1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SMP related functions 4 * 5 * Copyright IBM Corp. 1999, 2012 6 * Author(s): Denis Joseph Barrow, 7 * Martin Schwidefsky <schwidefsky@de.ibm.com>, 8 * 9 * based on other smp stuff by 10 * (c) 1995 Alan Cox, CymruNET Ltd <alan@cymru.net> 11 * (c) 1998 Ingo Molnar 12 * 13 * The code outside of smp.c uses logical cpu numbers, only smp.c does 14 * the translation of logical to physical cpu ids. All new code that 15 * operates on physical cpu numbers needs to go into smp.c. 16 */ 17 18 #define KMSG_COMPONENT "cpu" 19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 20 21 #include <linux/workqueue.h> 22 #include <linux/memblock.h> 23 #include <linux/export.h> 24 #include <linux/init.h> 25 #include <linux/mm.h> 26 #include <linux/err.h> 27 #include <linux/spinlock.h> 28 #include <linux/kernel_stat.h> 29 #include <linux/delay.h> 30 #include <linux/interrupt.h> 31 #include <linux/irqflags.h> 32 #include <linux/irq_work.h> 33 #include <linux/cpu.h> 34 #include <linux/slab.h> 35 #include <linux/sched/hotplug.h> 36 #include <linux/sched/task_stack.h> 37 #include <linux/crash_dump.h> 38 #include <linux/kprobes.h> 39 #include <asm/access-regs.h> 40 #include <asm/asm-offsets.h> 41 #include <asm/ctlreg.h> 42 #include <asm/pfault.h> 43 #include <asm/diag.h> 44 #include <asm/facility.h> 45 #include <asm/fpu.h> 46 #include <asm/ipl.h> 47 #include <asm/setup.h> 48 #include <asm/irq.h> 49 #include <asm/tlbflush.h> 50 #include <asm/vtimer.h> 51 #include <asm/abs_lowcore.h> 52 #include <asm/sclp.h> 53 #include <asm/debug.h> 54 #include <asm/os_info.h> 55 #include <asm/sigp.h> 56 #include <asm/idle.h> 57 #include <asm/nmi.h> 58 #include <asm/stacktrace.h> 59 #include <asm/topology.h> 60 #include <asm/vdso.h> 61 #include <asm/maccess.h> 62 #include "entry.h" 63 64 enum { 65 ec_schedule = 0, 66 ec_call_function_single, 67 ec_stop_cpu, 68 ec_mcck_pending, 69 ec_irq_work, 70 }; 71 72 enum { 73 CPU_STATE_STANDBY, 74 CPU_STATE_CONFIGURED, 75 }; 76 77 static u8 boot_core_type; 78 DEFINE_PER_CPU(struct pcpu, pcpu_devices); 79 /* 80 * Pointer to the pcpu area of the boot CPU. This is required when a restart 81 * interrupt is triggered on an offline CPU. For that case accessing percpu 82 * data with the common primitives does not work, since the percpu offset is 83 * stored in a non existent lowcore. 84 */ 85 static struct pcpu *ipl_pcpu; 86 87 unsigned int smp_cpu_mt_shift; 88 EXPORT_SYMBOL(smp_cpu_mt_shift); 89 90 unsigned int smp_cpu_mtid; 91 EXPORT_SYMBOL(smp_cpu_mtid); 92 93 #ifdef CONFIG_CRASH_DUMP 94 __vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS]; 95 #endif 96 97 static unsigned int smp_max_threads __initdata = -1U; 98 cpumask_t cpu_setup_mask; 99 100 static int __init early_nosmt(char *s) 101 { 102 smp_max_threads = 1; 103 return 0; 104 } 105 early_param("nosmt", early_nosmt); 106 107 static int __init early_smt(char *s) 108 { 109 get_option(&s, &smp_max_threads); 110 return 0; 111 } 112 early_param("smt", early_smt); 113 114 /* 115 * The smp_cpu_state_mutex must be held when changing the state or polarization 116 * member of a pcpu data structure within the pcpu_devices array. 117 */ 118 DEFINE_MUTEX(smp_cpu_state_mutex); 119 120 /* 121 * Signal processor helper functions. 122 */ 123 static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm) 124 { 125 int cc; 126 127 while (1) { 128 cc = __pcpu_sigp(addr, order, parm, NULL); 129 if (cc != SIGP_CC_BUSY) 130 return cc; 131 cpu_relax(); 132 } 133 } 134 135 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm) 136 { 137 int cc, retry; 138 139 for (retry = 0; ; retry++) { 140 cc = __pcpu_sigp(pcpu->address, order, parm, NULL); 141 if (cc != SIGP_CC_BUSY) 142 break; 143 if (retry >= 3) 144 udelay(10); 145 } 146 return cc; 147 } 148 149 static inline int pcpu_stopped(struct pcpu *pcpu) 150 { 151 u32 status; 152 153 if (__pcpu_sigp(pcpu->address, SIGP_SENSE, 154 0, &status) != SIGP_CC_STATUS_STORED) 155 return 0; 156 return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED)); 157 } 158 159 static inline int pcpu_running(struct pcpu *pcpu) 160 { 161 if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING, 162 0, NULL) != SIGP_CC_STATUS_STORED) 163 return 1; 164 /* Status stored condition code is equivalent to cpu not running. */ 165 return 0; 166 } 167 168 /* 169 * Find struct pcpu by cpu address. 