1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Common Ultravisor functions and initialization 4 * 5 * Copyright IBM Corp. 2019, 2020 6 */ 7 #define KMSG_COMPONENT "prot_virt" 8 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 9 10 #include <linux/kernel.h> 11 #include <linux/types.h> 12 #include <linux/sizes.h> 13 #include <linux/bitmap.h> 14 #include <linux/memblock.h> 15 #include <linux/pagemap.h> 16 #include <linux/swap.h> 17 #include <asm/facility.h> 18 #include <asm/sections.h> 19 #include <asm/uv.h> 20 21 #if !IS_ENABLED(CONFIG_KVM) 22 unsigned long __gmap_translate(struct gmap *gmap, unsigned long gaddr) 23 { 24 return 0; 25 } 26 27 int gmap_fault(struct gmap *gmap, unsigned long gaddr, 28 unsigned int fault_flags) 29 { 30 return 0; 31 } 32 #endif 33 34 /* the bootdata_preserved fields come from ones in arch/s390/boot/uv.c */ 35 int __bootdata_preserved(prot_virt_guest); 36 EXPORT_SYMBOL(prot_virt_guest); 37 38 /* 39 * uv_info contains both host and guest information but it's currently only 40 * expected to be used within modules if it's the KVM module or for 41 * any PV guest module. 42 * 43 * The kernel itself will write these values once in uv_query_info() 44 * and then make some of them readable via a sysfs interface. 45 */ 46 struct uv_info __bootdata_preserved(uv_info); 47 EXPORT_SYMBOL(uv_info); 48 49 int __bootdata_preserved(prot_virt_host); 50 EXPORT_SYMBOL(prot_virt_host); 51 52 static int __init uv_init(phys_addr_t stor_base, unsigned long stor_len) 53 { 54 struct uv_cb_init uvcb = { 55 .header.cmd = UVC_CMD_INIT_UV, 56 .header.len = sizeof(uvcb), 57 .stor_origin = stor_base, 58 .stor_len = stor_len, 59 }; 60 61 if (uv_call(0, (uint64_t)&uvcb)) { 62 pr_err("Ultravisor init failed with rc: 0x%x rrc: 0%x\n", 63 uvcb.header.rc, uvcb.header.rrc); 64 return -1; 65 } 66 return 0; 67 } 68 69 void __init setup_uv(void) 70 { 71 void *uv_stor_base; 72 73 if (!is_prot_virt_host()) 74 return; 75 76 uv_stor_base = memblock_alloc_try_nid( 77 uv_info.uv_base_stor_len, SZ_1M, SZ_2G, 78 MEMBLOCK_ALLOC_ACCESSIBLE, NUMA_NO_NODE); 79 if (!uv_stor_base) { 80 pr_warn("Failed to reserve %lu bytes for ultravisor base storage\n", 81 uv_info.uv_base_stor_len); 82 goto fail; 83 } 84 85 if (uv_init(__pa(uv_stor_base), uv_info.uv_base_stor_len)) { 86 memblock_free(uv_stor_base, uv_info.uv_base_stor_len); 87 goto fail; 88 } 89 90 pr_info("Reserving %luMB as ultravisor base storage\n", 91 uv_info.uv_base_stor_len >> 20); 92 return; 93 fail: 94 pr_info("Disabling support for protected virtualization"); 95 prot_virt_host = 0; 96 } 97 98 /* 99 * Requests the Ultravisor to pin the page in the shared state. This will 100 * cause an intercept when the guest attempts to unshare the pinned page. 101 */ 102 int uv_pin_shared(unsigned long paddr) 103 { 104 struct uv_cb_cfs uvcb = { 105 .header.cmd = UVC_CMD_PIN_PAGE_SHARED, 106 .header.len = sizeof(uvcb), 107 .paddr = paddr, 108 }; 109 110 if (uv_call(0, (u64)&uvcb)) 111 return -EINVAL; 112 return 0; 113 } 114 EXPORT_SYMBOL_GPL(uv_pin_shared); 115 116 /* 117 * Requests the Ultravisor to destroy a guest page and make it 118 * accessible to the host. The destroy clears the page instead of 119 * exporting. 120 * 121 * @paddr: Absolute host address of page to be destroyed 122 */ 123 static int uv_destroy(unsigned long paddr) 124 { 125 struct uv_cb_cfs uvcb = { 126 .header.cmd = UVC_CMD_DESTR_SEC_STOR, 127 .header.len = sizeof(uvcb), 128 .paddr = paddr 129 }; 130 131 if (uv_call(0, (u64)&uvcb)) { 132 /* 133 * Older firmware uses 107/d as an indication of a non secure 134 * page. Let us emulate the newer variant (no-op). 