1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * hosting IBM Z kernel virtual machines (s390x) 4 * 5 * Copyright IBM Corp. 2008, 2020 6 * 7 * Author(s): Carsten Otte <cotte@de.ibm.com> 8 * Christian Borntraeger <borntraeger@de.ibm.com> 9 * Christian Ehrhardt <ehrhardt@de.ibm.com> 10 * Jason J. Herne <jjherne@us.ibm.com> 11 */ 12 13 #define KMSG_COMPONENT "kvm-s390" 14 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 15 16 #include <linux/compiler.h> 17 #include <linux/err.h> 18 #include <linux/fs.h> 19 #include <linux/hrtimer.h> 20 #include <linux/init.h> 21 #include <linux/kvm.h> 22 #include <linux/kvm_host.h> 23 #include <linux/mman.h> 24 #include <linux/module.h> 25 #include <linux/moduleparam.h> 26 #include <linux/random.h> 27 #include <linux/slab.h> 28 #include <linux/timer.h> 29 #include <linux/vmalloc.h> 30 #include <linux/bitmap.h> 31 #include <linux/sched/signal.h> 32 #include <linux/string.h> 33 #include <linux/pgtable.h> 34 #include <linux/mmu_notifier.h> 35 36 #include <asm/access-regs.h> 37 #include <asm/asm-offsets.h> 38 #include <asm/lowcore.h> 39 #include <asm/stp.h> 40 #include <asm/gmap.h> 41 #include <asm/nmi.h> 42 #include <asm/isc.h> 43 #include <asm/sclp.h> 44 #include <asm/cpacf.h> 45 #include <asm/timex.h> 46 #include <asm/fpu.h> 47 #include <asm/ap.h> 48 #include <asm/uv.h> 49 #include "kvm-s390.h" 50 #include "gaccess.h" 51 #include "pci.h" 52 53 #define CREATE_TRACE_POINTS 54 #include "trace.h" 55 #include "trace-s390.h" 56 57 #define MEM_OP_MAX_SIZE 65536 /* Maximum transfer size for KVM_S390_MEM_OP */ 58 #define LOCAL_IRQS 32 59 #define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \ 60 (KVM_MAX_VCPUS + LOCAL_IRQS)) 61 62 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 63 KVM_GENERIC_VM_STATS(), 64 STATS_DESC_COUNTER(VM, inject_io), 65 STATS_DESC_COUNTER(VM, inject_float_mchk), 66 STATS_DESC_COUNTER(VM, inject_pfault_done), 67 STATS_DESC_COUNTER(VM, inject_service_signal), 68 STATS_DESC_COUNTER(VM, inject_virtio), 69 STATS_DESC_COUNTER(VM, aen_forward), 70 STATS_DESC_COUNTER(VM, gmap_shadow_reuse), 71 STATS_DESC_COUNTER(VM, gmap_shadow_create), 72 STATS_DESC_COUNTER(VM, gmap_shadow_r1_entry), 73 STATS_DESC_COUNTER(VM, gmap_shadow_r2_entry), 74 STATS_DESC_COUNTER(VM, gmap_shadow_r3_entry), 75 STATS_DESC_COUNTER(VM, gmap_shadow_sg_entry), 76 STATS_DESC_COUNTER(VM, gmap_shadow_pg_entry), 77 }; 78 79 const struct kvm_stats_header kvm_vm_stats_header = { 80 .name_size = KVM_STATS_NAME_SIZE, 81 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 82 .id_offset = sizeof(struct kvm_stats_header), 83 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 84 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 85 sizeof(kvm_vm_stats_desc), 86 }; 87 88 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 89 KVM_GENERIC_VCPU_STATS(), 90 STATS_DESC_COUNTER(VCPU, exit_userspace), 91 STATS_DESC_COUNTER(VCPU, exit_null), 92 STATS_DESC_COUNTER(VCPU, exit_external_request), 93 STATS_DESC_COUNTER(VCPU, exit_io_request), 94 STATS_DESC_COUNTER(VCPU, exit_external_interrupt), 95 STATS_DESC_COUNTER(VCPU, exit_stop_request), 96 STATS_DESC_COUNTER(VCPU, exit_validity), 97 STATS_DESC_COUNTER(VCPU, exit_instruction), 98 STATS_DESC_COUNTER(VCPU, exit_pei), 99 STATS_DESC_COUNTER(VCPU, halt_no_poll_steal), 100 STATS_DESC_COUNTER(VCPU, instruction_lctl), 101 STATS_DESC_COUNTER(VCPU, instruction_lctlg), 102 STATS_DESC_COUNTER(VCPU, instruction_stctl), 103 STATS_DESC_COUNTER(VCPU, instruction_stctg), 104 STATS_DESC_COUNTER(VCPU, exit_program_interruption), 105 STATS_DESC_COUNTER(VCPU, exit_instr_and_program), 106 STATS_DESC_COUNTER(VCPU, exit_operation_exception), 107 STATS_DESC_COUNTER(VCPU, deliver_ckc), 108 STATS_DESC_COUNTER(VCPU, deliver_cputm), 109 STATS_DESC_COUNTER(VCPU, deliver_external_call), 110 STATS_DESC_COUNTER(VCPU, deliver_emergency_signal), 111 STATS_DESC_COUNTER(VCPU, deliver_service_signal), 112 STATS_DESC_COUNTER(VCPU, deliver_virtio), 113 STATS_DESC_COUNTER(VCPU, deliver_stop_signal), 114 STATS_DESC_COUNTER(VCPU, deliver_prefix_signal), 115 STATS_DESC_COUNTER(VCPU, deliver_restart_signal), 116 STATS_DESC_COUNTER(VCPU, deliver_program), 117 STATS_DESC_COUNTER(VCPU, deliver_io), 118 STATS_DESC_COUNTER(VCPU, deliver_machine_check), 119 STATS_DESC_COUNTER(VCPU, exit_wait_state), 120 STATS_DESC_COUNTER(VCPU, inject_ckc), 121 STATS_DESC_COUNTER(VCPU, inject_cputm), 122 STATS_DESC_COUNTER(VCPU, inject_external_call), 123 STATS_DESC_COUNTER(VCPU, inject_emergency_signal), 124 STATS_DESC_COUNTER(VCPU, inject_mchk), 125 STATS_DESC_COUNTER(VCPU, inject_pfault_init), 126 STATS_DESC_COUNTER(VCPU, inject_program), 127 STATS_DESC_COUNTER(VCPU, inject_restart), 128 STATS_DESC_COUNTER(VCPU, inject_set_prefix), 129 STATS_DESC_COUNTER(VCPU, inject_stop_signal), 130 STATS_DESC_COUNTER(VCPU, instruction_epsw), 131 STATS_DESC_COUNTER(VCPU, instruction_gs), 132 STATS_DESC_COUNTER(VCPU, instruction_io_other), 133 STATS_DESC_COUNTER(VCPU, instruction_lpsw), 134 STATS_DESC_COUNTER(VCPU, instruction_lpswe), 135 STATS_DESC_COUNTER(VCPU, instruction_lpswey), 136 STATS_DESC_COUNTER(VCPU, instruction_pfmf), 137 STATS_DESC_COUNTER(VCPU, instruction_ptff), 138 STATS_DESC_COUNTER(VCPU, instruction_sck), 139 STATS_DESC_COUNTER(VCPU, instruction_sckpf), 140 STATS_DESC_COUNTER(VCPU, instruction_stidp), 141 STATS_DESC_COUNTER(VCPU, instruction_spx), 142 STATS_DESC_COUNTER(VCPU, instruction_stpx), 143 STATS_DESC_COUNTER(VCPU, instruction_stap), 144 STATS_DESC_COUNTER(VCPU, instruction_iske), 145 STATS_DESC_COUNTER(VCPU, instruction_ri), 146 STATS_DESC_COUNTER(VCPU, instruction_rrbe), 147 STATS_DESC_COUNTER(VCPU, instruction_sske), 148 STATS_DESC_COUNTER(VCPU, instruction_ipte_interlock), 149 STATS_DESC_COUNTER(VCPU, instruction_stsi), 150 STATS_DESC_COUNTER(VCPU, instruction_stfl), 151 STATS_DESC_COUNTER(VCPU, instruction_tb), 152 STATS_DESC_COUNTER(VCPU, instruction_tpi), 153 STATS_DESC_COUNTER(VCPU, instruction_tprot), 154 STATS_DESC_COUNTER(VCPU, instruction_tsch), 155 STATS_DESC_COUNTER(VCPU, instruction_sie), 156 STATS_DESC_COUNTER(VCPU, instruction_essa), 157 STATS_DESC_COUNTER(VCPU, instruction_sthyi), 158 STATS_DESC_COUNTER(VCPU, instruction_sigp_sense), 159 STATS_DESC_COUNTER(VCPU, instruction_sigp_sense_running), 160 STATS_DESC_COUNTER(VCPU, instruction_sigp_external_call), 161 STATS_DESC_COUNTER(VCPU, instruction_sigp_emergency), 162 STATS_DESC_COUNTER(VCPU, instruction_sigp_cond_emergency), 163 STATS_DESC_COUNTER(VCPU, instruction_sigp_start), 164 STATS_DESC_COUNTER(VCPU, instruction_sigp_stop), 165 STATS_DESC_COUNTER(VCPU, instruction_sigp_stop_store_status), 166 STATS_DESC_COUNTER(VCPU, instruction_sigp_store_status), 167 STATS_DESC_COUNTER(VCPU, instruction_sigp_store_adtl_status), 168 STATS_DESC_COUNTER(VCPU, instruction_sigp_arch), 169 STATS_DESC_COUNTER(VCPU, instruction_sigp_prefix), 170 STATS_DESC_COUNTER(VCPU, instruction_sigp_restart), 171 STATS_DESC_COUNTER(VCPU, instruction_sigp_init_cpu_reset), 172 STATS_DESC_COUNTER(VCPU, instruction_sigp_cpu_reset), 173 STATS_DESC_COUNTER(VCPU, instruction_sigp_unknown), 174 STATS_DESC_COUNTER(VCPU, instruction_diagnose_10), 175 STATS_DESC_COUNTER(VCPU, instruction_diagnose_44), 176 STATS_DESC_COUNTER(VCPU, instruction_diagnose_9c), 177 STATS_DESC_COUNTER(VCPU, diag_9c_ignored), 178 STATS_DESC_COUNTER(VCPU, diag_9c_forward), 179 STATS_DESC_COUNTER(VCPU, instruction_diagnose_258), 180 STATS_DESC_COUNTER(VCPU, instruction_diagnose_308), 181 STATS_DESC_COUNTER(VCPU, instruction_diagnose_500), 182 STATS_DESC_COUNTER(VCPU, instruction_diagnose_other), 183 STATS_DESC_COUNTER(VCPU, pfault_sync) 184 }; 185 186 const struct kvm_stats_header kvm_vcpu_stats_header = { 187 .name_size = KVM_STATS_NAME_SIZE, 188 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 189 .id_offset = sizeof(struct kvm_stats_header), 190 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 191 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 192 sizeof(kvm_vcpu_stats_desc), 193 }; 194 195 /* allow nested virtualization in KVM (if enabled by user space) */ 196 static int nested; 197 module_param(nested, int, S_IRUGO); 198 MODULE_PARM_DESC(nested, "Nested virtualization support"); 199 200 /* allow 1m huge page guest backing, if !nested */ 201 static int hpage; 202 module_param(hpage, int, 0444); 203 MODULE_PARM_DESC(hpage, "1m huge page backing support"); 204 205 /* maximum percentage of steal time for polling. >100 is treated like 100 */ 206 static u8 halt_poll_max_steal = 10; 207 module_param(halt_poll_max_steal, byte, 0644); 208 MODULE_PARM_DESC(halt_poll_max_steal, "Maximum percentage of steal time to allow polling"); 209 210 /* if set to true, the GISA will be initialized and used if available */ 211 static bool use_gisa = true; 212 module_param(use_gisa, bool, 0644); 213 MODULE_PARM_DESC(use_gisa, "Use the GISA if the host supports it."); 214 215 /* maximum diag9c forwarding per second */ 216 unsigned int diag9c_forwarding_hz; 217 module_param(diag9c_forwarding_hz, uint, 0644); 218 MODULE_PARM_DESC(diag9c_forwarding_hz, "Maximum diag9c forwarding per second, 0 to turn off"); 219 220 /* 221 * allow asynchronous deinit for protected guests; enable by default since 222 * the feature is opt-in anyway 223 */ 224 static int async_destroy = 1; 225 module_param(async_destroy, int, 0444); 226 MODULE_PARM_DESC(async_destroy, "Asynchronous destroy for protected guests"); 227 228 /* 229 * For now we handle at most 16 double words as this is what the s390 base 230 * kernel handles and stores in the prefix page. If we ever need to go beyond 231 * this, this requires changes to code, but the external uapi can stay. 232 */ 233 #define SIZE_INTERNAL 16 234 235 /* 236 * Base feature mask that defines default mask for facilities. Consists of the 237 * defines in FACILITIES_KVM and the non-hypervisor managed bits. 238 */ 239 static unsigned long kvm_s390_fac_base[SIZE_INTERNAL] = { FACILITIES_KVM }; 240 /* 241 * Extended feature mask. Consists of the defines in FACILITIES_KVM_CPUMODEL 242 * and defines the facilities that can be enabled via a cpu model. 243 */ 244 static unsigned long kvm_s390_fac_ext[SIZE_INTERNAL] = { FACILITIES_KVM_CPUMODEL }; 245 246 static unsigned long kvm_s390_fac_size(void) 247 { 248 BUILD_BUG_ON(SIZE_INTERNAL > S390_ARCH_FAC_MASK_SIZE_U64); 249 BUILD_BUG_ON(SIZE_INTERNAL > S390_ARCH_FAC_LIST_SIZE_U64); 250 BUILD_BUG_ON(SIZE_INTERNAL * sizeof(unsigned long) > 251 sizeof(stfle_fac_list)); 252 253 return SIZE_INTERNAL; 254 } 255 256 /* available cpu features supported by kvm */ 257 static DECLARE_BITMAP(kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS); 258 /* available subfunctions indicated via query / "test bit" */ 259 static struct kvm_s390_vm_cpu_subfunc kvm_s390_available_subfunc; 260 261 static struct gmap_notifier gmap_notifier; 262 static struct gmap_notifier vsie_gmap_notifier; 263 debug_info_t *kvm_s390_dbf; 264 debug_info_t *kvm_s390_dbf_uv; 265 266 /* Section: not file related */ 267 /* forward declarations */ 268 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start, 269 unsigned long end); 270 static int sca_switch_to_extended(struct kvm *kvm); 271 272 static void kvm_clock_sync_scb(struct kvm_s390_sie_block *scb, u64 delta) 273 { 274 u8 delta_idx = 0; 275 276 /* 277 * The TOD jumps by delta, we have to compensate this by adding 278 * -delta to the epoch. 279 */ 280 delta = -delta; 281 282 /* sign-extension - we're adding to signed values below */ 283 if ((s64)delta < 0) 284 delta_idx = -1; 285 286 scb->epoch += delta; 287 if (scb->ecd & ECD_MEF) { 288 scb->epdx += delta_idx; 289 if (scb->epoch < delta) 290 scb->epdx += 1; 291 } 292 } 293 294 /* 295 * This callback is executed during stop_machine(). All CPUs are therefore 296 * temporarily stopped. In order not to change guest behavior, we have to 297 * disable preemption whenever we touch the epoch of kvm and the VCPUs, 298 * so a CPU won't be stopped while calculating with the epoch. 299 */ 300 static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val, 301 void *v) 302 { 303 struct kvm *kvm; 304 struct kvm_vcpu *vcpu; 305 unsigned long i; 306 unsigned long long *delta = v; 307 308 list_for_each_entry(kvm, &vm_list, vm_list) { 309 kvm_for_each_vcpu(i, vcpu, kvm) { 310 kvm_clock_sync_scb(vcpu->arch.sie_block, *delta); 311 if (i == 0) { 312 kvm->arch.epoch = vcpu->arch.sie_block->epoch; 313 kvm->arch.epdx = vcpu->arch.sie_block->epdx; 314 } 315 if (vcpu->arch.cputm_enabled) 316 vcpu->arch.cputm_start += *delta; 317 if (vcpu->arch.vsie_block) 318 kvm_clock_sync_scb(vcpu->arch.vsie_block, 319 *delta); 320 } 321 } 322 return NOTIFY_OK; 323 } 324 325 static struct notifier_block kvm_clock_notifier = { 326 .notifier_call = kvm_clock_sync, 327 }; 328 329 static void allow_cpu_feat(unsigned long nr) 330 { 331 set_bit_inv(nr, kvm_s390_available_cpu_feat); 332 } 333 334 static inline int plo_test_bit(unsigned char nr) 335 { 336 unsigned long function = (unsigned long)nr | 0x100; 337 int cc; 338 339 asm volatile( 340 " lgr 0,%[function]\n" 341 /* Parameter registers are ignored for "test bit" */ 342 " plo 0,0,0,0(0)\n" 343 " ipm %0\n" 344 " srl %0,28\n" 345 : "=d" (cc) 346 : [function] "d" (function) 347 : "cc", ""); 348 return cc == 0; 349 } 350 351 static __always_inline void __insn32_query(unsigned int opcode, u8 *query) 352 { 353 asm volatile( 354 " lghi 0,0\n" 355 " lgr 1,%[query]\n" 356 /* Parameter registers are ignored */ 357 " .insn rrf,%[opc] << 16,2,4,6,0\n" 358 : 359 : [query] "d" ((unsigned long)query), [opc] "i" (opcode) 360 : "cc", "memory", "", "1"); 361 } 362 363 #define INSN_SORTL 0xb938 364 #define INSN_DFLTCC 0xb939 365 366 static void __init kvm_s390_cpu_feat_init(void) 367 { 368 int i; 369 370 for (i = 0; i < 256; ++i) { 371 if (plo_test_bit(i)) 372 kvm_s390_available_subfunc.plo[i >> 3] |= 0x80 >> (i & 7); 373 } 374 375 if (test_facility(28)) /* TOD-clock steering */ 376 ptff(kvm_s390_available_subfunc.ptff, 377 sizeof(kvm_s390_available_subfunc.ptff), 378 PTFF_QAF); 379 380 if (test_facility(17)) { /* MSA */ 381 __cpacf_query(CPACF_KMAC, (cpacf_mask_t *) 382 kvm_s390_available_subfunc.kmac); 383 __cpacf_query(CPACF_KMC, (cpacf_mask_t *) 384 kvm_s390_available_subfunc.kmc); 385 __cpacf_query(CPACF_KM, (cpacf_mask_t *) 386 kvm_s390_available_subfunc.km); 387 __cpacf_query(CPACF_KIMD, (cpacf_mask_t *) 388 kvm_s390_available_subfunc.kimd); 389 __cpacf_query(CPACF_KLMD, (cpacf_mask_t *) 390 kvm_s390_available_subfunc.klmd); 391 } 392 if (test_facility(76)) /* MSA3 */ 393 __cpacf_query(CPACF_PCKMO, (cpacf_mask_t *) 394 kvm_s390_available_subfunc.pckmo); 395 if (test_facility(77)) { /* MSA4 */ 396 __cpacf_query(CPACF_KMCTR, (cpacf_mask_t *) 397 kvm_s390_available_subfunc.kmctr); 398 __cpacf_query(CPACF_KMF, (cpacf_mask_t *) 399 kvm_s390_available_subfunc.kmf); 400 __cpacf_query(CPACF_KMO, (cpacf_mask_t *) 401 kvm_s390_available_subfunc.kmo); 402 __cpacf_query(CPACF_PCC, (cpacf_mask_t *) 403 kvm_s390_available_subfunc.pcc); 404 } 405 if (test_facility(57)) /* MSA5 */ 406 __cpacf_query(CPACF_PRNO, (cpacf_mask_t *) 407 kvm_s390_available_subfunc.ppno); 408 409 if (test_facility(146)) /* MSA8 */ 410 __cpacf_query(CPACF_KMA, (cpacf_mask_t *) 411 kvm_s390_available_subfunc.kma); 412 413 if (test_facility(155)) /* MSA9 */ 414 __cpacf_query(CPACF_KDSA, (cpacf_mask_t *) 415 kvm_s390_available_subfunc.kdsa); 416 417 if (test_facility(150)) /* SORTL */ 418 __insn32_query(INSN_SORTL, kvm_s390_available_subfunc.sortl); 419 420 if (test_facility(151)) /* DFLTCC */ 421 __insn32_query(INSN_DFLTCC, kvm_s390_available_subfunc.dfltcc); 422 423 if (MACHINE_HAS_ESOP) 424 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_ESOP); 425 /* 426 * We need SIE support, ESOP (PROT_READ protection for gmap_shadow), 427 * 64bit SCAO (SCA passthrough) and IDTE (for gmap_shadow unshadowing). 428 */ 429 if (!sclp.has_sief2 || !MACHINE_HAS_ESOP || !sclp.has_64bscao || 430 !test_facility(3) || !nested) 431 return; 432 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIEF2); 433 if (sclp.has_64bscao) 434 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_64BSCAO); 435 if (sclp.has_siif) 436 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIIF); 437 if (sclp.has_gpere) 438 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GPERE); 439 if (sclp.has_gsls) 440 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GSLS); 441 if (sclp.has_ib) 442 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IB); 443 if (sclp.has_cei) 444 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_CEI); 445 if (sclp.has_ibs) 446 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IBS); 447 if (sclp.has_kss) 448 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_KSS); 449 /* 450 * KVM_S390_VM_CPU_FEAT_SKEY: Wrong shadow of PTE.I bits will make 451 * all skey handling functions read/set the skey from the PGSTE 452 * instead of the real storage key. 453 * 454 * KVM_S390_VM_CPU_FEAT_CMMA: Wrong shadow of PTE.I bits will make 455 * pages being detected as preserved although they are resident. 456 * 457 * KVM_S390_VM_CPU_FEAT_PFMFI: Wrong shadow of PTE.I bits will 458 * have the same effect as for KVM_S390_VM_CPU_FEAT_SKEY. 459 * 460 * For KVM_S390_VM_CPU_FEAT_SKEY, KVM_S390_VM_CPU_FEAT_CMMA and 461 * KVM_S390_VM_CPU_FEAT_PFMFI, all PTE.I and PGSTE bits have to be 462 * correctly shadowed. We can do that for the PGSTE but not for PTE.I. 463 * 464 * KVM_S390_VM_CPU_FEAT_SIGPIF: Wrong SCB addresses in the SCA. We 465 * cannot easily shadow the SCA because of the ipte lock. 466 */ 467 } 468 469 static int __init __kvm_s390_init(void) 470 { 471 int rc = -ENOMEM; 472 473 kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long)); 474 if (!kvm_s390_dbf) 475 return -ENOMEM; 476 477 kvm_s390_dbf_uv = debug_register("kvm-uv", 32, 1, 7 * sizeof(long)); 478 if (!kvm_s390_dbf_uv) 479 goto err_kvm_uv; 480 481 if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view) || 482 debug_register_view(kvm_s390_dbf_uv, &debug_sprintf_view)) 483 goto err_debug_view; 484 485 kvm_s390_cpu_feat_init(); 486 487 /* Register floating interrupt controller interface. */ 488 rc = kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC); 489 if (rc) { 490 pr_err("A FLIC registration call failed with rc=%d\n", rc); 491 goto err_flic; 492 } 493 494 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) { 495 rc = kvm_s390_pci_init(); 496 if (rc) { 497 pr_err("Unable to allocate AIFT for PCI\n"); 498 goto err_pci; 499 } 500 } 501 502 rc = kvm_s390_gib_init(GAL_ISC); 503 if (rc) 504 goto err_gib; 505 506 gmap_notifier.notifier_call = kvm_gmap_notifier; 507 gmap_register_pte_notifier(&gmap_notifier); 508 vsie_gmap_notifier.notifier_call = kvm_s390_vsie_gmap_notifier; 509 gmap_register_pte_notifier(&vsie_gmap_notifier); 510 atomic_notifier_chain_register(&s390_epoch_delta_notifier, 511 &kvm_clock_notifier); 512 513 return 0; 514 515 err_gib: 516 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) 517 kvm_s390_pci_exit(); 518 err_pci: 519 err_flic: 520 err_debug_view: 521 debug_unregister(kvm_s390_dbf_uv); 522 err_kvm_uv: 523 debug_unregister(kvm_s390_dbf); 524 return rc; 525 } 526 527 static void __kvm_s390_exit(void) 528 { 529 gmap_unregister_pte_notifier(&gmap_notifier); 530 gmap_unregister_pte_notifier(&vsie_gmap_notifier); 531 atomic_notifier_chain_unregister(&s390_epoch_delta_notifier, 532 &kvm_clock_notifier); 533 534 kvm_s390_gib_destroy(); 535 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) 536 kvm_s390_pci_exit(); 537 debug_unregister(kvm_s390_dbf); 538 debug_unregister(kvm_s390_dbf_uv); 539 } 540 541 /* Section: device related */ 542 long kvm_arch_dev_ioctl(struct file *filp, 543 unsigned int ioctl, unsigned long arg) 544 { 545 if (ioctl == KVM_S390_ENABLE_SIE) 546 return s390_enable_sie(); 547 return -EINVAL; 548 } 549 550 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 551 { 552 int r; 553 554 switch (ext) { 555 case KVM_CAP_S390_PSW: 556 case KVM_CAP_S390_GMAP: 557 case KVM_CAP_SYNC_MMU: 558 #ifdef CONFIG_KVM_S390_UCONTROL 559 case KVM_CAP_S390_UCONTROL: 560 #endif 561 case KVM_CAP_ASYNC_PF: 562 case KVM_CAP_SYNC_REGS: 563 case KVM_CAP_ONE_REG: 564 case KVM_CAP_ENABLE_CAP: 565 case KVM_CAP_S390_CSS_SUPPORT: 566 case KVM_CAP_IOEVENTFD: 567 case KVM_CAP_S390_IRQCHIP: 568 case KVM_CAP_VM_ATTRIBUTES: 569 case KVM_CAP_MP_STATE: 570 case KVM_CAP_IMMEDIATE_EXIT: 571 case KVM_CAP_S390_INJECT_IRQ: 572 case KVM_CAP_S390_USER_SIGP: 573 case KVM_CAP_S390_USER_STSI: 574 case KVM_CAP_S390_SKEYS: 575 case KVM_CAP_S390_IRQ_STATE: 576 case KVM_CAP_S390_USER_INSTR0: 577 case KVM_CAP_S390_CMMA_MIGRATION: 578 case KVM_CAP_S390_AIS: 579 case KVM_CAP_S390_AIS_MIGRATION: 580 case KVM_CAP_S390_VCPU_RESETS: 581 case KVM_CAP_SET_GUEST_DEBUG: 582 case KVM_CAP_S390_DIAG318: 583 case KVM_CAP_IRQFD_RESAMPLE: 584 r = 1; 585 break; 586 case KVM_CAP_SET_GUEST_DEBUG2: 587 r = KVM_GUESTDBG_VALID_MASK; 588 break; 589 case KVM_CAP_S390_HPAGE_1M: 590 r = 0; 591 if (hpage && !