170 */ 171 static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address) 172 { 173 int cpu; 174 175 for_each_cpu(cpu, mask) 176 if (per_cpu(pcpu_devices, cpu).address == address) 177 return &per_cpu(pcpu_devices, cpu); 178 return NULL; 179 } 180 181 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit) 182 { 183 int order; 184 185 if (test_and_set_bit(ec_bit, &pcpu->ec_mask)) 186 return; 187 order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL; 188 pcpu->ec_clk = get_tod_clock_fast(); 189 pcpu_sigp_retry(pcpu, order, 0); 190 } 191 192 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu) 193 { 194 unsigned long async_stack, nodat_stack, mcck_stack; 195 struct lowcore *lc; 196 197 lc = (struct lowcore *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER); 198 nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER); 199 async_stack = stack_alloc(); 200 mcck_stack = stack_alloc(); 201 if (!lc || !nodat_stack || !async_stack || !mcck_stack) 202 goto out; 203 memcpy(lc, get_lowcore(), 512); 204 memset((char *) lc + 512, 0, sizeof(*lc) - 512); 205 lc->async_stack = async_stack + STACK_INIT_OFFSET; 206 lc->nodat_stack = nodat_stack + STACK_INIT_OFFSET; 207 lc->mcck_stack = mcck_stack + STACK_INIT_OFFSET; 208 lc->cpu_nr = cpu; 209 lc->spinlock_lockval = arch_spin_lockval(cpu); 210 lc->spinlock_index = 0; 211 lc->return_lpswe = gen_lpswe(__LC_RETURN_PSW); 212 lc->return_mcck_lpswe = gen_lpswe(__LC_RETURN_MCCK_PSW); 213 lc->preempt_count = PREEMPT_DISABLED; 214 if (nmi_alloc_mcesa(&lc->mcesad)) 215 goto out; 216 if (abs_lowcore_map(cpu, lc, true)) 217 goto out_mcesa; 218 lowcore_ptr[cpu] = lc; 219 pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, __pa(lc)); 220 return 0; 221 222 out_mcesa: 223 nmi_free_mcesa(&lc->mcesad); 224 out: 225 stack_free(mcck_stack); 226 stack_free(async_stack); 227 free_pages(nodat_stack, THREAD_SIZE_ORDER); 228 free_pages((unsigned long) lc, LC_ORDER); 229 return -ENOMEM; 230 } 231 232 static void pcpu_free_lowcore(struct pcpu *pcpu, int cpu) 233 { 234 unsigned long async_stack, nodat_stack, mcck_stack; 235 struct lowcore *lc; 236 237 lc = lowcore_ptr[cpu]; 238 nodat_stack = lc->nodat_stack - STACK_INIT_OFFSET; 239 async_stack = lc->async_stack - STACK_INIT_OFFSET; 240 mcck_stack = lc->mcck_stack - STACK_INIT_OFFSET; 241 pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0); 242 lowcore_ptr[cpu] = NULL; 243 abs_lowcore_unmap(cpu); 244 nmi_free_mcesa(&lc->mcesad); 245 stack_free(async_stack); 246 stack_free(mcck_stack); 247 free_pages(nodat_stack, THREAD_SIZE_ORDER); 248 free_pages((unsigned long) lc, LC_ORDER); 249 } 250 251 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu) 252 { 253 struct lowcore *lc, *abs_lc; 254 255 lc = lowcore_ptr[cpu]; 256 cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask); 257 cpumask_set_cpu(cpu, mm_cpumask(&init_mm)); 258 lc->cpu_nr = cpu; 259 lc->pcpu = (unsigned long)pcpu; 260 lc->restart_flags = RESTART_FLAG_CTLREGS; 261 lc->spinlock_lockval = arch_spin_lockval(cpu); 262 lc->spinlock_index = 0; 263 lc->percpu_offset = __per_cpu_offset[cpu]; 264 lc->kernel_asce = get_lowcore()->kernel_asce; 265 lc->user_asce = s390_invalid_asce; 266 lc->machine_flags = get_lowcore()->machine_flags; 267 lc->user_timer = lc->system_timer = 268 lc->steal_timer = lc->avg_steal_timer = 0; 269 abs_lc = get_abs_lowcore(); 270 memcpy(lc->cregs_save_area, abs_lc->cregs_save_area, sizeof(lc->cregs_save_area)); 271 put_abs_lowcore(abs_lc); 272 lc->cregs_save_area[1] = lc->kernel_asce; 273 lc->cregs_save_area[7] = lc->user_asce; 274 save_access_regs((unsigned int *) lc->access_regs_save_area); 275 arch_spin_lock_setup(cpu); 276 } 277 278 static void pcpu_attach_task(int cpu, struct task_struct *tsk) 279 { 280 struct lowcore *lc; 281 282 lc = lowcore_ptr[cpu]; 283 lc->kernel_stack = (unsigned long)task_stack_page(tsk) + STACK_INIT_OFFSET; 284 lc->current_task = (unsigned long)tsk; 285 lc->lpp = LPP_MAGIC; 286 lc->current_pid = tsk->pid; 287 lc->user_timer = tsk->thread.user_timer; 288 lc->guest_timer = tsk->thread.guest_timer; 289 lc->system_timer = tsk->thread.system_timer; 290 lc->hardirq_timer = tsk->thread.hardirq_timer; 291 lc->softirq_timer = tsk->thread.softirq_timer; 292 lc->steal_timer = 0; 293 } 294 295 static void pcpu_start_fn(int cpu, void (*func)(void *), void *data) 296 { 297 struct lowcore *lc; 298 299 lc = lowcore_ptr[cpu]; 300 lc->restart_stack = lc->kernel_stack; 301 lc->restart_fn = (unsigned long) func; 302 lc->restart_data = (unsigned long) data; 303 lc->restart_source = -1U; 304 pcpu_sigp_retry(per_cpu_ptr(&pcpu_devices, cpu), SIGP_RESTART, 0); 305 } 306 307 typedef void (pcpu_delegate_fn)(void *); 308 309 /* 310 * Call function via PSW restart on pcpu and stop the current cpu. 311 */ 312 static void __pcpu_delegate(pcpu_delegate_fn *func, void *data) 313 { 314 func(data); /* should not return */ 315 } 316 317 static void pcpu_delegate(struct pcpu *pcpu, int cpu, 318 pcpu_delegate_fn *func, 319 void *data, unsigned long stack) 320 { 321 struct lowcore *lc, *abs_lc; 322 unsigned int source_cpu; 323 324 lc = lowcore_ptr[cpu]; 325 source_cpu = stap(); 326 327 if (pcpu->address == source_cpu) { 328 call_on_stack(2, stack, void, __pcpu_delegate, 329 pcpu_delegate_fn *, func, void *, data); 330 } 331 /* Stop target cpu (if func returns this stops the current cpu). */ 332 pcpu_sigp_retry(pcpu, SIGP_STOP, 0); 333 pcpu_sigp_retry(pcpu, SIGP_CPU_RESET, 0); 334 /* Restart func on the target cpu and stop the current cpu. */ 335 if (lc) { 336 lc->restart_stack = stack; 337 lc->restart_fn = (unsigned long)func; 338 lc->restart_data = (unsigned long)data; 339 lc->restart_source = source_cpu; 340 } else { 341 abs_lc = get_abs_lowcore(); 342 abs_lc->restart_stack = stack; 343 abs_lc->restart_fn = (unsigned long)func; 344 abs_lc->restart_data = (unsigned long)data; 345 abs_lc->restart_source = source_cpu; 346 put_abs_lowcore(abs_lc); 347 } 348 asm volatile( 349 "0: sigp 0,%0,%2 # sigp restart to target cpu\n" 350 " brc 2,0b # busy, try again\n" 351 "1: sigp 0,%1,%3 # sigp stop to current cpu\n" 352 " brc 2,1b # busy, try again\n" 353 : : "d" (pcpu->address), "d" (source_cpu), 354 "K" (SIGP_RESTART), "K" (SIGP_STOP) 355 : "", "1", "cc"); 356 for (;;) ; 357 } 358 359 /* 360 * Enable additional logical cpus for multi-threading. 361 */ 362 static int pcpu_set_smt(unsigned int mtid) 363 { 364 int cc; 365 366 if (smp_cpu_mtid == mtid) 367 return 0; 368 cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL); 369 if (cc == 0) { 370 smp_cpu_mtid = mtid; 371 smp_cpu_mt_shift = 0; 372 while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift)) 373 smp_cpu_mt_shift++; 374 per_cpu(pcpu_devices, 0).address = stap(); 375 } 376 return cc; 377 } 378 379 /* 380 * Call function on the ipl CPU. 381 */ 382 void smp_call_ipl_cpu(void (*func)(void *), void *data) 383 { 384 struct lowcore *lc = lowcore_ptr[0]; 385 386 if (ipl_pcpu->address == stap()) 387 lc = get_lowcore(); 388 389 pcpu_delegate(ipl_pcpu, 0, func, data, lc->nodat_stack); 390 } 391 392 int smp_find_processor_id(u16 address) 393 { 394 int cpu; 395 396 for_each_present_cpu(cpu) 397 if (per_cpu(pcpu_devices, cpu).address == address) 398 return cpu; 399 return -1; 400 } 401 402 void schedule_mcck_handler(void) 403 { 404 pcpu_ec_call(this_cpu_ptr(&pcpu_devices), ec_mcck_pending); 405 } 406 407 bool notrace arch_vcpu_is_preempted(int cpu) 408 { 409 if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu)) 410 return false; 411 if (pcpu_running(per_cpu_ptr(&pcpu_devices, cpu))) 412 return false; 413 return true; 414 } 415 EXPORT_SYMBOL(arch_vcpu_is_preempted); 416 417 void notrace smp_yield_cpu(int cpu) 418 { 419 if (!MACHINE_HAS_DIAG9C) 420 return; 421 diag_stat_inc_norecursion(DIAG_STAT_X09C); 422 asm volatile("diag %0,0,0x9c" 423 : : "d" (per_cpu(pcpu_devices, cpu).address)); 424 } 425 EXPORT_SYMBOL_GPL(smp_yield_cpu); 426 427 /* 428 * Send cpus emergency shutdown signal. This gives the cpus the 429 * opportunity to complete outstanding interrupts. 