135 */ 136 if (uvcb.header.rc == 0x107 && uvcb.header.rrc == 0xd) 137 return 0; 138 return -EINVAL; 139 } 140 return 0; 141 } 142 143 /* 144 * The caller must already hold a reference to the folio 145 */ 146 int uv_destroy_folio(struct folio *folio) 147 { 148 int rc; 149 150 /* See gmap_make_secure(): large folios cannot be secure */ 151 if (unlikely(folio_test_large(folio))) 152 return 0; 153 154 folio_get(folio); 155 rc = uv_destroy(folio_to_phys(folio)); 156 if (!rc) 157 clear_bit(PG_arch_1, &folio->flags); 158 folio_put(folio); 159 return rc; 160 } 161 162 /* 163 * The present PTE still indirectly holds a folio reference through the mapping. 164 */ 165 int uv_destroy_pte(pte_t pte) 166 { 167 VM_WARN_ON(!pte_present(pte)); 168 return uv_destroy_folio(pfn_folio(pte_pfn(pte))); 169 } 170 171 /* 172 * Requests the Ultravisor to encrypt a guest page and make it 173 * accessible to the host for paging (export). 174 * 175 * @paddr: Absolute host address of page to be exported 176 */ 177 static int uv_convert_from_secure(unsigned long paddr) 178 { 179 struct uv_cb_cfs uvcb = { 180 .header.cmd = UVC_CMD_CONV_FROM_SEC_STOR, 181 .header.len = sizeof(uvcb), 182 .paddr = paddr 183 }; 184 185 if (uv_call(0, (u64)&uvcb)) 186 return -EINVAL; 187 return 0; 188 } 189 190 /* 191 * The caller must already hold a reference to the folio. 192 */ 193 static int uv_convert_from_secure_folio(struct folio *folio) 194 { 195 int rc; 196 197 /* See gmap_make_secure(): large folios cannot be secure */ 198 if (unlikely(folio_test_large(folio))) 199 return 0; 200 201 folio_get(folio); 202 rc = uv_convert_from_secure(folio_to_phys(folio)); 203 if (!rc) 204 clear_bit(PG_arch_1, &folio->flags); 205 folio_put(folio); 206 return rc; 207 } 208 209 /* 210 * The present PTE still indirectly holds a folio reference through the mapping. 211 */ 212 int uv_convert_from_secure_pte(pte_t pte) 213 { 214 VM_WARN_ON(!pte_present(pte)); 215 return uv_convert_from_secure_folio(pfn_folio(pte_pfn(pte))); 216 } 217 218 /* 219 * Calculate the expected ref_count for a folio that would otherwise have no 220 * further pins. This was cribbed from similar functions in other places in 221 * the kernel, but with some slight modifications. We know that a secure 222 * folio can not be a large folio, for example. 223 */ 224 static int expected_folio_refs(struct folio *folio) 225 { 226 int res; 227 228 res = folio_mapcount(folio); 229 if (folio_test_swapcache(folio)) { 230 res++; 231 } else if (folio_mapping(folio)) { 232 res++; 233 if (folio->private) 234 res++; 235 } 236 return res; 237 } 238 239 static int make_folio_secure(struct folio *folio, struct uv_cb_header *uvcb) 240 { 241 int expected, cc = 0; 242 243 if (folio_test_writeback(folio)) 244 return -EAGAIN; 245 expected = expected_folio_refs(folio); 246 if (!folio_ref_freeze(folio, expected)) 247 return -EBUSY; 248 set_bit(PG_arch_1, &folio->flags); 249 /* 250 * If the UVC does not succeed or fail immediately, we don't want to 251 * loop for long, or we might get stall notifications. 