1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Adjunct processor (AP) interfaces 4 * 5 * Copyright IBM Corp. 2017 6 * 7 * Author(s): Tony Krowiak <akrowia@linux.vnet.ibm.com> 8 * Martin Schwidefsky <schwidefsky@de.ibm.com> 9 * Harald Freudenberger <freude@de.ibm.com> 10 */ 11 12 #ifndef _ASM_S390_AP_H_ 13 #define _ASM_S390_AP_H_ 14 15 #include <linux/io.h> 16 #include <asm/asm-extable.h> 17 18 /** 19 * The ap_qid_t identifier of an ap queue. 20 * If the AP facilities test (APFT) facility is available, 21 * card and queue index are 8 bit values, otherwise 22 * card index is 6 bit and queue index a 4 bit value. 23 */ 24 typedef unsigned int ap_qid_t; 25 26 #define AP_MKQID(_card, _queue) (((_card) & 0xff) << 8 | ((_queue) & 0xff)) 27 #define AP_QID_CARD(_qid) (((_qid) >> 8) & 0xff) 28 #define AP_QID_QUEUE(_qid) ((_qid) & 0xff) 29 30 /** 31 * struct ap_queue_status - Holds the AP queue status. 32 * @queue_empty: Shows if queue is empty 33 * @replies_waiting: Waiting replies 34 * @queue_full: Is 1 if the queue is full 35 * @irq_enabled: Shows if interrupts are enabled for the AP 36 * @response_code: Holds the 8 bit response code 37 * 38 * The ap queue status word is returned by all three AP functions 39 * (PQAP, NQAP and DQAP). There's a set of flags in the first 40 * byte, followed by a 1 byte response code. 41 */ 42 struct ap_queue_status { 43 unsigned int queue_empty : 1; 44 unsigned int replies_waiting : 1; 45 unsigned int queue_full : 1; 46 unsigned int : 3; 47 unsigned int async : 1; 48 unsigned int irq_enabled : 1; 49 unsigned int response_code : 8; 50 unsigned int : 16; 51 }; 52 53 /* 54 * AP queue status reg union to access the reg1 55 * register with the lower 32 bits comprising the 56 * ap queue status. 57 */ 58 union ap_queue_status_reg { 59 unsigned long value; 60 struct { 61 u32 _pad; 62 struct ap_queue_status status; 63 }; 64 }; 65 66 /** 67 * ap_intructions_available() - Test if AP instructions are available. 68 * 69 * Returns true if the AP instructions are installed, otherwise false. 70 */ 71 static inline bool ap_instructions_available(void) 72 { 73 unsigned long reg0 = AP_MKQID(0, 0); 74 unsigned long reg1 = 0; 75 76 asm volatile( 77 " lgr 0,%[reg0]\n" /* qid into gr0 */ 78 " lghi 1,0\n" /* 0 into gr1 */ 79 " lghi 2,0\n" /* 0 into gr2 */ 80 " .insn rre,0xb2af0000,0,0\n" /* PQAP(TAPQ) */ 81 "0: la %[reg1],1\n" /* 1 into reg1 */ 82 "1:\n" 83 EX_TABLE(0b, 1b) 84 : [reg1] "+&d" (reg1) 85 : [reg0] "d" (reg0) 86 : "cc", "", "1", "2"); 87 return reg1 != 0; 88 } 89 90 /* TAPQ register GR2 response struct */ 91 struct ap_tapq_hwinfo { 92 union { 93 unsigned long value; 94 struct { 95 unsigned int fac : 32; /* facility bits */ 96 unsigned int apinfo : 32; /* ap type, ... */ 97 }; 98 struct { 99 unsigned int apsc : 1; /* APSC */ 100 unsigned int mex4k : 1; /* AP4KM */ 101 unsigned int crt4k : 1; /* AP4KC */ 102 unsigned int cca : 1; /* D */ 103 unsigned int accel : 1; /* A */ 104 unsigned int ep11 : 1; /* X */ 105 unsigned int apxa : 1; /* APXA */ 106 unsigned int : 1; 107 unsigned int class : 8; 108 unsigned int bs : 2; /* SE bind/assoc */ 109 unsigned int : 14; 110 unsigned int at : 8; /* ap type */ 111 unsigned int nd : 8; /* nr of domains */ 112 unsigned int : 4; 113 unsigned int ml : 4; /* apxl ml */ 114 unsigned int : 4; 115 unsigned int qd : 4; /* queue depth */ 116 }; 117 }; 118 }; 119 120 /* 121 * Convenience defines to be used with the bs field from struct ap_tapq_gr2 122 */ 123 #define AP_BS_Q_USABLE 0 124 #define AP_BS_Q_USABLE_NO_SECURE_KEY 1 125 #define AP_BS_Q_AVAIL_FOR_BINDING 2 126 #define AP_BS_Q_UNUSABLE 3 127 128 /** 129 * ap_tapq(): Test adjunct processor queue. 