430 */ 431 void notrace smp_emergency_stop(void) 432 { 433 static arch_spinlock_t lock = __ARCH_SPIN_LOCK_UNLOCKED; 434 static cpumask_t cpumask; 435 u64 end; 436 int cpu; 437 438 arch_spin_lock(&lock); 439 cpumask_copy(&cpumask, cpu_online_mask); 440 cpumask_clear_cpu(smp_processor_id(), &cpumask); 441 442 end = get_tod_clock() + (1000000UL << 12); 443 for_each_cpu(cpu, &cpumask) { 444 struct pcpu *pcpu = per_cpu_ptr(&pcpu_devices, cpu); 445 set_bit(ec_stop_cpu, &pcpu->ec_mask); 446 while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL, 447 0, NULL) == SIGP_CC_BUSY && 448 get_tod_clock() < end) 449 cpu_relax(); 450 } 451 while (get_tod_clock() < end) { 452 for_each_cpu(cpu, &cpumask) 453 if (pcpu_stopped(per_cpu_ptr(&pcpu_devices, cpu))) 454 cpumask_clear_cpu(cpu, &cpumask); 455 if (cpumask_empty(&cpumask)) 456 break; 457 cpu_relax(); 458 } 459 arch_spin_unlock(&lock); 460 } 461 NOKPROBE_SYMBOL(smp_emergency_stop); 462 463 /* 464 * Stop all cpus but the current one. 465 */ 466 void smp_send_stop(void) 467 { 468 struct pcpu *pcpu; 469 int cpu; 470 471 /* Disable all interrupts/machine checks */ 472 __load_psw_mask(PSW_KERNEL_BITS); 473 trace_hardirqs_off(); 474 475 debug_set_critical(); 476 477 if (oops_in_progress) 478 smp_emergency_stop(); 479 480 /* stop all processors */ 481 for_each_online_cpu(cpu) { 482 if (cpu == smp_processor_id()) 483 continue; 484 pcpu = per_cpu_ptr(&pcpu_devices, cpu); 485 pcpu_sigp_retry(pcpu, SIGP_STOP, 0); 486 while (!pcpu_stopped(pcpu)) 487 cpu_relax(); 488 } 489 } 490 491 /* 492 * This is the main routine where commands issued by other 493 * cpus are handled. 494 */ 495 static void smp_handle_ext_call(void) 496 { 497 unsigned long bits; 498 499 /* handle bit signal external calls */ 500 bits = this_cpu_xchg(pcpu_devices.ec_mask, 0); 501 if (test_bit(ec_stop_cpu, &bits)) 502 smp_stop_cpu(); 503 if (test_bit(ec_schedule, &bits)) 504 scheduler_ipi(); 505 if (test_bit(ec_call_function_single, &bits)) 506 generic_smp_call_function_single_interrupt(); 507 if (test_bit(ec_mcck_pending, &bits)) 508 s390_handle_mcck(); 509 if (test_bit(ec_irq_work, &bits)) 510 irq_work_run(); 511 } 512 513 static void do_ext_call_interrupt(struct ext_code ext_code, 514 unsigned int param32, unsigned long param64) 515 { 516 inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS); 517 smp_handle_ext_call(); 518 } 519 520 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 521 { 522 int cpu; 523 524 for_each_cpu(cpu, mask) 525 pcpu_ec_call(per_cpu_ptr(&pcpu_devices, cpu), ec_call_function_single); 526 } 527 528 void arch_send_call_function_single_ipi(int cpu) 529 { 530 pcpu_ec_call(per_cpu_ptr(&pcpu_devices, cpu), ec_call_function_single); 531 } 532 533 /* 534 * this function sends a 'reschedule' IPI to another CPU. 535 * it goes straight through and wastes no time serializing 536 * anything. Worst case is that we lose a reschedule ... 537 */ 538 void arch_smp_send_reschedule(int cpu) 539 { 540 pcpu_ec_call(per_cpu_ptr(&pcpu_devices, cpu), ec_schedule); 541 } 542 543 #ifdef CONFIG_IRQ_WORK 544 void arch_irq_work_raise(void) 545 { 546 pcpu_ec_call(this_cpu_ptr(&pcpu_devices), ec_irq_work); 547 } 548 #endif 549 550 #ifdef CONFIG_CRASH_DUMP 551 552 int smp_store_status(int cpu) 553 { 554 struct lowcore *lc; 555 struct pcpu *pcpu; 556 unsigned long pa; 557 558 pcpu = per_cpu_ptr(&pcpu_devices, cpu); 559 lc = lowcore_ptr[cpu]; 560 pa = __pa(&lc->floating_pt_save_area); 561 if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS, 562 pa) != SIGP_CC_ORDER_CODE_ACCEPTED) 563 return -EIO; 564 if (!cpu_has_vx() && !MACHINE_HAS_GS) 565 return 0; 566 pa = lc->mcesad & MCESA_ORIGIN_MASK; 567 if (MACHINE_HAS_GS) 568 pa |= lc->mcesad & MCESA_LC_MASK; 569 if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS, 570 pa) != SIGP_CC_ORDER_CODE_ACCEPTED) 571 return -EIO; 572 return 0; 573 } 574 575 /* 576 * Collect CPU state of the previous, crashed system. 577 * There are four cases: 578 * 1) standard zfcp/nvme dump 579 * condition: OLDMEM_BASE == NULL && is_ipl_type_dump() == true 580 * The state for all CPUs except the boot CPU needs to be collected 581 * with sigp stop-and-store-status. The boot CPU state is located in 582 * the absolute lowcore of the memory stored in the HSA. The zcore code 583 * will copy the boot CPU state from the HSA. 584 * 2) stand-alone kdump for SCSI/NVMe (zfcp/nvme dump with swapped memory) 585 * condition: OLDMEM_BASE != NULL && is_ipl_type_dump() == true 586 * The state for all CPUs except the boot CPU needs to be collected 587 * with sigp stop-and-store-status. The firmware or the boot-loader 588 * stored the registers of the boot CPU in the absolute lowcore in the 589 * memory of the old system. 