252 * On the other hand, this is a complex scenario and we are holding a lot of 253 * locks, so we can't easily sleep and reschedule. We try only once, 254 * and if the UVC returned busy or partial completion, we return 255 * -EAGAIN and we let the callers deal with it. 256 */ 257 cc = __uv_call(0, (u64)uvcb); 258 folio_ref_unfreeze(folio, expected); 259 /* 260 * Return -ENXIO if the folio was not mapped, -EINVAL for other errors. 261 * If busy or partially completed, return -EAGAIN. 262 */ 263 if (cc == UVC_CC_OK) 264 return 0; 265 else if (cc == UVC_CC_BUSY || cc == UVC_CC_PARTIAL) 266 return -EAGAIN; 267 return uvcb->rc == 0x10a ? -ENXIO : -EINVAL; 268 } 269 270 /** 271 * should_export_before_import - Determine whether an export is needed 272 * before an import-like operation 273 * @uvcb: the Ultravisor control block of the UVC to be performed 274 * @mm: the mm of the process 275 * 276 * Returns whether an export is needed before every import-like operation. 277 * This is needed for shared pages, which don't trigger a secure storage 278 * exception when accessed from a different guest. 279 * 280 * Although considered as one, the Unpin Page UVC is not an actual import, 281 * so it is not affected. 282 * 283 * No export is needed also when there is only one protected VM, because the 284 * page cannot belong to the wrong VM in that case (there is no "other VM" 285 * it can belong to). 286 * 287 * Return: true if an export is needed before every import, otherwise false. 288 */ 289 static bool should_export_before_import(struct uv_cb_header *uvcb, struct mm_struct *mm) 290 { 291 /* 292 * The misc feature indicates, among other things, that importing a 293 * shared page from a different protected VM will automatically also 294 * transfer its ownership. 295 */ 296 if (uv_has_feature(BIT_UV_FEAT_MISC)) 297 return false; 298 if (uvcb->cmd == UVC_CMD_UNPIN_PAGE_SHARED) 299 return false; 300 return atomic_read(&mm->context.protected_count) > 1; 301 } 302 303 /* 304 * Drain LRU caches: the local one on first invocation and the ones of all 305 * CPUs on successive invocations. Returns "true" on the first invocation. 306 */ 307 static bool drain_lru(bool *drain_lru_called) 308 { 309 /* 310 * If we have tried a local drain and the folio refcount 311 * still does not match our expected safe value, try with a 312 * system wide drain. This is needed if the pagevecs holding 313 * the page are on a different CPU. 314 */ 315 if (*drain_lru_called) { 316 lru_add_drain_all(); 317 /* We give up here, don't retry immediately. */ 318 return false; 319 } 320 /* 321 * We are here if the folio refcount does not match the 322 * expected safe value. The main culprits are usually 323 * pagevecs. With lru_add_drain() we drain the pagevecs 324 * on the local CPU so that hopefully the refcount will 325 * reach the expected safe value. 326 */ 327 lru_add_drain(); 328 *drain_lru_called = true; 329 /* The caller should try again immediately */ 330 return true; 331 } 332 333 /* 334 * Requests the Ultravisor to make a page accessible to a guest. 335 * If it's brought in the first time, it will be cleared. If 336 * it has been exported before, it will be decrypted and integrity 337 * checked. 338 */ 339 int gmap_make_secure(struct gmap *gmap, unsigned long gaddr, void *uvcb) 340 { 341 struct vm_area_struct *vma; 342 bool drain_lru_called = false; 343 spinlock_t *ptelock; 344 unsigned long uaddr; 345 struct folio *folio; 346 pte_t *ptep; 347 int rc; 348 349 again: 350 rc = -EFAULT; 351 mmap_read_lock(gmap->mm); 352 353 uaddr = __gmap_translate(gmap, gaddr); 354 if (IS_ERR_VALUE(uaddr)) 355 goto out; 356 vma = vma_lookup(gmap->mm, uaddr); 357 if (!vma) 358 goto out; 359 /* 360 * Secure pages cannot be huge and userspace should not combine both. 361 * In case userspace does it anyway this will result in an -EFAULT for 362 * the unpack. The guest is thus never reaching secure mode. If 363 * userspace is playing dirty tricky with mapping huge pages later 364 * on this will result in a segmentation fault. 