixmap_pte             ((pte_t *)XIP_FIXUP(fixmap_pte))
321 #define early_pg_dir           ((pgd_t *)XIP_FIXUP(early_pg_dir))
322 #endif /* CONFIG_XIP_KERNEL */
323 
324 static const pgprot_t protection_map[16] = {
325         [VM_NONE]                                       = PAGE_NONE,
326         [VM_READ]                                       = PAGE_READ,
327         [VM_WRITE]                                      = PAGE_COPY,
328         [VM_WRITE | VM_READ]                            = PAGE_COPY,
329         [VM_EXEC]                                       = PAGE_EXEC,
330         [VM_EXEC | VM_READ]                             = PAGE_READ_EXEC,
331         [VM_EXEC | VM_WRITE]                            = PAGE_COPY_EXEC,
332         [VM_EXEC | VM_WRITE | VM_READ]                  = PAGE_COPY_EXEC,
333         [VM_SHARED]                                     = PAGE_NONE,
334         [VM_SHARED | VM_READ]                           = PAGE_READ,
335         [VM_SHARED | VM_WRITE]                          = PAGE_SHARED,
336         [VM_SHARED | VM_WRITE | VM_READ]                = PAGE_SHARED,
337         [VM_SHARED | VM_EXEC]                           = PAGE_EXEC,
338         [VM_SHARED | VM_EXEC | VM_READ]                 = PAGE_READ_EXEC,
339         [VM_SHARED | VM_EXEC | VM_WRITE]                = PAGE_SHARED_EXEC,
340         [VM_SHARED | VM_EXEC | VM_WRITE | VM_READ]      = PAGE_SHARED_EXEC
341 };
342 DECLARE_VM_GET_PAGE_PROT
343 
344 void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
345 {
346         unsigned long addr = __fix_to_virt(idx);
347         pte_t *ptep;
348 
349         BUG_ON(idx <= FIX_HOLE || idx >= __end_of_fixed_addresses);
350 
351         ptep = &fixmap_pte[pte_index(addr)];
352 
353         if (pgprot_val(prot))
354                 set_pte(ptep, pfn_pte(phys >> PAGE_SHIFT, prot));
355         else
356                 pte_clear(&init_mm, addr, ptep);
357         local_flush_tlb_page(addr);
358 }
359 
360 static inline pte_t *__init get_pte_virt_early(phys_addr_t pa)
361 {
362         return (pte_t *)((uintptr_t)pa);
363 }
364 
365 static inline pte_t *__init get_pte_virt_fixmap(phys_addr_t pa)
366 {
367         clear_fixmap(FIX_PTE);
368         return (pte_t *)set_fixmap_offset(FIX_PTE, pa);
369 }
370 
371 static inline pte_t *__meminit get_pte_virt_late(phys_addr_t pa)
372 {
373         return (pte_t *) __va(pa);
374 }
375 
376 static inline phys_addr_t __init alloc_pte_early(uintptr_t va)
377 {
378         /*
379          * We only create PMD or PGD early mappings so we
380          * should never reach here with MMU disabled.
381          */
382         BUG();
383 }
384 
385 static inline phys_addr_t __init alloc_pte_fixmap(uintptr_t va)
386 {
387         return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE);
388 }
389 
390 static phys_addr_t __meminit alloc_pte_late(uintptr_t va)
391 {
392         struct ptdesc *ptdesc = pagetable_alloc(GFP_KERNEL & ~__GFP_HIGHMEM, 0);
393 
394         BUG_ON(!ptdesc || !pagetable_pte_ctor(ptdesc));
395         return __pa((pte_t *)ptdesc_address(ptdesc));
396 }
397 
398 static void __meminit create_pte_mapping(pte_t *ptep, uintptr_t va, phys_addr_t pa, phys_addr_t sz,
399                                          pgprot_t prot)
400 {
401         uintptr_t pte_idx = pte_index(va);
402 
403         BUG_ON(sz != PAGE_SIZE);
404 
405         if (pte_none(ptep[pte_idx]))
406                 ptep[pte_idx] = pfn_pte(PFN_DOWN(pa), prot);
407 }
408 
409 #ifndef __PAGETABLE_PMD_FOLDED
410 
411 static pmd_t trampoline_pmd[PTRS_PER_PMD] __page_aligned_bss;
412 static pmd_t fixmap_pmd[PTRS_PER_PMD] __page_aligned_bss;
413 static pmd_t early_pmd[PTRS_PER_PMD] __initdata __aligned(PAGE_SIZE);
414 
415 #ifdef CONFIG_XIP_KERNEL
416 #define trampoline_pmd ((pmd_t *)XIP_FIXUP(trampoline_pmd))
417 #define fixmap_pmd     ((pmd_t *)XIP_FIXUP(fixmap_pmd))
418 #define early_pmd      ((pmd_t *)XIP_FIXUP(early_pmd))
419 #endif /* CONFIG_XIP_KERNEL */
420 
421 static p4d_t trampoline_p4d[PTRS_PER_P4D] __page_aligned_bss;
422 static p4d_t fixmap_p4d[PTRS_PER_P4D] __page_aligned_bss;
423 static p4d_t early_p4d[PTRS_PER_P4D] __initdata __aligned(PAGE_SIZE);
424 
425 #ifdef CONFIG_XIP_KERNEL
426 #define trampoline_p4d ((p4d_t *)XIP_FIXUP(trampoline_p4d))
427 #define fixmap_p4d     ((p4d_t *)XIP_FIXUP(fixmap_p4d))
428 #define early_p4d      ((p4d_t *)XIP_FIXUP(early_p4d))
429 #endif /* CONFIG_XIP_KERNEL */
430 
431 static pud_t trampoline_pud[PTRS_PER_PUD] __page_aligned_bss;
432 static pud_t fixmap_pud[PTRS_PER_PUD] __page_aligned_bss;
433 static pud_t early_pud[PTRS_PER_PUD] __initdata __aligned(PAGE_SIZE);
434 
435 #ifdef CONFIG_XIP_KERNEL
436 #define trampoline_pud ((pud_t *)XIP_FIXUP(trampoline_pud))
437 #define fixmap_pud     ((pud_t *)XIP_FIXUP(fixmap_pud))
438 #define early_pud      ((pud_t *)XIP_FIXUP(early_pud))
439 #endif /* CONFIG_XIP_KERNEL */
440 
441 static pmd_t *__init get_pmd_virt_early(phys_addr_t pa)
442 {
443         /* Before MMU is enabled */
444         return (pmd_t *)((uintptr_t)pa);
445 }
446 
447 static pmd_t *__init get_pmd_virt_fixmap(phys_addr_t pa)
448 {
449         clear_fixmap(FIX_PMD);
450         return (pmd_t *)set_fixmap_offset(FIX_PMD, pa);
451 }
452 
453 static pmd_t *__meminit get_pmd_virt_late(phys_addr_t pa)
454 {
455         return (pmd_t *) __va(pa);
456 }
457 
458 static phys_addr_t __init alloc_pmd_early(uintptr_t va)
459 {
460         BUG_ON((va - kernel_map.virt_addr) >> PUD_SHIFT);
461 
462         return (uintptr_t)early_pmd;
463 }
464 
465 static phys_addr_t __init alloc_pmd_fixmap(uintptr_t va)
466 {
467         return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE);
468 }
469 
470 static phys_addr_t __meminit alloc_pmd_late(uintptr_t va)
471 {
472         struct ptdesc *ptdesc = pagetable_alloc(GFP_KERNEL & ~__GFP_HIGHMEM, 0);
473 
474         BUG_ON(!ptdesc || !pagetable_pmd_ctor(ptdesc));
475         return __pa((pmd_t *)ptdesc_address(ptdesc));
476 }
477 
478 static void __meminit create_pmd_mapping(pmd_t *pmdp,
479                                          uintptr_t va, phys_addr_t pa,
480                                          phys_addr_t sz, pgprot_t prot)
481 {
482         pte_t *ptep;
483         phys_addr_t pte_phys;
484         uintptr_t pmd_idx = pmd_index(va);
485 
486         if (sz == PMD_SIZE) {
487                 if (pmd_none(pmdp[pmd_idx]))
488                         pmdp[pmd_idx] = pfn_pmd(PFN_DOWN(pa), prot);
489                 return;
490         }
491 
492         if (pmd_none(pmdp[pmd_idx])) {
493                 pte_phys = pt_ops.alloc_pte(va);
494                 pmdp[pmd_idx] = pfn_pmd(PFN_DOWN(pte_phys), PAGE_TABLE);
495                 ptep = pt_ops.get_pte_virt(pte_phys);
496                 memset(ptep, 0, PAGE_SIZE);
497         } else {