(kvm && kvm_is_ucontrol(kvm))) 592 r = 1; 593 break; 594 case KVM_CAP_S390_MEM_OP: 595 r = MEM_OP_MAX_SIZE; 596 break; 597 case KVM_CAP_S390_MEM_OP_EXTENSION: 598 /* 599 * Flag bits indicating which extensions are supported. 600 * If r > 0, the base extension must also be supported/indicated, 601 * in order to maintain backwards compatibility. 602 */ 603 r = KVM_S390_MEMOP_EXTENSION_CAP_BASE | 604 KVM_S390_MEMOP_EXTENSION_CAP_CMPXCHG; 605 break; 606 case KVM_CAP_NR_VCPUS: 607 case KVM_CAP_MAX_VCPUS: 608 case KVM_CAP_MAX_VCPU_ID: 609 r = KVM_S390_BSCA_CPU_SLOTS; 610 if (!kvm_s390_use_sca_entries()) 611 r = KVM_MAX_VCPUS; 612 else if (sclp.has_esca && sclp.has_64bscao) 613 r = KVM_S390_ESCA_CPU_SLOTS; 614 if (ext == KVM_CAP_NR_VCPUS) 615 r = min_t(unsigned int, num_online_cpus(), r); 616 break; 617 case KVM_CAP_S390_COW: 618 r = MACHINE_HAS_ESOP; 619 break; 620 case KVM_CAP_S390_VECTOR_REGISTERS: 621 r = test_facility(129); 622 break; 623 case KVM_CAP_S390_RI: 624 r = test_facility(64); 625 break; 626 case KVM_CAP_S390_GS: 627 r = test_facility(133); 628 break; 629 case KVM_CAP_S390_BPB: 630 r = test_facility(82); 631 break; 632 case KVM_CAP_S390_PROTECTED_ASYNC_DISABLE: 633 r = async_destroy && is_prot_virt_host(); 634 break; 635 case KVM_CAP_S390_PROTECTED: 636 r = is_prot_virt_host(); 637 break; 638 case KVM_CAP_S390_PROTECTED_DUMP: { 639 u64 pv_cmds_dump[] = { 640 BIT_UVC_CMD_DUMP_INIT, 641 BIT_UVC_CMD_DUMP_CONFIG_STOR_STATE, 642 BIT_UVC_CMD_DUMP_CPU, 643 BIT_UVC_CMD_DUMP_COMPLETE, 644 }; 645 int i; 646 647 r = is_prot_virt_host(); 648 649 for (i = 0; i < ARRAY_SIZE(pv_cmds_dump); i++) { 650 if (!test_bit_inv(pv_cmds_dump[i], 651 (unsigned long *)&uv_info.inst_calls_list)) { 652 r = 0; 653 break; 654 } 655 } 656 break; 657 } 658 case KVM_CAP_S390_ZPCI_OP: 659 r = kvm_s390_pci_interp_allowed(); 660 break; 661 case KVM_CAP_S390_CPU_TOPOLOGY: 662 r = test_facility(11); 663 break; 664 default: 665 r = 0; 666 } 667 return r; 668 } 669 670 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 671 { 672 int i; 673 gfn_t cur_gfn, last_gfn; 674 unsigned long gaddr, vmaddr; 675 struct gmap *gmap = kvm->arch.gmap; 676 DECLARE_BITMAP(bitmap, _PAGE_ENTRIES); 677 678 /* Loop over all guest segments */ 679 cur_gfn = memslot->base_gfn; 680 last_gfn = memslot->base_gfn + memslot->npages; 681 for (; cur_gfn <= last_gfn; cur_gfn += _PAGE_ENTRIES) { 682 gaddr = gfn_to_gpa(cur_gfn); 683 vmaddr = gfn_to_hva_memslot(memslot, cur_gfn); 684 if (kvm_is_error_hva(vmaddr)) 685 continue; 686 687 bitmap_zero(bitmap, _PAGE_ENTRIES); 688 gmap_sync_dirty_log_pmd(gmap, bitmap, gaddr, vmaddr); 689 for (i = 0; i < _PAGE_ENTRIES; i++) { 690 if (test_bit(i, bitmap)) 691 mark_page_dirty(kvm, cur_gfn + i); 692 } 693 694 if (fatal_signal_pending(current)) 695 return; 696 cond_resched(); 697 } 698 } 699 700 /* Section: vm related */ 701 static void sca_del_vcpu(struct kvm_vcpu *vcpu); 702 703 /* 704 * Get (and clear) the dirty memory log for a memory slot. 705 */ 706 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 707 struct kvm_dirty_log *log) 708 { 709 int r; 710 unsigned long n; 711 struct kvm_memory_slot *memslot; 712 int is_dirty; 713 714 if (kvm_is_ucontrol(kvm)) 715 return -EINVAL; 716 717 mutex_lock(&kvm->slots_lock); 718 719 r = -EINVAL; 720 if (log->slot >= KVM_USER_MEM_SLOTS) 721 goto out; 722 723 r = kvm_get_dirty_log(kvm, log, &is_dirty, &memslot); 724 if (r) 725 goto out; 726 727 /* Clear the dirty log */ 728 if (is_dirty) { 729 n = kvm_dirty_bitmap_bytes(memslot); 730 memset(memslot->dirty_bitmap, 0, n); 731 } 732 r = 0; 733 out: 734 mutex_unlock(&kvm->slots_lock); 735 return r; 736 } 737 738 static void icpt_operexc_on_all_vcpus(struct kvm *kvm) 739 { 740 unsigned long i; 741 struct kvm_vcpu *vcpu; 742 743 kvm_for_each_vcpu(i, vcpu, kvm) { 744 kvm_s390_sync_request(KVM_REQ_ICPT_OPEREXC, vcpu); 745 } 746 } 747 748 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap) 749 { 750 int r; 751 752 if (cap->flags) 753 return -EINVAL; 754 755 switch (cap->cap) { 756 case KVM_CAP_S390_IRQCHIP: 757 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP"); 758 kvm->arch.use_irqchip = 1; 759 r = 0; 760 break; 761 case KVM_CAP_S390_USER_SIGP: 762 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP"); 763 kvm->arch.user_sigp = 1; 764 r = 0; 765 break; 766 case KVM_CAP_S390_VECTOR_REGISTERS: 767 mutex_lock(&kvm->lock); 768 if (kvm->created_vcpus) { 769 r = -EBUSY; 770 } else if (cpu_has_vx()) { 771 set_kvm_facility(kvm->arch.model.fac_mask, 129); 772 set_kvm_facility(kvm->arch.model.fac_list, 129); 773 if (test_facility(134)) { 774 set_kvm_facility(kvm->arch.model.fac_mask, 134); 775 set_kvm_facility(kvm->arch.model.fac_list, 134); 776 } 777 if (test_facility(135)) { 778 set_kvm_facility(kvm->arch.model.fac_mask, 135); 779 set_kvm_facility(kvm->arch.model.fac_list, 135); 780 } 781 if (test_facility(148)) { 782 set_kvm_facility(kvm->arch.model.fac_mask, 148); 783 set_kvm_facility(kvm->arch.model.fac_list, 148); 784 } 785 if (test_facility(152)) { 786 set_kvm_facility(kvm->arch.model.fac_mask, 152); 787 set_kvm_facility(kvm->arch.model.fac_list, 152); 788 } 789 if (test_facility(192)) { 790 set_kvm_facility(kvm->arch.model.fac_mask, 192); 791 set_kvm_facility(kvm->arch.model.fac_list, 192); 792 } 793 r = 0; 794 } else 795 r = -EINVAL; 796 mutex_unlock(&kvm->lock); 797 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s", 798 r ? "(not available)" : "(success)"); 799 break; 800 case KVM_CAP_S390_RI: 801 r = -EINVAL; 802 mutex_lock(&kvm->lock); 803 if (kvm->created_vcpus) { 804 r = -EBUSY; 805 } else if (test_facility(64)) { 806 set_kvm_facility(kvm->arch.model.fac_mask, 64); 807 set_kvm_facility(kvm->arch.model.fac_list, 64); 808 r = 0; 809 } 810 mutex_unlock(&kvm->lock); 811 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s", 812 r ? "(not available)" : "(success)"); 813 break; 814 case KVM_CAP_S390_AIS: 815 mutex_lock(&kvm->lock); 816 if (kvm->created_vcpus) { 817 r = -EBUSY; 818 } else { 819 set_kvm_facility(kvm->arch.model.fac_mask, 72); 820 set_kvm_facility(kvm->arch.model.fac_list, 72); 821 r = 0; 822 } 823 mutex_unlock(&kvm->lock); 824 VM_EVENT(kvm, 3, "ENABLE: AIS %s", 825 r ? "(not available)" : "(success)"); 826 break; 827 case KVM_CAP_S390_GS: 828 r = -EINVAL; 829 mutex_lock(&kvm->lock); 830 if (kvm->created_vcpus) { 831 r = -EBUSY; 832 } else if (test_facility(133)) { 833 set_kvm_facility(kvm->arch.model.fac_mask, 133); 834 set_kvm_facility(kvm->arch.model.fac_list, 133); 835 r = 0; 836 } 837 mutex_unlock(&kvm->lock); 838 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_GS %s", 839 r ? "(not available)" : "(success)"); 840 break; 841 case KVM_CAP_S390_HPAGE_1M: 842 mutex_lock(&kvm->lock); 843 if (kvm->created_vcpus) 844 r = -EBUSY; 845 else if (!hpage || kvm->arch.use_cmma || kvm_is_ucontrol(kvm)) 846 r = -EINVAL; 847 else { 848 r = 0; 849 mmap_write_lock(kvm->mm); 850 kvm->mm->context.allow_gmap_hpage_1m = 1; 851 mmap_write_unlock(kvm->mm); 852 /* 853 * We might have to create fake 4k page 854 * tables. To avoid that the hardware works on 855 * stale PGSTEs, we emulate these instructions. 856 */ 857 kvm->arch.use_skf = 0; 858 kvm->arch.use_pfmfi = 0; 859 } 860 mutex_unlock(&kvm->lock); 861 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_HPAGE %s", 862 r ? "(not available)" : "(success)"); 863 break; 864 case KVM_CAP_S390_USER_STSI: 865 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI"); 866 kvm->arch.user_stsi = 1; 867 r = 0; 868 break; 869 case KVM_CAP_S390_USER_INSTR0: 870 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_INSTR0"); 871 kvm->arch.user_instr0 = 1; 872 icpt_operexc_on_all_vcpus(kvm); 873 r = 0; 874 break; 875 case KVM_CAP_S390_CPU_TOPOLOGY: 876 r = -EINVAL; 877 mutex_lock(&kvm->lock); 878 if (kvm->created_vcpus) { 879 r = -EBUSY; 880 } else if (test_facility(11)) { 881 set_kvm_facility(kvm->arch.model.fac_mask, 11); 882 set_kvm_facility(kvm->arch.model.fac_list, 11); 883 r = 0; 884 } 885 mutex_unlock(&kvm->lock); 886 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_CPU_TOPOLOGY %s", 887 r ? "(not available)" : "(success)"); 888 break; 889 default: 890 r = -EINVAL; 891 break; 892 } 893 return r; 894 } 895 896 static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr) 897 { 898 int ret; 899 900 switch (attr->attr) { 901 case KVM_S390_VM_MEM_LIMIT_SIZE: 902 ret = 0; 903 VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes", 904 kvm->arch.mem_limit); 905 if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr)) 906 ret = -EFAULT; 907 break; 908 default: 909 ret = -ENXIO; 910 break; 911 } 912 return ret; 913 } 914 915 static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr) 916 { 917 int ret; 918 unsigned int idx; 919 switch (attr->attr) { 920 case KVM_S390_VM_MEM_ENABLE_CMMA: 921 ret = -ENXIO; 922 if (!sclp.has_cmma) 923 break; 924 925 VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support"); 926 mutex_lock(&kvm->lock); 927 if (kvm->created_vcpus) 928 ret = -EBUSY; 929 else if (kvm->mm->context.allow_gmap_hpage_1m) 930 ret = -EINVAL; 931 else { 932 kvm->arch.use_cmma = 1; 933 /* Not compatible with cmma. */ 934 kvm->arch.use_pfmfi = 0; 935 ret = 0; 936 } 937 mutex_unlock(&kvm->lock); 938 break; 939 case KVM_S390_VM_MEM_CLR_CMMA: 940 ret = -ENXIO; 941 if (!sclp.has_cmma) 942 break; 943 ret = -EINVAL; 944 if (!kvm->arch.use_cmma) 945 break; 946 947 VM_EVENT(kvm, 3, "%s", "RESET: CMMA states"); 948 mutex_lock(&kvm->lock); 949 idx = srcu_read_lock(&kvm->srcu); 950 s390_reset_cmma(kvm->arch.gmap->mm); 951 srcu_read_unlock(&kvm->srcu, idx); 952 mutex_unlock(&kvm->lock); 953 ret = 0; 954 break; 955 case KVM_S390_VM_MEM_LIMIT_SIZE: { 956 unsigned long new_limit; 957 958 if (kvm_is_ucontrol(kvm)) 959 return -EINVAL; 960 961 if (get_user(new_limit, (u64 __user *)attr->addr)) 962 return -EFAULT; 963 964 if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT && 965 new_limit > kvm->arch.mem_limit) 966 return -E2BIG; 967 968 if (!new_limit) 969 return -EINVAL; 970 971 /* gmap_create takes last usable address */ 972 if (new_limit != KVM_S390_NO_MEM_LIMIT) 973 new_limit -= 1; 974 975 ret = -EBUSY; 976 mutex_lock(&kvm->lock); 977 if (!kvm->created_vcpus) { 978 /* gmap_create will round the limit up */ 979 struct gmap *new = gmap_create(current->mm, new_limit); 980 981 if (!new) { 982 ret = -ENOMEM; 983 } else { 984 gmap_remove(kvm->arch.gmap); 985 new->private = kvm; 986 kvm->arch.gmap = new; 987 ret = 0; 988 } 989 } 990 mutex_unlock(&kvm->lock); 991 VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit); 992 VM_EVENT(kvm, 3, "New guest asce: 0x%pK", 993 (void *) kvm->arch.gmap->asce); 994 break; 995 } 996 default: 997 ret = -ENXIO; 998 break; 999 } 1000 return ret; 1001 } 1002 1003 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu); 1004 1005 void kvm_s390_vcpu_crypto_reset_all(struct kvm *kvm) 1006 { 1007 struct kvm_vcpu *vcpu; 1008 unsigned long i; 1009 1010 kvm_s390_vcpu_block_all(kvm); 1011 1012 kvm_for_each_vcpu(i, vcpu, kvm) { 1013 kvm_s390_vcpu_crypto_setup(vcpu); 1014 /* recreate the shadow crycb by leaving the VSIE handler */ 1015 kvm_s390_sync_request(KVM_REQ_VSIE_RESTART, vcpu); 1016 } 1017 1018 kvm_s390_vcpu_unblock_all(kvm); 1019 } 1020 1021 static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr) 1022 { 1023 mutex_lock(&kvm->lock); 1024 switch (attr->attr) { 1025 case KVM_S390_VM_CRYPTO_ENABLE_AES_KW: 1026 if (!test_kvm_facility(kvm, 76)) { 1027 mutex_unlock(&kvm->lock); 1028 return -EINVAL; 1029 } 1030 get_random_bytes( 1031 kvm->arch.crypto.crycb->aes_wrapping_key_mask, 1032 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask)); 1033 kvm->arch.crypto.aes_kw = 1; 1034 VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support"); 1035 break; 1036 case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW: 1037 if (!test_kvm_facility(kvm, 76)) { 1038 mutex_unlock(&kvm->lock); 1039 return -EINVAL; 1040 } 1041 get_random_bytes( 1042 kvm->arch.crypto.crycb->dea_wrapping_key_mask, 1043 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask)); 1044 kvm->arch.crypto.dea_kw = 1; 1045 VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support"); 1046 break; 1047 case KVM_S390_VM_CRYPTO_DISABLE_AES_KW: 1048 if (!test_kvm_facility(kvm, 76)) { 1049 mutex_unlock(&kvm->lock); 1050 return -EINVAL; 1051 } 1052 kvm->arch.crypto.aes_kw = 0; 1053 memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0, 1054 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask)); 1055 VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support"); 1056 break; 1057 case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW: 1058 if (!test_kvm_facility(kvm, 76)) { 1059 mutex_unlock(&kvm->lock); 1060 return -EINVAL; 1061 } 1062 kvm->arch.crypto.dea_kw = 0; 1063 memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0, 1064 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask)); 1065 VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support"); 1066 break; 1067 case KVM_S390_VM_CRYPTO_ENABLE_APIE: 1068 if (!ap_instructions_available()) { 1069 mutex_unlock(&kvm->lock); 1070 return -EOPNOTSUPP; 1071 } 1072 kvm->arch.crypto.apie = 1; 1073 break; 1074 case KVM_S390_VM_CRYPTO_DISABLE_APIE: 1075 if (!ap_instructions_available()) { 1076 mutex_unlock(&kvm->lock); 1077 return -EOPNOTSUPP; 1078 } 1079 kvm->arch.crypto.apie = 0; 1080 break; 1081 default: 1082 mutex_unlock(&kvm->lock); 1083 return -ENXIO; 1084 } 1085 1086 kvm_s390_vcpu_crypto_reset_all(kvm); 1087 mutex_unlock(&kvm->lock); 1088 return 0; 1089 } 1090 1091 static void kvm_s390_vcpu_pci_setup(struct kvm_vcpu *vcpu) 1092 { 1093 /* Only set the ECB bits after guest requests zPCI interpretation */ 1094 if (!vcpu->kvm->arch.use_zpci_interp) 1095 return; 1096 1097 vcpu->arch.sie_block->ecb2 |= ECB2_ZPCI_LSI; 1098 vcpu->arch.sie_block->ecb3 |= ECB3_AISII + ECB3_AISI; 1099 } 1100 1101 void kvm_s390_vcpu_pci_enable_interp(struct kvm *kvm) 1102 { 1103 struct kvm_vcpu *vcpu; 1104 unsigned long i; 1105 1106 lockdep_assert_held(&kvm->lock); 1107 1108 if (!kvm_s390_pci_interp_allowed()) 1109 return; 1110 1111 /* 1112 * If host is configured for PCI and the necessary facilities are 1113 * available, turn on interpretation for the life of this guest 1114 */ 1115 kvm->arch.use_zpci_interp = 1; 1116 1117 kvm_s390_vcpu_block_all(kvm); 1118 1119 kvm_for_each_vcpu(i, vcpu, kvm) { 1120 kvm_s390_vcpu_pci_setup(vcpu); 1121 kvm_s390_sync_request(KVM_REQ_VSIE_RESTART, vcpu); 1122 } 1123 1124 kvm_s390_vcpu_unblock_all(kvm); 1125 } 1126 1127 static void kvm_s390_sync_request_broadcast(struct kvm *kvm, int req) 1128 { 1129 unsigned long cx; 1130 struct kvm_vcpu *vcpu; 1131 1132 kvm_for_each_vcpu(cx, vcpu, kvm) 1133 kvm_s390_sync_request(req, vcpu); 1134 } 1135 1136 /* 1137 * Must be called with kvm->srcu held to avoid races on memslots, and with 1138 * kvm->slots_lock to avoid races with ourselves and kvm_s390_vm_stop_migration. 1139 */ 1140 static int kvm_s390_vm_start_migration(struct kvm *kvm) 1141 { 1142 struct kvm_memory_slot *ms; 1143 struct kvm_memslots *slots; 1144 unsigned long ram_pages = 0; 1145 int bkt; 1146 1147 /* migration mode already enabled */ 1148 if (kvm->arch.migration_mode) 1149 return 0; 1150 slots = kvm_memslots(kvm); 1151 if (!slots || kvm_memslots_empty(slots)) 1152 return -EINVAL; 1153 1154 if (!kvm->arch.use_cmma) { 1155 kvm->arch.migration_mode = 1; 1156 return 0; 1157 } 1158 /* mark all the pages in active slots as dirty */ 1159 kvm_for_each_memslot(ms, bkt, slots) { 1160 if (!ms->dirty_bitmap) 1161 return -EINVAL; 1162 /* 1163 * The second half of the bitmap is only used on x86, 1164 * and would be wasted otherwise, so we put it to good 1165 * use here to keep track of the state of the storage 1166 * attributes. 1167 */ 1168 memset(kvm_second_dirty_bitmap(ms), 0xff, kvm_dirty_bitmap_bytes(ms)); 1169 ram_pages += ms->npages; 1170 } 1171 atomic64_set(&kvm->arch.cmma_dirty_pages, ram_pages); 1172 kvm->arch.migration_mode = 1; 1173 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_START_MIGRATION); 1174 return 0; 1175 } 1176 1177 /* 1178 * Must be called with kvm->slots_lock to avoid races with ourselves and 1179 * kvm_s390_vm_start_migration. 1180 */ 1181 static int kvm_s390_vm_stop_migration(struct kvm *kvm) 1182 { 1183 /* migration mode already disabled */ 1184 if (!kvm->arch.migration_mode) 1185 return 0; 1186 kvm->arch.migration_mode = 0; 1187 if (kvm->arch.use_cmma) 1188 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_STOP_MIGRATION); 1189 return 0; 1190 } 1191 1192 static int kvm_s390_vm_set_migration(struct kvm *kvm, 1193 struct kvm_device_attr *attr) 1194 { 1195 int res = -ENXIO; 1196 1197 mutex_lock(&kvm->slots_lock); 1198 switch (attr->attr) { 1199 case KVM_S390_VM_MIGRATION_START: 1200 res = kvm_s390_vm_start_migration(kvm); 1201 break; 1202 case KVM_S390_VM_MIGRATION_STOP: 1203 res = kvm_s390_vm_stop_migration(kvm); 1204 break; 1205 default: 1206 break; 1207 } 1208 mutex_unlock(&kvm->slots_lock); 1209 1210 return res; 1211 } 1212 1213 static int kvm_s390_vm_get_migration(struct kvm *kvm, 1214 struct kvm_device_attr *attr) 1215 { 1216 u64 mig = kvm->arch.migration_mode; 1217 1218 if (attr->attr != KVM_S390_VM_MIGRATION_STATUS) 1219 return -ENXIO; 1220 1221 if (copy_to_user((void __user *)attr->addr, &mig, sizeof(mig))) 1222 return -EFAULT; 1223 return 0; 1224 } 1225 1226 static void __kvm_s390_set_tod_clock(struct kvm *kvm, const struct kvm_s390_vm_tod_clock *gtod); 1227 1228 static int kvm_s390_set_tod_ext(struct kvm *kvm, struct kvm_device_attr *attr) 1229 { 1230 struct kvm_s390_vm_tod_clock gtod; 1231 1232 if (copy_from_user(>od, (void __user *)attr->addr, sizeof(gtod))) 1233 return -EFAULT; 1234 1235 if (!test_kvm_facility(kvm, 139) && gtod.epoch_idx) 1236 return -EINVAL; 1237 __kvm_s390_set_tod_clock(kvm, >od); 1238 1239 VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x, TOD base: 0x%llx", 1240 gtod.epoch_idx, gtod.tod); 1241 1242 return 0; 1243 } 1244 1245 static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr) 1246 { 1247 u8 gtod_high; 1248 1249 if (copy_from_user(>od_high, (void __user *)attr->addr, 1250 sizeof(gtod_high))) 1251 return -EFAULT; 1252 1253 if (gtod_high != 0) 1254 return -EINVAL; 1255 VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high); 1256 1257 return 0; 1258 } 1259 1260 static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr) 1261 { 1262 struct kvm_s390_vm_tod_clock gtod = { 0 }; 1263 1264 if (copy_from_user(>od.tod, (void __user *)attr->addr, 1265 sizeof(gtod.tod))) 1266 return -EFAULT; 1267 1268 __kvm_s390_set_tod_clock(kvm, >od); 1269 VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod.tod); 1270 return 0; 1271 } 1272 1273 static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr) 1274 { 1275 int ret; 1276 1277 if (attr->flags) 1278 return -EINVAL; 1279 1280 mutex_lock(&kvm->lock); 1281 /* 1282 * For protected guests, the TOD is managed by the ultravisor, so trying 1283 * to change it will never bring the expected results. 