130 * @qid: The AP queue number 131 * @info: Pointer to tapq hwinfo struct 132 * 133 * Returns AP queue status structure. 134 */ 135 static inline struct ap_queue_status ap_tapq(ap_qid_t qid, 136 struct ap_tapq_hwinfo *info) 137 { 138 union ap_queue_status_reg reg1; 139 unsigned long reg2; 140 141 asm volatile( 142 " lgr 0,%[qid]\n" /* qid into gr0 */ 143 " lghi 2,0\n" /* 0 into gr2 */ 144 " .insn rre,0xb2af0000,0,0\n" /* PQAP(TAPQ) */ 145 " lgr %[reg1],1\n" /* gr1 (status) into reg1 */ 146 " lgr %[reg2],2\n" /* gr2 into reg2 */ 147 : [reg1] "=&d" (reg1.value), [reg2] "=&d" (reg2) 148 : [qid] "d" (qid) 149 : "cc", "", "1", "2"); 150 if (info) 151 info->value = reg2; 152 return reg1.status; 153 } 154 155 /** 156 * ap_test_queue(): Test adjunct processor queue. 157 * @qid: The AP queue number 158 * @tbit: Test facilities bit 159 * @info: Ptr to tapq gr2 struct 160 * 161 * Returns AP queue status structure. 162 */ 163 static inline struct ap_queue_status ap_test_queue(ap_qid_t qid, int tbit, 164 struct ap_tapq_hwinfo *info) 165 { 166 if (tbit) 167 qid |= 1UL << 23; /* set T bit*/ 168 return ap_tapq(qid, info); 169 } 170 171 /** 172 * ap_pqap_rapq(): Reset adjunct processor queue. 173 * @qid: The AP queue number 174 * @fbit: if != 0 set F bit 175 * 176 * Returns AP queue status structure. 177 */ 178 static inline struct ap_queue_status ap_rapq(ap_qid_t qid, int fbit) 179 { 180 unsigned long reg0 = qid | (1UL << 24); /* fc 1UL is RAPQ */ 181 union ap_queue_status_reg reg1; 182 183 if (fbit) 184 reg0 |= 1UL << 22; 185 186 asm volatile( 187 " lgr 0,%[reg0]\n" /* qid arg into gr0 */ 188 " .insn rre,0xb2af0000,0,0\n" /* PQAP(RAPQ) */ 189 " lgr %[reg1],1\n" /* gr1 (status) into reg1 */ 190 : [reg1] "=&d" (reg1.value) 191 : [reg0] "d" (reg0) 192 : "cc", "", "1"); 193 return reg1.status; 194 } 195 196 /** 197 * ap_pqap_zapq(): Reset and zeroize adjunct processor queue. 198 * @qid: The AP queue number 199 * @fbit: if != 0 set F bit 200 * 201 * Returns AP queue status structure. 202 */ 203 static inline struct ap_queue_status ap_zapq(ap_qid_t qid, int fbit) 204 { 205 unsigned long reg0 = qid | (2UL << 24); /* fc 2UL is ZAPQ */ 206 union ap_queue_status_reg reg1; 207 208 if (fbit) 209 reg0 |= 1UL << 22; 210 211 asm volatile( 212 " lgr 0,%[reg0]\n" /* qid arg into gr0 */ 213 " .insn rre,0xb2af0000,0,0\n" /* PQAP(ZAPQ) */ 214 " lgr %[reg1],1\n" /* gr1 (status) into reg1 */ 215 : [reg1] "=&d" (reg1.value) 216 : [reg0] "d" (reg0) 217 : "cc", "", "1"); 218 return reg1.status; 219 } 220 221 /** 222 * struct ap_config_info - convenience struct for AP crypto 223 * config info as returned by the ap_qci() function. 224 */ 225 struct ap_config_info { 226 union { 227 unsigned int flags; 228 struct { 229 unsigned int apsc : 1; /* S bit */ 230 unsigned int apxa : 1; /* N bit */ 231 unsigned int qact : 1; /* C bit */ 232 unsigned int rc8a : 1; /* R bit */ 233 unsigned int : 4; 234 unsigned int apsb : 1; /* B bit */ 235 unsigned int : 23; 236 }; 237 }; 238 unsigned char na; /* max # of APs - 1 */ 239 unsigned char nd; /* max # of Domains - 1 */ 240 unsigned char _reserved0[10]; 241 unsigned int apm[8]; /* AP ID mask */ 242 unsigned int aqm[8]; /* AP (usage) queue mask */ 243 unsigned int adm[8]; /* AP (control) domain mask */ 244 unsigned char _reserved1[16]; 245 } __aligned(8); 246 247 /** 248 * ap_qci(): Get AP configuration data 249 * 250 * Returns 0 on success, or -EOPNOTSUPP. 