498                 pte_phys = PFN_PHYS(_pmd_pfn(pmdp[pmd_idx]));
499                 ptep = pt_ops.get_pte_virt(pte_phys);
500         }
501 
502         create_pte_mapping(ptep, va, pa, sz, prot);
503 }
504 
505 static pud_t *__init get_pud_virt_early(phys_addr_t pa)
506 {
507         return (pud_t *)((uintptr_t)pa);
508 }
509 
510 static pud_t *__init get_pud_virt_fixmap(phys_addr_t pa)
511 {
512         clear_fixmap(FIX_PUD);
513         return (pud_t *)set_fixmap_offset(FIX_PUD, pa);
514 }
515 
516 static pud_t *__meminit get_pud_virt_late(phys_addr_t pa)
517 {
518         return (pud_t *)__va(pa);
519 }
520 
521 static phys_addr_t __init alloc_pud_early(uintptr_t va)
522 {
523         /* Only one PUD is available for early mapping */
524         BUG_ON((va - kernel_map.virt_addr) >> PGDIR_SHIFT);
525 
526         return (uintptr_t)early_pud;
527 }
528 
529 static phys_addr_t __init alloc_pud_fixmap(uintptr_t va)
530 {
531         return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE);
532 }
533 
534 static phys_addr_t __meminit alloc_pud_late(uintptr_t va)
535 {
536         unsigned long vaddr;
537 
538         vaddr = __get_free_page(GFP_KERNEL);
539         BUG_ON(!vaddr);
540         return __pa(vaddr);
541 }
542 
543 static p4d_t *__init get_p4d_virt_early(phys_addr_t pa)
544 {
545         return (p4d_t *)((uintptr_t)pa);
546 }
547 
548 static p4d_t *__init get_p4d_virt_fixmap(phys_addr_t pa)
549 {
550         clear_fixmap(FIX_P4D);
551         return (p4d_t *)set_fixmap_offset(FIX_P4D, pa);
552 }
553 
554 static p4d_t *__meminit get_p4d_virt_late(phys_addr_t pa)
555 {
556         return (p4d_t *)__va(pa);
557 }
558 
559 static phys_addr_t __init alloc_p4d_early(uintptr_t va)
560 {
561         /* Only one P4D is available for early mapping */
562         BUG_ON((va - kernel_map.virt_addr) >> PGDIR_SHIFT);
563 
564         return (uintptr_t)early_p4d;
565 }
566 
567 static phys_addr_t __init alloc_p4d_fixmap(uintptr_t va)
568 {
569         return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE);
570 }
571 
572 static phys_addr_t __meminit alloc_p4d_late(uintptr_t va)
573 {
574         unsigned long vaddr;
575 
576         vaddr = __get_free_page(GFP_KERNEL);
577         BUG_ON(!vaddr);
578         return __pa(vaddr);
579 }
580 
581 static void __meminit create_pud_mapping(pud_t *pudp, uintptr_t va, phys_addr_t pa, phys_addr_t sz,
582                                          pgprot_t prot)
583 {
584         pmd_t *nextp;
585         phys_addr_t next_phys;
586         uintptr_t pud_index = pud_index(va);
587 
588         if (sz == PUD_SIZE) {
589                 if (pud_val(pudp[pud_index]) == 0)
590                         pudp[pud_index] = pfn_pud(PFN_DOWN(pa), prot);
591                 return;
592         }
593 
594         if (pud_val(pudp[pud_index]) == 0) {
595                 next_phys = pt_ops.alloc_pmd(va);
596                 pudp[pud_index] = pfn_pud(PFN_DOWN(next_phys), PAGE_TABLE);
597                 nextp = pt_ops.get_pmd_virt(next_phys);
598                 memset(nextp, 0, PAGE_SIZE);
599         } else {
600                 next_phys = PFN_PHYS(_pud_pfn(pudp[pud_index]));
601                 nextp = pt_ops.get_pmd_virt(next_phys);
602         }
603 
604         create_pmd_mapping(nextp, va, pa, sz, prot);
605 }
606 
607 static void __meminit create_p4d_mapping(p4d_t *p4dp, uintptr_t va, phys_addr_t pa, phys_addr_t sz,
608                                          pgprot_t prot)
609 {
610         pud_t *nextp;
611         phys_addr_t next_phys;
612         uintptr_t p4d_index = p4d_index(va);
613 
614         if (sz == P4D_SIZE) {
615                 if (p4d_val(p4dp[p4d_index]) == 0)
616                         p4dp[p4d_index] = pfn_p4d(PFN_DOWN(pa), prot);
617                 return;
618         }
619 
620         if (p4d_val(p4dp[p4d_index]) == 0) {
621                 next_phys = pt_ops.alloc_pud(va);
622                 p4dp[p4d_index] = pfn_p4d(PFN_DOWN(next_phys), PAGE_TABLE);
623                 nextp = pt_ops.get_pud_virt(next_phys);
624                 memset(nextp, 0, PAGE_SIZE);
625         } else {
626                 next_phys = PFN_PHYS(_p4d_pfn(p4dp[p4d_index]));
627                 nextp = pt_ops.get_pud_virt(next_phys);
628         }
629 
630         create_pud_mapping(nextp, va, pa, sz, prot);
631 }
632 
633 #define pgd_next_t              p4d_t
634 #define alloc_pgd_next(__va)    (pgtable_l5_enabled ?                   \
635                 pt_ops.alloc_p4d(__va) : (pgtable_l4_enabled ?          \
636                 pt_ops.alloc_pud(__va) : pt_ops.alloc_pmd(__va)))
637 #define get_pgd_next_virt(__pa) (pgtable_l5_enabled ?                   \
638                 pt_ops.get_p4d_virt(__pa) : (pgd_next_t *)(pgtable_l4_enabled ? \
639                 pt_ops.get_pud_virt(__pa) : (pud_t *)pt_ops.get_pmd_virt(__pa)))
640 #define create_pgd_next_mapping(__nextp, __va, __pa, __sz, __prot)      \
641                                 (pgtable_l5_enabled ?                   \
642                 create_p4d_mapping(__nextp, __va, __pa, __sz, __prot) : \
643                                 (pgtable_l4_enabled ?                   \
644                 create_pud_mapping((pud_t *)__nextp, __va, __pa, __sz, __prot) :        \
645                 create_pmd_mapping((pmd_t *)__nextp, __va, __pa, __sz, __prot)))
646 #define fixmap_pgd_next         (pgtable_l5_enabled ?                   \
647                 (uintptr_t)fixmap_p4d : (pgtable_l4_enabled ?           \
648                 (uintptr_t)fixmap_pud : (uintptr_t)fixmap_pmd))
649 #define trampoline_pgd_next     (pgtable_l5_enabled ?                   \
650                 (uintptr_t)trampoline_p4d : (pgtable_l4_enabled ?       \
651                 (uintptr_t)trampoline_pud : (uintptr_t)trampoline_pmd))
652 #else
653 #define pgd_next_t              pte_t
654 #define alloc_pgd_next(__va)    pt_ops.alloc_pte(__va)
655 #define get_pgd_next_virt(__pa) pt_ops.get_pte_virt(__pa)
656 #define create_pgd_next_mapping(__nextp, __va, __pa, __sz, __prot)      \
657         create_pte_mapping(__nextp, __va, __pa, __sz, __prot)
658 #define fixmap_pgd_next         ((uintptr_t)fixmap_pte)
659 #define create_p4d_mapping(__pmdp, __va, __pa, __sz, __prot) do {} while(0)
660 #define create_pud_mapping(__pmdp, __va, __pa, __sz, __prot) do {} while(0)
661 #define create_pmd_mapping(__pmdp, __va, __pa, __sz, __prot) do {} while(0)
662 #endif /* __PAGETABLE_PMD_FOLDED */
663 
664 void __meminit create_pgd_mapping(pgd_t *pgdp, uintptr_t va, phys_addr_t pa, phys_addr_t sz,
665                                   pgprot_t prot)
666 {
667         pgd_next_t *nextp;
668         phys_addr_t next_phys;
669         uintptr_t pgd_idx = pgd_index(va);
670 
671         if (sz == PGDIR_SIZE) {
672                 if (pgd_val(pgdp[pgd_idx]) == 0)