1284 */ 1285 if (kvm_s390_pv_is_protected(kvm)) { 1286 ret = -EOPNOTSUPP; 1287 goto out_unlock; 1288 } 1289 1290 switch (attr->attr) { 1291 case KVM_S390_VM_TOD_EXT: 1292 ret = kvm_s390_set_tod_ext(kvm, attr); 1293 break; 1294 case KVM_S390_VM_TOD_HIGH: 1295 ret = kvm_s390_set_tod_high(kvm, attr); 1296 break; 1297 case KVM_S390_VM_TOD_LOW: 1298 ret = kvm_s390_set_tod_low(kvm, attr); 1299 break; 1300 default: 1301 ret = -ENXIO; 1302 break; 1303 } 1304 1305 out_unlock: 1306 mutex_unlock(&kvm->lock); 1307 return ret; 1308 } 1309 1310 static void kvm_s390_get_tod_clock(struct kvm *kvm, 1311 struct kvm_s390_vm_tod_clock *gtod) 1312 { 1313 union tod_clock clk; 1314 1315 preempt_disable(); 1316 1317 store_tod_clock_ext(&clk); 1318 1319 gtod->tod = clk.tod + kvm->arch.epoch; 1320 gtod->epoch_idx = 0; 1321 if (test_kvm_facility(kvm, 139)) { 1322 gtod->epoch_idx = clk.ei + kvm->arch.epdx; 1323 if (gtod->tod < clk.tod) 1324 gtod->epoch_idx += 1; 1325 } 1326 1327 preempt_enable(); 1328 } 1329 1330 static int kvm_s390_get_tod_ext(struct kvm *kvm, struct kvm_device_attr *attr) 1331 { 1332 struct kvm_s390_vm_tod_clock gtod; 1333 1334 memset(>od, 0, sizeof(gtod)); 1335 kvm_s390_get_tod_clock(kvm, >od); 1336 if (copy_to_user((void __user *)attr->addr, >od, sizeof(gtod))) 1337 return -EFAULT; 1338 1339 VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x, TOD base: 0x%llx", 1340 gtod.epoch_idx, gtod.tod); 1341 return 0; 1342 } 1343 1344 static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr) 1345 { 1346 u8 gtod_high = 0; 1347 1348 if (copy_to_user((void __user *)attr->addr, >od_high, 1349 sizeof(gtod_high))) 1350 return -EFAULT; 1351 VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high); 1352 1353 return 0; 1354 } 1355 1356 static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr) 1357 { 1358 u64 gtod; 1359 1360 gtod = kvm_s390_get_tod_clock_fast(kvm); 1361 if (copy_to_user((void __user *)attr->addr, >od, sizeof(gtod))) 1362 return -EFAULT; 1363 VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod); 1364 1365 return 0; 1366 } 1367 1368 static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr) 1369 { 1370 int ret; 1371 1372 if (attr->flags) 1373 return -EINVAL; 1374 1375 switch (attr->attr) { 1376 case KVM_S390_VM_TOD_EXT: 1377 ret = kvm_s390_get_tod_ext(kvm, attr); 1378 break; 1379 case KVM_S390_VM_TOD_HIGH: 1380 ret = kvm_s390_get_tod_high(kvm, attr); 1381 break; 1382 case KVM_S390_VM_TOD_LOW: 1383 ret = kvm_s390_get_tod_low(kvm, attr); 1384 break; 1385 default: 1386 ret = -ENXIO; 1387 break; 1388 } 1389 return ret; 1390 } 1391 1392 static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr) 1393 { 1394 struct kvm_s390_vm_cpu_processor *proc; 1395 u16 lowest_ibc, unblocked_ibc; 1396 int ret = 0; 1397 1398 mutex_lock(&kvm->lock); 1399 if (kvm->created_vcpus) { 1400 ret = -EBUSY; 1401 goto out; 1402 } 1403 proc = kzalloc(sizeof(*proc), GFP_KERNEL_ACCOUNT); 1404 if (!proc) { 1405 ret = -ENOMEM; 1406 goto out; 1407 } 1408 if (!copy_from_user(proc, (void __user *)attr->addr, 1409 sizeof(*proc))) { 1410 kvm->arch.model.cpuid = proc->cpuid; 1411 lowest_ibc = sclp.ibc >> 16 & 0xfff; 1412 unblocked_ibc = sclp.ibc & 0xfff; 1413 if (lowest_ibc && proc->ibc) { 1414 if (proc->ibc > unblocked_ibc) 1415 kvm->arch.model.ibc = unblocked_ibc; 1416 else if (proc->ibc < lowest_ibc) 1417 kvm->arch.model.ibc = lowest_ibc; 1418 else 1419 kvm->arch.model.ibc = proc->ibc; 1420 } 1421 memcpy(kvm->arch.model.fac_list, proc->fac_list, 1422 S390_ARCH_FAC_LIST_SIZE_BYTE); 1423 VM_EVENT(kvm, 3, "SET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx", 1424 kvm->arch.model.ibc, 1425 kvm->arch.model.cpuid); 1426 VM_EVENT(kvm, 3, "SET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx", 1427 kvm->arch.model.fac_list[0], 1428 kvm->arch.model.fac_list[1], 1429 kvm->arch.model.fac_list[2]); 1430 } else 1431 ret = -EFAULT; 1432 kfree(proc); 1433 out: 1434 mutex_unlock(&kvm->lock); 1435 return ret; 1436 } 1437 1438 static int kvm_s390_set_processor_feat(struct kvm *kvm, 1439 struct kvm_device_attr *attr) 1440 { 1441 struct kvm_s390_vm_cpu_feat data; 1442 1443 if (copy_from_user(&data, (void __user *)attr->addr, sizeof(data))) 1444 return -EFAULT; 1445 if (!bitmap_subset((unsigned long *) data.feat, 1446 kvm_s390_available_cpu_feat, 1447 KVM_S390_VM_CPU_FEAT_NR_BITS)) 1448 return -EINVAL; 1449 1450 mutex_lock(&kvm->lock); 1451 if (kvm->created_vcpus) { 1452 mutex_unlock(&kvm->lock); 1453 return -EBUSY; 1454 } 1455 bitmap_from_arr64(kvm->arch.cpu_feat, data.feat, KVM_S390_VM_CPU_FEAT_NR_BITS); 1456 mutex_unlock(&kvm->lock); 1457 VM_EVENT(kvm, 3, "SET: guest feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx", 1458 data.feat[0], 1459 data.feat[1], 1460 data.feat[2]); 1461 return 0; 1462 } 1463 1464 static int kvm_s390_set_processor_subfunc(struct kvm *kvm, 1465 struct kvm_device_attr *attr) 1466 { 1467 mutex_lock(&kvm->lock); 1468 if (kvm->created_vcpus) { 1469 mutex_unlock(&kvm->lock); 1470 return -EBUSY; 1471 } 1472 1473 if (copy_from_user(&kvm->arch.model.subfuncs, (void __user *)attr->addr, 1474 sizeof(struct kvm_s390_vm_cpu_subfunc))) { 1475 mutex_unlock(&kvm->lock); 1476 return -EFAULT; 1477 } 1478 mutex_unlock(&kvm->lock); 1479 1480 VM_EVENT(kvm, 3, "SET: guest PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1481 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[0], 1482 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[1], 1483 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[2], 1484 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[3]); 1485 VM_EVENT(kvm, 3, "SET: guest PTFF subfunc 0x%16.16lx.%16.16lx", 1486 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[0], 1487 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[1]); 1488 VM_EVENT(kvm, 3, "SET: guest KMAC subfunc 0x%16.16lx.%16.16lx", 1489 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[0], 1490 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[1]); 1491 VM_EVENT(kvm, 3, "SET: guest KMC subfunc 0x%16.16lx.%16.16lx", 1492 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[0], 1493 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[1]); 1494 VM_EVENT(kvm, 3, "SET: guest KM subfunc 0x%16.16lx.%16.16lx", 1495 ((unsigned long *) &kvm->arch.model.subfuncs.km)[0], 1496 ((unsigned long *) &kvm->arch.model.subfuncs.km)[1]); 1497 VM_EVENT(kvm, 3, "SET: guest KIMD subfunc 0x%16.16lx.%16.16lx", 1498 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[0], 1499 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[1]); 1500 VM_EVENT(kvm, 3, "SET: guest KLMD subfunc 0x%16.16lx.%16.16lx", 1501 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[0], 1502 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[1]); 1503 VM_EVENT(kvm, 3, "SET: guest PCKMO subfunc 0x%16.16lx.%16.16lx", 1504 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[0], 1505 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[1]); 1506 VM_EVENT(kvm, 3, "SET: guest KMCTR subfunc 0x%16.16lx.%16.16lx", 1507 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[0], 1508 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[1]); 1509 VM_EVENT(kvm, 3, "SET: guest KMF subfunc 0x%16.16lx.%16.16lx", 1510 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[0], 1511 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[1]); 1512 VM_EVENT(kvm, 3, "SET: guest KMO subfunc 0x%16.16lx.%16.16lx", 1513 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[0], 1514 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[1]); 1515 VM_EVENT(kvm, 3, "SET: guest PCC subfunc 0x%16.16lx.%16.16lx", 1516 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[0], 1517 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[1]); 1518 VM_EVENT(kvm, 3, "SET: guest PPNO subfunc 0x%16.16lx.%16.16lx", 1519 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[0], 1520 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[1]); 1521 VM_EVENT(kvm, 3, "SET: guest KMA subfunc 0x%16.16lx.%16.16lx", 1522 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[0], 1523 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[1]); 1524 VM_EVENT(kvm, 3, "SET: guest KDSA subfunc 0x%16.16lx.%16.16lx", 1525 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[0], 1526 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[1]); 1527 VM_EVENT(kvm, 3, "SET: guest SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1528 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[0], 1529 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[1], 1530 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[2], 1531 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[3]); 1532 VM_EVENT(kvm, 3, "SET: guest DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1533 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[0], 1534 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[1], 1535 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[2], 1536 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[3]); 1537 1538 return 0; 1539 } 1540 1541 #define KVM_S390_VM_CPU_UV_FEAT_GUEST_MASK \ 1542 ( \ 1543 ((struct kvm_s390_vm_cpu_uv_feat){ \ 1544 .ap = 1, \ 1545 .ap_intr = 1, \ 1546 }) \ 1547 .feat \ 1548 ) 1549 1550 static int kvm_s390_set_uv_feat(struct kvm *kvm, struct kvm_device_attr *attr) 1551 { 1552 struct kvm_s390_vm_cpu_uv_feat __user *ptr = (void __user *)attr->addr; 1553 unsigned long data, filter; 1554 1555 filter = uv_info.uv_feature_indications & KVM_S390_VM_CPU_UV_FEAT_GUEST_MASK; 1556 if (get_user(data, &ptr->feat)) 1557 return -EFAULT; 1558 if (!bitmap_subset(&data, &filter, KVM_S390_VM_CPU_UV_FEAT_NR_BITS)) 1559 return -EINVAL; 1560 1561 mutex_lock(&kvm->lock); 1562 if (kvm->created_vcpus) { 1563 mutex_unlock(&kvm->lock); 1564 return -EBUSY; 1565 } 1566 kvm->arch.model.uv_feat_guest.feat = data; 1567 mutex_unlock(&kvm->lock); 1568 1569 VM_EVENT(kvm, 3, "SET: guest UV-feat: 0x%16.16lx", data); 1570 1571 return 0; 1572 } 1573 1574 static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr) 1575 { 1576 int ret = -ENXIO; 1577 1578 switch (attr->attr) { 1579 case KVM_S390_VM_CPU_PROCESSOR: 1580 ret = kvm_s390_set_processor(kvm, attr); 1581 break; 1582 case KVM_S390_VM_CPU_PROCESSOR_FEAT: 1583 ret = kvm_s390_set_processor_feat(kvm, attr); 1584 break; 1585 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC: 1586 ret = kvm_s390_set_processor_subfunc(kvm, attr); 1587 break; 1588 case KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST: 1589 ret = kvm_s390_set_uv_feat(kvm, attr); 1590 break; 1591 } 1592 return ret; 1593 } 1594 1595 static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr) 1596 { 1597 struct kvm_s390_vm_cpu_processor *proc; 1598 int ret = 0; 1599 1600 proc = kzalloc(sizeof(*proc), GFP_KERNEL_ACCOUNT); 1601 if (!proc) { 1602 ret = -ENOMEM; 1603 goto out; 1604 } 1605 proc->cpuid = kvm->arch.model.cpuid; 1606 proc->ibc = kvm->arch.model.ibc; 1607 memcpy(&proc->fac_list, kvm->arch.model.fac_list, 1608 S390_ARCH_FAC_LIST_SIZE_BYTE); 1609 VM_EVENT(kvm, 3, "GET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx", 1610 kvm->arch.model.ibc, 1611 kvm->arch.model.cpuid); 1612 VM_EVENT(kvm, 3, "GET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx", 1613 kvm->arch.model.fac_list[0], 1614 kvm->arch.model.fac_list[1], 1615 kvm->arch.model.fac_list[2]); 1616 if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc))) 1617 ret = -EFAULT; 1618 kfree(proc); 1619 out: 1620 return ret; 1621 } 1622 1623 static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr) 1624 { 1625 struct kvm_s390_vm_cpu_machine *mach; 1626 int ret = 0; 1627 1628 mach = kzalloc(sizeof(*mach), GFP_KERNEL_ACCOUNT); 1629 if (!mach) { 1630 ret = -ENOMEM; 1631 goto out; 1632 } 1633 get_cpu_id((struct cpuid *) &mach->cpuid); 1634 mach->ibc = sclp.ibc; 1635 memcpy(&mach->fac_mask, kvm->arch.model.fac_mask, 1636 S390_ARCH_FAC_LIST_SIZE_BYTE); 1637 memcpy((unsigned long *)&mach->fac_list, stfle_fac_list, 1638 sizeof(stfle_fac_list)); 1639 VM_EVENT(kvm, 3, "GET: host ibc: 0x%4.4x, host cpuid: 0x%16.16llx", 1640 kvm->arch.model.ibc, 1641 kvm->arch.model.cpuid); 1642 VM_EVENT(kvm, 3, "GET: host facmask: 0x%16.16llx.%16.16llx.%16.16llx", 1643 mach->fac_mask[0], 1644 mach->fac_mask[1], 1645 mach->fac_mask[2]); 1646 VM_EVENT(kvm, 3, "GET: host faclist: 0x%16.16llx.%16.16llx.%16.16llx", 1647 mach->fac_list[0], 1648 mach->fac_list[1], 1649 mach->fac_list[2]); 1650 if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach))) 1651 ret = -EFAULT; 1652 kfree(mach); 1653 out: 1654 return ret; 1655 } 1656 1657 static int kvm_s390_get_processor_feat(struct kvm *kvm, 1658 struct kvm_device_attr *attr) 1659 { 1660 struct kvm_s390_vm_cpu_feat data; 1661 1662 bitmap_to_arr64(data.feat, kvm->arch.cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS); 1663 if (copy_to_user((void __user *)attr->addr, &data, sizeof(data))) 1664 return -EFAULT; 1665 VM_EVENT(kvm, 3, "GET: guest feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx", 1666 data.feat[0], 1667 data.feat[1], 1668 data.feat[2]); 1669 return 0; 1670 } 1671 1672 static int kvm_s390_get_machine_feat(struct kvm *kvm, 1673 struct kvm_device_attr *attr) 1674 { 1675 struct kvm_s390_vm_cpu_feat data; 1676 1677 bitmap_to_arr64(data.feat, kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS); 1678 if (copy_to_user((void __user *)attr->addr, &data, sizeof(data))) 1679 return -EFAULT; 1680 VM_EVENT(kvm, 3, "GET: host feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx", 1681 data.feat[0], 1682 data.feat[1], 1683 data.feat[2]); 1684 return 0; 1685 } 1686 1687 static int kvm_s390_get_processor_subfunc(struct kvm *kvm, 1688 struct kvm_device_attr *attr) 1689 { 1690 if (copy_to_user((void __user *)attr->addr, &kvm->arch.model.subfuncs, 1691 sizeof(struct kvm_s390_vm_cpu_subfunc))) 1692 return -EFAULT; 1693 1694 VM_EVENT(kvm, 3, "GET: guest PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1695 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[0], 1696 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[1], 1697 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[2], 1698 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[3]); 1699 VM_EVENT(kvm, 3, "GET: guest PTFF subfunc 0x%16.16lx.%16.16lx", 1700 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[0], 1701 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[1]); 1702 VM_EVENT(kvm, 3, "GET: guest KMAC subfunc 0x%16.16lx.%16.16lx", 1703 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[0], 1704 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[1]); 1705 VM_EVENT(kvm, 3, "GET: guest KMC subfunc 0x%16.16lx.%16.16lx", 1706 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[0], 1707 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[1]); 1708 VM_EVENT(kvm, 3, "GET: guest KM subfunc 0x%16.16lx.%16.16lx", 1709 ((unsigned long *) &kvm->arch.model.subfuncs.km)[0], 1710 ((unsigned long *) &kvm->arch.model.subfuncs.km)[1]); 1711 VM_EVENT(kvm, 3, "GET: guest KIMD subfunc 0x%16.16lx.%16.16lx", 1712 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[0], 1713 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[1]); 1714 VM_EVENT(kvm, 3, "GET: guest KLMD subfunc 0x%16.16lx.%16.16lx", 1715 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[0], 1716 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[1]); 1717 VM_EVENT(kvm, 3, "GET: guest PCKMO subfunc 0x%16.16lx.%16.16lx", 1718 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[0], 1719 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[1]); 1720 VM_EVENT(kvm, 3, "GET: guest KMCTR subfunc 0x%16.16lx.%16.16lx", 1721 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[0], 1722 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[1]); 1723 VM_EVENT(kvm, 3, "GET: guest KMF subfunc 0x%16.16lx.%16.16lx", 1724 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[0], 1725 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[1]); 1726 VM_EVENT(kvm, 3, "GET: guest KMO subfunc 0x%16.16lx.%16.16lx", 1727 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[0], 1728 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[1]); 1729 VM_EVENT(kvm, 3, "GET: guest PCC subfunc 0x%16.16lx.%16.16lx", 1730 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[0], 1731 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[1]); 1732 VM_EVENT(kvm, 3, "GET: guest PPNO subfunc 0x%16.16lx.%16.16lx", 1733 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[0], 1734 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[1]); 1735 VM_EVENT(kvm, 3, "GET: guest KMA subfunc 0x%16.16lx.%16.16lx", 1736 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[0], 1737 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[1]); 1738 VM_EVENT(kvm, 3, "GET: guest KDSA subfunc 0x%16.16lx.%16.16lx", 1739 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[0], 1740 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[1]); 1741 VM_EVENT(kvm, 3, "GET: guest SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1742 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[0], 1743 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[1], 1744 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[2], 1745 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[3]); 1746 VM_EVENT(kvm, 3, "GET: guest DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1747 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[0], 1748 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[1], 1749 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[2], 1750 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[3]); 1751 1752 return 0; 1753 } 1754 1755 static int kvm_s390_get_machine_subfunc(struct kvm *kvm, 1756 struct kvm_device_attr *attr) 1757 { 1758 if (copy_to_user((void __user *)attr->addr, &kvm_s390_available_subfunc, 1759 sizeof(struct kvm_s390_vm_cpu_subfunc))) 1760 return -EFAULT; 1761 1762 VM_EVENT(kvm, 3, "GET: host PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1763 ((unsigned long *) &kvm_s390_available_subfunc.plo)[0], 1764 ((unsigned long *) &kvm_s390_available_subfunc.plo)[1], 1765 ((unsigned long *) &kvm_s390_available_subfunc.plo)[2], 1766 ((unsigned long *) &kvm_s390_available_subfunc.plo)[3]); 1767 VM_EVENT(kvm, 3, "GET: host PTFF subfunc 0x%16.16lx.%16.16lx", 1768 ((unsigned long *) &kvm_s390_available_subfunc.ptff)[0], 1769 ((unsigned long *) &kvm_s390_available_subfunc.ptff)[1]); 1770 VM_EVENT(kvm, 3, "GET: host KMAC subfunc 0x%16.16lx.%16.16lx", 1771 ((unsigned long *) &kvm_s390_available_subfunc.kmac)[0], 1772 ((unsigned long *) &kvm_s390_available_subfunc.kmac)[1]); 1773 VM_EVENT(kvm, 3, "GET: host KMC subfunc 0x%16.16lx.%16.16lx", 1774 ((unsigned long *) &kvm_s390_available_subfunc.kmc)[0], 1775 ((unsigned long *) &kvm_s390_available_subfunc.kmc)[1]); 1776 VM_EVENT(kvm, 3, "GET: host KM subfunc 0x%16.16lx.%16.16lx", 1777 ((unsigned long *) &kvm_s390_available_subfunc.km)[0], 1778 ((unsigned long *) &kvm_s390_available_subfunc.km)[1]); 1779 VM_EVENT(kvm, 3, "GET: host KIMD subfunc 0x%16.16lx.%16.16lx", 1780 ((unsigned long *) &kvm_s390_available_subfunc.kimd)[0], 1781 ((unsigned long *) &kvm_s390_available_subfunc.kimd)[1]); 1782 VM_EVENT(kvm, 3, "GET: host KLMD subfunc 0x%16.16lx.%16.16lx", 1783 ((unsigned long *) &kvm_s390_available_subfunc.klmd)[0], 1784 ((unsigned long *) &kvm_s390_available_subfunc.klmd)[1]); 1785 VM_EVENT(kvm, 3, "GET: host PCKMO subfunc 0x%16.16lx.%16.16lx", 1786 ((unsigned long *) &kvm_s390_available_subfunc.pckmo)[0], 1787 ((unsigned long *) &kvm_s390_available_subfunc.pckmo)[1]); 1788 VM_EVENT(kvm, 3, "GET: host KMCTR subfunc 0x%16.16lx.%16.16lx", 1789 ((unsigned long *) &kvm_s390_available_subfunc.kmctr)[0], 1790 ((unsigned long *) &kvm_s390_available_subfunc.kmctr)[1]); 1791 VM_EVENT(kvm, 3, "GET: host KMF subfunc 0x%16.16lx.%16.16lx", 1792 ((unsigned long *) &kvm_s390_available_subfunc.kmf)[0], 1793 ((unsigned long *) &kvm_s390_available_subfunc.kmf)[1]); 1794 VM_EVENT(kvm, 3, "GET: host KMO subfunc 0x%16.16lx.%16.16lx", 1795 ((unsigned long *) &kvm_s390_available_subfunc.kmo)[0], 1796 ((unsigned long *) &kvm_s390_available_subfunc.kmo)[1]); 1797 VM_EVENT(kvm, 3, "GET: host PCC subfunc 0x%16.16lx.%16.16lx", 1798 ((unsigned long *) &kvm_s390_available_subfunc.pcc)[0], 1799 ((unsigned long *) &kvm_s390_available_subfunc.pcc)[1]); 1800 VM_EVENT(kvm, 3, "GET: host PPNO subfunc 0x%16.16lx.%16.16lx", 1801 ((unsigned long *) &kvm_s390_available_subfunc.ppno)[0], 1802 ((unsigned long *) &kvm_s390_available_subfunc.ppno)[1]); 1803 VM_EVENT(kvm, 3, "GET: host KMA subfunc 0x%16.16lx.%16.16lx", 1804 ((unsigned long *) &kvm_s390_available_subfunc.kma)[0], 1805 ((unsigned long *) &kvm_s390_available_subfunc.kma)[1]); 1806 VM_EVENT(kvm, 3, "GET: host KDSA subfunc 0x%16.16lx.%16.16lx", 1807 ((unsigned long *) &kvm_s390_available_subfunc.kdsa)[0], 1808 ((unsigned long *) &kvm_s390_available_subfunc.kdsa)[1]); 1809 VM_EVENT(kvm, 3, "GET: host SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1810 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[0], 1811 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[1], 1812 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[2], 1813 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[3]); 1814 VM_EVENT(kvm, 3, "GET: host DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1815 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[0], 1816 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[1], 1817 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[2], 1818 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[3]); 1819 1820 return 0; 1821 } 1822 1823 static int kvm_s390_get_processor_uv_feat(struct kvm *kvm, struct kvm_device_attr *attr) 1824 { 1825 struct kvm_s390_vm_cpu_uv_feat __user *dst = (void __user *)attr->addr; 1826 unsigned long feat = kvm->arch.model.uv_feat_guest.feat; 1827 1828 if (put_user(feat, &dst->feat)) 1829 return -EFAULT; 1830 VM_EVENT(kvm, 3, "GET: guest UV-feat: 0x%16.16lx", feat); 1831 1832 return 0; 1833 } 1834 1835 static int kvm_s390_get_machine_uv_feat(struct kvm *kvm, struct kvm_device_attr *attr) 1836 { 1837 struct kvm_s390_vm_cpu_uv_feat __user *dst = (void __user *)attr->addr; 1838 unsigned long feat; 1839 1840 BUILD_BUG_ON(sizeof(*dst) != sizeof(uv_info.uv_feature_indications)); 1841 1842 feat = uv_info.uv_feature_indications & KVM_S390_VM_CPU_UV_FEAT_GUEST_MASK; 1843 if (put_user(feat, &dst->feat)) 1844 return -EFAULT; 1845 VM_EVENT(kvm, 3, "GET: guest UV-feat: 0x%16.16lx", feat); 1846 1847 return 0; 1848 } 1849 1850 static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr) 1851 { 1852 int ret = -ENXIO; 1853 1854 switch (attr->attr) { 1855 case KVM_S390_VM_CPU_PROCESSOR: 1856 ret = kvm_s390_get_processor(kvm, attr); 1857 break; 1858 case KVM_S390_VM_CPU_MACHINE: 1859 ret = kvm_s390_get_machine(kvm, attr); 1860 break; 1861 case KVM_S390_VM_CPU_PROCESSOR_FEAT: 1862 ret = kvm_s390_get_processor_feat(kvm, attr); 1863 break; 1864 case KVM_S390_VM_CPU_MACHINE_FEAT: 1865 ret = kvm_s390_get_machine_feat(kvm, attr); 1866 break; 1867 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC: 1868 ret = kvm_s390_get_processor_subfunc(kvm, attr); 1869 break; 1870 case KVM_S390_VM_CPU_MACHINE_SUBFUNC: 1871 ret = kvm_s390_get_machine_subfunc(kvm, attr); 1872 break; 1873 case KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST: 1874 ret = kvm_s390_get_processor_uv_feat(kvm, attr); 1875 break; 1876 case KVM_S390_VM_CPU_MACHINE_UV_FEAT_GUEST: 1877 ret = kvm_s390_get_machine_uv_feat(kvm, attr); 1878 break; 1879 } 1880 return ret; 1881 } 1882 1883 /** 1884 * kvm_s390_update_topology_change_report - update CPU topology change report 1885 * @kvm: guest KVM description 1886 * @val: set or clear the MTCR bit 1887 * 1888 * Updates the Multiprocessor Topology-Change-Report bit to signal 1889 * the guest with a topology change. 