365 */ 366 if (is_vm_hugetlb_page(vma)) 367 goto out; 368 369 rc = -ENXIO; 370 ptep = get_locked_pte(gmap->mm, uaddr, &ptelock); 371 if (!ptep) 372 goto out; 373 if (pte_present(*ptep) && !(pte_val(*ptep) & _PAGE_INVALID) && pte_write(*ptep)) { 374 folio = page_folio(pte_page(*ptep)); 375 rc = -EAGAIN; 376 if (folio_test_large(folio)) { 377 rc = -E2BIG; 378 } else if (folio_trylock(folio)) { 379 if (should_export_before_import(uvcb, gmap->mm)) 380 uv_convert_from_secure(PFN_PHYS(folio_pfn(folio))); 381 rc = make_folio_secure(folio, uvcb); 382 folio_unlock(folio); 383 } 384 385 /* 386 * Once we drop the PTL, the folio may get unmapped and 387 * freed immediately. We need a temporary reference. 388 */ 389 if (rc == -EAGAIN || rc == -E2BIG) 390 folio_get(folio); 391 } 392 pte_unmap_unlock(ptep, ptelock); 393 out: 394 mmap_read_unlock(gmap->mm); 395 396 switch (rc) { 397 case -E2BIG: 398 folio_lock(folio); 399 rc = split_folio(folio); 400 folio_unlock(folio); 401 folio_put(folio); 402 403 switch (rc) { 404 case 0: 405 /* Splitting succeeded, try again immediately. */ 406 goto again; 407 case -EAGAIN: 408 /* Additional folio references. */ 409 if (drain_lru(&drain_lru_called)) 410 goto again; 411 return -EAGAIN; 412 case -EBUSY: 413 /* Unexpected race. */ 414 return -EAGAIN; 415 } 416 WARN_ON_ONCE(1); 417 return -ENXIO; 418 case -EAGAIN: 419 /* 420 * If we are here because the UVC returned busy or partial 421 * completion, this is just a useless check, but it is safe. 422 */ 423 folio_wait_writeback(folio); 424 folio_put(folio); 425 return -EAGAIN; 426 case -EBUSY: 427 /* Additional folio references. */ 428 if (drain_lru(&drain_lru_called)) 429 goto again; 430 return -EAGAIN; 431 case -ENXIO: 432 if (gmap_fault(gmap, gaddr, FAULT_FLAG_WRITE)) 433 return -EFAULT; 434 return -EAGAIN; 435 } 436 return rc; 437 } 438 EXPORT_SYMBOL_GPL(gmap_make_secure); 439 440 int gmap_convert_to_secure(struct gmap *gmap, unsigned long gaddr) 441 { 442 struct uv_cb_cts uvcb = { 443 .header.cmd = UVC_CMD_CONV_TO_SEC_STOR, 444 .header.len = sizeof(uvcb), 445 .guest_handle = gmap->guest_handle, 446 .gaddr = gaddr, 447 }; 448 449 return gmap_make_secure(gmap, gaddr, &uvcb); 450 } 451 EXPORT_SYMBOL_GPL(gmap_convert_to_secure); 452 453 /** 454 * gmap_destroy_page - Destroy a guest page. 455 * @gmap: the gmap of the guest 456 * @gaddr: the guest address to destroy 457 * 458 * An attempt will be made to destroy the given guest page. If the attempt 459 * fails, an attempt is made to export the page. If both attempts fail, an 460 * appropriate error is returned. 