590 * 3) kdump and the old kernel did not store the CPU state, 591 * or stand-alone kdump for DASD 592 * condition: OLDMEM_BASE != NULL && !is_kdump_kernel() 593 * The state for all CPUs except the boot CPU needs to be collected 594 * with sigp stop-and-store-status. The kexec code or the boot-loader 595 * stored the registers of the boot CPU in the memory of the old system. 596 * 4) kdump and the old kernel stored the CPU state 597 * condition: OLDMEM_BASE != NULL && is_kdump_kernel() 598 * This case does not exist for s390 anymore, setup_arch explicitly 599 * deactivates the elfcorehdr= kernel parameter 600 */ 601 static bool dump_available(void) 602 { 603 return oldmem_data.start || is_ipl_type_dump(); 604 } 605 606 void __init smp_save_dump_ipl_cpu(void) 607 { 608 struct save_area *sa; 609 void *regs; 610 611 if (!dump_available()) 612 return; 613 sa = save_area_alloc(true); 614 regs = memblock_alloc(512, 8); 615 if (!sa || !regs) 616 panic("could not allocate memory for boot CPU save area\n"); 617 copy_oldmem_kernel(regs, __LC_FPREGS_SAVE_AREA, 512); 618 save_area_add_regs(sa, regs); 619 memblock_free(regs, 512); 620 if (cpu_has_vx()) 621 save_area_add_vxrs(sa, boot_cpu_vector_save_area); 622 } 623 624 void __init smp_save_dump_secondary_cpus(void) 625 { 626 int addr, boot_cpu_addr, max_cpu_addr; 627 struct save_area *sa; 628 void *page; 629 630 if (!dump_available()) 631 return; 632 /* Allocate a page as dumping area for the store status sigps */ 633 page = memblock_alloc_low(PAGE_SIZE, PAGE_SIZE); 634 if (!page) 635 panic("ERROR: Failed to allocate %lx bytes below %lx\n", 636 PAGE_SIZE, 1UL << 31); 637 638 /* Set multi-threading state to the previous system. */ 639 pcpu_set_smt(sclp.mtid_prev); 640 boot_cpu_addr = stap(); 641 max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev; 642 for (addr = 0; addr <= max_cpu_addr; addr++) { 643 if (addr == boot_cpu_addr) 644 continue; 645 if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) == 646 SIGP_CC_NOT_OPERATIONAL) 647 continue; 648 sa = save_area_alloc(false); 649 if (!sa) 650 panic("could not allocate memory for save area\n"); 651 __pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, __pa(page)); 652 save_area_add_regs(sa, page); 653 if (cpu_has_vx()) { 654 __pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, __pa(page)); 655 save_area_add_vxrs(sa, page); 656 } 657 } 658 memblock_free(page, PAGE_SIZE); 659 diag_amode31_ops.diag308_reset(); 660 pcpu_set_smt(0); 661 } 662 #endif /* CONFIG_CRASH_DUMP */ 663 664 void smp_cpu_set_polarization(int cpu, int val) 665 { 666 per_cpu(pcpu_devices, cpu).polarization = val; 667 } 668 669 int smp_cpu_get_polarization(int cpu) 670 { 671 return per_cpu(pcpu_devices, cpu).polarization; 672 } 673 674 int smp_cpu_get_cpu_address(int cpu) 675 { 676 return per_cpu(pcpu_devices, cpu).address; 677 } 678 679 static void __ref smp_get_core_info(struct sclp_core_info *info, int early) 680 { 681 static int use_sigp_detection; 682 int address; 683 684 if (use_sigp_detection || sclp_get_core_info(info, early)) { 685 use_sigp_detection = 1; 686 for (address = 0; 687 address < (SCLP_MAX_CORES << smp_cpu_mt_shift); 688 address += (1U << smp_cpu_mt_shift)) { 689 if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) == 690 SIGP_CC_NOT_OPERATIONAL) 691 continue; 692 info->core[info->configured].core_id = 693 address >> smp_cpu_mt_shift; 694 info->configured++; 695 } 696 info->combined = info->configured; 697 } 698 } 699 700 static int smp_add_core(struct sclp_core_entry *core, cpumask_t *avail, 701 bool configured, bool early) 702 { 703 struct pcpu *pcpu; 704 int cpu, nr, i; 705 u16 address; 706 707 nr = 0; 708 if (sclp.has_core_type && core->type != boot_core_type) 709 return nr; 710 cpu = cpumask_first(avail); 711 address = core->core_id << smp_cpu_mt_shift; 712 for (i = 0; (i <= smp_cpu_mtid) && (cpu < nr_cpu_ids); i++) { 713 if (pcpu_find_address(cpu_present_mask, address + i)) 714 continue; 715 pcpu = per_cpu_ptr(&pcpu_devices, cpu); 716 pcpu->address = address + i; 717 if (configured) 718 pcpu->state = CPU_STATE_CONFIGURED; 719 else 720 pcpu->state = CPU_STATE_STANDBY; 721 smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN); 722 set_cpu_present(cpu, true); 723 if (!early && arch_register_cpu(cpu)) 724 set_cpu_present(cpu, false); 725 else 726 nr++; 727 cpumask_clear_cpu(cpu, avail); 728 cpu = cpumask_next(cpu, avail); 729 } 730 return nr; 731 } 732 733 static int __smp_rescan_cpus(struct sclp_core_info *info, bool early) 734 { 735 struct sclp_core_entry *core; 736 static cpumask_t avail; 737 bool configured; 738 u16 core_id; 739 int nr, i; 740 741 cpus_read_lock(); 742 mutex_lock(&smp_cpu_state_mutex); 743 nr = 0; 744 cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask); 745 /* 746 * Add IPL core first (which got logical CPU number 0) to make sure 747 * that all SMT threads get subsequent logical CPU numbers. 