673                         pgdp[pgd_idx] = pfn_pgd(PFN_DOWN(pa), prot);
674                 return;
675         }
676 
677         if (pgd_val(pgdp[pgd_idx]) == 0) {
678                 next_phys = alloc_pgd_next(va);
679                 pgdp[pgd_idx] = pfn_pgd(PFN_DOWN(next_phys), PAGE_TABLE);
680                 nextp = get_pgd_next_virt(next_phys);
681                 memset(nextp, 0, PAGE_SIZE);
682         } else {
683                 next_phys = PFN_PHYS(_pgd_pfn(pgdp[pgd_idx]));
684                 nextp = get_pgd_next_virt(next_phys);
685         }
686 
687         create_pgd_next_mapping(nextp, va, pa, sz, prot);
688 }
689 
690 static uintptr_t __meminit best_map_size(phys_addr_t pa, uintptr_t va, phys_addr_t size)
691 {
692         if (debug_pagealloc_enabled())
693                 return PAGE_SIZE;
694 
695         if (pgtable_l5_enabled &&
696             !(pa & (P4D_SIZE - 1)) && !(va & (P4D_SIZE - 1)) && size >= P4D_SIZE)
697                 return P4D_SIZE;
698 
699         if (pgtable_l4_enabled &&
700             !(pa & (PUD_SIZE - 1)) && !(va & (PUD_SIZE - 1)) && size >= PUD_SIZE)
701                 return PUD_SIZE;
702 
703         if (IS_ENABLED(CONFIG_64BIT) &&
704             !(pa & (PMD_SIZE - 1)) && !(va & (PMD_SIZE - 1)) && size >= PMD_SIZE)
705                 return PMD_SIZE;
706 
707         return PAGE_SIZE;
708 }
709 
710 #ifdef CONFIG_XIP_KERNEL
711 #define phys_ram_base  (*(phys_addr_t *)XIP_FIXUP(&phys_ram_base))
712 extern char _xiprom[], _exiprom[], __data_loc;
713 
714 /* called from head.S with MMU off */
715 asmlinkage void __init __copy_data(void)
716 {
717         void *from = (void *)(&__data_loc);
718         void *to = (void *)CONFIG_PHYS_RAM_BASE;
719         size_t sz = (size_t)((uintptr_t)(&_end) - (uintptr_t)(&_sdata));
720 
721         memcpy(to, from, sz);
722 }
723 #endif
724 
725 #ifdef CONFIG_STRICT_KERNEL_RWX
726 static __meminit pgprot_t pgprot_from_va(uintptr_t va)
727 {
728         if (is_va_kernel_text(va))
729                 return PAGE_KERNEL_READ_EXEC;
730 
731         /*
732          * In 64-bit kernel, the kernel mapping is outside the linear mapping so
733          * we must protect its linear mapping alias from being executed and
734          * written.
735          * And rodata section is marked readonly in mark_rodata_ro.
736          */
737         if (IS_ENABLED(CONFIG_64BIT) && is_va_kernel_lm_alias_text(va))
738                 return PAGE_KERNEL_READ;
739 
740         return PAGE_KERNEL;
741 }
742 
743 void mark_rodata_ro(void)
744 {
745         set_kernel_memory(__start_rodata, _data, set_memory_ro);
746         if (IS_ENABLED(CONFIG_64BIT))
747                 set_kernel_memory(lm_alias(__start_rodata), lm_alias(_data),
748                                   set_memory_ro);
749 }
750 #else
751 static __meminit pgprot_t pgprot_from_va(uintptr_t va)
752 {
753         if (IS_ENABLED(CONFIG_64BIT) && !is_kernel_mapping(va))
754                 return PAGE_KERNEL;
755 
756         return PAGE_KERNEL_EXEC;
757 }
758 #endif /* CONFIG_STRICT_KERNEL_RWX */
759 
760 #if defined(CONFIG_64BIT) && !defined(CONFIG_XIP_KERNEL)
761 u64 __pi_set_satp_mode_from_cmdline(uintptr_t dtb_pa);
762 
763 static void __init disable_pgtable_l5(void)
764 {
765         pgtable_l5_enabled = false;
766         kernel_map.page_offset = PAGE_OFFSET_L4;
767         satp_mode = SATP_MODE_48;
768 }
769 
770 static void __init disable_pgtable_l4(void)
771 {
772         pgtable_l4_enabled = false;
773         kernel_map.page_offset = PAGE_OFFSET_L3;
774         satp_mode = SATP_MODE_39;
775 }
776 
777 static int __init print_no4lvl(char *p)
778 {
779         pr_info("Disabled 4-level and 5-level paging");
780         return 0;
781 }
782 early_param("no4lvl", print_no4lvl);
783 
784 static int __init print_no5lvl(char *p)
785 {
786         pr_info("Disabled 5-level paging");
787         return 0;
788 }
789 early_param("no5lvl", print_no5lvl);
790 
791 static void __init set_mmap_rnd_bits_max(void)
792 {
793         mmap_rnd_bits_max = MMAP_VA_BITS - PAGE_SHIFT - 3;
794 }
795 
796 /*
797  * There is a simple way to determine if 4-level is supported by the
798  * underlying hardware: establish 1:1 mapping in 4-level page table mode
799  * then read SATP to see if the configuration was taken into account
800  * meaning sv48 is supported.
801  */
802 static __init void set_satp_mode(uintptr_t dtb_pa)
803 {
804         u64 identity_satp, hw_satp;
805         uintptr_t set_satp_mode_pmd = ((unsigned long)set_satp_mode) & PMD_MASK;
806         u64 satp_mode_cmdline = __pi_set_satp_mode_from_cmdline(dtb_pa);
807 
808         if (satp_mode_cmdline == SATP_MODE_57) {
809                 disable_pgtable_l5();
810         } else if (satp_mode_cmdline == SATP_MODE_48) {
811                 disable_pgtable_l5();
812                 disable_pgtable_l4();
813                 return;
814         }
815 
816         create_p4d_mapping(early_p4d,
817                         set_satp_mode_pmd, (uintptr_t)early_pud,
818                         P4D_SIZE, PAGE_TABLE);
819         create_pud_mapping(early_pud,
820                            set_satp_mode_pmd, (uintptr_t)early_pmd,
821                            PUD_SIZE, PAGE_TABLE);
822         /* Handle the case where set_satp_mode straddles 2 PMDs */
823         create_pmd_mapping(early_pmd,
824                            set_satp_mode_pmd, set_satp_mode_pmd,
825                            PMD_SIZE, PAGE_KERNEL_EXEC);
826         create_pmd_mapping(early_pmd,
827                            set_satp_mode_pmd + PMD_SIZE,
828                            set_satp_mode_pmd + PMD_SIZE,
829                            PMD_SIZE, PAGE_KERNEL_EXEC);
830 retry:
831         create_pgd_mapping(early_pg_dir,
832                            set_satp_mode_pmd,
833                            pgtable_l5_enabled ?
834                                 (uintptr_t)early_p4d : (uintptr_t)early_pud,
835                            PGDIR_SIZE, PAGE_TABLE);
836 
837         identity_satp = PFN_DOWN((uintptr_t)&early_pg_dir) | satp_mode;
838 
839         local_flush_tlb_all();
840         csr_write(CSR_SATP, identity_satp);
841         hw_satp = csr_swap(CSR_SATP, 0ULL);
842         local_flush_tlb_all();
843 
844         if (hw_satp != identity_satp) {
845                 if (pgtable_l5_enabled) {
846                         disable_pgtable_l5();
847                         memset(early_pg_dir, 0, PAGE_SIZE);
848                         goto retry;
849                 }
850                 disable_pgtable_l4();
851         }
852 
853         memset(early_pg_dir, 0, PAGE_SIZE);
854         memset(early_p4d, 0, PAGE_SIZE);
855         memset(early_pud, 0, PAGE_SIZE);
856         memset(early_pmd, 0, PAGE_SIZE);
857 }
858 #endif
859 
860 /*
861  * setup_vm() is called from head.S with MMU-off.