1890 * This is only relevant if the topology facility is present. 1891 * 1892 * The SCA version, bsca or esca, doesn't matter as offset is the same. 1893 */ 1894 static void kvm_s390_update_topology_change_report(struct kvm *kvm, bool val) 1895 { 1896 union sca_utility new, old; 1897 struct bsca_block *sca; 1898 1899 read_lock(&kvm->arch.sca_lock); 1900 sca = kvm->arch.sca; 1901 do { 1902 old = READ_ONCE(sca->utility); 1903 new = old; 1904 new.mtcr = val; 1905 } while (cmpxchg(&sca->utility.val, old.val, new.val) != old.val); 1906 read_unlock(&kvm->arch.sca_lock); 1907 } 1908 1909 static int kvm_s390_set_topo_change_indication(struct kvm *kvm, 1910 struct kvm_device_attr *attr) 1911 { 1912 if (!test_kvm_facility(kvm, 11)) 1913 return -ENXIO; 1914 1915 kvm_s390_update_topology_change_report(kvm, !!attr->attr); 1916 return 0; 1917 } 1918 1919 static int kvm_s390_get_topo_change_indication(struct kvm *kvm, 1920 struct kvm_device_attr *attr) 1921 { 1922 u8 topo; 1923 1924 if (!test_kvm_facility(kvm, 11)) 1925 return -ENXIO; 1926 1927 read_lock(&kvm->arch.sca_lock); 1928 topo = ((struct bsca_block *)kvm->arch.sca)->utility.mtcr; 1929 read_unlock(&kvm->arch.sca_lock); 1930 1931 return put_user(topo, (u8 __user *)attr->addr); 1932 } 1933 1934 static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1935 { 1936 int ret; 1937 1938 switch (attr->group) { 1939 case KVM_S390_VM_MEM_CTRL: 1940 ret = kvm_s390_set_mem_control(kvm, attr); 1941 break; 1942 case KVM_S390_VM_TOD: 1943 ret = kvm_s390_set_tod(kvm, attr); 1944 break; 1945 case KVM_S390_VM_CPU_MODEL: 1946 ret = kvm_s390_set_cpu_model(kvm, attr); 1947 break; 1948 case KVM_S390_VM_CRYPTO: 1949 ret = kvm_s390_vm_set_crypto(kvm, attr); 1950 break; 1951 case KVM_S390_VM_MIGRATION: 1952 ret = kvm_s390_vm_set_migration(kvm, attr); 1953 break; 1954 case KVM_S390_VM_CPU_TOPOLOGY: 1955 ret = kvm_s390_set_topo_change_indication(kvm, attr); 1956 break; 1957 default: 1958 ret = -ENXIO; 1959 break; 1960 } 1961 1962 return ret; 1963 } 1964 1965 static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1966 { 1967 int ret; 1968 1969 switch (attr->group) { 1970 case KVM_S390_VM_MEM_CTRL: 1971 ret = kvm_s390_get_mem_control(kvm, attr); 1972 break; 1973 case KVM_S390_VM_TOD: 1974 ret = kvm_s390_get_tod(kvm, attr); 1975 break; 1976 case KVM_S390_VM_CPU_MODEL: 1977 ret = kvm_s390_get_cpu_model(kvm, attr); 1978 break; 1979 case KVM_S390_VM_MIGRATION: 1980 ret = kvm_s390_vm_get_migration(kvm, attr); 1981 break; 1982 case KVM_S390_VM_CPU_TOPOLOGY: 1983 ret = kvm_s390_get_topo_change_indication(kvm, attr); 1984 break; 1985 default: 1986 ret = -ENXIO; 1987 break; 1988 } 1989 1990 return ret; 1991 } 1992 1993 static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1994 { 1995 int ret; 1996 1997 switch (attr->group) { 1998 case KVM_S390_VM_MEM_CTRL: 1999 switch (attr->attr) { 2000 case KVM_S390_VM_MEM_ENABLE_CMMA: 2001 case KVM_S390_VM_MEM_CLR_CMMA: 2002 ret = sclp.has_cmma ? 0 : -ENXIO; 2003 break; 2004 case KVM_S390_VM_MEM_LIMIT_SIZE: 2005 ret = 0; 2006 break; 2007 default: 2008 ret = -ENXIO; 2009 break; 2010 } 2011 break; 2012 case KVM_S390_VM_TOD: 2013 switch (attr->attr) { 2014 case KVM_S390_VM_TOD_LOW: 2015 case KVM_S390_VM_TOD_HIGH: 2016 ret = 0; 2017 break; 2018 default: 2019 ret = -ENXIO; 2020 break; 2021 } 2022 break; 2023 case KVM_S390_VM_CPU_MODEL: 2024 switch (attr->attr) { 2025 case KVM_S390_VM_CPU_PROCESSOR: 2026 case KVM_S390_VM_CPU_MACHINE: 2027 case KVM_S390_VM_CPU_PROCESSOR_FEAT: 2028 case KVM_S390_VM_CPU_MACHINE_FEAT: 2029 case KVM_S390_VM_CPU_MACHINE_SUBFUNC: 2030 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC: 2031 case KVM_S390_VM_CPU_MACHINE_UV_FEAT_GUEST: 2032 case KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST: 2033 ret = 0; 2034 break; 2035 default: 2036 ret = -ENXIO; 2037 break; 2038 } 2039 break; 2040 case KVM_S390_VM_CRYPTO: 2041 switch (attr->attr) { 2042 case KVM_S390_VM_CRYPTO_ENABLE_AES_KW: 2043 case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW: 2044 case KVM_S390_VM_CRYPTO_DISABLE_AES_KW: 2045 case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW: 2046 ret = 0; 2047 break; 2048 case KVM_S390_VM_CRYPTO_ENABLE_APIE: 2049 case KVM_S390_VM_CRYPTO_DISABLE_APIE: 2050 ret = ap_instructions_available() ? 0 : -ENXIO; 2051 break; 2052 default: 2053 ret = -ENXIO; 2054 break; 2055 } 2056 break; 2057 case KVM_S390_VM_MIGRATION: 2058 ret = 0; 2059 break; 2060 case KVM_S390_VM_CPU_TOPOLOGY: 2061 ret = test_kvm_facility(kvm, 11) ? 0 : -ENXIO; 2062 break; 2063 default: 2064 ret = -ENXIO; 2065 break; 2066 } 2067 2068 return ret; 2069 } 2070 2071 static int kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args) 2072 { 2073 uint8_t *keys; 2074 uint64_t hva; 2075 int srcu_idx, i, r = 0; 2076 2077 if (args->flags != 0) 2078 return -EINVAL; 2079 2080 /* Is this guest using storage keys? */ 2081 if (!mm_uses_skeys(current->mm)) 2082 return KVM_S390_GET_SKEYS_NONE; 2083 2084 /* Enforce sane limit on memory allocation */ 2085 if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX) 2086 return -EINVAL; 2087 2088 keys = kvmalloc_array(args->count, sizeof(uint8_t), GFP_KERNEL_ACCOUNT); 2089 if (!keys) 2090 return -ENOMEM; 2091 2092 mmap_read_lock(current->mm); 2093 srcu_idx = srcu_read_lock(&kvm->srcu); 2094 for (i = 0; i < args->count; i++) { 2095 hva = gfn_to_hva(kvm, args->start_gfn + i); 2096 if (kvm_is_error_hva(hva)) { 2097 r = -EFAULT; 2098 break; 2099 } 2100 2101 r = get_guest_storage_key(current->mm, hva, &keys[i]); 2102 if (r) 2103 break; 2104 } 2105 srcu_read_unlock(&kvm->srcu, srcu_idx); 2106 mmap_read_unlock(current->mm); 2107 2108 if (!r) { 2109 r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys, 2110 sizeof(uint8_t) * args->count); 2111 if (r) 2112 r = -EFAULT; 2113 } 2114 2115 kvfree(keys); 2116 return r; 2117 } 2118 2119 static int kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args) 2120 { 2121 uint8_t *keys; 2122 uint64_t hva; 2123 int srcu_idx, i, r = 0; 2124 bool unlocked; 2125 2126 if (args->flags != 0) 2127 return -EINVAL; 2128 2129 /* Enforce sane limit on memory allocation */ 2130 if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX) 2131 return -EINVAL; 2132 2133 keys = kvmalloc_array(args->count, sizeof(uint8_t), GFP_KERNEL_ACCOUNT); 2134 if (!keys) 2135 return -ENOMEM; 2136 2137 r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr, 2138 sizeof(uint8_t) * args->count); 2139 if (r) { 2140 r = -EFAULT; 2141 goto out; 2142 } 2143 2144 /* Enable storage key handling for the guest */ 2145 r = s390_enable_skey(); 2146 if (r) 2147 goto out; 2148 2149 i = 0; 2150 mmap_read_lock(current->mm); 2151 srcu_idx = srcu_read_lock(&kvm->srcu); 2152 while (i < args->count) { 2153 unlocked = false; 2154 hva = gfn_to_hva(kvm, args->start_gfn + i); 2155 if (kvm_is_error_hva(hva)) { 2156 r = -EFAULT; 2157 break; 2158 } 2159 2160 /* Lowest order bit is reserved */ 2161 if (keys[i] & 0x01) { 2162 r = -EINVAL; 2163 break; 2164 } 2165 2166 r = set_guest_storage_key(current->mm, hva, keys[i], 0); 2167 if (r) { 2168 r = fixup_user_fault(current->mm, hva, 2169 FAULT_FLAG_WRITE, &unlocked); 2170 if (r) 2171 break; 2172 } 2173 if (!r) 2174 i++; 2175 } 2176 srcu_read_unlock(&kvm->srcu, srcu_idx); 2177 mmap_read_unlock(current->mm); 2178 out: 2179 kvfree(keys); 2180 return r; 2181 } 2182 2183 /* 2184 * Base address and length must be sent at the start of each block, therefore 2185 * it's cheaper to send some clean data, as long as it's less than the size of 2186 * two longs. 2187 */ 2188 #define KVM_S390_MAX_BIT_DISTANCE (2 * sizeof(void *)) 2189 /* for consistency */ 2190 #define KVM_S390_CMMA_SIZE_MAX ((u32)KVM_S390_SKEYS_MAX) 2191 2192 static int kvm_s390_peek_cmma(struct kvm *kvm, struct kvm_s390_cmma_log *args, 2193 u8 *res, unsigned long bufsize) 2194 { 2195 unsigned long pgstev, hva, cur_gfn = args->start_gfn; 2196 2197 args->count = 0; 2198 while (args->count < bufsize) { 2199 hva = gfn_to_hva(kvm, cur_gfn); 2200 /* 2201 * We return an error if the first value was invalid, but we 2202 * return successfully if at least one value was copied. 2203 */ 2204 if (kvm_is_error_hva(hva)) 2205 return args->count ? 0 : -EFAULT; 2206 if (get_pgste(kvm->mm, hva, &pgstev) < 0) 2207 pgstev = 0; 2208 res[args->count++] = (pgstev >> 24) & 0x43; 2209 cur_gfn++; 2210 } 2211 2212 return 0; 2213 } 2214 2215 static struct kvm_memory_slot *gfn_to_memslot_approx(struct kvm_memslots *slots, 2216 gfn_t gfn) 2217 { 2218 return ____gfn_to_memslot(slots, gfn, true); 2219 } 2220 2221 static unsigned long kvm_s390_next_dirty_cmma(struct kvm_memslots *slots, 2222 unsigned long cur_gfn) 2223 { 2224 struct kvm_memory_slot *ms = gfn_to_memslot_approx(slots, cur_gfn); 2225 unsigned long ofs = cur_gfn - ms->base_gfn; 2226 struct rb_node *mnode = &ms->gfn_node[slots->node_idx]; 2227 2228 if (ms->base_gfn + ms->npages <= cur_gfn) { 2229 mnode = rb_next(mnode); 2230 /* If we are above the highest slot, wrap around */ 2231 if (!mnode) 2232 mnode = rb_first(&slots->gfn_tree); 2233 2234 ms = container_of(mnode, struct kvm_memory_slot, gfn_node[slots->node_idx]); 2235 ofs = 0; 2236 } 2237 2238 if (cur_gfn < ms->base_gfn) 2239 ofs = 0; 2240 2241 ofs = find_next_bit(kvm_second_dirty_bitmap(ms), ms->npages, ofs); 2242 while (ofs >= ms->npages && (mnode = rb_next(mnode))) { 2243 ms = container_of(mnode, struct kvm_memory_slot, gfn_node[slots->node_idx]); 2244 ofs = find_first_bit(kvm_second_dirty_bitmap(ms), ms->npages); 2245 } 2246 return ms->base_gfn + ofs; 2247 } 2248 2249 static int kvm_s390_get_cmma(struct kvm *kvm, struct kvm_s390_cmma_log *args, 2250 u8 *res, unsigned long bufsize) 2251 { 2252 unsigned long mem_end, cur_gfn, next_gfn, hva, pgstev; 2253 struct kvm_memslots *slots = kvm_memslots(kvm); 2254 struct kvm_memory_slot *ms; 2255 2256 if (unlikely(kvm_memslots_empty(slots))) 2257 return 0; 2258 2259 cur_gfn = kvm_s390_next_dirty_cmma(slots, args->start_gfn); 2260 ms = gfn_to_memslot(kvm, cur_gfn); 2261 args->count = 0; 2262 args->start_gfn = cur_gfn; 2263 if (!ms) 2264 return 0; 2265 next_gfn = kvm_s390_next_dirty_cmma(slots, cur_gfn + 1); 2266 mem_end = kvm_s390_get_gfn_end(slots); 2267 2268 while (args->count < bufsize) { 2269 hva = gfn_to_hva(kvm, cur_gfn); 2270 if (kvm_is_error_hva(hva)) 2271 return 0; 2272 /* Decrement only if we actually flipped the bit to 0 */ 2273 if (test_and_clear_bit(cur_gfn - ms->base_gfn, kvm_second_dirty_bitmap(ms))) 2274 atomic64_dec(&kvm->arch.cmma_dirty_pages); 2275 if (get_pgste(kvm->mm, hva, &pgstev) < 0) 2276 pgstev = 0; 2277 /* Save the value */ 2278 res[args->count++] = (pgstev >> 24) & 0x43; 2279 /* If the next bit is too far away, stop. */ 2280 if (next_gfn > cur_gfn + KVM_S390_MAX_BIT_DISTANCE) 2281 return 0; 2282 /* If we reached the previous "next", find the next one */ 2283 if (cur_gfn == next_gfn) 2284 next_gfn = kvm_s390_next_dirty_cmma(slots, cur_gfn + 1); 2285 /* Reached the end of memory or of the buffer, stop */ 2286 if ((next_gfn >= mem_end) || 2287 (next_gfn - args->start_gfn >= bufsize)) 2288 return 0; 2289 cur_gfn++; 2290 /* Reached the end of the current memslot, take the next one. */ 2291 if (cur_gfn - ms->base_gfn >= ms->npages) { 2292 ms = gfn_to_memslot(kvm, cur_gfn); 2293 if (!ms) 2294 return 0; 2295 } 2296 } 2297 return 0; 2298 } 2299 2300 /* 2301 * This function searches for the next page with dirty CMMA attributes, and 2302 * saves the attributes in the buffer up to either the end of the buffer or 2303 * until a block of at least KVM_S390_MAX_BIT_DISTANCE clean bits is found; 2304 * no trailing clean bytes are saved. 2305 * In case no dirty bits were found, or if CMMA was not enabled or used, the 2306 * output buffer will indicate 0 as length. 2307 */ 2308 static int kvm_s390_get_cmma_bits(struct kvm *kvm, 2309 struct kvm_s390_cmma_log *args) 2310 { 2311 unsigned long bufsize; 2312 int srcu_idx, peek, ret; 2313 u8 *values; 2314 2315 if (!kvm->arch.use_cmma) 2316 return -ENXIO; 2317 /* Invalid/unsupported flags were specified */ 2318 if (args->flags & ~KVM_S390_CMMA_PEEK) 2319 return -EINVAL; 2320 /* Migration mode query, and we are not doing a migration */ 2321 peek = !!(args->flags & KVM_S390_CMMA_PEEK); 2322 if (!peek && !kvm->arch.migration_mode) 2323 return -EINVAL; 2324 /* CMMA is disabled or was not used, or the buffer has length zero */ 2325 bufsize = min(args->count, KVM_S390_CMMA_SIZE_MAX); 2326 if (!bufsize || !kvm->mm->context.uses_cmm) { 2327 memset(args, 0, sizeof(*args)); 2328 return 0; 2329 } 2330 /* We are not peeking, and there are no dirty pages */ 2331 if (!peek && !atomic64_read(&kvm->arch.cmma_dirty_pages)) { 2332 memset(args, 0, sizeof(*args)); 2333 return 0; 2334 } 2335 2336 values = vmalloc(bufsize); 2337 if (!values) 2338 return -ENOMEM; 2339 2340 mmap_read_lock(kvm->mm); 2341 srcu_idx = srcu_read_lock(&kvm->srcu); 2342 if (peek) 2343 ret = kvm_s390_peek_cmma(kvm, args, values, bufsize); 2344 else 2345 ret = kvm_s390_get_cmma(kvm, args, values, bufsize); 2346 srcu_read_unlock(&kvm->srcu, srcu_idx); 2347 mmap_read_unlock(kvm->mm); 2348 2349 if (kvm->arch.migration_mode) 2350 args->remaining = atomic64_read(&kvm->arch.cmma_dirty_pages); 2351 else 2352 args->remaining = 0; 2353 2354 if (copy_to_user((void __user *)args->values, values, args->count)) 2355 ret = -EFAULT; 2356 2357 vfree(values); 2358 return ret; 2359 } 2360 2361 /* 2362 * This function sets the CMMA attributes for the given pages. If the input 2363 * buffer has zero length, no action is taken, otherwise the attributes are 2364 * set and the mm->context.uses_cmm flag is set. 2365 */ 2366 static int kvm_s390_set_cmma_bits(struct kvm *kvm, 2367 const struct kvm_s390_cmma_log *args) 2368 { 2369 unsigned long hva, mask, pgstev, i; 2370 uint8_t *bits; 2371 int srcu_idx, r = 0; 2372 2373 mask = args->mask; 2374 2375 if (!kvm->arch.use_cmma) 2376 return -ENXIO; 2377 /* invalid/unsupported flags */ 2378 if (args->flags != 0) 2379 return -EINVAL; 2380 /* Enforce sane limit on memory allocation */ 2381 if (args->count > KVM_S390_CMMA_SIZE_MAX) 2382 return -EINVAL; 2383 /* Nothing to do */ 2384 if (args->count == 0) 2385 return 0; 2386 2387 bits = vmalloc(array_size(sizeof(*bits), args->count)); 2388 if (!bits) 2389 return -ENOMEM; 2390 2391 r = copy_from_user(bits, (void __user *)args->values, args->count); 2392 if (r) { 2393 r = -EFAULT; 2394 goto out; 2395 } 2396 2397 mmap_read_lock(kvm->mm); 2398 srcu_idx = srcu_read_lock(&kvm->srcu); 2399 for (i = 0; i < args->count; i++) { 2400 hva = gfn_to_hva(kvm, args->start_gfn + i); 2401 if (kvm_is_error_hva(hva)) { 2402 r = -EFAULT; 2403 break; 2404 } 2405 2406 pgstev = bits[i]; 2407 pgstev = pgstev << 24; 2408 mask &= _PGSTE_GPS_USAGE_MASK | _PGSTE_GPS_NODAT; 2409 set_pgste_bits(kvm->mm, hva, mask, pgstev); 2410 } 2411 srcu_read_unlock(&kvm->srcu, srcu_idx); 2412 mmap_read_unlock(kvm->mm); 2413 2414 if (!kvm->mm->context.uses_cmm) { 2415 mmap_write_lock(kvm->mm); 2416 kvm->mm->context.uses_cmm = 1; 2417 mmap_write_unlock(kvm->mm); 2418 } 2419 out: 2420 vfree(bits); 2421 return r; 2422 } 2423 2424 /** 2425 * kvm_s390_cpus_from_pv - Convert all protected vCPUs in a protected VM to 2426 * non protected. 2427 * @kvm: the VM whose protected vCPUs are to be converted 2428 * @rc: return value for the RC field of the UVC (in case of error) 2429 * @rrc: return value for the RRC field of the UVC (in case of error) 2430 * 2431 * Does not stop in case of error, tries to convert as many 2432 * CPUs as possible. In case of error, the RC and RRC of the last error are 2433 * returned. 2434 * 2435 * Return: 0 in case of success, otherwise -EIO 2436 */ 2437 int kvm_s390_cpus_from_pv(struct kvm *kvm, u16 *rc, u16 *rrc) 2438 { 2439 struct kvm_vcpu *vcpu; 2440 unsigned long i; 2441 u16 _rc, _rrc; 2442 int ret = 0; 2443 2444 /* 2445 * We ignore failures and try to destroy as many CPUs as possible. 2446 * At the same time we must not free the assigned resources when 2447 * this fails, as the ultravisor has still access to that memory. 2448 * So kvm_s390_pv_destroy_cpu can leave a "wanted" memory leak 2449 * behind. 2450 * We want to return the first failure rc and rrc, though. 2451 */ 2452 kvm_for_each_vcpu(i, vcpu, kvm) { 2453 mutex_lock(&vcpu->mutex); 2454 if (kvm_s390_pv_destroy_cpu(vcpu, &_rc, &_rrc) && !ret) { 2455 *rc = _rc; 2456 *rrc = _rrc; 2457 ret = -EIO; 2458 } 2459 mutex_unlock(&vcpu->mutex); 2460 } 2461 /* Ensure that we re-enable gisa if the non-PV guest used it but the PV guest did not. */ 2462 if (use_gisa) 2463 kvm_s390_gisa_enable(kvm); 2464 return ret; 2465 } 2466 2467 /** 2468 * kvm_s390_cpus_to_pv - Convert all non-protected vCPUs in a protected VM 2469 * to protected. 2470 * @kvm: the VM whose protected vCPUs are to be converted 2471 * @rc: return value for the RC field of the UVC (in case of error) 2472 * @rrc: return value for the RRC field of the UVC (in case of error) 2473 * 2474 * Tries to undo the conversion in case of error. 2475 * 2476 * Return: 0 in case of success, otherwise -EIO 2477 */ 2478 static int kvm_s390_cpus_to_pv(struct kvm *kvm, u16 *rc, u16 *rrc) 2479 { 2480 unsigned long i; 2481 int r = 0; 2482 u16 dummy; 2483 2484 struct kvm_vcpu *vcpu; 2485 2486 /* Disable the GISA if the ultravisor does not support AIV. */ 2487 if (!uv_has_feature(BIT_UV_FEAT_AIV)) 2488 kvm_s390_gisa_disable(kvm); 2489 2490 kvm_for_each_vcpu(i, vcpu, kvm) { 2491 mutex_lock(&vcpu->mutex); 2492 r = kvm_s390_pv_create_cpu(vcpu, rc, rrc); 2493 mutex_unlock(&vcpu->mutex); 2494 if (r) 2495 break; 2496 } 2497 if (r) 2498 kvm_s390_cpus_from_pv(kvm, &dummy, &dummy); 2499 return r; 2500 } 2501 2502 /* 2503 * Here we provide user space with a direct interface to query UV 2504 * related data like UV maxima and available features as well as 2505 * feature specific data. 2506 * 2507 * To facilitate future extension of the data structures we'll try to 2508 * write data up to the maximum requested length. 2509 */ 2510 static ssize_t kvm_s390_handle_pv_info(struct kvm_s390_pv_info *info) 2511 { 2512 ssize_t len_min; 2513 2514 switch (info->header.id) { 2515 case KVM_PV_INFO_VM: { 2516 len_min = sizeof(info->header) + sizeof(info->vm); 2517 2518 if (info->header.len_max < len_min) 2519 return -EINVAL; 2520 2521 memcpy(info->vm.inst_calls_list, 2522 uv_info.inst_calls_list, 2523 sizeof(uv_info.inst_calls_list)); 2524 2525 /* It's max cpuid not max cpus, so it's off by one */ 2526 info->vm.max_cpus = uv_info.max_guest_cpu_id + 1; 2527 info->vm.max_guests = uv_info.max_num_sec_conf; 2528 info->vm.max_guest_addr = uv_info.max_sec_stor_addr; 2529 info->vm.feature_indication = uv_info.uv_feature_indications; 2530 2531 return len_min; 2532 } 2533 case KVM_PV_INFO_DUMP: { 2534 len_min = sizeof(info->header) + sizeof(info->dump); 2535 2536 if (info->header.len_max < len_min) 2537 return -EINVAL; 2538 2539 info->dump.dump_cpu_buffer_len = uv_info.guest_cpu_stor_len; 2540 info->dump.dump_config_mem_buffer_per_1m = uv_info.conf_dump_storage_state_len; 2541 info->dump.dump_config_finalize_len = uv_info.conf_dump_finalize_len; 2542 return len_min; 2543 } 2544 default: 2545 return -EINVAL; 2546 } 2547 } 2548 2549 static int kvm_s390_pv_dmp(struct kvm *kvm, struct kvm_pv_cmd *cmd, 2550 struct kvm_s390_pv_dmp dmp) 2551 { 2552 int r = -EINVAL; 2553 void __user *result_buff = (void __user *)dmp.buff_addr; 2554 2555 switch (dmp.subcmd) { 2556 case KVM_PV_DUMP_INIT: { 2557 if (kvm->arch.pv.dumping) 2558 break; 2559 2560 /* 2561 * Block SIE entry as concurrent dump UVCs could lead 2562 * to validities. 2563 */ 2564 kvm_s390_vcpu_block_all(kvm); 2565 2566 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm), 2567 UVC_CMD_DUMP_INIT, &cmd->rc, &cmd->rrc); 2568 KVM_UV_EVENT(kvm, 3, "PROTVIRT DUMP INIT: rc %x rrc %x", 2569 cmd->rc, cmd->rrc); 2570 if (!r) { 2571 kvm->arch.pv.dumping = true; 2572 } else { 2573 kvm_s390_vcpu_unblock_all(kvm); 2574 r = -EINVAL; 2575 } 2576 break; 2577 } 2578 case KVM_PV_DUMP_CONFIG_STOR_STATE: { 2579 if (!kvm->arch.pv.dumping) 2580 break; 2581 2582 /* 2583 * gaddr is an output parameter since we might stop 2584 * early. As dmp will be copied back in our caller, we 2585 * don't need to do it ourselves. 