748 */ 749 if (early) { 750 core_id = per_cpu(pcpu_devices, 0).address >> smp_cpu_mt_shift; 751 for (i = 0; i < info->configured; i++) { 752 core = &info->core[i]; 753 if (core->core_id == core_id) { 754 nr += smp_add_core(core, &avail, true, early); 755 break; 756 } 757 } 758 } 759 for (i = 0; i < info->combined; i++) { 760 configured = i < info->configured; 761 nr += smp_add_core(&info->core[i], &avail, configured, early); 762 } 763 mutex_unlock(&smp_cpu_state_mutex); 764 cpus_read_unlock(); 765 return nr; 766 } 767 768 void __init smp_detect_cpus(void) 769 { 770 unsigned int cpu, mtid, c_cpus, s_cpus; 771 struct sclp_core_info *info; 772 u16 address; 773 774 /* Get CPU information */ 775 info = memblock_alloc(sizeof(*info), 8); 776 if (!info) 777 panic("%s: Failed to allocate %zu bytes align=0x%x\n", 778 __func__, sizeof(*info), 8); 779 smp_get_core_info(info, 1); 780 /* Find boot CPU type */ 781 if (sclp.has_core_type) { 782 address = stap(); 783 for (cpu = 0; cpu < info->combined; cpu++) 784 if (info->core[cpu].core_id == address) { 785 /* The boot cpu dictates the cpu type. */ 786 boot_core_type = info->core[cpu].type; 787 break; 788 } 789 if (cpu >= info->combined) 790 panic("Could not find boot CPU type"); 791 } 792 793 /* Set multi-threading state for the current system */ 794 mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp; 795 mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1; 796 pcpu_set_smt(mtid); 797 798 /* Print number of CPUs */ 799 c_cpus = s_cpus = 0; 800 for (cpu = 0; cpu < info->combined; cpu++) { 801 if (sclp.has_core_type && 802 info->core[cpu].type != boot_core_type) 803 continue; 804 if (cpu < info->configured) 805 c_cpus += smp_cpu_mtid + 1; 806 else 807 s_cpus += smp_cpu_mtid + 1; 808 } 809 pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus); 810 memblock_free(info, sizeof(*info)); 811 } 812 813 /* 814 * Activate a secondary processor. 815 */ 816 static void smp_start_secondary(void *cpuvoid) 817 { 818 struct lowcore *lc = get_lowcore(); 819 int cpu = raw_smp_processor_id(); 820 821 lc->last_update_clock = get_tod_clock(); 822 lc->restart_stack = (unsigned long)restart_stack; 823 lc->restart_fn = (unsigned long)do_restart; 824 lc->restart_data = 0; 825 lc->restart_source = -1U; 826 lc->restart_flags = 0; 827 restore_access_regs(lc->access_regs_save_area); 828 cpu_init(); 829 rcutree_report_cpu_starting(cpu); 830 init_cpu_timer(); 831 vtime_init(); 832 vdso_getcpu_init(); 833 pfault_init(); 834 cpumask_set_cpu(cpu, &cpu_setup_mask); 835 update_cpu_masks(); 836 notify_cpu_starting(cpu); 837 if (topology_cpu_dedicated(cpu)) 838 set_cpu_flag(CIF_DEDICATED_CPU); 839 else 840 clear_cpu_flag(CIF_DEDICATED_CPU); 841 set_cpu_online(cpu, true); 842 inc_irq_stat(CPU_RST); 843 local_irq_enable(); 844 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 845 } 846 847 /* Upping and downing of CPUs */ 848 int __cpu_up(unsigned int cpu, struct task_struct *tidle) 849 { 850 struct pcpu *pcpu = per_cpu_ptr(&pcpu_devices, cpu); 851 int rc; 852 853 if (pcpu->state != CPU_STATE_CONFIGURED) 854 return -EIO; 855 if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) != 856 SIGP_CC_ORDER_CODE_ACCEPTED) 857 return -EIO; 858 859 rc = pcpu_alloc_lowcore(pcpu, cpu); 860 if (rc) 861 return rc; 862 /* 863 * Make sure global control register contents do not change 864 * until new CPU has initialized control registers. 