862  *
863  * Following requirements should be honoured for setup_vm() to work
864  * correctly:
865  * 1) It should use PC-relative addressing for accessing kernel symbols.
866  *    To achieve this we always use GCC cmodel=medany.
867  * 2) The compiler instrumentation for FTRACE will not work for setup_vm()
868  *    so disable compiler instrumentation when FTRACE is enabled.
869  *
870  * Currently, the above requirements are honoured by using custom CFLAGS
871  * for init.o in mm/Makefile.
872  */
873 
874 #ifndef __riscv_cmodel_medany
875 #error "setup_vm() is called from head.S before relocate so it should not use absolute addressing."
876 #endif
877 
878 #ifdef CONFIG_RELOCATABLE
879 extern unsigned long __rela_dyn_start, __rela_dyn_end;
880 
881 static void __init relocate_kernel(void)
882 {
883         Elf64_Rela *rela = (Elf64_Rela *)&__rela_dyn_start;
884         /*
885          * This holds the offset between the linked virtual address and the
886          * relocated virtual address.
887          */
888         uintptr_t reloc_offset = kernel_map.virt_addr - KERNEL_LINK_ADDR;
889         /*
890          * This holds the offset between kernel linked virtual address and
891          * physical address.
892          */
893         uintptr_t va_kernel_link_pa_offset = KERNEL_LINK_ADDR - kernel_map.phys_addr;
894 
895         for ( ; rela < (Elf64_Rela *)&__rela_dyn_end; rela++) {
896                 Elf64_Addr addr = (rela->r_offset - va_kernel_link_pa_offset);
897                 Elf64_Addr relocated_addr = rela->r_addend;
898 
899                 if (rela->r_info != R_RISCV_RELATIVE)
900                         continue;
901 
902                 /*
903                  * Make sure to not relocate vdso symbols like rt_sigreturn
904                  * which are linked from the address 0 in vmlinux since
905                  * vdso symbol addresses are actually used as an offset from
906                  * mm->context.vdso in VDSO_OFFSET macro.
907                  */
908                 if (relocated_addr >= KERNEL_LINK_ADDR)
909                         relocated_addr += reloc_offset;
910 
911                 *(Elf64_Addr *)addr = relocated_addr;
912         }
913 }
914 #endif /* CONFIG_RELOCATABLE */
915 
916 #ifdef CONFIG_XIP_KERNEL
917 static void __init create_kernel_page_table(pgd_t *pgdir,
918                                             __always_unused bool early)
919 {
920         uintptr_t va, end_va;
921 
922         /* Map the flash resident part */
923         end_va = kernel_map.virt_addr + kernel_map.xiprom_sz;
924         for (va = kernel_map.virt_addr; va < end_va; va += PMD_SIZE)
925                 create_pgd_mapping(pgdir, va,
926                                    kernel_map.xiprom + (va - kernel_map.virt_addr),
927                                    PMD_SIZE, PAGE_KERNEL_EXEC);
928 
929         /* Map the data in RAM */
930         end_va = kernel_map.virt_addr + kernel_map.size;
931         for (va = kernel_map.virt_addr + XIP_OFFSET; va < end_va; va += PMD_SIZE)
932                 create_pgd_mapping(pgdir, va,
933                                    kernel_map.phys_addr + (va - (kernel_map.virt_addr + XIP_OFFSET)),
934                                    PMD_SIZE, PAGE_KERNEL);
935 }
936 #else
937 static void __init create_kernel_page_table(pgd_t *pgdir, bool early)
938 {
939         uintptr_t va, end_va;
940 
941         end_va = kernel_map.virt_addr + kernel_map.size;
942         for (va = kernel_map.virt_addr; va < end_va; va += PMD_SIZE)
943                 create_pgd_mapping(pgdir, va,
944                                    kernel_map.phys_addr + (va - kernel_map.virt_addr),
945                                    PMD_SIZE,
946                                    early ?
947                                         PAGE_KERNEL_EXEC : pgprot_from_va(va));
948 }
949 #endif
950 
951 /*
952  * Setup a 4MB mapping that encompasses the device tree: for 64-bit kernel,
953  * this means 2 PMD entries whereas for 32-bit kernel, this is only 1 PGDIR
954  * entry.
955  */
956 static void __init create_fdt_early_page_table(uintptr_t fix_fdt_va,
957                                                uintptr_t dtb_pa)
958 {
959 #ifndef CONFIG_BUILTIN_DTB
960         uintptr_t pa = dtb_pa & ~(PMD_SIZE - 1);
961 
962         /* Make sure the fdt fixmap address is always aligned on PMD size */
963         BUILD_BUG_ON(FIX_FDT % (PMD_SIZE / PAGE_SIZE));
964 
965         /* In 32-bit only, the fdt lies in its own PGD */
966         if (!IS_ENABLED(CONFIG_64BIT)) {
967                 create_pgd_mapping(early_pg_dir, fix_fdt_va,
968                                    pa, MAX_FDT_SIZE, PAGE_KERNEL);
969         } else {
970                 create_pmd_mapping(fixmap_pmd, fix_fdt_va,
971                                    pa, PMD_SIZE, PAGE_KERNEL);
972                 create_pmd_mapping(fixmap_pmd, fix_fdt_va + PMD_SIZE,
973                                    pa + PMD_SIZE, PMD_SIZE, PAGE_KERNEL);
974         }
975 
976         dtb_early_va = (void *)fix_fdt_va + (dtb_pa & (PMD_SIZE - 1));
977 #else
978         /*
979          * For 64-bit kernel, __va can't be used since it would return a linear
980          * mapping address whereas dtb_early_va will be used before
981          * setup_vm_final installs the linear mapping. For 32-bit kernel, as the
982          * kernel is mapped in the linear mapping, that makes no difference.
983          */
984         dtb_early_va = kernel_mapping_pa_to_va(dtb_pa);
985 #endif
986 
987         dtb_early_pa = dtb_pa;
988 }
989 
990 /*
991  * MMU is not enabled, the page tables are allocated directly using
992  * early_pmd/pud/p4d and the address returned is the physical one.
993  */
994 static void __init pt_ops_set_early(void)
995 {
996         pt_ops.alloc_pte = alloc_pte_early;
997         pt_ops.get_pte_virt = get_pte_virt_early;
998 #ifndef __PAGETABLE_PMD_FOLDED
999         pt_ops.alloc_pmd = alloc_pmd_early;
1000         pt_ops.get_pmd_virt = get_pmd_virt_early;
1001         pt_ops.alloc_pud = alloc_pud_early;
1002         pt_ops.get_pud_virt = get_pud_virt_early;
1003         pt_ops.alloc_p4d = alloc_p4d_early;
1004         pt_ops.get_p4d_virt = get_p4d_virt_early;
1005 #endif
1006 }
1007 
1008 /*
1009  * MMU is enabled but page table setup is not complete yet.
1010  * fixmap page table alloc functions must be used as a means to temporarily
1011  * map the allocated physical pages since the linear mapping does not exist yet.
1012  *
1013  * Note that this is called with MMU disabled, hence kernel_mapping_pa_to_va,
1014  * but it will be used as described above.
1015  */
1016 static void __init pt_ops_set_fixmap(void)
1017 {
1018         pt_ops.alloc_pte = kernel_mapping_pa_to_va(alloc_pte_fixmap);
1019         pt_ops.get_pte_virt = kernel_mapping_pa_to_va(get_pte_virt_fixmap);
1020 #ifndef __PAGETABLE_PMD_FOLDED
1021         pt_ops.alloc_pmd = kernel_mapping_pa_to_va(alloc_pmd_fixmap);
1022         pt_ops.get_pmd_virt = kernel_mapping_pa_to_va(get_pmd_virt_fixmap);
1023         pt_ops.alloc_pud = kernel_mapping_pa_to_va(alloc_pud_fixmap);
1024         pt_ops.get_pud_virt = kernel_mapping_pa_to_va(get_pud_virt_fixmap);
1025         pt_ops.alloc_p4d = kernel_mapping_pa_to_va(alloc_p4d_fixmap);
1026         pt_ops.get_p4d_virt = kernel_mapping_pa_to_va(get_p4d_virt_fixmap);
1027 #endif
1028 }
1029 
1030 /*
1031  * MMU is enabled and page table setup is complete, so from now, we can use
1032  * generic page allocation functions to setup page table.