2586 */ 2587 r = kvm_s390_pv_dump_stor_state(kvm, result_buff, &dmp.gaddr, dmp.buff_len, 2588 &cmd->rc, &cmd->rrc); 2589 break; 2590 } 2591 case KVM_PV_DUMP_COMPLETE: { 2592 if (!kvm->arch.pv.dumping) 2593 break; 2594 2595 r = -EINVAL; 2596 if (dmp.buff_len < uv_info.conf_dump_finalize_len) 2597 break; 2598 2599 r = kvm_s390_pv_dump_complete(kvm, result_buff, 2600 &cmd->rc, &cmd->rrc); 2601 break; 2602 } 2603 default: 2604 r = -ENOTTY; 2605 break; 2606 } 2607 2608 return r; 2609 } 2610 2611 static int kvm_s390_handle_pv(struct kvm *kvm, struct kvm_pv_cmd *cmd) 2612 { 2613 const bool need_lock = (cmd->cmd != KVM_PV_ASYNC_CLEANUP_PERFORM); 2614 void __user *argp = (void __user *)cmd->data; 2615 int r = 0; 2616 u16 dummy; 2617 2618 if (need_lock) 2619 mutex_lock(&kvm->lock); 2620 2621 switch (cmd->cmd) { 2622 case KVM_PV_ENABLE: { 2623 r = -EINVAL; 2624 if (kvm_s390_pv_is_protected(kvm)) 2625 break; 2626 2627 /* 2628 * FMT 4 SIE needs esca. As we never switch back to bsca from 2629 * esca, we need no cleanup in the error cases below 2630 */ 2631 r = sca_switch_to_extended(kvm); 2632 if (r) 2633 break; 2634 2635 r = s390_disable_cow_sharing(); 2636 if (r) 2637 break; 2638 2639 r = kvm_s390_pv_init_vm(kvm, &cmd->rc, &cmd->rrc); 2640 if (r) 2641 break; 2642 2643 r = kvm_s390_cpus_to_pv(kvm, &cmd->rc, &cmd->rrc); 2644 if (r) 2645 kvm_s390_pv_deinit_vm(kvm, &dummy, &dummy); 2646 2647 /* we need to block service interrupts from now on */ 2648 set_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs); 2649 break; 2650 } 2651 case KVM_PV_ASYNC_CLEANUP_PREPARE: 2652 r = -EINVAL; 2653 if (!kvm_s390_pv_is_protected(kvm) || !async_destroy) 2654 break; 2655 2656 r = kvm_s390_cpus_from_pv(kvm, &cmd->rc, &cmd->rrc); 2657 /* 2658 * If a CPU could not be destroyed, destroy VM will also fail. 2659 * There is no point in trying to destroy it. Instead return 2660 * the rc and rrc from the first CPU that failed destroying. 2661 */ 2662 if (r) 2663 break; 2664 r = kvm_s390_pv_set_aside(kvm, &cmd->rc, &cmd->rrc); 2665 2666 /* no need to block service interrupts any more */ 2667 clear_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs); 2668 break; 2669 case KVM_PV_ASYNC_CLEANUP_PERFORM: 2670 r = -EINVAL; 2671 if (!async_destroy) 2672 break; 2673 /* kvm->lock must not be held; this is asserted inside the function. */ 2674 r = kvm_s390_pv_deinit_aside_vm(kvm, &cmd->rc, &cmd->rrc); 2675 break; 2676 case KVM_PV_DISABLE: { 2677 r = -EINVAL; 2678 if (!kvm_s390_pv_is_protected(kvm)) 2679 break; 2680 2681 r = kvm_s390_cpus_from_pv(kvm, &cmd->rc, &cmd->rrc); 2682 /* 2683 * If a CPU could not be destroyed, destroy VM will also fail. 2684 * There is no point in trying to destroy it. Instead return 2685 * the rc and rrc from the first CPU that failed destroying. 2686 */ 2687 if (r) 2688 break; 2689 r = kvm_s390_pv_deinit_cleanup_all(kvm, &cmd->rc, &cmd->rrc); 2690 2691 /* no need to block service interrupts any more */ 2692 clear_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs); 2693 break; 2694 } 2695 case KVM_PV_SET_SEC_PARMS: { 2696 struct kvm_s390_pv_sec_parm parms = {}; 2697 void *hdr; 2698 2699 r = -EINVAL; 2700 if (!kvm_s390_pv_is_protected(kvm)) 2701 break; 2702 2703 r = -EFAULT; 2704 if (copy_from_user(&parms, argp, sizeof(parms))) 2705 break; 2706 2707 /* Currently restricted to 8KB */ 2708 r = -EINVAL; 2709 if (parms.length > PAGE_SIZE * 2) 2710 break; 2711 2712 r = -ENOMEM; 2713 hdr = vmalloc(parms.length); 2714 if (!hdr) 2715 break; 2716 2717 r = -EFAULT; 2718 if (!copy_from_user(hdr, (void __user *)parms.origin, 2719 parms.length)) 2720 r = kvm_s390_pv_set_sec_parms(kvm, hdr, parms.length, 2721 &cmd->rc, &cmd->rrc); 2722 2723 vfree(hdr); 2724 break; 2725 } 2726 case KVM_PV_UNPACK: { 2727 struct kvm_s390_pv_unp unp = {}; 2728 2729 r = -EINVAL; 2730 if (!kvm_s390_pv_is_protected(kvm) || !mm_is_protected(kvm->mm)) 2731 break; 2732 2733 r = -EFAULT; 2734 if (copy_from_user(&unp, argp, sizeof(unp))) 2735 break; 2736 2737 r = kvm_s390_pv_unpack(kvm, unp.addr, unp.size, unp.tweak, 2738 &cmd->rc, &cmd->rrc); 2739 break; 2740 } 2741 case KVM_PV_VERIFY: { 2742 r = -EINVAL; 2743 if (!kvm_s390_pv_is_protected(kvm)) 2744 break; 2745 2746 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm), 2747 UVC_CMD_VERIFY_IMG, &cmd->rc, &cmd->rrc); 2748 KVM_UV_EVENT(kvm, 3, "PROTVIRT VERIFY: rc %x rrc %x", cmd->rc, 2749 cmd->rrc); 2750 break; 2751 } 2752 case KVM_PV_PREP_RESET: { 2753 r = -EINVAL; 2754 if (!kvm_s390_pv_is_protected(kvm)) 2755 break; 2756 2757 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm), 2758 UVC_CMD_PREPARE_RESET, &cmd->rc, &cmd->rrc); 2759 KVM_UV_EVENT(kvm, 3, "PROTVIRT PREP RESET: rc %x rrc %x", 2760 cmd->rc, cmd->rrc); 2761 break; 2762 } 2763 case KVM_PV_UNSHARE_ALL: { 2764 r = -EINVAL; 2765 if (!kvm_s390_pv_is_protected(kvm)) 2766 break; 2767 2768 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm), 2769 UVC_CMD_SET_UNSHARE_ALL, &cmd->rc, &cmd->rrc); 2770 KVM_UV_EVENT(kvm, 3, "PROTVIRT UNSHARE: rc %x rrc %x", 2771 cmd->rc, cmd->rrc); 2772 break; 2773 } 2774 case KVM_PV_INFO: { 2775 struct kvm_s390_pv_info info = {}; 2776 ssize_t data_len; 2777 2778 /* 2779 * No need to check the VM protection here. 2780 * 2781 * Maybe user space wants to query some of the data 2782 * when the VM is still unprotected. If we see the 2783 * need to fence a new data command we can still 2784 * return an error in the info handler. 2785 */ 2786 2787 r = -EFAULT; 2788 if (copy_from_user(&info, argp, sizeof(info.header))) 2789 break; 2790 2791 r = -EINVAL; 2792 if (info.header.len_max < sizeof(info.header)) 2793 break; 2794 2795 data_len = kvm_s390_handle_pv_info(&info); 2796 if (data_len < 0) { 2797 r = data_len; 2798 break; 2799 } 2800 /* 2801 * If a data command struct is extended (multiple 2802 * times) this can be used to determine how much of it 2803 * is valid. 2804 */ 2805 info.header.len_written = data_len; 2806 2807 r = -EFAULT; 2808 if (copy_to_user(argp, &info, data_len)) 2809 break; 2810 2811 r = 0; 2812 break; 2813 } 2814 case KVM_PV_DUMP: { 2815 struct kvm_s390_pv_dmp dmp; 2816 2817 r = -EINVAL; 2818 if (!kvm_s390_pv_is_protected(kvm)) 2819 break; 2820 2821 r = -EFAULT; 2822 if (copy_from_user(&dmp, argp, sizeof(dmp))) 2823 break; 2824 2825 r = kvm_s390_pv_dmp(kvm, cmd, dmp); 2826 if (r) 2827 break; 2828 2829 if (copy_to_user(argp, &dmp, sizeof(dmp))) { 2830 r = -EFAULT; 2831 break; 2832 } 2833 2834 break; 2835 } 2836 default: 2837 r = -ENOTTY; 2838 } 2839 if (need_lock) 2840 mutex_unlock(&kvm->lock); 2841 2842 return r; 2843 } 2844 2845 static int mem_op_validate_common(struct kvm_s390_mem_op *mop, u64 supported_flags) 2846 { 2847 if (mop->flags & ~supported_flags || !mop->size) 2848 return -EINVAL; 2849 if (mop->size > MEM_OP_MAX_SIZE) 2850 return -E2BIG; 2851 if (mop->flags & KVM_S390_MEMOP_F_SKEY_PROTECTION) { 2852 if (mop->key > 0xf) 2853 return -EINVAL; 2854 } else { 2855 mop->key = 0; 2856 } 2857 return 0; 2858 } 2859 2860 static int kvm_s390_vm_mem_op_abs(struct kvm *kvm, struct kvm_s390_mem_op *mop) 2861 { 2862 void __user *uaddr = (void __user *)mop->buf; 2863 enum gacc_mode acc_mode; 2864 void *tmpbuf = NULL; 2865 int r, srcu_idx; 2866 2867 r = mem_op_validate_common(mop, KVM_S390_MEMOP_F_SKEY_PROTECTION | 2868 KVM_S390_MEMOP_F_CHECK_ONLY); 2869 if (r) 2870 return r; 2871 2872 if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) { 2873 tmpbuf = vmalloc(mop->size); 2874 if (!tmpbuf) 2875 return -ENOMEM; 2876 } 2877 2878 srcu_idx = srcu_read_lock(&kvm->srcu); 2879 2880 if (!kvm_is_gpa_in_memslot(kvm, mop->gaddr)) { 2881 r = PGM_ADDRESSING; 2882 goto out_unlock; 2883 } 2884 2885 acc_mode = mop->op == KVM_S390_MEMOP_ABSOLUTE_READ ? GACC_FETCH : GACC_STORE; 2886 if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) { 2887 r = check_gpa_range(kvm, mop->gaddr, mop->size, acc_mode, mop->key); 2888 goto out_unlock; 2889 } 2890 if (acc_mode == GACC_FETCH) { 2891 r = access_guest_abs_with_key(kvm, mop->gaddr, tmpbuf, 2892 mop->size, GACC_FETCH, mop->key); 2893 if (r) 2894 goto out_unlock; 2895 if (copy_to_user(uaddr, tmpbuf, mop->size)) 2896 r = -EFAULT; 2897 } else { 2898 if (copy_from_user(tmpbuf, uaddr, mop->size)) { 2899 r = -EFAULT; 2900 goto out_unlock; 2901 } 2902 r = access_guest_abs_with_key(kvm, mop->gaddr, tmpbuf, 2903 mop->size, GACC_STORE, mop->key); 2904 } 2905 2906 out_unlock: 2907 srcu_read_unlock(&kvm->srcu, srcu_idx); 2908 2909 vfree(tmpbuf); 2910 return r; 2911 } 2912 2913 static int kvm_s390_vm_mem_op_cmpxchg(struct kvm *kvm, struct kvm_s390_mem_op *mop) 2914 { 2915 void __user *uaddr = (void __user *)mop->buf; 2916 void __user *old_addr = (void __user *)mop->old_addr; 2917 union { 2918 __uint128_t quad; 2919 char raw[sizeof(__uint128_t)]; 2920 } old = { .quad = 0}, new = { .quad = 0 }; 2921 unsigned int off_in_quad = sizeof(new) - mop->size; 2922 int r, srcu_idx; 2923 bool success; 2924 2925 r = mem_op_validate_common(mop, KVM_S390_MEMOP_F_SKEY_PROTECTION); 2926 if (r) 2927 return r; 2928 /* 2929 * This validates off_in_quad. Checking that size is a power 2930 * of two is not necessary, as cmpxchg_guest_abs_with_key 2931 * takes care of that 2932 */ 2933 if (mop->size > sizeof(new)) 2934 return -EINVAL; 2935 if (copy_from_user(&new.raw[off_in_quad], uaddr, mop->size)) 2936 return -EFAULT; 2937 if (copy_from_user(&old.raw[off_in_quad], old_addr, mop->size)) 2938 return -EFAULT; 2939 2940 srcu_idx = srcu_read_lock(&kvm->srcu); 2941 2942 if (!kvm_is_gpa_in_memslot(kvm, mop->gaddr)) { 2943 r = PGM_ADDRESSING; 2944 goto out_unlock; 2945 } 2946 2947 r = cmpxchg_guest_abs_with_key(kvm, mop->gaddr, mop->size, &old.quad, 2948 new.quad, mop->key, &success); 2949 if (!success && copy_to_user(old_addr, &old.raw[off_in_quad], mop->size)) 2950 r = -EFAULT; 2951 2952 out_unlock: 2953 srcu_read_unlock(&kvm->srcu, srcu_idx); 2954 return r; 2955 } 2956 2957 static int kvm_s390_vm_mem_op(struct kvm *kvm, struct kvm_s390_mem_op *mop) 2958 { 2959 /* 2960 * This is technically a heuristic only, if the kvm->lock is not 2961 * taken, it is not guaranteed that the vm is/remains non-protected. 2962 * This is ok from a kernel perspective, wrongdoing is detected 2963 * on the access, -EFAULT is returned and the vm may crash the 2964 * next time it accesses the memory in question. 2965 * There is no sane usecase to do switching and a memop on two 2966 * different CPUs at the same time. 2967 */ 2968 if (kvm_s390_pv_get_handle(kvm)) 2969 return -EINVAL; 2970 2971 switch (mop->op) { 2972 case KVM_S390_MEMOP_ABSOLUTE_READ: 2973 case KVM_S390_MEMOP_ABSOLUTE_WRITE: 2974 return kvm_s390_vm_mem_op_abs(kvm, mop); 2975 case KVM_S390_MEMOP_ABSOLUTE_CMPXCHG: 2976 return kvm_s390_vm_mem_op_cmpxchg(kvm, mop); 2977 default: 2978 return -EINVAL; 2979 } 2980 } 2981 2982 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) 2983 { 2984 struct kvm *kvm = filp->private_data; 2985 void __user *argp = (void __user *)arg; 2986 struct kvm_device_attr attr; 2987 int r; 2988 2989 switch (ioctl) { 2990 case KVM_S390_INTERRUPT: { 2991 struct kvm_s390_interrupt s390int; 2992 2993 r = -EFAULT; 2994 if (copy_from_user(&s390int, argp, sizeof(s390int))) 2995 break; 2996 r = kvm_s390_inject_vm(kvm, &s390int); 2997 break; 2998 } 2999 case KVM_CREATE_IRQCHIP: { 3000 r = -EINVAL; 3001 if (kvm->arch.use_irqchip) 3002 r = 0; 3003 break; 3004 } 3005 case KVM_SET_DEVICE_ATTR: { 3006 r = -EFAULT; 3007 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 3008 break; 3009 r = kvm_s390_vm_set_attr(kvm, &attr); 3010 break; 3011 } 3012 case KVM_GET_DEVICE_ATTR: { 3013 r = -EFAULT; 3014 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 3015 break; 3016 r = kvm_s390_vm_get_attr(kvm, &attr); 3017 break; 3018 } 3019 case KVM_HAS_DEVICE_ATTR: { 3020 r = -EFAULT; 3021 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 3022 break; 3023 r = kvm_s390_vm_has_attr(kvm, &attr); 3024 break; 3025 } 3026 case KVM_S390_GET_SKEYS: { 3027 struct kvm_s390_skeys args; 3028 3029 r = -EFAULT; 3030 if (copy_from_user(&args, argp, 3031 sizeof(struct kvm_s390_skeys))) 3032 break; 3033 r = kvm_s390_get_skeys(kvm, &args); 3034 break; 3035 } 3036 case KVM_S390_SET_SKEYS: { 3037 struct kvm_s390_skeys args; 3038 3039 r = -EFAULT; 3040 if (copy_from_user(&args, argp, 3041 sizeof(struct kvm_s390_skeys))) 3042 break; 3043 r = kvm_s390_set_skeys(kvm, &args); 3044 break; 3045 } 3046 case KVM_S390_GET_CMMA_BITS: { 3047 struct kvm_s390_cmma_log args; 3048 3049 r = -EFAULT; 3050 if (copy_from_user(&args, argp, sizeof(args))) 3051 break; 3052 mutex_lock(&kvm->slots_lock); 3053 r = kvm_s390_get_cmma_bits(kvm, &args); 3054 mutex_unlock(&kvm->slots_lock); 3055 if (!r) { 3056 r = copy_to_user(argp, &args, sizeof(args)); 3057 if (r) 3058 r = -EFAULT; 3059 } 3060 break; 3061 } 3062 case KVM_S390_SET_CMMA_BITS: { 3063 struct kvm_s390_cmma_log args; 3064 3065 r = -EFAULT; 3066 if (copy_from_user(&args, argp, sizeof(args))) 3067 break; 3068 mutex_lock(&kvm->slots_lock); 3069 r = kvm_s390_set_cmma_bits(kvm, &args); 3070 mutex_unlock(&kvm->slots_lock); 3071 break; 3072 } 3073 case KVM_S390_PV_COMMAND: { 3074 struct kvm_pv_cmd args; 3075 3076 /* protvirt means user cpu state */ 3077 kvm_s390_set_user_cpu_state_ctrl(kvm); 3078 r = 0; 3079 if (!is_prot_virt_host()) { 3080 r = -EINVAL; 3081 break; 3082 } 3083 if (copy_from_user(&args, argp, sizeof(args))) { 3084 r = -EFAULT; 3085 break; 3086 } 3087 if (args.flags) { 3088 r = -EINVAL; 3089 break; 3090 } 3091 /* must be called without kvm->lock */ 3092 r = kvm_s390_handle_pv(kvm, &args); 3093 if (copy_to_user(argp, &args, sizeof(args))) { 3094 r = -EFAULT; 3095 break; 3096 } 3097 break; 3098 } 3099 case KVM_S390_MEM_OP: { 3100 struct kvm_s390_mem_op mem_op; 3101 3102 if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0) 3103 r = kvm_s390_vm_mem_op(kvm, &mem_op); 3104 else 3105 r = -EFAULT; 3106 break; 3107 } 3108 case KVM_S390_ZPCI_OP: { 3109 struct kvm_s390_zpci_op args; 3110 3111 r = -EINVAL; 3112 if (!IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) 3113 break; 3114 if (copy_from_user(&args, argp, sizeof(args))) { 3115 r = -EFAULT; 3116 break; 3117 } 3118 r = kvm_s390_pci_zpci_op(kvm, &args); 3119 break; 3120 } 3121 default: 3122 r = -ENOTTY; 3123 } 3124 3125 return r; 3126 } 3127 3128 static int kvm_s390_apxa_installed(void) 3129 { 3130 struct ap_config_info info; 3131 3132 if (ap_instructions_available()) { 3133 if (ap_qci(&info) == 0) 3134 return info.apxa; 3135 } 3136 3137 return 0; 3138 } 3139 3140 /* 3141 * The format of the crypto control block (CRYCB) is specified in the 3 low 3142 * order bits of the CRYCB designation (CRYCBD) field as follows: 3143 * Format 0: Neither the message security assist extension 3 (MSAX3) nor the 3144 * AP extended addressing (APXA) facility are installed. 3145 * Format 1: The APXA facility is not installed but the MSAX3 facility is. 3146 * Format 2: Both the APXA and MSAX3 facilities are installed 3147 */ 3148 static void kvm_s390_set_crycb_format(struct kvm *kvm) 3149 { 3150 kvm->arch.crypto.crycbd = virt_to_phys(kvm->arch.crypto.crycb); 3151 3152 /* Clear the CRYCB format bits - i.e., set format 0 by default */ 3153 kvm->arch.crypto.crycbd &= ~(CRYCB_FORMAT_MASK); 3154 3155 /* Check whether MSAX3 is installed */ 3156 if (!test_kvm_facility(kvm, 76)) 3157 return; 3158 3159 if (kvm_s390_apxa_installed()) 3160 kvm->arch.crypto.crycbd |= CRYCB_FORMAT2; 3161 else 3162 kvm->arch.crypto.crycbd |= CRYCB_FORMAT1; 3163 } 3164 3165 /* 3166 * kvm_arch_crypto_set_masks 3167 * 3168 * @kvm: pointer to the target guest's KVM struct containing the crypto masks 3169 * to be set. 3170 * @apm: the mask identifying the accessible AP adapters 3171 * @aqm: the mask identifying the accessible AP domains 3172 * @adm: the mask identifying the accessible AP control domains 3173 * 3174 * Set the masks that identify the adapters, domains and control domains to 3175 * which the KVM guest is granted access. 3176 * 3177 * Note: The kvm->lock mutex must be locked by the caller before invoking this 3178 * function. 3179 */ 3180 void kvm_arch_crypto_set_masks(struct kvm *kvm, unsigned long *apm, 3181 unsigned long *aqm, unsigned long *adm) 3182 { 3183 struct kvm_s390_crypto_cb *crycb = kvm->arch.crypto.crycb; 3184 3185 kvm_s390_vcpu_block_all(kvm); 3186 3187 switch (kvm->arch.crypto.crycbd & CRYCB_FORMAT_MASK) { 3188 case CRYCB_FORMAT2: /* APCB1 use 256 bits */ 3189 memcpy(crycb->apcb1.apm, apm, 32); 3190 VM_EVENT(kvm, 3, "SET CRYCB: apm %016lx %016lx %016lx %016lx", 3191 apm[0], apm[1], apm[2], apm[3]); 3192 memcpy(crycb->apcb1.aqm, aqm, 32); 3193 VM_EVENT(kvm, 3, "SET CRYCB: aqm %016lx %016lx %016lx %016lx", 3194 aqm[0], aqm[1], aqm[2], aqm[3]); 3195 memcpy(crycb->apcb1.adm, adm, 32); 3196 VM_EVENT(kvm, 3, "SET CRYCB: adm %016lx %016lx %016lx %016lx", 3197 adm[0], adm[1], adm[2], adm[3]); 3198 break; 3199 case CRYCB_FORMAT1: 3200 case CRYCB_FORMAT0: /* Fall through both use APCB0 */ 3201 memcpy(crycb->apcb0.apm, apm, 8); 3202 memcpy(crycb->apcb0.aqm, aqm, 2); 3203 memcpy(crycb->apcb0.adm, adm, 2); 3204 VM_EVENT(kvm, 3, "SET CRYCB: apm %016lx aqm %04x adm %04x", 3205 apm[0], *((unsigned short *)aqm), 3206 *((unsigned short *)adm)); 3207 break; 3208 default: /* Can not happen */ 3209 break; 3210 } 3211 3212 /* recreate the shadow crycb for each vcpu */ 3213 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_VSIE_RESTART); 3214 kvm_s390_vcpu_unblock_all(kvm); 3215 } 3216 EXPORT_SYMBOL_GPL(kvm_arch_crypto_set_masks); 3217 3218 /* 3219 * kvm_arch_crypto_clear_masks 3220 * 3221 * @kvm: pointer to the target guest's KVM struct containing the crypto masks 3222 * to be cleared. 3223 * 3224 * Clear the masks that identify the adapters, domains and control domains to 3225 * which the KVM guest is granted access. 3226 * 3227 * Note: The kvm->lock mutex must be locked by the caller before invoking this 3228 * function. 3229 */ 3230 void kvm_arch_crypto_clear_masks(struct kvm *kvm) 3231 { 3232 kvm_s390_vcpu_block_all(kvm); 3233 3234 memset(&kvm->arch.crypto.crycb->apcb0, 0, 3235 sizeof(kvm->arch.crypto.crycb->apcb0)); 3236 memset(&kvm->arch.crypto.crycb->apcb1, 0, 3237 sizeof(kvm->arch.crypto.crycb->apcb1)); 3238 3239 VM_EVENT(kvm, 3, "%s", "CLR CRYCB:"); 3240 /* recreate the shadow crycb for each vcpu */ 3241 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_VSIE_RESTART); 3242 kvm_s390_vcpu_unblock_all(kvm); 3243 } 3244 EXPORT_SYMBOL_GPL(kvm_arch_crypto_clear_masks); 3245 3246 static u64 kvm_s390_get_initial_cpuid(void) 3247 { 3248 struct cpuid cpuid; 3249 3250 get_cpu_id(&cpuid); 3251 cpuid.version = 0xff; 3252 return *((u64 *) &cpuid); 3253 } 3254 3255 static void kvm_s390_crypto_init(struct kvm *kvm) 3256 { 3257 kvm->arch.crypto.crycb = &kvm->arch.sie_page2->crycb; 3258 kvm_s390_set_crycb_format(kvm); 3259 init_rwsem(&kvm->arch.crypto.pqap_hook_rwsem); 3260 3261 if (!test_kvm_facility(kvm, 76)) 3262 return; 3263 3264 /* Enable AES/DEA protected key functions by default */ 3265 kvm->arch.crypto.aes_kw = 1; 3266 kvm->arch.crypto.dea_kw = 1; 3267 get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 3268 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask)); 3269 get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 3270 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask)); 3271 } 3272 3273 static void sca_dispose(struct kvm *kvm) 3274 { 3275 if (kvm->arch.use_esca) 3276 free_pages_exact(kvm->arch.sca, sizeof(struct esca_block)); 3277 else 3278 free_page((unsigned long)(kvm->arch.sca)); 3279 kvm->arch.sca = NULL; 3280 } 3281 3282 void kvm_arch_free_vm(struct kvm *kvm) 3283 { 3284 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) 3285 kvm_s390_pci_clear_list(kvm); 3286 3287 __kvm_arch_free_vm(kvm); 3288 } 3289 3290 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 3291 { 3292 gfp_t alloc_flags = GFP_KERNEL_ACCOUNT; 3293 int i, rc; 3294 char debug_name[16]; 3295 static unsigned long sca_offset; 3296 3297 rc = -EINVAL; 3298 #ifdef CONFIG_KVM_S390_UCONTROL 3299 if (type & ~KVM_VM_S390_UCONTROL) 3300 goto out_err; 3301 if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN))) 3302 goto out_err; 3303 #else 3304 if (type) 3305 goto out_err; 3306 #endif 3307 3308 rc = s390_enable_sie(); 3309 if (rc) 3310 goto out_err; 3311 3312 rc = -ENOMEM; 3313 3314 if (!sclp.has_64bscao) 3315 alloc_flags |= GFP_DMA; 3316 rwlock_init(&kvm->arch.sca_lock); 3317 /* start with basic SCA */ 3318 kvm->arch.sca = (struct bsca_block *) get_zeroed_page(alloc_flags); 3319 if (!kvm->arch.sca) 3320 goto out_err; 3321 mutex_lock(&kvm_lock); 3322 sca_offset += 16; 3323 if (sca_offset + sizeof(struct bsca_block) > PAGE_SIZE) 3324 sca_offset = 0; 3325 kvm->arch.sca = (struct bsca_block *) 3326 ((char *) kvm->arch.sca + sca_offset); 3327 mutex_unlock(&kvm_lock); 3328 3329 sprintf(debug_name, "kvm-%u", current->pid); 3330 3331 kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long)); 3332 if (!kvm->arch.dbf) 3333 goto out_err; 3334 3335 BUILD_BUG_ON(sizeof(struct sie_page2) != 4096); 3336 kvm->arch.sie_page2 = 3337 (struct sie_page2 *) get_zeroed_page(GFP_KERNEL_ACCOUNT | GFP_DMA); 3338 if (!kvm->arch.sie_page2) 3339 goto out_err; 3340 3341 kvm->arch.sie_page2->kvm = kvm; 3342 kvm->arch.model.fac_list = kvm->arch.sie_page2->fac_list; 3343 3344 for (i = 0; i < kvm_s390_fac_size(); i++) { 3345 kvm->arch.model.fac_mask[i] = stfle_fac_list[i] & 3346 (kvm_s390_fac_base[i] | 3347 kvm_s390_fac_ext[i]); 3348 kvm->arch.model.fac_list[i] = stfle_fac_list[i] & 3349 kvm_s390_fac_base[i]; 3350 } 3351 kvm->arch.model.subfuncs = kvm_s390_available_subfunc; 3352 3353 /* we are always in czam mode - even on pre z14 machines */ 3354 set_kvm_facility(kvm->arch.model.fac_mask, 138); 3355 set_kvm_facility(kvm->arch.model.fac_list, 138); 3356 /* we emulate STHYI in kvm */ 3357 set_kvm_facility(kvm->arch.model.fac_mask, 74); 3358 set_kvm_facility(kvm->arch.model.fac_list, 74); 3359 if (MACHINE_HAS_TLB_GUEST) { 3360 set_kvm_facility(kvm->arch.model.fac_mask, 147); 3361 set_kvm_facility(kvm->arch.model.fac_list, 147); 3362 } 3363 3364 if (css_general_characteristics.aiv && test_facility(65)) 3365 set_kvm_facility(kvm->arch.model.fac_mask, 65); 3366 3367 kvm->arch.model.cpuid = kvm_s390_get_initial_cpuid(); 3368 kvm->arch.model.ibc = sclp.ibc & 0x0fff; 3369 3370 kvm->arch.model.uv_feat_guest.feat = 0; 3371 3372 kvm_s390_crypto_init(kvm); 3373 3374 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) { 3375 mutex_lock(&kvm->lock); 3376 kvm_s390_pci_init_list(kvm); 3377 kvm_s390_vcpu_pci_enable_interp(kvm); 3378 mutex_unlock(&kvm->lock); 3379 } 3380 3381 mutex_init(&kvm->arch.float_int.ais_lock); 3382 spin_lock_init(&kvm->arch.float_int.lock); 3383 for (i = 0; i < FIRQ_LIST_COUNT; i++) 3384 INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]); 3385 init_waitqueue_head(&kvm->arch.ipte_wq); 3386 mutex_init(&kvm->arch.ipte_mutex); 3387 3388 debug_register_view(kvm->arch.dbf, &debug_sprintf_view); 3389 VM_EVENT(kvm, 3, "vm created with type %lu", type); 3390 3391 if (type & KVM_VM_S390_UCONTROL) { 3392 kvm->arch.gmap = NULL; 3393 kvm->arch.mem_limit = KVM_S390_NO_MEM_LIMIT; 3394 } else { 3395 if (sclp.hamax == U64_MAX) 3396 kvm->arch.mem_limit = TASK_SIZE_MAX; 3397 else 3398 kvm->arch.mem_limit = min_t(unsigned long, TASK_SIZE_MAX, 3399 sclp.hamax + 1); 3400 kvm->arch.gmap = gmap_create(current->mm, kvm->arch.mem_limit - 1); 3401 if (!kvm->arch.gmap) 3402 goto out_err; 3403 kvm->arch.gmap->private = kvm; 3404 kvm->arch.gmap->pfault_enabled = 0; 3405 } 3406 3407 kvm->arch.use_pfmfi = sclp.has_pfmfi; 3408 kvm->arch.use_skf = sclp.has_skey; 3409 spin_lock_init(&kvm->arch.start_stop_lock); 3410 kvm_s390_vsie_init(kvm); 3411 if (use_gisa) 3412 kvm_s390_gisa_init(kvm); 3413 INIT_LIST_HEAD(&kvm->arch.pv.need_cleanup); 3414 kvm->arch.pv.set_aside = NULL; 3415 KVM_EVENT(3, "vm 0x%pK created by pid %u", kvm, current->pid); 3416 3417 return 0; 3418 out_err: 3419 free_page((unsigned long)kvm->arch.sie_page2); 3420 debug_unregister(kvm->arch.dbf); 3421 sca_dispose(kvm); 3422 KVM_EVENT(3, "creation of vm failed: %d", rc); 3423 return rc; 3424 } 3425 3426 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 3427 { 3428 u16 rc, rrc; 3429 3430 VCPU_EVENT(vcpu, 3, "%s", "free cpu"); 3431 trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id); 3432 kvm_s390_clear_local_irqs(vcpu); 3433 kvm_clear_async_pf_completion_queue(vcpu); 3434 if (!kvm_is_ucontrol(vcpu->kvm)) 3435 sca_del_vcpu(vcpu); 3436 kvm_s390_update_topology_change_report(vcpu->kvm, 1); 3437 3438 if (kvm_is_ucontrol(vcpu->kvm)) 3439 gmap_remove(vcpu->arch.gmap); 3440 3441 if (vcpu->kvm->arch.use_cmma) 3442 kvm_s390_vcpu_unsetup_cmma(vcpu); 3443 /* We can not hold the vcpu mutex here, we are already dying */ 3444 if (kvm_s390_pv_cpu_get_handle(vcpu)) 3445 kvm_s390_pv_destroy_cpu(vcpu, &rc, &rrc); 3446 free_page((unsigned long)(vcpu->arch.sie_block)); 3447 } 3448 3449 void kvm_arch_destroy_vm(struct kvm *kvm) 3450 { 3451 u16 rc, rrc; 3452 3453 kvm_destroy_vcpus(kvm); 3454 sca_dispose(kvm); 3455 kvm_s390_gisa_destroy(kvm); 3456 /* 3457 * We are already at the end of life and kvm->lock is not taken. 3458 * This is ok as the file descriptor is closed by now and nobody 3459 * can mess with the pv state. 3460 */ 3461 kvm_s390_pv_deinit_cleanup_all(kvm, &rc, &rrc); 3462 /* 3463 * Remove the mmu notifier only when the whole KVM VM is torn down, 3464 * and only if one was registered to begin with. If the VM is 3465 * currently not protected, but has been previously been protected, 3466 * then it's possible that the notifier is still registered. 3467 */ 3468 if (kvm->arch.pv.mmu_notifier.ops) 3469 mmu_notifier_unregister(&kvm->arch.pv.mmu_notifier, kvm->mm); 3470 3471 debug_unregister(kvm->arch.dbf); 3472 free_page((unsigned long)kvm->arch.sie_page2); 3473 if (!kvm_is_ucontrol(kvm)) 3474 gmap_remove(kvm->arch.gmap); 3475 kvm_s390_destroy_adapters(kvm); 3476 kvm_s390_clear_float_irqs(kvm); 3477 kvm_s390_vsie_destroy(kvm); 3478 KVM_EVENT(3, "vm 0x%pK destroyed", kvm); 3479 } 3480 3481 /* Section: vcpu related */ 3482 static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu) 3483 { 3484 vcpu->arch.gmap = gmap_create(current->mm, -1UL); 3485 if (!vcpu->arch.gmap) 3486 return -ENOMEM; 3487 vcpu->arch.gmap->private = vcpu->kvm; 3488 3489 return 0; 3490 } 3491 3492 static void sca_del_vcpu(struct kvm_vcpu *vcpu) 3493 { 3494 if (!kvm_s390_use_sca_entries()) 3495 return; 3496 read_lock(&vcpu->kvm->arch.sca_lock); 3497 if (vcpu->kvm->arch.use_esca) { 3498 struct esca_block *sca = vcpu->kvm->arch.sca; 3499 3500 clear_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn); 3501 sca->cpu[vcpu->vcpu_id].sda = 0; 3502 } else { 3503 struct bsca_block *sca = vcpu->kvm->arch.sca; 3504 3505 clear_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn); 3506 sca->cpu[vcpu->vcpu_id].sda = 0; 3507 } 3508 read_unlock(&vcpu->kvm->arch.sca_lock); 3509 } 3510 3511 static void sca_add_vcpu(struct kvm_vcpu *vcpu) 3512 { 3513 if (!kvm_s390_use_sca_entries()) { 3514 phys_addr_t sca_phys = virt_to_phys(vcpu->kvm->arch.sca); 3515 3516 /* we still need the basic sca for the ipte control */ 3517 vcpu->arch.sie_block->scaoh = sca_phys >> 32; 3518 vcpu->arch.sie_block->scaol = sca_phys; 3519 return; 3520 } 3521 read_lock(&vcpu->kvm->arch.sca_lock); 3522 if (vcpu->kvm->arch.use_esca) { 3523 struct esca_block *sca = vcpu->kvm->arch.sca; 3524 phys_addr_t sca_phys = virt_to_phys(sca); 3525 3526 sca->cpu[vcpu->vcpu_id].sda = virt_to_phys(vcpu->arch.sie_block); 3527 vcpu->arch.sie_block->scaoh = sca_phys >> 32; 3528 vcpu->arch.sie_block->scaol = sca_phys & ESCA_SCAOL_MASK; 3529 vcpu->arch.sie_block->ecb2 |= ECB2_ESCA; 3530 set_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn); 3531 } else { 3532 struct bsca_block *sca = vcpu->kvm->arch.sca; 3533 phys_addr_t sca_phys = virt_to_phys(sca); 3534 3535 sca->cpu[vcpu->vcpu_id].sda = virt_to_phys(vcpu->arch.sie_block); 3536 vcpu->arch.sie_block->scaoh = sca_phys >> 32; 3537 vcpu->arch.sie_block->scaol = sca_phys; 3538 set_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn); 3539 } 3540 read_unlock(&vcpu->kvm->arch.sca_lock); 3541 } 3542 3543 /* Basic SCA to Extended SCA data copy routines */ 3544 static inline void sca_copy_entry(struct esca_entry *d, struct bsca_entry *s) 3545 { 3546 d->sda = s->sda; 3547 d->sigp_ctrl.c = s->sigp_ctrl.c; 3548 d->sigp_ctrl.scn = s->sigp_ctrl.scn; 3549 } 3550 3551 static void sca_copy_b_to_e(struct esca_block *d, struct bsca_block *s) 3552 { 3553 int i; 3554 3555 d->ipte_control = s->ipte_control; 3556 d->mcn[0] = s->mcn; 3557 for (i = 0; i < KVM_S390_BSCA_CPU_SLOTS; i++) 3558 sca_copy_entry(&d->cpu[i], &s->cpu[i]); 3559 } 3560 3561 static int sca_switch_to_extended(struct kvm *kvm) 3562 { 3563 struct bsca_block *old_sca = kvm->arch.sca; 3564 struct esca_block *new_sca; 3565 struct kvm_vcpu *vcpu; 3566 unsigned long vcpu_idx; 3567 u32 scaol, scaoh; 3568 phys_addr_t new_sca_phys; 3569 3570 if (kvm->arch.use_esca) 3571 return 0; 3572 3573 new_sca = alloc_pages_exact(sizeof(*new_sca), GFP_KERNEL_ACCOUNT | __GFP_ZERO); 3574 if (!new_sca) 3575 return -ENOMEM; 3576 3577 new_sca_phys = virt_to_phys(new_sca); 3578 scaoh = new_sca_phys >> 32; 3579 scaol = new_sca_phys & ESCA_SCAOL_MASK; 3580 3581 kvm_s390_vcpu_block_all(kvm); 3582 write_lock(&kvm->arch.sca_lock); 3583 3584 sca_copy_b_to_e(new_sca, old_sca); 3585 3586 kvm_for_each_vcpu(vcpu_idx, vcpu, kvm) { 3587 vcpu->arch.sie_block->scaoh = scaoh; 3588 vcpu->arch.sie_block->scaol = scaol; 3589 vcpu->arch.sie_block->ecb2 |= ECB2_ESCA; 3590 } 3591 kvm->arch.sca = new_sca; 3592 kvm->arch.use_esca = 1; 3593 3594 write_unlock(&kvm->arch.sca_lock); 3595 kvm_s390_vcpu_unblock_all(kvm); 3596 3597 free_page((unsigned long)old_sca); 3598 3599 VM_EVENT(kvm, 2, "Switched to ESCA (0x%pK -> 0x%pK)", 3600 old_sca, kvm->arch.sca); 3601 return 0; 3602 } 3603 3604 static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id) 3605 { 3606 int rc; 3607 3608 if (!kvm_s390_use_sca_entries()) { 3609 if (id < KVM_MAX_VCPUS) 3610 return true; 3611 return false; 3612 } 3613 if (id < KVM_S390_BSCA_CPU_SLOTS) 3614 return true; 3615 if (!sclp.has_esca || !sclp.has_64bscao) 3616 return false; 3617 3618 rc = kvm->arch.use_esca ? 0 : sca_switch_to_extended(kvm); 3619 3620 return rc == 0 && id < KVM_S390_ESCA_CPU_SLOTS; 3621 } 3622 3623 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ 3624 static void __start_cpu_timer_accounting(struct kvm_vcpu *vcpu) 3625 { 3626 WARN_ON_ONCE(vcpu->arch.cputm_start != 0); 3627 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount); 3628 vcpu->arch.cputm_start = get_tod_clock_fast(); 3629 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount); 3630 } 3631 3632 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ 3633 static void __stop_cpu_timer_accounting(struct kvm_vcpu *vcpu) 3634 { 3635 WARN_ON_ONCE(vcpu->arch.cputm_start == 0); 3636 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount); 3637 vcpu->arch.sie_block->cputm -= get_tod_clock_fast() - vcpu->arch.cputm_start; 3638 vcpu->arch.cputm_start = 0; 3639 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount); 3640 } 3641 3642 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ 3643 static void __enable_cpu_timer_accounting(struct kvm_vcpu *vcpu) 3644 { 3645 WARN_ON_ONCE(vcpu->arch.cputm_enabled); 3646 vcpu->arch.cputm_enabled = true; 3647 __start_cpu_timer_accounting(vcpu); 3648 } 3649 3650 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ 3651 static void __disable_cpu_timer_accounting(struct kvm_vcpu *vcpu) 3652 { 3653 WARN_ON_ONCE(!vcpu->arch.cputm_enabled); 3654 __stop_cpu_timer_accounting(vcpu); 3655 vcpu->arch.cputm_enabled = false; 3656 } 3657 3658 static void enable_cpu_timer_accounting(struct kvm_vcpu *vcpu) 3659 { 3660 preempt_disable(); /* protect from TOD sync and vcpu_load/put */ 3661 __enable_cpu_timer_accounting(vcpu); 3662 preempt_enable(); 3663 } 3664 3665 static void disable_cpu_timer_accounting(struct kvm_vcpu *vcpu) 3666 { 3667 preempt_disable(); /* protect from TOD sync and vcpu_load/put */ 3668 __disable_cpu_timer_accounting(vcpu); 3669 preempt_enable(); 3670 } 3671 3672 /* set the cpu timer - may only be called from the VCPU thread itself */ 3673 void kvm_s390_set_cpu_timer(struct kvm_vcpu *vcpu, __u64 cputm) 3674 { 3675 preempt_disable(); /* protect from TOD sync and vcpu_load/put */ 3676 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount); 3677 if (vcpu->arch.cputm_enabled) 3678 vcpu->arch.cputm_start = get_tod_clock_fast(); 3679 vcpu->arch.sie_block->cputm = cputm; 3680 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount); 3681 preempt_enable(); 3682 } 3683 3684 /* update and get the cpu timer - can also be called from other VCPU threads */ 3685 __u64 kvm_s390_get_cpu_timer(struct kvm_vcpu *vcpu) 3686 { 3687 unsigned int seq; 3688 __u64 value; 3689 3690 if (unlikely(!vcpu->arch.cputm_enabled)) 3691 return vcpu->arch.sie_block->cputm; 3692 3693 preempt_disable(); /* protect from TOD sync and vcpu_load/put */ 3694 do { 3695 seq = raw_read_seqcount(&vcpu->arch.cputm_seqcount); 3696 /* 3697 * If the writer would ever execute a read in the critical 3698 * section, e.g. in irq context, we have a deadlock. 3699 */ 3700 WARN_ON_ONCE((seq & 1) && smp_processor_id() == vcpu->cpu); 3701 value = vcpu->arch.sie_block->cputm; 3702 /* if cputm_start is 0, accounting is being started/stopped */ 3703 if (likely(vcpu->arch.cputm_start)) 3704 value -= get_tod_clock_fast() - vcpu->arch.cputm_start; 3705 } while (read_seqcount_retry(&vcpu->arch.cputm_seqcount, seq & ~1)); 3706 preempt_enable(); 3707 return value; 3708 } 3709 3710 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 3711 { 3712 3713 gmap_enable(vcpu->arch.enabled_gmap); 3714 kvm_s390_set_cpuflags(vcpu, CPUSTAT_RUNNING); 3715 if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu)) 3716 __start_cpu_timer_accounting(vcpu); 3717 vcpu->cpu = cpu; 3718 } 3719 3720 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 3721 { 3722 vcpu->cpu = -1; 3723 if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu)) 3724 __stop_cpu_timer_accounting(vcpu); 3725 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_RUNNING); 3726 vcpu->arch.enabled_gmap = gmap_get_enabled(); 3727 gmap_disable(vcpu->arch.enabled_gmap); 3728 3729 } 3730 3731 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 3732 { 3733 mutex_lock(&vcpu->kvm->lock); 3734 preempt_disable(); 3735 vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch; 3736 vcpu->arch.sie_block->epdx = vcpu->kvm->arch.epdx; 3737 preempt_enable(); 3738 mutex_unlock(&vcpu->kvm->lock); 3739 if (!kvm_is_ucontrol(vcpu->kvm)) { 3740 vcpu->arch.gmap = vcpu->kvm->arch.gmap; 3741 sca_add_vcpu(vcpu); 3742 } 3743 if (test_kvm_facility(vcpu->kvm, 74) || vcpu->kvm->arch.user_instr0) 3744 vcpu->arch.sie_block->ictl |= ICTL_OPEREXC; 3745 /* make vcpu_load load the right gmap on the first trigger */ 3746 vcpu->arch.enabled_gmap = vcpu->arch.gmap; 3747 } 3748 3749 static bool kvm_has_pckmo_subfunc(struct kvm *kvm, unsigned long nr) 3750 { 3751 if (test_bit_inv(nr, (unsigned long *)&kvm->arch.model.subfuncs.pckmo) && 3752 test_bit_inv(nr, (unsigned long *)&kvm_s390_available_subfunc.pckmo)) 3753 return true; 3754 return false; 3755 } 3756 3757 static bool kvm_has_pckmo_ecc(struct kvm *kvm) 3758 { 3759 /* At least one ECC subfunction must be present */ 3760 return kvm_has_pckmo_subfunc(kvm, 32) || 3761 kvm_has_pckmo_subfunc(kvm, 33) || 3762 kvm_has_pckmo_subfunc(kvm, 34) || 3763 kvm_has_pckmo_subfunc(kvm, 40) || 3764 kvm_has_pckmo_subfunc(kvm, 41); 3765 3766 } 3767 3768 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu) 3769 { 3770 /* 3771 * If the AP instructions are not being interpreted and the MSAX3 3772 * facility is not configured for the guest, there is nothing to set up. 3773 */ 3774 if (!vcpu->kvm->arch.crypto.apie && !test_kvm_facility(vcpu->kvm, 76)) 3775 return; 3776 3777 vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd; 3778 vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA); 3779 vcpu->arch.sie_block->eca &= ~ECA_APIE; 3780 vcpu->arch.sie_block->ecd &= ~ECD_ECC; 3781 3782 if (vcpu->kvm->arch.crypto.apie) 3783 vcpu->arch.sie_block->eca |= ECA_APIE; 3784 3785 /* Set up protected key support */ 3786 if (vcpu->kvm->arch.crypto.aes_kw) { 3787 vcpu->arch.sie_block->ecb3 |= ECB3_AES; 3788 /* ecc is also wrapped with AES key */ 3789 if (kvm_has_pckmo_ecc(vcpu->kvm)) 3790 vcpu->arch.sie_block->ecd |= ECD_ECC; 3791 } 3792 3793 if (vcpu->kvm->arch.crypto.dea_kw) 3794 vcpu->arch.sie_block->ecb3 |= ECB3_DEA; 3795 } 3796 3797 void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu) 3798 { 3799 free_page((unsigned long)phys_to_virt(vcpu->arch.sie_block->cbrlo)); 3800 vcpu->arch.sie_block->cbrlo = 0; 3801 } 3802 3803 int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu) 3804 { 3805 void *cbrlo_page = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3806 3807 if (!cbrlo_page) 3808 return -ENOMEM; 3809 3810 vcpu->arch.sie_block->cbrlo = virt_to_phys(cbrlo_page); 3811 return 0; 3812 } 3813 3814 static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu) 3815 { 3816 struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model; 3817 3818 vcpu->arch.sie_block->ibc = model->ibc; 3819 if (test_kvm_facility(vcpu->kvm, 7)) 3820 vcpu->arch.sie_block->fac = virt_to_phys(model->fac_list); 3821 } 3822 3823 static int kvm_s390_vcpu_setup(struct kvm_vcpu *vcpu) 3824 { 3825 int rc = 0; 3826 u16 uvrc, uvrrc; 3827 3828 atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH | 3829 CPUSTAT_SM | 3830 CPUSTAT_STOPPED); 3831 3832 if (test_kvm_facility(vcpu->kvm, 78)) 3833 kvm_s390_set_cpuflags(vcpu, CPUSTAT_GED2); 3834 else if (test_kvm_facility(vcpu->kvm, 8)) 3835 kvm_s390_set_cpuflags(vcpu, CPUSTAT_GED); 3836 3837 kvm_s390_vcpu_setup_model(vcpu); 3838 3839 /* pgste_set_pte has special handling for !MACHINE_HAS_ESOP */ 3840 if (MACHINE_HAS_ESOP) 3841 vcpu->arch.sie_block->ecb |= ECB_HOSTPROTINT; 3842 if (test_kvm_facility(vcpu->kvm, 9)) 3843 vcpu->arch.sie_block->ecb |= ECB_SRSI; 3844 if (test_kvm_facility(vcpu->kvm, 11)) 3845 vcpu->arch.sie_block->ecb |= ECB_PTF; 3846 if (test_kvm_facility(vcpu->kvm, 73)) 3847 vcpu->arch.sie_block->ecb |= ECB_TE; 3848 if (!kvm_is_ucontrol(vcpu->kvm)) 3849 vcpu->arch.sie_block->ecb |= ECB_SPECI; 3850 3851 if (test_kvm_facility(vcpu->kvm, 8) && vcpu->kvm->arch.use_pfmfi) 3852 vcpu->arch.sie_block->ecb2 |= ECB2_PFMFI; 3853 if (test_kvm_facility(vcpu->kvm, 130)) 3854 vcpu->arch.sie_block->ecb2 |= ECB2_IEP; 3855 vcpu->arch.sie_block->eca = ECA_MVPGI | ECA_PROTEXCI; 3856 if (sclp.has_cei) 3857 vcpu->arch.sie_block->eca |= ECA_CEI; 3858 if (sclp.has_ib) 3859 vcpu->arch.sie_block->eca |= ECA_IB; 3860 if (sclp.has_siif) 3861 vcpu->arch.sie_block->eca |= ECA_SII; 3862 if (sclp.has_sigpif) 3863 vcpu->arch.sie_block->eca |= ECA_SIGPI; 3864 if (test_kvm_facility(vcpu->kvm, 129)) { 3865 vcpu->arch.sie_block->eca |= ECA_VX; 3866 vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT; 3867 } 3868 if (test_kvm_facility(vcpu->kvm, 139)) 3869 vcpu->arch.sie_block->ecd |= ECD_MEF; 3870 if (test_kvm_facility(vcpu->kvm, 156)) 3871 vcpu->arch.sie_block->ecd |= ECD_ETOKENF; 3872 if (vcpu->arch.sie_block->gd) { 3873 vcpu->arch.sie_block->eca |= ECA_AIV; 3874 VCPU_EVENT(vcpu, 3, "AIV gisa format-%u enabled for cpu %03u", 3875 vcpu->arch.sie_block->gd & 0x3, vcpu->vcpu_id); 3876 } 3877 vcpu->arch.sie_block->sdnxo = virt_to_phys(&vcpu->run->s.regs.sdnx) | SDNXC; 3878 vcpu->arch.sie_block->riccbd = virt_to_phys(&vcpu->run->s.regs.riccb); 3879 3880 if (sclp.has_kss) 3881 kvm_s390_set_cpuflags(vcpu, CPUSTAT_KSS); 3882 else 3883 vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE; 3884 3885 if (vcpu->kvm->arch.use_cmma) { 3886 rc = kvm_s390_vcpu_setup_cmma(vcpu); 3887 if (rc) 3888 return rc; 3889 } 3890 hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3891 vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup; 3892 3893 vcpu->arch.sie_block->hpid = HPID_KVM; 3894 3895 kvm_s390_vcpu_crypto_setup(vcpu); 3896 3897 kvm_s390_vcpu_pci_setup(vcpu); 3898 3899 mutex_lock(&vcpu->kvm->lock); 3900 if (kvm_s390_pv_is_protected(vcpu->kvm)) { 3901 rc = kvm_s390_pv_create_cpu(vcpu, &uvrc, &uvrrc); 3902 if (rc) 3903 kvm_s390_vcpu_unsetup_cmma(vcpu); 3904 } 3905 mutex_unlock(&vcpu->kvm->lock); 3906 3907 return rc; 3908 } 3909 3910 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 3911 { 3912 if (!kvm_is_ucontrol(kvm) && !sca_can_add_vcpu(kvm, id)) 3913 return -EINVAL; 3914 return 0; 3915 } 3916 3917 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 3918 { 3919 struct sie_page *sie_page; 3920 int rc; 3921 3922 BUILD_BUG_ON(sizeof(struct sie_page) != 4096); 3923 sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL_ACCOUNT); 3924 if (!sie_page) 3925 return -ENOMEM; 3926 3927 vcpu->arch.sie_block = &sie_page->sie_block; 3928 vcpu->arch.sie_block->itdba = virt_to_phys(&sie_page->itdb); 3929 3930 /* the real guest size will always be smaller than msl */ 3931 vcpu->arch.sie_block->mso = 0; 3932 vcpu->arch.sie_block->msl = sclp.hamax; 3933 3934 vcpu->arch.sie_block->icpua = vcpu->vcpu_id; 3935 spin_lock_init(&vcpu->arch.local_int.lock); 3936 vcpu->arch.sie_block->gd = kvm_s390_get_gisa_desc(vcpu->kvm); 3937 seqcount_init(&vcpu->arch.cputm_seqcount); 3938 3939 vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID; 3940 kvm_clear_async_pf_completion_queue(vcpu); 3941 vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX | 3942 KVM_SYNC_GPRS | 3943 KVM_SYNC_ACRS | 3944 KVM_SYNC_CRS | 3945 KVM_SYNC_ARCH0 | 3946 KVM_SYNC_PFAULT | 3947 KVM_SYNC_DIAG318; 3948 vcpu->arch.acrs_loaded = false; 3949 kvm_s390_set_prefix(vcpu, 0); 3950 if (test_kvm_facility(vcpu->kvm, 64)) 3951 vcpu->run->kvm_valid_regs |= KVM_SYNC_RICCB; 3952 if (test_kvm_facility(vcpu->kvm, 82)) 3953 vcpu->run->kvm_valid_regs |= KVM_SYNC_BPBC; 3954 if (test_kvm_facility(vcpu->kvm, 133)) 3955 vcpu->run->kvm_valid_regs |= KVM_SYNC_GSCB; 3956 if (test_kvm_facility(vcpu->kvm, 156)) 3957 vcpu->run->kvm_valid_regs |= KVM_SYNC_ETOKEN; 3958 /* fprs can be synchronized via vrs, even if the guest has no vx. With 3959 * cpu_has_vx(), (load|store)_fpu_regs() will work with vrs format. 