461 */ 462 int gmap_destroy_page(struct gmap *gmap, unsigned long gaddr) 463 { 464 struct vm_area_struct *vma; 465 unsigned long uaddr; 466 struct folio *folio; 467 struct page *page; 468 int rc; 469 470 rc = -EFAULT; 471 mmap_read_lock(gmap->mm); 472 473 uaddr = __gmap_translate(gmap, gaddr); 474 if (IS_ERR_VALUE(uaddr)) 475 goto out; 476 vma = vma_lookup(gmap->mm, uaddr); 477 if (!vma) 478 goto out; 479 /* 480 * Huge pages should not be able to become secure 481 */ 482 if (is_vm_hugetlb_page(vma)) 483 goto out; 484 485 rc = 0; 486 /* we take an extra reference here */ 487 page = follow_page(vma, uaddr, FOLL_WRITE | FOLL_GET); 488 if (IS_ERR_OR_NULL(page)) 489 goto out; 490 folio = page_folio(page); 491 rc = uv_destroy_folio(folio); 492 /* 493 * Fault handlers can race; it is possible that two CPUs will fault 494 * on the same secure page. One CPU can destroy the page, reboot, 495 * re-enter secure mode and import it, while the second CPU was 496 * stuck at the beginning of the handler. At some point the second 497 * CPU will be able to progress, and it will not be able to destroy 498 * the page. In that case we do not want to terminate the process, 499 * we instead try to export the page. 500 */ 501 if (rc) 502 rc = uv_convert_from_secure_folio(folio); 503 folio_put(folio); 504 out: 505 mmap_read_unlock(gmap->mm); 506 return rc; 507 } 508 EXPORT_SYMBOL_GPL(gmap_destroy_page); 509 510 /* 511 * To be called with the folio locked or with an extra reference! This will 512 * prevent gmap_make_secure from touching the folio concurrently. Having 2 513 * parallel arch_make_folio_accessible is fine, as the UV calls will become a 514 * no-op if the folio is already exported. 515 */ 516 int arch_make_folio_accessible(struct folio *folio) 517 { 518 int rc = 0; 519 520 /* See gmap_make_secure(): large folios cannot be secure */ 521 if (unlikely(folio_test_large(folio))) 522 return 0; 523 524 /* 525 * PG_arch_1 is used in 2 places: 526 * 1. for storage keys of hugetlb folios and KVM 527 * 2. As an indication that this small folio might be secure. This can 528 * overindicate, e.g. we set the bit before calling 529 * convert_to_secure. 530 * As secure pages are never large folios, both variants can co-exists. 531 */ 532 if (!test_bit(PG_arch_1, &folio->flags)) 533 return 0; 534 535 rc = uv_pin_shared(folio_to_phys(folio)); 536 if (!rc) { 537 clear_bit(PG_arch_1, &folio->flags); 538 return 0; 539 } 540 541 rc = uv_convert_from_secure(folio_to_phys(folio)); 542 if (!rc) { 543 clear_bit(PG_arch_1, &folio->flags); 544 return 0; 545 } 546 547 return rc; 548 } 549 EXPORT_SYMBOL_GPL(arch_make_folio_accessible); 550 551 int arch_make_page_accessible(struct page *page) 552 { 553 return arch_make_folio_accessible(page_folio(page)); 554 } 555 EXPORT_SYMBOL_GPL(arch_make_page_accessible); 556 static ssize_t uv_query_facilities(struct kobject *kobj, 557 struct kobj_attribute *attr, char *buf) 558 { 559 return sysfs_emit(buf, "%lx\n%lx\n%lx\n%lx\n", 560 uv_info.inst_calls_list[0], 561 uv_info.inst_calls_list[1], 562 uv_info.inst_calls_list[2], 563 uv_info.inst_calls_list[3]); 564 } 565 566 static struct kobj_attribute uv_query_facilities_attr = 567 __ATTR(facilities, 0444, uv_query_facilities, NULL); 568 569 static ssize_t uv_query_supp_se_hdr_ver(struct kobject *kobj, 570 struct kobj_attribute *attr, char *buf) 571 { 572 return sysfs_emit(buf, "%lx\n", uv_info.supp_se_hdr_ver); 573 } 574 575 static struct kobj_attribute uv_query_supp_se_hdr_ver_attr = 576 __ATTR(supp_se_hdr_ver, 0444, uv_query_supp_se_hdr_ver, NULL); 577 578 static ssize_t uv_query_supp_se_hdr_pcf(struct kobject *kobj, 579 struct kobj_attribute *attr, char *buf) 580 { 581 return sysfs_emit(buf, "%lx\n", uv_info.supp_se_hdr_pcf); 582 } 583 584 static struct kobj_attribute uv_query_supp_se_hdr_pcf_attr = 585 __ATTR(supp_se_hdr_pcf, 0444, uv_query_supp_se_hdr_pcf, NULL); 