1033  */
1034 static void __init pt_ops_set_late(void)
1035 {
1036         pt_ops.alloc_pte = alloc_pte_late;
1037         pt_ops.get_pte_virt = get_pte_virt_late;
1038 #ifndef __PAGETABLE_PMD_FOLDED
1039         pt_ops.alloc_pmd = alloc_pmd_late;
1040         pt_ops.get_pmd_virt = get_pmd_virt_late;
1041         pt_ops.alloc_pud = alloc_pud_late;
1042         pt_ops.get_pud_virt = get_pud_virt_late;
1043         pt_ops.alloc_p4d = alloc_p4d_late;
1044         pt_ops.get_p4d_virt = get_p4d_virt_late;
1045 #endif
1046 }
1047 
1048 #ifdef CONFIG_RANDOMIZE_BASE
1049 extern bool __init __pi_set_nokaslr_from_cmdline(uintptr_t dtb_pa);
1050 extern u64 __init __pi_get_kaslr_seed(uintptr_t dtb_pa);
1051 
1052 static int __init print_nokaslr(char *p)
1053 {
1054         pr_info("Disabled KASLR");
1055         return 0;
1056 }
1057 early_param("nokaslr", print_nokaslr);
1058 
1059 unsigned long kaslr_offset(void)
1060 {
1061         return kernel_map.virt_offset;
1062 }
1063 #endif
1064 
1065 asmlinkage void __init setup_vm(uintptr_t dtb_pa)
1066 {
1067         pmd_t __maybe_unused fix_bmap_spmd, fix_bmap_epmd;
1068 
1069 #ifdef CONFIG_RANDOMIZE_BASE
1070         if (!__pi_set_nokaslr_from_cmdline(dtb_pa)) {
1071                 u64 kaslr_seed = __pi_get_kaslr_seed(dtb_pa);
1072                 u32 kernel_size = (uintptr_t)(&_end) - (uintptr_t)(&_start);
1073                 u32 nr_pos;
1074 
1075                 /*
1076                  * Compute the number of positions available: we are limited
1077                  * by the early page table that only has one PUD and we must
1078                  * be aligned on PMD_SIZE.
1079                  */
1080                 nr_pos = (PUD_SIZE - kernel_size) / PMD_SIZE;
1081 
1082                 kernel_map.virt_offset = (kaslr_seed % nr_pos) * PMD_SIZE;
1083         }
1084 #endif
1085 
1086         kernel_map.virt_addr = KERNEL_LINK_ADDR + kernel_map.virt_offset;
1087 
1088 #ifdef CONFIG_XIP_KERNEL
1089 #ifdef CONFIG_64BIT
1090         kernel_map.page_offset = PAGE_OFFSET_L3;
1091 #else
1092         kernel_map.page_offset = _AC(CONFIG_PAGE_OFFSET, UL);
1093 #endif
1094         kernel_map.xiprom = (uintptr_t)CONFIG_XIP_PHYS_ADDR;
1095         kernel_map.xiprom_sz = (uintptr_t)(&_exiprom) - (uintptr_t)(&_xiprom);
1096 
1097         phys_ram_base = CONFIG_PHYS_RAM_BASE;
1098         kernel_map.phys_addr = (uintptr_t)CONFIG_PHYS_RAM_BASE;
1099         kernel_map.size = (uintptr_t)(&_end) - (uintptr_t)(&_start);
1100 
1101         kernel_map.va_kernel_xip_pa_offset = kernel_map.virt_addr - kernel_map.xiprom;
1102 #else
1103         kernel_map.page_offset = _AC(CONFIG_PAGE_OFFSET, UL);
1104         kernel_map.phys_addr = (uintptr_t)(&_start);
1105         kernel_map.size = (uintptr_t)(&_end) - kernel_map.phys_addr;
1106 #endif
1107 
1108 #if defined(CONFIG_64BIT) && !defined(CONFIG_XIP_KERNEL)
1109         set_satp_mode(dtb_pa);
1110         set_mmap_rnd_bits_max();
1111 #endif
1112 
1113         /*
1114          * In 64-bit, we defer the setup of va_pa_offset to setup_bootmem,
1115          * where we have the system memory layout: this allows us to align
1116          * the physical and virtual mappings and then make use of PUD/P4D/PGD
1117          * for the linear mapping. This is only possible because the kernel
1118          * mapping lies outside the linear mapping.
1119          * In 32-bit however, as the kernel resides in the linear mapping,
1120          * setup_vm_final can not change the mapping established here,
1121          * otherwise the same kernel addresses would get mapped to different
1122          * physical addresses (if the start of dram is different from the
1123          * kernel physical address start).
1124          */
1125         kernel_map.va_pa_offset = IS_ENABLED(CONFIG_64BIT) ?
1126                                 0UL : PAGE_OFFSET - kernel_map.phys_addr;
1127         kernel_map.va_kernel_pa_offset = kernel_map.virt_addr - kernel_map.phys_addr;
1128 
1129         /*
1130          * The default maximal physical memory size is KERN_VIRT_SIZE for 32-bit
1131          * kernel, whereas for 64-bit kernel, the end of the virtual address
1132          * space is occupied by the modules/BPF/kernel mappings which reduces
1133          * the available size of the linear mapping.
1134          */
1135         memory_limit = KERN_VIRT_SIZE - (IS_ENABLED(CONFIG_64BIT) ? SZ_4G : 0);
1136 
1137         /* Sanity check alignment and size */
1138         BUG_ON((PAGE_OFFSET % PGDIR_SIZE) != 0);
1139         BUG_ON((kernel_map.phys_addr % PMD_SIZE) != 0);
1140 
1141 #ifdef CONFIG_64BIT
1142         /*
1143          * The last 4K bytes of the addressable memory can not be mapped because
1144          * of IS_ERR_VALUE macro.
1145          */
1146         BUG_ON((kernel_map.virt_addr + kernel_map.size) > ADDRESS_SPACE_END - SZ_4K);
1147 #endif
1148 
1149 #ifdef CONFIG_RELOCATABLE
1150         /*
1151          * Early page table uses only one PUD, which makes it possible
1152          * to map PUD_SIZE aligned on PUD_SIZE: if the relocation offset
1153          * makes the kernel cross over a PUD_SIZE boundary, raise a bug
1154          * since a part of the kernel would not get mapped.
1155          */
1156         BUG_ON(PUD_SIZE - (kernel_map.virt_addr & (PUD_SIZE - 1)) < kernel_map.size);
1157         relocate_kernel();
1158 #endif
1159 
1160         apply_early_boot_alternatives();
1161         pt_ops_set_early();
1162 
1163         /* Setup early PGD for fixmap */
1164         create_pgd_mapping(early_pg_dir, FIXADDR_START,
1165                            fixmap_pgd_next, PGDIR_SIZE, PAGE_TABLE);
1166 
1167 #ifndef __PAGETABLE_PMD_FOLDED
1168         /* Setup fixmap P4D and PUD */
1169         if (pgtable_l5_enabled)
1170                 create_p4d_mapping(fixmap_p4d, FIXADDR_START,
1171                                    (uintptr_t)fixmap_pud, P4D_SIZE, PAGE_TABLE);
1172         /* Setup fixmap PUD and PMD */
1173         if (pgtable_l4_enabled)
1174                 create_pud_mapping(fixmap_pud, FIXADDR_START,
1175                                    (uintptr_t)fixmap_pmd, PUD_SIZE, PAGE_TABLE);
1176         create_pmd_mapping(fixmap_pmd, FIXADDR_START,
1177                            (uintptr_t)fixmap_pte, PMD_SIZE, PAGE_TABLE);
1178         /* Setup trampoline PGD and PMD */
1179         create_pgd_mapping(trampoline_pg_dir, kernel_map.virt_addr,
1180                            trampoline_pgd_next, PGDIR_SIZE, PAGE_TABLE);
1181         if (pgtable_l5_enabled)
1182                 create_p4d_mapping(trampoline_p4d, kernel_map.virt_addr,
1183                                    (uintptr_t)trampoline_pud, P4D_SIZE, PAGE_TABLE);
1184         if (pgtable_l4_enabled)
1185                 create_pud_mapping(trampoline_pud, kernel_map.virt_addr,
1186                                    (uintptr_t)trampoline_pmd, PUD_SIZE, PAGE_TABLE);
1187 #ifdef CONFIG_XIP_KERNEL
1188         create_pmd_mapping(trampoline_pmd, kernel_map.virt_addr,
1189                            kernel_map.xiprom, PMD_SIZE, PAGE_KERNEL_EXEC);
1190 #else
1191         create_pmd_mapping(trampoline_pmd, kernel_map.virt_addr,
1192                            kernel_map.phys_addr, PMD_SIZE, PAGE_KERNEL_EXEC);
1193 #endif
1194 #else
1195         /* Setup trampoline PGD */
1196         create_pgd_mapping(trampoline_pg_dir, kernel_map.virt_addr,
1197                            kernel_map.phys_addr, PGDIR_SIZE, PAGE_KERNEL_EXEC);
1198 #endif
1199 
1200         /*
1201          * Setup early PGD covering entire kernel which will allow
1202          * us to reach paging_init(). We map all memory banks later
1203          * in setup_vm_final() below.