3960 */ 3961 if (cpu_has_vx()) 3962 vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS; 3963 else 3964 vcpu->run->kvm_valid_regs |= KVM_SYNC_FPRS; 3965 3966 if (kvm_is_ucontrol(vcpu->kvm)) { 3967 rc = __kvm_ucontrol_vcpu_init(vcpu); 3968 if (rc) 3969 goto out_free_sie_block; 3970 } 3971 3972 VM_EVENT(vcpu->kvm, 3, "create cpu %d at 0x%pK, sie block at 0x%pK", 3973 vcpu->vcpu_id, vcpu, vcpu->arch.sie_block); 3974 trace_kvm_s390_create_vcpu(vcpu->vcpu_id, vcpu, vcpu->arch.sie_block); 3975 3976 rc = kvm_s390_vcpu_setup(vcpu); 3977 if (rc) 3978 goto out_ucontrol_uninit; 3979 3980 kvm_s390_update_topology_change_report(vcpu->kvm, 1); 3981 return 0; 3982 3983 out_ucontrol_uninit: 3984 if (kvm_is_ucontrol(vcpu->kvm)) 3985 gmap_remove(vcpu->arch.gmap); 3986 out_free_sie_block: 3987 free_page((unsigned long)(vcpu->arch.sie_block)); 3988 return rc; 3989 } 3990 3991 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 3992 { 3993 clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.gisa_int.kicked_mask); 3994 return kvm_s390_vcpu_has_irq(vcpu, 0); 3995 } 3996 3997 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 3998 { 3999 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE); 4000 } 4001 4002 void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu) 4003 { 4004 atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20); 4005 exit_sie(vcpu); 4006 } 4007 4008 void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu) 4009 { 4010 atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20); 4011 } 4012 4013 static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu) 4014 { 4015 atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20); 4016 exit_sie(vcpu); 4017 } 4018 4019 bool kvm_s390_vcpu_sie_inhibited(struct kvm_vcpu *vcpu) 4020 { 4021 return atomic_read(&vcpu->arch.sie_block->prog20) & 4022 (PROG_BLOCK_SIE | PROG_REQUEST); 4023 } 4024 4025 static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu) 4026 { 4027 atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20); 4028 } 4029 4030 /* 4031 * Kick a guest cpu out of (v)SIE and wait until (v)SIE is not running. 4032 * If the CPU is not running (e.g. waiting as idle) the function will 4033 * return immediately. */ 4034 void exit_sie(struct kvm_vcpu *vcpu) 4035 { 4036 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT); 4037 kvm_s390_vsie_kick(vcpu); 4038 while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE) 4039 cpu_relax(); 4040 } 4041 4042 /* Kick a guest cpu out of SIE to process a request synchronously */ 4043 void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu) 4044 { 4045 __kvm_make_request(req, vcpu); 4046 kvm_s390_vcpu_request(vcpu); 4047 } 4048 4049 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start, 4050 unsigned long end) 4051 { 4052 struct kvm *kvm = gmap->private; 4053 struct kvm_vcpu *vcpu; 4054 unsigned long prefix; 4055 unsigned long i; 4056 4057 trace_kvm_s390_gmap_notifier(start, end, gmap_is_shadow(gmap)); 4058 4059 if (gmap_is_shadow(gmap)) 4060 return; 4061 if (start >= 1UL << 31) 4062 /* We are only interested in prefix pages */ 4063 return; 4064 kvm_for_each_vcpu(i, vcpu, kvm) { 4065 /* match against both prefix pages */ 4066 prefix = kvm_s390_get_prefix(vcpu); 4067 if (prefix <= end && start <= prefix + 2*PAGE_SIZE - 1) { 4068 VCPU_EVENT(vcpu, 2, "gmap notifier for %lx-%lx", 4069 start, end); 4070 kvm_s390_sync_request(KVM_REQ_REFRESH_GUEST_PREFIX, vcpu); 4071 } 4072 } 4073 } 4074 4075 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 4076 { 4077 /* do not poll with more than halt_poll_max_steal percent of steal time */ 4078 if (get_lowcore()->avg_steal_timer * 100 / (TICK_USEC << 12) >= 4079 READ_ONCE(halt_poll_max_steal)) { 4080 vcpu->stat.halt_no_poll_steal++; 4081 return true; 4082 } 4083 return false; 4084 } 4085 4086 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 4087 { 4088 /* kvm common code refers to this, but never calls it */ 4089 BUG(); 4090 return 0; 4091 } 4092 4093 static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, 4094 struct kvm_one_reg *reg) 4095 { 4096 int r = -EINVAL; 4097 4098 switch (reg->id) { 4099 case KVM_REG_S390_TODPR: 4100 r = put_user(vcpu->arch.sie_block->todpr, 4101 (u32 __user *)reg->addr); 4102 break; 4103 case KVM_REG_S390_EPOCHDIFF: 4104 r = put_user(vcpu->arch.sie_block->epoch, 4105 (u64 __user *)reg->addr); 4106 break; 4107 case KVM_REG_S390_CPU_TIMER: 4108 r = put_user(kvm_s390_get_cpu_timer(vcpu), 4109 (u64 __user *)reg->addr); 4110 break; 4111 case KVM_REG_S390_CLOCK_COMP: 4112 r = put_user(vcpu->arch.sie_block->ckc, 4113 (u64 __user *)reg->addr); 4114 break; 4115 case KVM_REG_S390_PFTOKEN: 4116 r = put_user(vcpu->arch.pfault_token, 4117 (u64 __user *)reg->addr); 4118 break; 4119 case KVM_REG_S390_PFCOMPARE: 4120 r = put_user(vcpu->arch.pfault_compare, 4121 (u64 __user *)reg->addr); 4122 break; 4123 case KVM_REG_S390_PFSELECT: 4124 r = put_user(vcpu->arch.pfault_select, 4125 (u64 __user *)reg->addr); 4126 break; 4127 case KVM_REG_S390_PP: 4128 r = put_user(vcpu->arch.sie_block->pp, 4129 (u64 __user *)reg->addr); 4130 break; 4131 case KVM_REG_S390_GBEA: 4132 r = put_user(vcpu->arch.sie_block->gbea, 4133 (u64 __user *)reg->addr); 4134 break; 4135 default: 4136 break; 4137 } 4138 4139 return r; 4140 } 4141 4142 static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, 4143 struct kvm_one_reg *reg) 4144 { 4145 int r = -EINVAL; 4146 __u64 val; 4147 4148 switch (reg->id) { 4149 case KVM_REG_S390_TODPR: 4150 r = get_user(vcpu->arch.sie_block->todpr, 4151 (u32 __user *)reg->addr); 4152 break; 4153 case KVM_REG_S390_EPOCHDIFF: 4154 r = get_user(vcpu->arch.sie_block->epoch, 4155 (u64 __user *)reg->addr); 4156 break; 4157 case KVM_REG_S390_CPU_TIMER: 4158 r = get_user(val, (u64 __user *)reg->addr); 4159 if (!r) 4160 kvm_s390_set_cpu_timer(vcpu, val); 4161 break; 4162 case KVM_REG_S390_CLOCK_COMP: 4163 r = get_user(vcpu->arch.sie_block->ckc, 4164 (u64 __user *)reg->addr); 4165 break; 4166 case KVM_REG_S390_PFTOKEN: 4167 r = get_user(vcpu->arch.pfault_token, 4168 (u64 __user *)reg->addr); 4169 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID) 4170 kvm_clear_async_pf_completion_queue(vcpu); 4171 break; 4172 case KVM_REG_S390_PFCOMPARE: 4173 r = get_user(vcpu->arch.pfault_compare, 4174 (u64 __user *)reg->addr); 4175 break; 4176 case KVM_REG_S390_PFSELECT: 4177 r = get_user(vcpu->arch.pfault_select, 4178 (u64 __user *)reg->addr); 4179 break; 4180 case KVM_REG_S390_PP: 4181 r = get_user(vcpu->arch.sie_block->pp, 4182 (u64 __user *)reg->addr); 4183 break; 4184 case KVM_REG_S390_GBEA: 4185 r = get_user(vcpu->arch.sie_block->gbea, 4186 (u64 __user *)reg->addr); 4187 break; 4188 default: 4189 break; 4190 } 4191 4192 return r; 4193 } 4194 4195 static void kvm_arch_vcpu_ioctl_normal_reset(struct kvm_vcpu *vcpu) 4196 { 4197 vcpu->arch.sie_block->gpsw.mask &= ~PSW_MASK_RI; 4198 vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID; 4199 memset(vcpu->run->s.regs.riccb, 0, sizeof(vcpu->run->s.regs.riccb)); 4200 4201 kvm_clear_async_pf_completion_queue(vcpu); 4202 if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) 4203 kvm_s390_vcpu_stop(vcpu); 4204 kvm_s390_clear_local_irqs(vcpu); 4205 } 4206 4207 static void kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu) 4208 { 4209 /* Initial reset is a superset of the normal reset */ 4210 kvm_arch_vcpu_ioctl_normal_reset(vcpu); 4211 4212 /* 4213 * This equals initial cpu reset in pop, but we don't switch to ESA. 4214 * We do not only reset the internal data, but also ... 4215 */ 4216 vcpu->arch.sie_block->gpsw.mask = 0; 4217 vcpu->arch.sie_block->gpsw.addr = 0; 4218 kvm_s390_set_prefix(vcpu, 0); 4219 kvm_s390_set_cpu_timer(vcpu, 0); 4220 vcpu->arch.sie_block->ckc = 0; 4221 memset(vcpu->arch.sie_block->gcr, 0, sizeof(vcpu->arch.sie_block->gcr)); 4222 vcpu->arch.sie_block->gcr[0] = CR0_INITIAL_MASK; 4223 vcpu->arch.sie_block->gcr[14] = CR14_INITIAL_MASK; 4224 4225 /* ... the data in sync regs */ 4226 memset(vcpu->run->s.regs.crs, 0, sizeof(vcpu->run->s.regs.crs)); 4227 vcpu->run->s.regs.ckc = 0; 4228 vcpu->run->s.regs.crs[0] = CR0_INITIAL_MASK; 4229 vcpu->run->s.regs.crs[14] = CR14_INITIAL_MASK; 4230 vcpu->run->psw_addr = 0; 4231 vcpu->run->psw_mask = 0; 4232 vcpu->run->s.regs.todpr = 0; 4233 vcpu->run->s.regs.cputm = 0; 4234 vcpu->run->s.regs.ckc = 0; 4235 vcpu->run->s.regs.pp = 0; 4236 vcpu->run->s.regs.gbea = 1; 4237 vcpu->run->s.regs.fpc = 0; 4238 /* 4239 * Do not reset these registers in the protected case, as some of 4240 * them are overlaid and they are not accessible in this case 4241 * anyway. 4242 */ 4243 if (!kvm_s390_pv_cpu_is_protected(vcpu)) { 4244 vcpu->arch.sie_block->gbea = 1; 4245 vcpu->arch.sie_block->pp = 0; 4246 vcpu->arch.sie_block->fpf &= ~FPF_BPBC; 4247 vcpu->arch.sie_block->todpr = 0; 4248 } 4249 } 4250 4251 static void kvm_arch_vcpu_ioctl_clear_reset(struct kvm_vcpu *vcpu) 4252 { 4253 struct kvm_sync_regs *regs = &vcpu->run->s.regs; 4254 4255 /* Clear reset is a superset of the initial reset */ 4256 kvm_arch_vcpu_ioctl_initial_reset(vcpu); 4257 4258 memset(®s->gprs, 0, sizeof(regs->gprs)); 4259 memset(®s->vrs, 0, sizeof(regs->vrs)); 4260 memset(®s->acrs, 0, sizeof(regs->acrs)); 4261 memset(®s->gscb, 0, sizeof(regs->gscb)); 4262 4263 regs->etoken = 0; 4264 regs->etoken_extension = 0; 4265 } 4266 4267 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 4268 { 4269 vcpu_load(vcpu); 4270 memcpy(&vcpu->run->s.regs.gprs, ®s->gprs, sizeof(regs->gprs)); 4271 vcpu_put(vcpu); 4272 return 0; 4273 } 4274 4275 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 4276 { 4277 vcpu_load(vcpu); 4278 memcpy(®s->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs)); 4279 vcpu_put(vcpu); 4280 return 0; 4281 } 4282 4283 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 4284 struct kvm_sregs *sregs) 4285 { 4286 vcpu_load(vcpu); 4287 4288 memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs)); 4289 memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs)); 4290 4291 vcpu_put(vcpu); 4292 return 0; 4293 } 4294 4295 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 4296 struct kvm_sregs *sregs) 4297 { 4298 vcpu_load(vcpu); 4299 4300 memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs)); 4301 memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs)); 4302 4303 vcpu_put(vcpu); 4304 return 0; 4305 } 4306 4307 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 4308 { 4309 int ret = 0; 4310 4311 vcpu_load(vcpu); 4312 4313 vcpu->run->s.regs.fpc = fpu->fpc; 4314 if (cpu_has_vx()) 4315 convert_fp_to_vx((__vector128 *) vcpu->run->s.regs.vrs, 4316 (freg_t *) fpu->fprs); 4317 else 4318 memcpy(vcpu->run->s.regs.fprs, &fpu->fprs, sizeof(fpu->fprs)); 4319 4320 vcpu_put(vcpu); 4321 return ret; 4322 } 4323 4324 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 4325 { 4326 vcpu_load(vcpu); 4327 4328 if (cpu_has_vx()) 4329 convert_vx_to_fp((freg_t *) fpu->fprs, 4330 (__vector128 *) vcpu->run->s.regs.vrs); 4331 else 4332 memcpy(fpu->fprs, vcpu->run->s.regs.fprs, sizeof(fpu->fprs)); 4333 fpu->fpc = vcpu->run->s.regs.fpc; 4334 4335 vcpu_put(vcpu); 4336 return 0; 4337 } 4338 4339 static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw) 4340 { 4341 int rc = 0; 4342 4343 if (!is_vcpu_stopped(vcpu)) 4344 rc = -EBUSY; 4345 else { 4346 vcpu->run->psw_mask = psw.mask; 4347 vcpu->run->psw_addr = psw.addr; 4348 } 4349 return rc; 4350 } 4351 4352 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 4353 struct kvm_translation *tr) 4354 { 4355 return -EINVAL; /* not implemented yet */ 4356 } 4357 4358 #define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \ 4359 KVM_GUESTDBG_USE_HW_BP | \ 4360 KVM_GUESTDBG_ENABLE) 4361 4362 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 4363 struct kvm_guest_debug *dbg) 4364 { 4365 int rc = 0; 4366 4367 vcpu_load(vcpu); 4368 4369 vcpu->guest_debug = 0; 4370 kvm_s390_clear_bp_data(vcpu); 4371 4372 if (dbg->control & ~VALID_GUESTDBG_FLAGS) { 4373 rc = -EINVAL; 4374 goto out; 4375 } 4376 if (!sclp.has_gpere) { 4377 rc = -EINVAL; 4378 goto out; 4379 } 4380 4381 if (dbg->control & KVM_GUESTDBG_ENABLE) { 4382 vcpu->guest_debug = dbg->control; 4383 /* enforce guest PER */ 4384 kvm_s390_set_cpuflags(vcpu, CPUSTAT_P); 4385 4386 if (dbg->control & KVM_GUESTDBG_USE_HW_BP) 4387 rc = kvm_s390_import_bp_data(vcpu, dbg); 4388 } else { 4389 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_P); 4390 vcpu->arch.guestdbg.last_bp = 0; 4391 } 4392 4393 if (rc) { 4394 vcpu->guest_debug = 0; 4395 kvm_s390_clear_bp_data(vcpu); 4396 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_P); 4397 } 4398 4399 out: 4400 vcpu_put(vcpu); 4401 return rc; 4402 } 4403 4404 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 4405 struct kvm_mp_state *mp_state) 4406 { 4407 int ret; 4408 4409 vcpu_load(vcpu); 4410 4411 /* CHECK_STOP and LOAD are not supported yet */ 4412 ret = is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED : 4413 KVM_MP_STATE_OPERATING; 4414 4415 vcpu_put(vcpu); 4416 return ret; 4417 } 4418 4419 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 4420 struct kvm_mp_state *mp_state) 4421 { 4422 int rc = 0; 4423 4424 vcpu_load(vcpu); 4425 4426 /* user space knows about this interface - let it control the state */ 4427 kvm_s390_set_user_cpu_state_ctrl(vcpu->kvm); 4428 4429 switch (mp_state->mp_state) { 4430 case KVM_MP_STATE_STOPPED: 4431 rc = kvm_s390_vcpu_stop(vcpu); 4432 break; 4433 case KVM_MP_STATE_OPERATING: 4434 rc = kvm_s390_vcpu_start(vcpu); 4435 break; 4436 case KVM_MP_STATE_LOAD: 4437 if (!kvm_s390_pv_cpu_is_protected(vcpu)) { 4438 rc = -ENXIO; 4439 break; 4440 } 4441 rc = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_OPR_LOAD); 4442 break; 4443 case KVM_MP_STATE_CHECK_STOP: 4444 fallthrough; /* CHECK_STOP and LOAD are not supported yet */ 4445 default: 4446 rc = -ENXIO; 4447 } 4448 4449 vcpu_put(vcpu); 4450 return rc; 4451 } 4452 4453 static bool ibs_enabled(struct kvm_vcpu *vcpu) 4454 { 4455 return kvm_s390_test_cpuflags(vcpu, CPUSTAT_IBS); 4456 } 4457 4458 static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu) 4459 { 4460 retry: 4461 kvm_s390_vcpu_request_handled(vcpu); 4462 if (!kvm_request_pending(vcpu)) 4463 return 0; 4464 /* 4465 * If the guest prefix changed, re-arm the ipte notifier for the 4466 * guest prefix page. gmap_mprotect_notify will wait on the ptl lock. 4467 * This ensures that the ipte instruction for this request has 4468 * already finished. We might race against a second unmapper that 4469 * wants to set the blocking bit. Lets just retry the request loop. 4470 */ 4471 if (kvm_check_request(KVM_REQ_REFRESH_GUEST_PREFIX, vcpu)) { 4472 int rc; 4473 rc = gmap_mprotect_notify(vcpu->arch.gmap, 4474 kvm_s390_get_prefix(vcpu), 4475 PAGE_SIZE * 2, PROT_WRITE); 4476 if (rc) { 4477 kvm_make_request(KVM_REQ_REFRESH_GUEST_PREFIX, vcpu); 4478 return rc; 4479 } 4480 goto retry; 4481 } 4482 4483 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) { 4484 vcpu->arch.sie_block->ihcpu = 0xffff; 4485 goto retry; 4486 } 4487 4488 if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) { 4489 if (!ibs_enabled(vcpu)) { 4490 trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1); 4491 kvm_s390_set_cpuflags(vcpu, CPUSTAT_IBS); 4492 } 4493 goto retry; 4494 } 4495 4496 if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) { 4497 if (ibs_enabled(vcpu)) { 4498 trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0); 4499 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_IBS); 4500 } 4501 goto retry; 4502 } 4503 4504 if (kvm_check_request(KVM_REQ_ICPT_OPEREXC, vcpu)) { 4505 vcpu->arch.sie_block->ictl |= ICTL_OPEREXC; 4506 goto retry; 4507 } 4508 4509 if (kvm_check_request(KVM_REQ_START_MIGRATION, vcpu)) { 4510 /* 4511 * Disable CMM virtualization; we will emulate the ESSA 4512 * instruction manually, in order to provide additional 4513 * functionalities needed for live migration. 4514 */ 4515 vcpu->arch.sie_block->ecb2 &= ~ECB2_CMMA; 4516 goto retry; 4517 } 4518 4519 if (kvm_check_request(KVM_REQ_STOP_MIGRATION, vcpu)) { 4520 /* 4521 * Re-enable CMM virtualization if CMMA is available and 4522 * CMM has been used. 4523 */ 4524 if ((vcpu->kvm->arch.use_cmma) && 4525 (vcpu->kvm->mm->context.uses_cmm)) 4526 vcpu->arch.sie_block->ecb2 |= ECB2_CMMA; 4527 goto retry; 4528 } 4529 4530 /* we left the vsie handler, nothing to do, just clear the request */ 4531 kvm_clear_request(KVM_REQ_VSIE_RESTART, vcpu); 4532 4533 return 0; 4534 } 4535 4536 static void __kvm_s390_set_tod_clock(struct kvm *kvm, const struct kvm_s390_vm_tod_clock *gtod) 4537 { 4538 struct kvm_vcpu *vcpu; 4539 union tod_clock clk; 4540 unsigned long i; 4541 4542 preempt_disable(); 4543 4544 store_tod_clock_ext(&clk); 4545 4546 kvm->arch.epoch = gtod->tod - clk.tod; 4547 kvm->arch.epdx = 0; 4548 if (test_kvm_facility(kvm, 139)) { 4549 kvm->arch.epdx = gtod->epoch_idx - clk.ei; 4550 if (kvm->arch.epoch > gtod->tod) 4551 kvm->arch.epdx -= 1; 4552 } 4553 4554 kvm_s390_vcpu_block_all(kvm); 4555 kvm_for_each_vcpu(i, vcpu, kvm) { 4556 vcpu->arch.sie_block->epoch = kvm->arch.epoch; 4557 vcpu->arch.sie_block->epdx = kvm->arch.epdx; 4558 } 4559 4560 kvm_s390_vcpu_unblock_all(kvm); 4561 preempt_enable(); 4562 } 4563 4564 int kvm_s390_try_set_tod_clock(struct kvm *kvm, const struct kvm_s390_vm_tod_clock *gtod) 4565 { 4566 if (!mutex_trylock(&kvm->lock)) 4567 return 0; 4568 __kvm_s390_set_tod_clock(kvm, gtod); 4569 mutex_unlock(&kvm->lock); 4570 return 1; 4571 } 4572 4573 /** 4574 * kvm_arch_fault_in_page - fault-in guest page if necessary 4575 * @vcpu: The corresponding virtual cpu 4576 * @gpa: Guest physical address 4577 * @writable: Whether the page should be writable or not 4578 * 4579 * Make sure that a guest page has been faulted-in on the host. 4580 * 4581 * Return: Zero on success, negative error code otherwise. 4582 */ 4583 long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable) 4584 { 4585 return gmap_fault(vcpu->arch.gmap, gpa, 4586 writable ? FAULT_FLAG_WRITE : 0); 4587 } 4588 4589 static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token, 4590 unsigned long token) 4591 { 4592 struct kvm_s390_interrupt inti; 4593 struct kvm_s390_irq irq; 4594 4595 if (start_token) { 4596 irq.u.ext.ext_params2 = token; 4597 irq.type = KVM_S390_INT_PFAULT_INIT; 4598 WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq)); 4599 } else { 4600 inti.type = KVM_S390_INT_PFAULT_DONE; 4601 inti.parm64 = token; 4602 WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti)); 4603 } 4604 } 4605 4606 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 4607 struct kvm_async_pf *work) 4608 { 4609 trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token); 4610 __kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token); 4611 4612 return true; 4613 } 4614 4615 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 4616 struct kvm_async_pf *work) 4617 { 4618 trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token); 4619 __kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token); 4620 } 4621 4622 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, 4623 struct kvm_async_pf *work) 4624 { 4625 /* s390 will always inject the page directly */ 4626 } 4627 4628 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 4629 { 4630 /* 4631 * s390 will always inject the page directly, 4632 * but we still want check_async_completion to cleanup 4633 */ 4634 return true; 4635 } 4636 4637 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu) 4638 { 4639 hva_t hva; 4640 struct kvm_arch_async_pf arch; 4641 4642 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID) 4643 return false; 4644 if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) != 4645 vcpu->arch.pfault_compare) 4646 return false; 4647 if (psw_extint_disabled(vcpu)) 4648 return false; 4649 if (kvm_s390_vcpu_has_irq(vcpu, 0)) 4650 return false; 4651 if (!(vcpu->arch.sie_block->gcr[0] & CR0_SERVICE_SIGNAL_SUBMASK)) 4652 return false; 4653 if (!vcpu->arch.gmap->pfault_enabled) 4654 return false; 4655 4656 hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr)); 4657 hva += current->thread.gmap_addr & ~PAGE_MASK; 4658 if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8)) 4659 return false; 4660 4661 return kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch); 4662 } 4663 4664 static int vcpu_pre_run(struct kvm_vcpu *vcpu) 4665 { 4666 int rc, cpuflags; 4667 4668 /* 4669 * On s390 notifications for arriving pages will be delivered directly 4670 * to the guest but the house keeping for completed pfaults is 4671 * handled outside the worker. 