586 587 static ssize_t uv_query_dump_cpu_len(struct kobject *kobj, 588 struct kobj_attribute *attr, char *buf) 589 { 590 return sysfs_emit(buf, "%lx\n", uv_info.guest_cpu_stor_len); 591 } 592 593 static struct kobj_attribute uv_query_dump_cpu_len_attr = 594 __ATTR(uv_query_dump_cpu_len, 0444, uv_query_dump_cpu_len, NULL); 595 596 static ssize_t uv_query_dump_storage_state_len(struct kobject *kobj, 597 struct kobj_attribute *attr, char *buf) 598 { 599 return sysfs_emit(buf, "%lx\n", uv_info.conf_dump_storage_state_len); 600 } 601 602 static struct kobj_attribute uv_query_dump_storage_state_len_attr = 603 __ATTR(dump_storage_state_len, 0444, uv_query_dump_storage_state_len, NULL); 604 605 static ssize_t uv_query_dump_finalize_len(struct kobject *kobj, 606 struct kobj_attribute *attr, char *buf) 607 { 608 return sysfs_emit(buf, "%lx\n", uv_info.conf_dump_finalize_len); 609 } 610 611 static struct kobj_attribute uv_query_dump_finalize_len_attr = 612 __ATTR(dump_finalize_len, 0444, uv_query_dump_finalize_len, NULL); 613 614 static ssize_t uv_query_feature_indications(struct kobject *kobj, 615 struct kobj_attribute *attr, char *buf) 616 { 617 return sysfs_emit(buf, "%lx\n", uv_info.uv_feature_indications); 618 } 619 620 static struct kobj_attribute uv_query_feature_indications_attr = 621 __ATTR(feature_indications, 0444, uv_query_feature_indications, NULL); 622 623 static ssize_t uv_query_max_guest_cpus(struct kobject *kobj, 624 struct kobj_attribute *attr, char *buf) 625 { 626 return sysfs_emit(buf, "%d\n", uv_info.max_guest_cpu_id + 1); 627 } 628 629 static struct kobj_attribute uv_query_max_guest_cpus_attr = 630 __ATTR(max_cpus, 0444, uv_query_max_guest_cpus, NULL); 631 632 static ssize_t uv_query_max_guest_vms(struct kobject *kobj, 633 struct kobj_attribute *attr, char *buf) 634 { 635 return sysfs_emit(buf, "%d\n", uv_info.max_num_sec_conf); 636 } 637 638 static struct kobj_attribute uv_query_max_guest_vms_attr = 639 __ATTR(max_guests, 0444, uv_query_max_guest_vms, NULL); 640 641 static ssize_t uv_query_max_guest_addr(struct kobject *kobj, 642 struct kobj_attribute *attr, char *buf) 643 { 644 return sysfs_emit(buf, "%lx\n", uv_info.max_sec_stor_addr); 645 } 646 647 static struct kobj_attribute uv_query_max_guest_addr_attr = 648 __ATTR(max_address, 0444, uv_query_max_guest_addr, NULL); 649 650 static ssize_t uv_query_supp_att_req_hdr_ver(struct kobject *kobj, 651 struct kobj_attribute *attr, char *buf) 652 { 653 return sysfs_emit(buf, "%lx\n", uv_info.supp_att_req_hdr_ver); 654 } 655 656 static struct kobj_attribute uv_query_supp_att_req_hdr_ver_attr = 657 __ATTR(supp_att_req_hdr_ver, 0444, uv_query_supp_att_req_hdr_ver, NULL); 658 659 static ssize_t uv_query_supp_att_pflags(struct kobject *kobj, 660 struct kobj_attribute *attr, char *buf) 661 { 662 return sysfs_emit(buf, "%lx\n", uv_info.supp_att_pflags); 663 } 664 665 static struct kobj_attribute uv_query_supp_att_pflags_attr = 666 __ATTR(supp_att_pflags, 0444, uv_query_supp_att_pflags, NULL); 667 668 static ssize_t uv_query_supp_add_secret_req_ver(struct kobject *kobj, 669 struct kobj_attribute *attr, char *buf) 670 { 671 return sysfs_emit(buf, "%lx\n", uv_info.supp_add_secret_req_ver); 672 } 673 674 static struct kobj_attribute uv_query_supp_add_secret_req_ver_attr = 675 __ATTR(supp_add_secret_req_ver, 0444, uv_query_supp_add_secret_req_ver, NULL); 676 677 static ssize_t uv_query_supp_add_secret_pcf(struct