251 */ 252 static inline int ap_qci(struct ap_config_info *config) 253 { 254 unsigned long reg0 = 4UL << 24; /* fc 4UL is QCI */ 255 unsigned long reg1 = -EOPNOTSUPP; 256 struct ap_config_info *reg2 = config; 257 258 asm volatile( 259 " lgr 0,%[reg0]\n" /* QCI fc into gr0 */ 260 " lgr 2,%[reg2]\n" /* ptr to config into gr2 */ 261 " .insn rre,0xb2af0000,0,0\n" /* PQAP(QCI) */ 262 "0: la %[reg1],0\n" /* good case, QCI fc available */ 263 "1:\n" 264 EX_TABLE(0b, 1b) 265 : [reg1] "+&d" (reg1) 266 : [reg0] "d" (reg0), [reg2] "d" (reg2) 267 : "cc", "memory", "", "2"); 268 269 return reg1; 270 } 271 272 /* 273 * struct ap_qirq_ctrl - convenient struct for easy invocation 274 * of the ap_aqic() function. This struct is passed as GR1 275 * parameter to the PQAP(AQIC) instruction. For details please 276 * see the AR documentation. 277 */ 278 union ap_qirq_ctrl { 279 unsigned long value; 280 struct { 281 unsigned int : 8; 282 unsigned int zone : 8; /* zone info */ 283 unsigned int ir : 1; /* ir flag: enable (1) or disable (0) irq */ 284 unsigned int : 4; 285 unsigned int gisc : 3; /* guest isc field */ 286 unsigned int : 6; 287 unsigned int gf : 2; /* gisa format */ 288 unsigned int : 1; 289 unsigned int gisa : 27; /* gisa origin */ 290 unsigned int : 1; 291 unsigned int isc : 3; /* irq sub class */ 292 }; 293 }; 294 295 /** 296 * ap_aqic(): Control interruption for a specific AP. 297 * @qid: The AP queue number 298 * @qirqctrl: struct ap_qirq_ctrl (64 bit value) 299 * @pa_ind: Physical address of the notification indicator byte 300 * 301 * Returns AP queue status. 302 */ 303 static inline struct ap_queue_status ap_aqic(ap_qid_t qid, 304 union ap_qirq_ctrl qirqctrl, 305 phys_addr_t pa_ind) 306 { 307 unsigned long reg0 = qid | (3UL << 24); /* fc 3UL is AQIC */ 308 union ap_queue_status_reg reg1; 309 unsigned long reg2 = pa_ind; 310 311 reg1.value = qirqctrl.value; 312 313 asm volatile( 314 " lgr 0,%[reg0]\n" /* qid param into gr0 */ 315 " lgr 1,%[reg1]\n" /* irq ctrl into gr1 */ 316 " lgr 2,%[reg2]\n" /* ni addr into gr2 */ 317 " .insn rre,0xb2af0000,0,0\n" /* PQAP(AQIC) */ 318 " lgr %[reg1],1\n" /* gr1 (status) into reg1 */ 319 : [reg1] "+&d" (reg1.value) 320 : [reg0] "d" (reg0), [reg2] "d" (reg2) 321 : "cc", "memory", "", "1", "2"); 322 323 return reg1.status; 324 } 325 326 /* 327 * union ap_qact_ap_info - used together with the 328 * ap_aqic() function to provide a convenient way 329 * to handle the ap info needed by the qact function. 330 */ 331 union ap_qact_ap_info { 332 unsigned long val; 333 struct { 334 unsigned int : 3; 335 unsigned int mode : 3; 336 unsigned int : 26; 337 unsigned int cat : 8; 338 unsigned int : 8; 339 unsigned char ver[2]; 340 }; 341 }; 342 343 /** 344 * ap_qact(): Query AP compatibility type. 345 * @qid: The AP queue number 346 * @apinfo: On input the info about the AP queue. On output the 347 * alternate AP queue info provided by the qact function 348 * in GR2 is stored in. 349 * 350 * Returns AP queue status. Check response_code field for failures. 