1204          */
1205         create_kernel_page_table(early_pg_dir, true);
1206 
1207         /* Setup early mapping for FDT early scan */
1208         create_fdt_early_page_table(__fix_to_virt(FIX_FDT), dtb_pa);
1209 
1210         /*
1211          * Bootime fixmap only can handle PMD_SIZE mapping. Thus, boot-ioremap
1212          * range can not span multiple pmds.
1213          */
1214         BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
1215                      != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
1216 
1217 #ifndef __PAGETABLE_PMD_FOLDED
1218         /*
1219          * Early ioremap fixmap is already created as it lies within first 2MB
1220          * of fixmap region. We always map PMD_SIZE. Thus, both FIX_BTMAP_END
1221          * FIX_BTMAP_BEGIN should lie in the same pmd. Verify that and warn
1222          * the user if not.
1223          */
1224         fix_bmap_spmd = fixmap_pmd[pmd_index(__fix_to_virt(FIX_BTMAP_BEGIN))];
1225         fix_bmap_epmd = fixmap_pmd[pmd_index(__fix_to_virt(FIX_BTMAP_END))];
1226         if (pmd_val(fix_bmap_spmd) != pmd_val(fix_bmap_epmd)) {
1227                 WARN_ON(1);
1228                 pr_warn("fixmap btmap start [%08lx] != end [%08lx]\n",
1229                         pmd_val(fix_bmap_spmd), pmd_val(fix_bmap_epmd));
1230                 pr_warn("fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
1231                         fix_to_virt(FIX_BTMAP_BEGIN));
1232                 pr_warn("fix_to_virt(FIX_BTMAP_END):   %08lx\n",
1233                         fix_to_virt(FIX_BTMAP_END));
1234 
1235                 pr_warn("FIX_BTMAP_END:       %d\n", FIX_BTMAP_END);
1236                 pr_warn("FIX_BTMAP_BEGIN:     %d\n", FIX_BTMAP_BEGIN);
1237         }
1238 #endif
1239 
1240         pt_ops_set_fixmap();
1241 }
1242 
1243 static void __meminit create_linear_mapping_range(phys_addr_t start, phys_addr_t end,
1244                                                   uintptr_t fixed_map_size, const pgprot_t *pgprot)
1245 {
1246         phys_addr_t pa;
1247         uintptr_t va, map_size;
1248 
1249         for (pa = start; pa < end; pa += map_size) {
1250                 va = (uintptr_t)__va(pa);
1251                 map_size = fixed_map_size ? fixed_map_size :
1252                                             best_map_size(pa, va, end - pa);
1253 
1254                 create_pgd_mapping(swapper_pg_dir, va, pa, map_size,
1255                                    pgprot ? *pgprot : pgprot_from_va(va));
1256         }
1257 }
1258 
1259 static void __init create_linear_mapping_page_table(void)
1260 {
1261         phys_addr_t start, end;
1262         phys_addr_t kfence_pool __maybe_unused;
1263         u64 i;
1264 
1265 #ifdef CONFIG_STRICT_KERNEL_RWX
1266         phys_addr_t ktext_start = __pa_symbol(_start);
1267         phys_addr_t ktext_size = __init_data_begin - _start;
1268         phys_addr_t krodata_start = __pa_symbol(__start_rodata);
1269         phys_addr_t krodata_size = _data - __start_rodata;
1270 
1271         /* Isolate kernel text and rodata so they don't get mapped with a PUD */
1272         memblock_mark_nomap(ktext_start,  ktext_size);
1273         memblock_mark_nomap(krodata_start, krodata_size);
1274 #endif
1275 
1276 #ifdef CONFIG_KFENCE
1277         /*
1278          *  kfence pool must be backed by PAGE_SIZE mappings, so allocate it
1279          *  before we setup the linear mapping so that we avoid using hugepages
1280          *  for this region.
1281          */
1282         kfence_pool = memblock_phys_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
1283         BUG_ON(!kfence_pool);
1284 
1285         memblock_mark_nomap(kfence_pool, KFENCE_POOL_SIZE);
1286         __kfence_pool = __va(kfence_pool);
1287 #endif
1288 
1289         /* Map all memory banks in the linear mapping */
1290         for_each_mem_range(i, &start, &end) {
1291                 if (start >= end)
1292                         break;
1293                 if (start <= __pa(PAGE_OFFSET) &&
1294                     __pa(PAGE_OFFSET) < end)
1295                         start = __pa(PAGE_OFFSET);
1296 
1297                 create_linear_mapping_range(start, end, 0, NULL);
1298         }
1299 
1300 #ifdef CONFIG_STRICT_KERNEL_RWX
1301         create_linear_mapping_range(ktext_start, ktext_start + ktext_size, 0, NULL);
1302         create_linear_mapping_range(krodata_start, krodata_start + krodata_size, 0, NULL);
1303 
1304         memblock_clear_nomap(ktext_start,  ktext_size);
1305         memblock_clear_nomap(krodata_start, krodata_size);
1306 #endif
1307 
1308 #ifdef CONFIG_KFENCE
1309         create_linear_mapping_range(kfence_pool, kfence_pool + KFENCE_POOL_SIZE, PAGE_SIZE, NULL);
1310 
1311         memblock_clear_nomap(kfence_pool, KFENCE_POOL_SIZE);
1312 #endif
1313 }
1314 
1315 static void __init setup_vm_final(void)
1316 {
1317         /* Setup swapper PGD for fixmap */
1318 #if !defined(CONFIG_64BIT)
1319         /*
1320          * In 32-bit, the device tree lies in a pgd entry, so it must be copied
1321          * directly in swapper_pg_dir in addition to the pgd entry that points
1322          * to fixmap_pte.
1323          */
1324         unsigned long idx = pgd_index(__fix_to_virt(FIX_FDT));
1325 
1326         set_pgd(&swapper_pg_dir[idx], early_pg_dir[idx]);
1327 #endif
1328         create_pgd_mapping(swapper_pg_dir, FIXADDR_START,
1329                            __pa_symbol(fixmap_pgd_next),
1330                            PGDIR_SIZE, PAGE_TABLE);
1331 
1332         /* Map the linear mapping */
1333         create_linear_mapping_page_table();
1334 
1335         /* Map the kernel */
1336         if (IS_ENABLED(CONFIG_64BIT))
1337                 create_kernel_page_table(swapper_pg_dir, false);
1338 
1339 #ifdef CONFIG_KASAN
1340         kasan_swapper_init();
1341 #endif
1342 
1343         /* Clear fixmap PTE and PMD mappings */
1344         clear_fixmap(FIX_PTE);
1345         clear_fixmap(FIX_PMD);
1346         clear_fixmap(FIX_PUD);
1347         clear_fixmap(FIX_P4D);
1348 
1349         /* Move to swapper page table */
1350         csr_write(CSR_SATP, PFN_DOWN(__pa_symbol(swapper_pg_dir)) | satp_mode);
1351         local_flush_tlb_all();
1352 
1353         pt_ops_set_late();
1354 }
1355 #else
1356 asmlinkage void __init setup_vm(uintptr_t dtb_pa)
1357 {
1358         dtb_early_va = (void *)dtb_pa;
1359         dtb_early_pa = dtb_pa;
1360 }
1361 
1362 static inline void setup_vm_final(void)
1363 {
1364 }
1365 #endif /* CONFIG_MMU */
1366 
1367 /*
1368  * reserve_crashkernel() - reserves memory for crash kernel
1369  *
1370  * This function reserves memory area given in "crashkernel=" kernel command
1371  * line parameter. The memory reserved is used by dump capture kernel when
1372  * primary kernel is crashing.