kobject *kobj, 678 struct kobj_attribute *attr, char *buf) 679 { 680 return sysfs_emit(buf, "%lx\n", uv_info.supp_add_secret_pcf); 681 } 682 683 static struct kobj_attribute uv_query_supp_add_secret_pcf_attr = 684 __ATTR(supp_add_secret_pcf, 0444, uv_query_supp_add_secret_pcf, NULL); 685 686 static ssize_t uv_query_supp_secret_types(struct kobject *kobj, 687 struct kobj_attribute *attr, char *buf) 688 { 689 return sysfs_emit(buf, "%lx\n", uv_info.supp_secret_types); 690 } 691 692 static struct kobj_attribute uv_query_supp_secret_types_attr = 693 __ATTR(supp_secret_types, 0444, uv_query_supp_secret_types, NULL); 694 695 static ssize_t uv_query_max_secrets(struct kobject *kobj, 696 struct kobj_attribute *attr, char *buf) 697 { 698 return sysfs_emit(buf, "%d\n", uv_info.max_secrets); 699 } 700 701 static struct kobj_attribute uv_query_max_secrets_attr = 702 __ATTR(max_secrets, 0444, uv_query_max_secrets, NULL); 703 704 static struct attribute *uv_query_attrs[] = { 705 &uv_query_facilities_attr.attr, 706 &uv_query_feature_indications_attr.attr, 707 &uv_query_max_guest_cpus_attr.attr, 708 &uv_query_max_guest_vms_attr.attr, 709 &uv_query_max_guest_addr_attr.attr, 710 &uv_query_supp_se_hdr_ver_attr.attr, 711 &uv_query_supp_se_hdr_pcf_attr.attr, 712 &uv_query_dump_storage_state_len_attr.attr, 713 &uv_query_dump_finalize_len_attr.attr, 714 &uv_query_dump_cpu_len_attr.attr, 715 &uv_query_supp_att_req_hdr_ver_attr.attr, 716 &uv_query_supp_att_pflags_attr.attr, 717 &uv_query_supp_add_secret_req_ver_attr.attr, 718 &uv_query_supp_add_secret_pcf_attr.attr, 719 &uv_query_supp_secret_types_attr.attr, 720 &uv_query_max_secrets_attr.attr, 721 NULL, 722 }; 723 724 static struct attribute_group uv_query_attr_group = { 725 .attrs = uv_query_attrs, 726 }; 727 728 static ssize_t uv_is_prot_virt_guest(struct kobject *kobj, 729 struct kobj_attribute *attr, char *buf) 730 { 731 return sysfs_emit(buf, "%d\n", prot_virt_guest); 732 } 733 734 static ssize_t uv_is_prot_virt_host(struct kobject *kobj, 735 struct kobj_attribute *attr, char *buf) 736 { 737 return sysfs_emit(buf, "%d\n", prot_virt_host); 738 } 739 740 static struct kobj_attribute uv_prot_virt_guest = 741 __ATTR(prot_virt_guest, 0444, uv_is_prot_virt_guest, NULL); 742 743 static struct kobj_attribute uv_prot_virt_host = 744 __ATTR(prot_virt_host, 0444, uv_is_prot_virt_host, NULL); 745 746 static const struct attribute *uv_prot_virt_attrs[] = { 747 &uv_prot_virt_guest.attr, 748 &uv_prot_virt_host.attr, 749 NULL, 750 }; 751 752 static struct kset *uv_query_kset; 753 static struct kobject *uv_kobj; 754 755 static int __init uv_info_init(void) 756 { 757 int rc = -ENOMEM; 758 759 if (!test_facility(158)) 760 return 0; 761 762 uv_kobj = kobject_create_and_add("uv", firmware_kobj); 763 if (!uv_kobj) 764 return -ENOMEM; 765 766 rc = sysfs_create_files(uv_kobj, uv_prot_virt_attrs); 767 if (rc) 768 goto out_kobj; 769 770 uv_query_kset = kset_create_and_add("query", NULL, uv_kobj); 771 if (!uv_query_kset) { 772 rc = -ENOMEM; 773 goto out_ind_files; 774 } 775 776 rc = sysfs_create_group(&uv_query_kset->kobj, &uv_query_attr_group); 777 if (!rc) 778 return 0; 779 780 kset_unregister(uv_query_kset); 781 out_ind_files: 782 sysfs_remove_files(uv_kobj, uv_prot_virt_attrs); 783 out_kobj: 784 kobject_del(uv_kobj); 785 kobject_put(uv_kobj); 786 return rc; 787 } 788 device_initcall(uv_info_init); 789
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.