351 */ 352 static inline struct ap_queue_status ap_qact(ap_qid_t qid, int ifbit, 353 union ap_qact_ap_info *apinfo) 354 { 355 unsigned long reg0 = qid | (5UL << 24) | ((ifbit & 0x01) << 22); 356 union ap_queue_status_reg reg1; 357 unsigned long reg2; 358 359 reg1.value = apinfo->val; 360 361 asm volatile( 362 " lgr 0,%[reg0]\n" /* qid param into gr0 */ 363 " lgr 1,%[reg1]\n" /* qact in info into gr1 */ 364 " .insn rre,0xb2af0000,0,0\n" /* PQAP(QACT) */ 365 " lgr %[reg1],1\n" /* gr1 (status) into reg1 */ 366 " lgr %[reg2],2\n" /* qact out info into reg2 */ 367 : [reg1] "+&d" (reg1.value), [reg2] "=&d" (reg2) 368 : [reg0] "d" (reg0) 369 : "cc", "", "1", "2"); 370 apinfo->val = reg2; 371 return reg1.status; 372 } 373 374 /* 375 * ap_bapq(): SE bind AP queue. 376 * @qid: The AP queue number 377 * 378 * Returns AP queue status structure. 379 * 380 * Invoking this function in a non-SE environment 381 * may case a specification exception. 382 */ 383 static inline struct ap_queue_status ap_bapq(ap_qid_t qid) 384 { 385 unsigned long reg0 = qid | (7UL << 24); /* fc 7 is BAPQ */ 386 union ap_queue_status_reg reg1; 387 388 asm volatile( 389 " lgr 0,%[reg0]\n" /* qid arg into gr0 */ 390 " .insn rre,0xb2af0000,0,0\n" /* PQAP(BAPQ) */ 391 " lgr %[reg1],1\n" /* gr1 (status) into reg1 */ 392 : [reg1] "=&d" (reg1.value) 393 : [reg0] "d" (reg0) 394 : "cc", "", "1"); 395 396 return reg1.status; 397 } 398 399 /* 400 * ap_aapq(): SE associate AP queue. 401 * @qid: The AP queue number 402 * @sec_idx: The secret index 403 * 404 * Returns AP queue status structure. 405 * 406 * Invoking this function in a non-SE environment 407 * may case a specification exception. 408 */ 409 static inline struct ap_queue_status ap_aapq(ap_qid_t qid, unsigned int sec_idx) 410 { 411 unsigned long reg0 = qid | (8UL << 24); /* fc 8 is AAPQ */ 412 unsigned long reg2 = sec_idx; 413 union ap_queue_status_reg reg1; 414 415 asm volatile( 416 " lgr 0,%[reg0]\n" /* qid arg into gr0 */ 417 " lgr 2,%[reg2]\n" /* secret index into gr2 */ 418 " .insn rre,0xb2af0000,0,0\n" /* PQAP(AAPQ) */ 419 " lgr %[reg1],1\n" /* gr1 (status) into reg1 */ 420 : [reg1] "=&d" (reg1.value) 421 : [reg0] "d" (reg0), [reg2] "d" (reg2) 422 : "cc", "", "1", "2"); 423 424 return reg1.status; 425 } 426 427 /** 428 * ap_nqap(): Send message to adjunct processor queue. 429 * @qid: The AP queue number 430 * @psmid: The program supplied message identifier 431 * @msg: The message text 432 * @length: The message length 433 * 434 * Returns AP queue status structure. 435 * Condition code 1 on NQAP can't happen because the L bit is 1. 436 * Condition code 2 on NQAP also means the send is incomplete, 437 * because a segment boundary was reached. The NQAP is repeated. 438 */ 439 static inline struct ap_queue_status ap_nqap(ap_qid_t qid, 440 unsigned long long psmid, 441 void *msg, size_t length) 442 { 443 unsigned long reg0 = qid | 0x40000000UL; /* 0x4... is last msg part */ 444 union register_pair nqap_r1, nqap_r2; 445 union ap_queue_status_reg reg1; 446 447 nqap_r1.even = (unsigned int)(psmid >> 32); 448 nqap_r1.odd = psmid & 0xffffffff; 449 nqap_r2.even = (unsigned long)msg; 450 nqap_r2.odd = (unsigned long)length; 451 452 asm volatile ( 453 " lgr 0,%[reg0]\n" /* qid param in gr0 */ 454 "0: .insn rre,0xb2ad0000,%[nqap_r1],%[nqap_r2]\n" 455 " brc 2,0b\n" /* handle partial completion */ 456 " lgr %[reg1],1\n" /* gr1 (status) into reg1 */ 457 : [reg0] "+&d" (reg0), [reg1] "=&d" (reg1.value), 458 [nqap_r2] "+&d" (nqap_r2.pair) 459 : [nqap_r1] "d" (nqap_r1.pair) 460 : "cc", "memory", "", "1"); 461 return reg1.status; 462 } 463 464 /** 465 * ap_dqap(): Receive message from adjunct processor queue. 