865 */ 866 system_ctlreg_lock(); 867 pcpu_prepare_secondary(pcpu, cpu); 868 pcpu_attach_task(cpu, tidle); 869 pcpu_start_fn(cpu, smp_start_secondary, NULL); 870 /* Wait until cpu puts itself in the online & active maps */ 871 while (!cpu_online(cpu)) 872 cpu_relax(); 873 system_ctlreg_unlock(); 874 return 0; 875 } 876 877 static unsigned int setup_possible_cpus __initdata; 878 879 static int __init _setup_possible_cpus(char *s) 880 { 881 get_option(&s, &setup_possible_cpus); 882 return 0; 883 } 884 early_param("possible_cpus", _setup_possible_cpus); 885 886 int __cpu_disable(void) 887 { 888 struct ctlreg cregs[16]; 889 int cpu; 890 891 /* Handle possible pending IPIs */ 892 smp_handle_ext_call(); 893 cpu = smp_processor_id(); 894 set_cpu_online(cpu, false); 895 cpumask_clear_cpu(cpu, &cpu_setup_mask); 896 update_cpu_masks(); 897 /* Disable pseudo page faults on this cpu. */ 898 pfault_fini(); 899 /* Disable interrupt sources via control register. */ 900 __local_ctl_store(0, 15, cregs); 901 cregs[0].val &= ~0x0000ee70UL; /* disable all external interrupts */ 902 cregs[6].val &= ~0xff000000UL; /* disable all I/O interrupts */ 903 cregs[14].val &= ~0x1f000000UL; /* disable most machine checks */ 904 __local_ctl_load(0, 15, cregs); 905 clear_cpu_flag(CIF_NOHZ_DELAY); 906 return 0; 907 } 908 909 void __cpu_die(unsigned int cpu) 910 { 911 struct pcpu *pcpu; 912 913 /* Wait until target cpu is down */ 914 pcpu = per_cpu_ptr(&pcpu_devices, cpu); 915 while (!pcpu_stopped(pcpu)) 916 cpu_relax(); 917 pcpu_free_lowcore(pcpu, cpu); 918 cpumask_clear_cpu(cpu, mm_cpumask(&init_mm)); 919 cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask); 920 pcpu->flags = 0; 921 } 922 923 void __noreturn cpu_die(void) 924 { 925 idle_task_exit(); 926 pcpu_sigp_retry(this_cpu_ptr(&pcpu_devices), SIGP_STOP, 0); 927 for (;;) ; 928 } 929 930 void __init smp_fill_possible_mask(void) 931 { 932 unsigned int possible, sclp_max, cpu; 933 934 sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1; 935 sclp_max = min(smp_max_threads, sclp_max); 936 sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids; 937 possible = setup_possible_cpus ?: nr_cpu_ids; 938 possible = min(possible, sclp_max); 939 for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++) 940 set_cpu_possible(cpu, true); 941 } 942 943 void __init smp_prepare_cpus(unsigned int max_cpus) 944 { 945 if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt)) 946 panic("Couldn't request external interrupt 0x1201"); 947 system_ctl_set_bit(0, 14); 948 if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt)) 949 panic("Couldn't request external interrupt 0x1202"); 950 system_ctl_set_bit(0, 13); 951 smp_rescan_cpus(true); 952 } 953 954 void __init smp_prepare_boot_cpu(void) 955 { 956 struct lowcore *lc = get_lowcore(); 957 958 WARN_ON(!cpu_present(0) || !cpu_online(0)); 959 lc->percpu_offset = __per_cpu_offset[0]; 960 ipl_pcpu = per_cpu_ptr(&pcpu_devices, 0); 961 ipl_pcpu->state = CPU_STATE_CONFIGURED; 962 lc->pcpu = (unsigned long)ipl_pcpu; 963 smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN); 964 } 965 966 void __init smp_setup_processor_id(void) 967 { 968 struct lowcore *lc = get_lowcore(); 969 970 lc->cpu_nr = 0; 971 per_cpu(pcpu_devices, 0).address = stap(); 972 lc->spinlock_lockval = arch_spin_lockval(0); 973 lc->spinlock_index = 0; 974 } 975 976 /* 977 * the frequency of the profiling timer can be changed 978 * by writing a multiplier value into /proc/profile. 979 * 980 * usually you want to run this on all CPUs ;) 981 */ 982 int setup_profiling_timer(unsigned int multiplier) 983 { 984 return 0; 985 } 986 987 static ssize_t cpu_configure_show(struct device *dev, 988 struct device_attribute *attr, char *buf) 989 { 990 ssize_t count; 991 992 mutex_lock(&smp_cpu_state_mutex); 993 count = sprintf(buf, "%d\n", per_cpu(pcpu_devices, dev->id).state); 994 mutex_unlock(&smp_cpu_state_mutex); 995 return count; 996 } 997 998 static ssize_t cpu_configure_store(struct device *dev, 999 struct device_attribute *attr, 1000 const char *buf, size_t count) 1001 { 1002 struct pcpu *pcpu; 1003 int cpu, val, rc, i; 1004 char delim; 1005 1006 if (sscanf(buf, "%d %c", &val, &delim) != 1) 1007 return -EINVAL; 1008 if (val != 0 && val != 1) 1009 return -EINVAL; 1010 cpus_read_lock(); 1011 mutex_lock(&smp_cpu_state_mutex); 1012 rc = -EBUSY; 1013 /* disallow configuration changes of online cpus */ 1014 cpu = dev->id; 1015 cpu = smp_get_base_cpu(cpu); 1016 for (i = 0; i <= smp_cpu_mtid; i++) 1017 if (cpu_online(cpu + i)) 1018 goto out; 1019 pcpu = per_cpu_ptr(&pcpu_devices, cpu); 1020 rc = 0; 1021 switch (val) { 1022 case 0: 1023 if (pcpu->state != CPU_STATE_CONFIGURED) 1024 break; 1025 rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift); 1026 if (rc) 1027 break; 1028 for (i = 0; i <= smp_cpu_mtid; i++) { 1029 if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i)) 1030 continue; 1031 per_cpu(pcpu_devices, cpu + i).state = CPU_STATE_STANDBY; 1032 smp_cpu_set_polarization(cpu + i, 1033 POLARIZATION_UNKNOWN); 1034 } 1035 topology_expect_change(); 1036 break; 1037 case 1: 1038 if (pcpu->state != CPU_STATE_STANDBY) 1039 break; 1040 rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift); 1041 if (rc) 1042 break; 1043 for (i = 0; i <= smp_cpu_mtid; i++) { 1044 if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i)) 1045 continue; 1046 per_cpu(pcpu_devices, cpu + i).state = CPU_STATE_CONFIGURED; 1047 smp_cpu_set_polarization(cpu + i, 1048 POLARIZATION_UNKNOWN); 1049 } 1050 topology_expect_change(); 1051 break; 1052 default: 1053 break; 1054 } 1055 out: 1056 mutex_unlock(&smp_cpu_state_mutex); 1057 cpus_read_unlock(); 1058 return rc ? rc : count; 1059 } 1060 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store); 1061 1062 static ssize_t show_cpu_address(struct device *dev, 1063 struct device_attribute *attr, char *buf) 1064 { 1065 return sprintf(buf, "%d\n", per_cpu(pcpu_devices, dev->id).address); 1066 } 1067 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL); 1068 1069 static struct attribute *cpu_common_attrs[] = { 1070 &dev_attr_configure.attr, 1071 &dev_attr_address.attr, 1072 NULL, 1073 }; 1074 1075 static struct attribute_group cpu_common_attr_group = { 1076 .attrs = cpu_common_attrs, 1077 }; 1078 1079 static struct attribute *cpu_online_attrs[] = { 1080 &dev_attr_idle_count.attr, 1081 &dev_attr_idle_time_us.attr, 1082 NULL, 1083 }; 1084 1085 static struct attribute_group cpu_online_attr_group = { 1086 .attrs = cpu_online_attrs, 1087 }; 1088 1089 static int smp_cpu_online(unsigned int cpu) 1090 { 1091 struct cpu *c = per_cpu_ptr(&cpu_devices, cpu); 1092 1093 return sysfs_create_group(&c->dev.kobj, &cpu_online_attr_group); 1094 } 1095 1096 static int smp_cpu_pre_down(unsigned int cpu) 1097 { 1098 struct cpu *c = per_cpu_ptr(&cpu_devices, cpu); 1099 1100 sysfs_remove_group(&c->dev.kobj, &cpu_online_attr_group); 1101 return 0; 1102 } 1103 1104 bool arch_cpu_is_hotpluggable(int cpu) 1105 { 1106 return !!cpu; 1107 } 1108 1109 int arch_register_cpu(int cpu) 1110 { 1111 struct cpu *c = per_cpu_ptr(&cpu_devices, cpu); 1112 int rc; 1113 1114 c->hotpluggable = arch_cpu_is_hotpluggable(cpu); 1115 rc = register_cpu(c, cpu); 1116 if (rc) 1117 goto out; 1118 rc = sysfs_create_group(&c->dev.kobj, &cpu_common_attr_group); 1119 if (rc) 1120 goto out_cpu; 1121 rc = topology_cpu_init(c); 1122 if (rc) 1123 goto out_topology; 1124 return 0; 1125 1126 out_topology: 1127 sysfs_remove_group(&c->dev.kobj, &cpu_common_attr_group); 1128 out_cpu: 1129 unregister_cpu(c); 1130 out: 1131 return rc; 1132 } 1133 1134 int __ref smp_rescan_cpus(bool early) 1135 { 1136 struct sclp_core_info *info; 1137 int nr; 1138 1139 info = kzalloc(sizeof(*info), GFP_KERNEL); 1140 if (!info) 1141 return -ENOMEM; 1142 smp_get_core_info(info, 0); 1143 nr = __smp_rescan_cpus(info, early); 1144 kfree(info); 1145 if (nr) 1146 topology_schedule_update(); 1147 return 0; 1148 } 1149 1150 static ssize_t __ref rescan_store(struct device *dev, 1151 struct device_attribute *attr, 1152 const char *buf, 1153 size_t count) 1154 { 1155 int rc; 1156 1157 rc = lock_device_hotplug_sysfs(); 1158 if (rc) 1159 return rc; 1160 rc = smp_rescan_cpus(false); 1161 unlock_device_hotplug(); 1162 return rc ? rc : count; 1163 } 1164 static DEVICE_ATTR_WO(rescan); 1165 1166 static int __init s390_smp_init(void) 1167 { 1168 struct device *dev_root; 1169 int rc; 1170 1171 dev_root = bus_get_dev_root(&cpu_subsys); 1172 if (dev_root) { 1173 rc = device_create_file(dev_root, &dev_attr_rescan); 1174 put_device(dev_root); 1175 if (rc) 1176 return rc; 1177 } 1178 rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online", 1179 smp_cpu_online, smp_cpu_pre_down); 1180 rc = rc <= 0 ? rc : 0; 1181 return rc; 1182 } 1183 subsys_initcall(s390_smp_init); 1184
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.