1373  */
1374 static void __init arch_reserve_crashkernel(void)
1375 {
1376         unsigned long long low_size = 0;
1377         unsigned long long crash_base, crash_size;
1378         char *cmdline = boot_command_line;
1379         bool high = false;
1380         int ret;
1381 
1382         if (!IS_ENABLED(CONFIG_CRASH_RESERVE))
1383                 return;
1384 
1385         ret = parse_crashkernel(cmdline, memblock_phys_mem_size(),
1386                                 &crash_size, &crash_base,
1387                                 &low_size, &high);
1388         if (ret)
1389                 return;
1390 
1391         reserve_crashkernel_generic(cmdline, crash_size, crash_base,
1392                                     low_size, high);
1393 }
1394 
1395 void __init paging_init(void)
1396 {
1397         setup_bootmem();
1398         setup_vm_final();
1399 
1400         /* Depend on that Linear Mapping is ready */
1401         memblock_allow_resize();
1402 }
1403 
1404 void __init misc_mem_init(void)
1405 {
1406         early_memtest(min_low_pfn << PAGE_SHIFT, max_low_pfn << PAGE_SHIFT);
1407         arch_numa_init();
1408         sparse_init();
1409 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1410         /* The entire VMEMMAP region has been populated. Flush TLB for this region */
1411         local_flush_tlb_kernel_range(VMEMMAP_START, VMEMMAP_END);
1412 #endif
1413         zone_sizes_init();
1414         arch_reserve_crashkernel();
1415         memblock_dump_all();
1416 }
1417 
1418 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1419 void __meminit vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
1420                                unsigned long addr, unsigned long next)
1421 {
1422         pmd_set_huge(pmd, virt_to_phys(p), PAGE_KERNEL);
1423 }
1424 
1425 int __meminit vmemmap_check_pmd(pmd_t *pmdp, int node,
1426                                 unsigned long addr, unsigned long next)
1427 {
1428         vmemmap_verify((pte_t *)pmdp, node, addr, next);
1429         return 1;
1430 }
1431 
1432 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1433                                struct vmem_altmap *altmap)
1434 {
1435         /*
1436          * Note that SPARSEMEM_VMEMMAP is only selected for rv64 and that we
1437          * can't use hugepage mappings for 2-level page table because in case of
1438          * memory hotplug, we are not able to update all the page tables with
1439          * the new PMDs.
1440          */
1441         return vmemmap_populate_hugepages(start, end, node, altmap);
1442 }
1443 #endif
1444 
1445 #if defined(CONFIG_MMU) && defined(CONFIG_64BIT)
1446 /*
1447  * Pre-allocates page-table pages for a specific area in the kernel
1448  * page-table. Only the level which needs to be synchronized between
1449  * all page-tables is allocated because the synchronization can be
1450  * expensive.
1451  */
1452 static void __init preallocate_pgd_pages_range(unsigned long start, unsigned long end,
1453                                                const char *area)
1454 {
1455         unsigned long addr;
1456         const char *lvl;
1457 
1458         for (addr = start; addr < end && addr >= start; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
1459                 pgd_t *pgd = pgd_offset_k(addr);
1460                 p4d_t *p4d;
1461                 pud_t *pud;
1462                 pmd_t *pmd;
1463 
1464                 lvl = "p4d";
1465                 p4d = p4d_alloc(&init_mm, pgd, addr);
1466                 if (!p4d)
1467                         goto failed;
1468 
1469                 if (pgtable_l5_enabled)
1470                         continue;
1471 
1472                 lvl = "pud";
1473                 pud = pud_alloc(&init_mm, p4d, addr);
1474                 if (!pud)
1475                         goto failed;
1476 
1477                 if (pgtable_l4_enabled)
1478                         continue;
1479 
1480                 lvl = "pmd";
1481                 pmd = pmd_alloc(&init_mm, pud, addr);
1482                 if (!pmd)
1483                         goto failed;
1484         }
1485         return;
1486 
1487 failed:
1488         /*
1489          * The pages have to be there now or they will be missing in
1490          * process page-tables later.
1491          */
1492         panic("Failed to pre-allocate %s pages for %s area\n", lvl, area);
1493 }
1494 
1495 #define PAGE_END KASAN_SHADOW_START
1496 
1497 void __init pgtable_cache_init(void)
1498 {
1499         preallocate_pgd_pages_range(VMALLOC_START, VMALLOC_END, "vmalloc");
1500         if (IS_ENABLED(CONFIG_MODULES))
1501                 preallocate_pgd_pages_range(MODULES_VADDR, MODULES_END, "bpf/modules");
1502         if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG)) {
1503                 preallocate_pgd_pages_range(VMEMMAP_START, VMEMMAP_END, "vmemmap");
1504                 preallocate_pgd_pages_range(PAGE_OFFSET, PAGE_END, "direct map");
1505                 if (IS_ENABLED(CONFIG_KASAN))
1506                         preallocate_pgd_pages_range(KASAN_SHADOW_START, KASAN_SHADOW_END, "kasan");
1507         }
1508 }
1509 #endif
1510 
1511 #ifdef CONFIG_EXECMEM
1512 #ifdef CONFIG_MMU
1513 static struct execmem_info execmem_info __ro_after_init;
1514 
1515 struct execmem_info __init *execmem_arch_setup(void)
1516 {
1517         execmem_info = (struct execmem_info){
1518                 .ranges = {
1519                         [EXECMEM_DEFAULT] = {
1520                                 .start  = MODULES_VADDR,
1521                                 .end    = MODULES_END,
1522                                 .pgprot = PAGE_KERNEL,
1523                                 .alignment = 1,
1524                         },
1525                         [EXECMEM_KPROBES] = {
1526                                 .start  = VMALLOC_START,
1527                                 .end    = VMALLOC_END,
1528                                 .pgprot = PAGE_KERNEL_READ_EXEC,
1529                                 .alignment = 1,
1530                         },
1531                         [EXECMEM_BPF] = {
1532                                 .start  = BPF_JIT_REGION_START,
1533                                 .end    = BPF_JIT_REGION_END,
1534                                 .pgprot = PAGE_KERNEL,
1535                                 .alignment = PAGE_SIZE,
1536                         },
1537                 },
1538         };
1539 
1540         return &execmem_info;
1541 }
1542 #endif /* CONFIG_MMU */
1543 #endif /* CONFIG_EXECMEM */
1544 
1545 #ifdef CONFIG_MEMORY_HOTPLUG
1546 static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
1547 {
1548         struct page *page = pmd_page(*pmd);
1549         struct ptdesc *ptdesc = page_ptdesc(page);
1550         pte_t *pte;
1551         int i;
1552 
1553         for (i = 0; i < PTRS_PER_PTE; i++) {
1554                 pte = pte_start + i;
1555                 if (!pte_none(*pte))
1556                         return;
1557         }
1558 
1559         pagetable_pte_dtor(ptdesc);
1560         if (PageReserved(page))
1561                 free_reserved_page(page);
1562         else
1563                 pagetable_free(ptdesc);
1564         pmd_clear(pmd);
1565 }
1566 
1567 static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
1568 {
1569         struct page *page = pud_page(*pud);
1570         struct ptdesc *ptdesc = page_ptdesc(page);
1571         pmd_t *pmd;
1572         int i;
1573 
1574         for (i = 0; i < PTRS_PER_PMD; i++) {
1575                 pmd = pmd_start + i;
1576                 if (!pmd_none(*pmd))
1577                         return;
1578         }
1579 
1580         pagetable_pmd_dtor(ptdesc);
1581         if (PageReserved(page))
1582                 free_reserved_page(page);
1583         else
1584                 pagetable_free(ptdesc);
1585         pud_clear(pud);
1586 }
1587 
1588 static void __meminit free_pud_table(pud_t *pud_start, p4d_t *p4d)
1589 {
1590         struct page *page = p4d_page(*p4d);
1591         pud_t *pud;
1592         int i;