466 * @qid: The AP queue number 467 * @psmid: Pointer to program supplied message identifier 468 * @msg: Pointer to message buffer 469 * @msglen: Message buffer size 470 * @length: Pointer to length of actually written bytes 471 * @reslength: Residual length on return 472 * @resgr0: input: gr0 value (only used if != 0), output: residual gr0 content 473 * 474 * Returns AP queue status structure. 475 * Condition code 1 on DQAP means the receive has taken place 476 * but only partially. The response is incomplete, hence the 477 * DQAP is repeated. 478 * Condition code 2 on DQAP also means the receive is incomplete, 479 * this time because a segment boundary was reached. Again, the 480 * DQAP is repeated. 481 * Note that gpr2 is used by the DQAP instruction to keep track of 482 * any 'residual' length, in case the instruction gets interrupted. 483 * Hence it gets zeroed before the instruction. 484 * If the message does not fit into the buffer, this function will 485 * return with a truncated message and the reply in the firmware queue 486 * is not removed. This is indicated to the caller with an 487 * ap_queue_status response_code value of all bits on (0xFF) and (if 488 * the reslength ptr is given) the remaining length is stored in 489 * *reslength and (if the resgr0 ptr is given) the updated gr0 value 490 * for further processing of this msg entry is stored in *resgr0. The 491 * caller needs to detect this situation and should invoke ap_dqap 492 * with a valid resgr0 ptr and a value in there != 0 to indicate that 493 * *resgr0 is to be used instead of qid to further process this entry. 494 */ 495 static inline struct ap_queue_status ap_dqap(ap_qid_t qid, 496 unsigned long *psmid, 497 void *msg, size_t msglen, 498 size_t *length, 499 size_t *reslength, 500 unsigned long *resgr0) 501 { 502 unsigned long reg0 = resgr0 && *resgr0 ? *resgr0 : qid | 0x80000000UL; 503 union ap_queue_status_reg reg1; 504 unsigned long reg2; 505 union register_pair rp1, rp2; 506 507 rp1.even = 0UL; 508 rp1.odd = 0UL; 509 rp2.even = (unsigned long)msg; 510 rp2.odd = (unsigned long)msglen; 511 512 asm volatile( 513 " lgr 0,%[reg0]\n" /* qid param into gr0 */ 514 " lghi 2,0\n" /* 0 into gr2 (res length) */ 515 "0: ltgr %N[rp2],%N[rp2]\n" /* check buf len */ 516 " jz 2f\n" /* go out if buf len is 0 */ 517 "1: .insn rre,0xb2ae0000,%[rp1],%[rp2]\n" 518 " brc 6,0b\n" /* handle partial complete */ 519 "2: lgr %[reg0],0\n" /* gr0 (qid + info) into reg0 */ 520 " lgr %[reg1],1\n" /* gr1 (status) into reg1 */ 521 " lgr %[reg2],2\n" /* gr2 (res length) into reg2 */ 522 : [reg0] "+&d" (reg0), [reg1] "=&d" (reg1.value), 523 [reg2] "=&d" (reg2), [rp1] "+&d" (rp1.pair), 524 [rp2] "+&d" (rp2.pair) 525 : 526 : "cc", "memory", "", "1", "2"); 527 528 if (reslength) 529 *reslength = reg2; 530 if (reg2 != 0 && rp2.odd == 0) { 531 /* 532 * Partially complete, status in gr1 is not set. 533 * Signal the caller that this dqap is only partially received 534 * with a special status response code 0xFF and *resgr0 updated 535 */ 536 reg1.status.response_code = 0xFF; 537 if (resgr0) 538 *resgr0 = reg0; 539 } else { 540 *psmid = (rp1.even << 32) + rp1.odd; 541 if (resgr0) 542 *resgr0 = 0; 543 } 544 545 /* update *length with the nr of bytes stored into the msg buffer */ 546 if (length) 547 *length = msglen - rp2.odd; 548 549 return reg1.status; 550 } 551 552 #endif /* _ASM_S390_AP_H_ */ 553
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.