1593 
1594         for (i = 0; i < PTRS_PER_PUD; i++) {
1595                 pud = pud_start + i;
1596                 if (!pud_none(*pud))
1597                         return;
1598         }
1599 
1600         if (PageReserved(page))
1601                 free_reserved_page(page);
1602         else
1603                 free_pages((unsigned long)page_address(page), 0);
1604         p4d_clear(p4d);
1605 }
1606 
1607 static void __meminit free_vmemmap_storage(struct page *page, size_t size,
1608                                            struct vmem_altmap *altmap)
1609 {
1610         int order = get_order(size);
1611 
1612         if (altmap) {
1613                 vmem_altmap_free(altmap, size >> PAGE_SHIFT);
1614                 return;
1615         }
1616 
1617         if (PageReserved(page)) {
1618                 unsigned int nr_pages = 1 << order;
1619 
1620                 while (nr_pages--)
1621                         free_reserved_page(page++);
1622                 return;
1623         }
1624 
1625         free_pages((unsigned long)page_address(page), order);
1626 }
1627 
1628 static void __meminit remove_pte_mapping(pte_t *pte_base, unsigned long addr, unsigned long end,
1629                                          bool is_vmemmap, struct vmem_altmap *altmap)
1630 {
1631         unsigned long next;
1632         pte_t *ptep, pte;
1633 
1634         for (; addr < end; addr = next) {
1635                 next = (addr + PAGE_SIZE) & PAGE_MASK;
1636                 if (next > end)
1637                         next = end;
1638 
1639                 ptep = pte_base + pte_index(addr);
1640                 pte = ptep_get(ptep);
1641                 if (!pte_present(*ptep))
1642                         continue;
1643 
1644                 pte_clear(&init_mm, addr, ptep);
1645                 if (is_vmemmap)
1646                         free_vmemmap_storage(pte_page(pte), PAGE_SIZE, altmap);
1647         }
1648 }
1649 
1650 static void __meminit remove_pmd_mapping(pmd_t *pmd_base, unsigned long addr, unsigned long end,
1651                                          bool is_vmemmap, struct vmem_altmap *altmap)
1652 {
1653         unsigned long next;
1654         pte_t *pte_base;
1655         pmd_t *pmdp, pmd;
1656 
1657         for (; addr < end; addr = next) {
1658                 next = pmd_addr_end(addr, end);
1659                 pmdp = pmd_base + pmd_index(addr);
1660                 pmd = pmdp_get(pmdp);
1661                 if (!pmd_present(pmd))
1662                         continue;
1663 
1664                 if (pmd_leaf(pmd)) {
1665                         pmd_clear(pmdp);
1666                         if (is_vmemmap)
1667                                 free_vmemmap_storage(pmd_page(pmd), PMD_SIZE, altmap);
1668                         continue;
1669                 }
1670 
1671                 pte_base = (pte_t *)pmd_page_vaddr(*pmdp);
1672                 remove_pte_mapping(pte_base, addr, next, is_vmemmap, altmap);
1673                 free_pte_table(pte_base, pmdp);
1674         }
1675 }
1676 
1677 static void __meminit remove_pud_mapping(pud_t *pud_base, unsigned long addr, unsigned long end,
1678                                          bool is_vmemmap, struct vmem_altmap *altmap)
1679 {
1680         unsigned long next;
1681         pud_t *pudp, pud;
1682         pmd_t *pmd_base;
1683 
1684         for (; addr < end; addr = next) {
1685                 next = pud_addr_end(addr, end);
1686                 pudp = pud_base + pud_index(addr);
1687                 pud = pudp_get(pudp);
1688                 if (!pud_present(pud))
1689                         continue;
1690 
1691                 if (pud_leaf(pud)) {
1692                         if (pgtable_l4_enabled) {
1693                                 pud_clear(pudp);
1694                                 if (is_vmemmap)
1695                                         free_vmemmap_storage(pud_page(pud), PUD_SIZE, altmap);
1696                         }
1697                         continue;
1698                 }
1699 
1700                 pmd_base = pmd_offset(pudp, 0);
1701                 remove_pmd_mapping(pmd_base, addr, next, is_vmemmap, altmap);
1702 
1703                 if (pgtable_l4_enabled)
1704                         free_pmd_table(pmd_base, pudp);
1705         }
1706 }
1707 
1708 static void __meminit remove_p4d_mapping(p4d_t *p4d_base, unsigned long addr, unsigned long end,
1709                                          bool is_vmemmap, struct vmem_altmap *altmap)
1710 {
1711         unsigned long next;
1712         p4d_t *p4dp, p4d;
1713         pud_t *pud_base;
1714 
1715         for (; addr < end; addr = next) {
1716                 next = p4d_addr_end(addr, end);
1717                 p4dp = p4d_base + p4d_index(addr);
1718                 p4d = p4dp_get(p4dp);
1719                 if (!p4d_present(p4d))
1720                         continue;
1721 
1722                 if (p4d_leaf(p4d)) {
1723                         if (pgtable_l5_enabled) {
1724                                 p4d_clear(p4dp);
1725                                 if (is_vmemmap)
1726                                         free_vmemmap_storage(p4d_page(p4d), P4D_SIZE, altmap);
1727                         }
1728                         continue;
1729                 }
1730 
1731                 pud_base = pud_offset(p4dp, 0);
1732                 remove_pud_mapping(pud_base, addr, next, is_vmemmap, altmap);
1733 
1734                 if (pgtable_l5_enabled)
1735                         free_pud_table(pud_base, p4dp);
1736         }
1737 }
1738 
1739 static void __meminit remove_pgd_mapping(unsigned long va, unsigned long end, bool is_vmemmap,
1740                                          struct vmem_altmap *altmap)
1741 {
1742         unsigned long addr, next;
1743         p4d_t *p4d_base;
1744         pgd_t *pgd;
1745 
1746         for (addr = va; addr < end; addr = next) {
1747                 next = pgd_addr_end(addr, end);
1748                 pgd = pgd_offset_k(addr);
1749 
1750                 if (!pgd_present(*pgd))
1751                         continue;
1752 
1753                 if (pgd_leaf(*pgd))
1754                         continue;
1755 
1756                 p4d_base = p4d_offset(pgd, 0);
1757                 remove_p4d_mapping(p4d_base, addr, next, is_vmemmap, altmap);
1758         }
1759 
1760         flush_tlb_all();
1761 }
1762 
1763 static void __meminit remove_linear_mapping(phys_addr_t start, u64 size)
1764 {
1765         unsigned long va = (unsigned long)__va(start);
1766         unsigned long end = (unsigned long)__va(start + size);
1767 
1768         remove_pgd_mapping(va, end, false, NULL);
1769 }
1770 
1771 struct range arch_get_mappable_range(void)
1772 {
1773         struct range mhp_range;
1774 
1775         mhp_range.start = __pa(PAGE_OFFSET);
1776         mhp_range.end = __pa(PAGE_END - 1);
1777         return mhp_range;
1778 }
1779 
1780 int __ref arch_add_memory(int nid, u64 start, u64 size, struct mhp_params *params)
1781 {
1782         int ret = 0;
1783 
1784         create_linear_mapping_range(start, start + size, 0, &params->pgprot);
1785         ret = __add_pages(nid, start >> PAGE_SHIFT, size >> PAGE_SHIFT, params);
1786         if (ret) {
1787                 remove_linear_mapping(start, size);
1788                 goto out;
1789         }
1790 
1791         max_pfn = PFN_UP(start + size);
1792         max_low_pfn = max_pfn;
1793 
1794  out:
1795         flush_tlb_all();
1796         return ret;
1797 }
1798 
1799 void __ref arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap)
1800 {
1801         __remove_pages(start >> PAGE_SHIFT, size >> PAGE_SHIFT, altmap);
1802         remove_linear_mapping(start, size);
1803         flush_tlb_all();
1804 }
1805 
1806 void __ref vmemmap_free(unsigned long start, unsigned long end, struct vmem_altmap *altmap)
1807 {
1808         remove_pgd_mapping(start, end, true, altmap);
1809 }
1810 #endif /* CONFIG_MEMORY_HOTPLUG */
1811 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php