4672 */ 4673 kvm_check_async_pf_completion(vcpu); 4674 4675 vcpu->arch.sie_block->gg14 = vcpu->run->s.regs.gprs[14]; 4676 vcpu->arch.sie_block->gg15 = vcpu->run->s.regs.gprs[15]; 4677 4678 if (need_resched()) 4679 schedule(); 4680 4681 if (!kvm_is_ucontrol(vcpu->kvm)) { 4682 rc = kvm_s390_deliver_pending_interrupts(vcpu); 4683 if (rc || guestdbg_exit_pending(vcpu)) 4684 return rc; 4685 } 4686 4687 rc = kvm_s390_handle_requests(vcpu); 4688 if (rc) 4689 return rc; 4690 4691 if (guestdbg_enabled(vcpu)) { 4692 kvm_s390_backup_guest_per_regs(vcpu); 4693 kvm_s390_patch_guest_per_regs(vcpu); 4694 } 4695 4696 clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.gisa_int.kicked_mask); 4697 4698 vcpu->arch.sie_block->icptcode = 0; 4699 cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags); 4700 VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags); 4701 trace_kvm_s390_sie_enter(vcpu, cpuflags); 4702 4703 return 0; 4704 } 4705 4706 static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu) 4707 { 4708 struct kvm_s390_pgm_info pgm_info = { 4709 .code = PGM_ADDRESSING, 4710 }; 4711 u8 opcode, ilen; 4712 int rc; 4713 4714 VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction"); 4715 trace_kvm_s390_sie_fault(vcpu); 4716 4717 /* 4718 * We want to inject an addressing exception, which is defined as a 4719 * suppressing or terminating exception. However, since we came here 4720 * by a DAT access exception, the PSW still points to the faulting 4721 * instruction since DAT exceptions are nullifying. So we've got 4722 * to look up the current opcode to get the length of the instruction 4723 * to be able to forward the PSW. 4724 */ 4725 rc = read_guest_instr(vcpu, vcpu->arch.sie_block->gpsw.addr, &opcode, 1); 4726 ilen = insn_length(opcode); 4727 if (rc < 0) { 4728 return rc; 4729 } else if (rc) { 4730 /* Instruction-Fetching Exceptions - we can't detect the ilen. 4731 * Forward by arbitrary ilc, injection will take care of 4732 * nullification if necessary. 4733 */ 4734 pgm_info = vcpu->arch.pgm; 4735 ilen = 4; 4736 } 4737 pgm_info.flags = ilen | KVM_S390_PGM_FLAGS_ILC_VALID; 4738 kvm_s390_forward_psw(vcpu, ilen); 4739 return kvm_s390_inject_prog_irq(vcpu, &pgm_info); 4740 } 4741 4742 static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason) 4743 { 4744 struct mcck_volatile_info *mcck_info; 4745 struct sie_page *sie_page; 4746 4747 VCPU_EVENT(vcpu, 6, "exit sie icptcode %d", 4748 vcpu->arch.sie_block->icptcode); 4749 trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode); 4750 4751 if (guestdbg_enabled(vcpu)) 4752 kvm_s390_restore_guest_per_regs(vcpu); 4753 4754 vcpu->run->s.regs.gprs[14] = vcpu->arch.sie_block->gg14; 4755 vcpu->run->s.regs.gprs[15] = vcpu->arch.sie_block->gg15; 4756 4757 if (exit_reason == -EINTR) { 4758 VCPU_EVENT(vcpu, 3, "%s", "machine check"); 4759 sie_page = container_of(vcpu->arch.sie_block, 4760 struct sie_page, sie_block); 4761 mcck_info = &sie_page->mcck_info; 4762 kvm_s390_reinject_machine_check(vcpu, mcck_info); 4763 return 0; 4764 } 4765 4766 if (vcpu->arch.sie_block->icptcode > 0) { 4767 int rc = kvm_handle_sie_intercept(vcpu); 4768 4769 if (rc != -EOPNOTSUPP) 4770 return rc; 4771 vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC; 4772 vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode; 4773 vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa; 4774 vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb; 4775 return -EREMOTE; 4776 } else if (exit_reason != -EFAULT) { 4777 vcpu->stat.exit_null++; 4778 return 0; 4779 } else if (kvm_is_ucontrol(vcpu->kvm)) { 4780 vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL; 4781 vcpu->run->s390_ucontrol.trans_exc_code = 4782 current->thread.gmap_addr; 4783 vcpu->run->s390_ucontrol.pgm_code = 0x10; 4784 return -EREMOTE; 4785 } else if (current->thread.gmap_pfault) { 4786 trace_kvm_s390_major_guest_pfault(vcpu); 4787 current->thread.gmap_pfault = 0; 4788 if (kvm_arch_setup_async_pf(vcpu)) 4789 return 0; 4790 vcpu->stat.pfault_sync++; 4791 return kvm_arch_fault_in_page(vcpu, current->thread.gmap_addr, 1); 4792 } 4793 return vcpu_post_run_fault_in_sie(vcpu); 4794 } 4795 4796 #define PSW_INT_MASK (PSW_MASK_EXT | PSW_MASK_IO | PSW_MASK_MCHECK) 4797 static int __vcpu_run(struct kvm_vcpu *vcpu) 4798 { 4799 int rc, exit_reason; 4800 struct sie_page *sie_page = (struct sie_page *)vcpu->arch.sie_block; 4801 4802 /* 4803 * We try to hold kvm->srcu during most of vcpu_run (except when run- 4804 * ning the guest), so that memslots (and other stuff) are protected 4805 */ 4806 kvm_vcpu_srcu_read_lock(vcpu); 4807 4808 do { 4809 rc = vcpu_pre_run(vcpu); 4810 if (rc || guestdbg_exit_pending(vcpu)) 4811 break; 4812 4813 kvm_vcpu_srcu_read_unlock(vcpu); 4814 /* 4815 * As PF_VCPU will be used in fault handler, between 4816 * guest_enter and guest_exit should be no uaccess. 4817 */ 4818 local_irq_disable(); 4819 guest_enter_irqoff(); 4820 __disable_cpu_timer_accounting(vcpu); 4821 local_irq_enable(); 4822 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 4823 memcpy(sie_page->pv_grregs, 4824 vcpu->run->s.regs.gprs, 4825 sizeof(sie_page->pv_grregs)); 4826 } 4827 exit_reason = sie64a(vcpu->arch.sie_block, 4828 vcpu->run->s.regs.gprs, 4829 gmap_get_enabled()->asce); 4830 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 4831 memcpy(vcpu->run->s.regs.gprs, 4832 sie_page->pv_grregs, 4833 sizeof(sie_page->pv_grregs)); 4834 /* 4835 * We're not allowed to inject interrupts on intercepts 4836 * that leave the guest state in an "in-between" state 4837 * where the next SIE entry will do a continuation. 4838 * Fence interrupts in our "internal" PSW. 4839 */ 4840 if (vcpu->arch.sie_block->icptcode == ICPT_PV_INSTR || 4841 vcpu->arch.sie_block->icptcode == ICPT_PV_PREF) { 4842 vcpu->arch.sie_block->gpsw.mask &= ~PSW_INT_MASK; 4843 } 4844 } 4845 local_irq_disable(); 4846 __enable_cpu_timer_accounting(vcpu); 4847 guest_exit_irqoff(); 4848 local_irq_enable(); 4849 kvm_vcpu_srcu_read_lock(vcpu); 4850 4851 rc = vcpu_post_run(vcpu, exit_reason); 4852 } while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc); 4853 4854 kvm_vcpu_srcu_read_unlock(vcpu); 4855 return rc; 4856 } 4857 4858 static void sync_regs_fmt2(struct kvm_vcpu *vcpu) 4859 { 4860 struct kvm_run *kvm_run = vcpu->run; 4861 struct runtime_instr_cb *riccb; 4862 struct gs_cb *gscb; 4863 4864 riccb = (struct runtime_instr_cb *) &kvm_run->s.regs.riccb; 4865 gscb = (struct gs_cb *) &kvm_run->s.regs.gscb; 4866 vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask; 4867 vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr; 4868 if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) { 4869 vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr; 4870 vcpu->arch.sie_block->pp = kvm_run->s.regs.pp; 4871 vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea; 4872 } 4873 if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) { 4874 vcpu->arch.pfault_token = kvm_run->s.regs.pft; 4875 vcpu->arch.pfault_select = kvm_run->s.regs.pfs; 4876 vcpu->arch.pfault_compare = kvm_run->s.regs.pfc; 4877 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID) 4878 kvm_clear_async_pf_completion_queue(vcpu); 4879 } 4880 if (kvm_run->kvm_dirty_regs & KVM_SYNC_DIAG318) { 4881 vcpu->arch.diag318_info.val = kvm_run->s.regs.diag318; 4882 vcpu->arch.sie_block->cpnc = vcpu->arch.diag318_info.cpnc; 4883 VCPU_EVENT(vcpu, 3, "setting cpnc to %d", vcpu->arch.diag318_info.cpnc); 4884 } 4885 /* 4886 * If userspace sets the riccb (e.g. after migration) to a valid state, 4887 * we should enable RI here instead of doing the lazy enablement. 4888 */ 4889 if ((kvm_run->kvm_dirty_regs & KVM_SYNC_RICCB) && 4890 test_kvm_facility(vcpu->kvm, 64) && 4891 riccb->v && 4892 !(vcpu->arch.sie_block->ecb3 & ECB3_RI)) { 4893 VCPU_EVENT(vcpu, 3, "%s", "ENABLE: RI (sync_regs)"); 4894 vcpu->arch.sie_block->ecb3 |= ECB3_RI; 4895 } 4896 /* 4897 * If userspace sets the gscb (e.g. after migration) to non-zero, 4898 * we should enable GS here instead of doing the lazy enablement. 4899 */ 4900 if ((kvm_run->kvm_dirty_regs & KVM_SYNC_GSCB) && 4901 test_kvm_facility(vcpu->kvm, 133) && 4902 gscb->gssm && 4903 !vcpu->arch.gs_enabled) { 4904 VCPU_EVENT(vcpu, 3, "%s", "ENABLE: GS (sync_regs)"); 4905 vcpu->arch.sie_block->ecb |= ECB_GS; 4906 vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT; 4907 vcpu->arch.gs_enabled = 1; 4908 } 4909 if ((kvm_run->kvm_dirty_regs & KVM_SYNC_BPBC) && 4910 test_kvm_facility(vcpu->kvm, 82)) { 4911 vcpu->arch.sie_block->fpf &= ~FPF_BPBC; 4912 vcpu->arch.sie_block->fpf |= kvm_run->s.regs.bpbc ? FPF_BPBC : 0; 4913 } 4914 if (MACHINE_HAS_GS) { 4915 preempt_disable(); 4916 local_ctl_set_bit(2, CR2_GUARDED_STORAGE_BIT); 4917 if (current->thread.gs_cb) { 4918 vcpu->arch.host_gscb = current->thread.gs_cb; 4919 save_gs_cb(vcpu->arch.host_gscb); 4920 } 4921 if (vcpu->arch.gs_enabled) { 4922 current->thread.gs_cb = (struct gs_cb *) 4923 &vcpu->run->s.regs.gscb; 4924 restore_gs_cb(current->thread.gs_cb); 4925 } 4926 preempt_enable(); 4927 } 4928 /* SIE will load etoken directly from SDNX and therefore kvm_run */ 4929 } 4930 4931 static void sync_regs(struct kvm_vcpu *vcpu) 4932 { 4933 struct kvm_run *kvm_run = vcpu->run; 4934 4935 if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX) 4936 kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix); 4937 if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) { 4938 memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128); 4939 /* some control register changes require a tlb flush */ 4940 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 4941 } 4942 if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) { 4943 kvm_s390_set_cpu_timer(vcpu, kvm_run->s.regs.cputm); 4944 vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc; 4945 } 4946 save_access_regs(vcpu->arch.host_acrs); 4947 restore_access_regs(vcpu->run->s.regs.acrs); 4948 vcpu->arch.acrs_loaded = true; 4949 kvm_s390_fpu_load(vcpu->run); 4950 /* Sync fmt2 only data */ 4951 if (likely(!kvm_s390_pv_cpu_is_protected(vcpu))) { 4952 sync_regs_fmt2(vcpu); 4953 } else { 4954 /* 4955 * In several places we have to modify our internal view to 4956 * not do things that are disallowed by the ultravisor. For 4957 * example we must not inject interrupts after specific exits 4958 * (e.g. 112 prefix page not secure). We do this by turning 4959 * off the machine check, external and I/O interrupt bits 4960 * of our PSW copy. To avoid getting validity intercepts, we 4961 * do only accept the condition code from userspace. 4962 */ 4963 vcpu->arch.sie_block->gpsw.mask &= ~PSW_MASK_CC; 4964 vcpu->arch.sie_block->gpsw.mask |= kvm_run->psw_mask & 4965 PSW_MASK_CC; 4966 } 4967 4968 kvm_run->kvm_dirty_regs = 0; 4969 } 4970 4971 static void store_regs_fmt2(struct kvm_vcpu *vcpu) 4972 { 4973 struct kvm_run *kvm_run = vcpu->run; 4974 4975 kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr; 4976 kvm_run->s.regs.pp = vcpu->arch.sie_block->pp; 4977 kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea; 4978 kvm_run->s.regs.bpbc = (vcpu->arch.sie_block->fpf & FPF_BPBC) == FPF_BPBC; 4979 kvm_run->s.regs.diag318 = vcpu->arch.diag318_info.val; 4980 if (MACHINE_HAS_GS) { 4981 preempt_disable(); 4982 local_ctl_set_bit(2, CR2_GUARDED_STORAGE_BIT); 4983 if (vcpu->arch.gs_enabled) 4984 save_gs_cb(current->thread.gs_cb); 4985 current->thread.gs_cb = vcpu->arch.host_gscb; 4986 restore_gs_cb(vcpu->arch.host_gscb); 4987 if (!vcpu->arch.host_gscb) 4988 local_ctl_clear_bit(2, CR2_GUARDED_STORAGE_BIT); 4989 vcpu->arch.host_gscb = NULL; 4990 preempt_enable(); 4991 } 4992 /* SIE will save etoken directly into SDNX and therefore kvm_run */ 4993 } 4994 4995 static void store_regs(struct kvm_vcpu *vcpu) 4996 { 4997 struct kvm_run *kvm_run = vcpu->run; 4998 4999 kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask; 5000 kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr; 5001 kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu); 5002 memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128); 5003 kvm_run->s.regs.cputm = kvm_s390_get_cpu_timer(vcpu); 5004 kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc; 5005 kvm_run->s.regs.pft = vcpu->arch.pfault_token; 5006 kvm_run->s.regs.pfs = vcpu->arch.pfault_select; 5007 kvm_run->s.regs.pfc = vcpu->arch.pfault_compare; 5008 save_access_regs(vcpu->run->s.regs.acrs); 5009 restore_access_regs(vcpu->arch.host_acrs); 5010 vcpu->arch.acrs_loaded = false; 5011 kvm_s390_fpu_store(vcpu->run); 5012 if (likely(!kvm_s390_pv_cpu_is_protected(vcpu))) 5013 store_regs_fmt2(vcpu); 5014 } 5015 5016 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 5017 { 5018 struct kvm_run *kvm_run = vcpu->run; 5019 DECLARE_KERNEL_FPU_ONSTACK32(fpu); 5020 int rc; 5021 5022 /* 5023 * Running a VM while dumping always has the potential to 5024 * produce inconsistent dump data. But for PV vcpus a SIE 5025 * entry while dumping could also lead to a fatal validity 5026 * intercept which we absolutely want to avoid. 5027 */ 5028 if (vcpu->kvm->arch.pv.dumping) 5029 return -EINVAL; 5030 5031 if (!vcpu->wants_to_run) 5032 return -EINTR; 5033 5034 if (kvm_run->kvm_valid_regs & ~KVM_SYNC_S390_VALID_FIELDS || 5035 kvm_run->kvm_dirty_regs & ~KVM_SYNC_S390_VALID_FIELDS) 5036 return -EINVAL; 5037 5038 vcpu_load(vcpu); 5039 5040 if (guestdbg_exit_pending(vcpu)) { 5041 kvm_s390_prepare_debug_exit(vcpu); 5042 rc = 0; 5043 goto out; 5044 } 5045 5046 kvm_sigset_activate(vcpu); 5047 5048 /* 5049 * no need to check the return value of vcpu_start as it can only have 5050 * an error for protvirt, but protvirt means user cpu state 5051 */ 5052 if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) { 5053 kvm_s390_vcpu_start(vcpu); 5054 } else if (is_vcpu_stopped(vcpu)) { 5055 pr_err_ratelimited("can't run stopped vcpu %d\n", 5056 vcpu->vcpu_id); 5057 rc = -EINVAL; 5058 goto out; 5059 } 5060 5061 kernel_fpu_begin(&fpu, KERNEL_FPC | KERNEL_VXR); 5062 sync_regs(vcpu); 5063 enable_cpu_timer_accounting(vcpu); 5064 5065 might_fault(); 5066 rc = __vcpu_run(vcpu); 5067 5068 if (signal_pending(current) && !rc) { 5069 kvm_run->exit_reason = KVM_EXIT_INTR; 5070 rc = -EINTR; 5071 } 5072 5073 if (guestdbg_exit_pending(vcpu) && !rc) { 5074 kvm_s390_prepare_debug_exit(vcpu); 5075 rc = 0; 5076 } 5077 5078 if (rc == -EREMOTE) { 5079 /* userspace support is needed, kvm_run has been prepared */ 5080 rc = 0; 5081 } 5082 5083 disable_cpu_timer_accounting(vcpu); 5084 store_regs(vcpu); 5085 kernel_fpu_end(&fpu, KERNEL_FPC | KERNEL_VXR); 5086 5087 kvm_sigset_deactivate(vcpu); 5088 5089 vcpu->stat.exit_userspace++; 5090 out: 5091 vcpu_put(vcpu); 5092 return rc; 5093 } 5094 5095 /* 5096 * store status at address 5097 * we use have two special cases: 5098 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit 5099 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix 5100 */ 5101 int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa) 5102 { 5103 unsigned char archmode = 1; 5104 freg_t fprs[NUM_FPRS]; 5105 unsigned int px; 5106 u64 clkcomp, cputm; 5107 int rc; 5108 5109 px = kvm_s390_get_prefix(vcpu); 5110 if (gpa == KVM_S390_STORE_STATUS_NOADDR) { 5111 if (write_guest_abs(vcpu, 163, &archmode, 1)) 5112 return -EFAULT; 5113 gpa = 0; 5114 } else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) { 5115 if (write_guest_real(vcpu, 163, &archmode, 1)) 5116 return -EFAULT; 5117 gpa = px; 5118 } else 5119 gpa -= __LC_FPREGS_SAVE_AREA; 5120 5121 /* manually convert vector registers if necessary */ 5122 if (cpu_has_vx()) { 5123 convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs); 5124 rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA, 5125 fprs, 128); 5126 } else { 5127 rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA, 5128 vcpu->run->s.regs.fprs, 128); 5129 } 5130 rc |= write_guest_abs(vcpu, gpa + __LC_GPREGS_SAVE_AREA, 5131 vcpu->run->s.regs.gprs, 128); 5132 rc |= write_guest_abs(vcpu, gpa + __LC_PSW_SAVE_AREA, 5133 &vcpu->arch.sie_block->gpsw, 16); 5134 rc |= write_guest_abs(vcpu, gpa + __LC_PREFIX_SAVE_AREA, 5135 &px, 4); 5136 rc |= write_guest_abs(vcpu, gpa + __LC_FP_CREG_SAVE_AREA, 5137 &vcpu->run->s.regs.fpc, 4); 5138 rc |= write_guest_abs(vcpu, gpa + __LC_TOD_PROGREG_SAVE_AREA, 5139 &vcpu->arch.sie_block->todpr, 4); 5140 cputm = kvm_s390_get_cpu_timer(vcpu); 5141 rc |= write_guest_abs(vcpu, gpa + __LC_CPU_TIMER_SAVE_AREA, 5142 &cputm, 8); 5143 clkcomp = vcpu->arch.sie_block->ckc >> 8; 5144 rc |= write_guest_abs(vcpu, gpa + __LC_CLOCK_COMP_SAVE_AREA, 5145 &clkcomp, 8); 5146 rc |= write_guest_abs(vcpu, gpa + __LC_AREGS_SAVE_AREA, 5147 &vcpu->run->s.regs.acrs, 64); 5148 rc |= write_guest_abs(vcpu, gpa + __LC_CREGS_SAVE_AREA, 5149 &vcpu->arch.sie_block->gcr, 128); 5150 return rc ? -EFAULT : 0; 5151 } 5152 5153 int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr) 5154 { 5155 /* 5156 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy 5157 * switch in the run ioctl. Let's update our copies before we save 5158 * it into the save area 5159 */ 5160 kvm_s390_fpu_store(vcpu->run); 5161 save_access_regs(vcpu->run->s.regs.acrs); 5162 5163 return kvm_s390_store_status_unloaded(vcpu, addr); 5164 } 5165 5166 static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu) 5167 { 5168 kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu); 5169 kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu); 5170 } 5171 5172 static void __disable_ibs_on_all_vcpus(struct kvm *kvm) 5173 { 5174 unsigned long i; 5175 struct kvm_vcpu *vcpu; 5176 5177 kvm_for_each_vcpu(i, vcpu, kvm) { 5178 __disable_ibs_on_vcpu(vcpu); 5179 } 5180 } 5181 5182 static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu) 5183 { 5184 if (!sclp.has_ibs) 5185 return; 5186 kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu); 5187 kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu); 5188 } 5189 5190 int kvm_s390_vcpu_start(struct kvm_vcpu *vcpu) 5191 { 5192 int i, online_vcpus, r = 0, started_vcpus = 0; 5193 5194 if (!is_vcpu_stopped(vcpu)) 5195 return 0; 5196 5197 trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1); 5198 /* Only one cpu at a time may enter/leave the STOPPED state. */ 5199 spin_lock(&vcpu->kvm->arch.start_stop_lock); 5200 online_vcpus = atomic_read(&vcpu->kvm->online_vcpus); 5201 5202 /* Let's tell the UV that we want to change into the operating state */ 5203 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 5204 r = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_OPR); 5205 if (r) { 5206 spin_unlock(&vcpu->kvm->arch.start_stop_lock); 5207 return r; 5208 } 5209 } 5210 5211 for (i = 0; i < online_vcpus; i++) { 5212 if (!is_vcpu_stopped(kvm_get_vcpu(vcpu->kvm, i))) 5213 started_vcpus++; 5214 } 5215 5216 if (started_vcpus == 0) { 5217 /* we're the only active VCPU -> speed it up */ 5218 __enable_ibs_on_vcpu(vcpu); 5219 } else if (started_vcpus == 1) { 5220 /* 5221 * As we are starting a second VCPU, we have to disable 5222 * the IBS facility on all VCPUs to remove potentially 5223 * outstanding ENABLE requests. 5224 */ 5225 __disable_ibs_on_all_vcpus(vcpu->kvm); 5226 } 5227 5228 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_STOPPED); 5229 /* 5230 * The real PSW might have changed due to a RESTART interpreted by the 5231 * ultravisor. We block all interrupts and let the next sie exit 5232 * refresh our view. 5233 */ 5234 if (kvm_s390_pv_cpu_is_protected(vcpu)) 5235 vcpu->arch.sie_block->gpsw.mask &= ~PSW_INT_MASK; 5236 /* 5237 * Another VCPU might have used IBS while we were offline. 5238 * Let's play safe and flush the VCPU at startup. 5239 */ 5240 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 5241 spin_unlock(&vcpu->kvm->arch.start_stop_lock); 5242 return 0; 5243 } 5244 5245 int kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu) 5246 { 5247 int i, online_vcpus, r = 0, started_vcpus = 0; 5248 struct kvm_vcpu *started_vcpu = NULL; 5249 5250 if (is_vcpu_stopped(vcpu)) 5251 return 0; 5252 5253 trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0); 5254 /* Only one cpu at a time may enter/leave the STOPPED state. */ 5255 spin_lock(&vcpu->kvm->arch.start_stop_lock); 5256 online_vcpus = atomic_read(&vcpu->kvm->online_vcpus); 5257 5258 /* Let's tell the UV that we want to change into the stopped state */ 5259 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 5260 r = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_STP); 5261 if (r) { 5262 spin_unlock(&vcpu->kvm->arch.start_stop_lock); 5263 return r; 5264 } 5265 } 5266 5267 /* 5268 * Set the VCPU to STOPPED and THEN clear the interrupt flag, 5269 * now that the SIGP STOP and SIGP STOP AND STORE STATUS orders 5270 * have been fully processed. This will ensure that the VCPU 5271 * is kept BUSY if another VCPU is inquiring with SIGP SENSE. 5272 */ 5273 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOPPED); 5274 kvm_s390_clear_stop_irq(vcpu); 5275 5276 __disable_ibs_on_vcpu(vcpu); 5277 5278 for (i = 0; i < online_vcpus; i++) { 5279 struct kvm_vcpu *tmp = kvm_get_vcpu(vcpu->kvm, i); 5280 5281 if (!is_vcpu_stopped(tmp)) { 5282 started_vcpus++; 5283 started_vcpu = tmp; 5284 } 5285 } 5286 5287 if (started_vcpus == 1) { 5288 /* 5289 * As we only have one VCPU left, we want to enable the 5290 * IBS facility for that VCPU to speed it up. 5291 */ 5292 __enable_ibs_on_vcpu(started_vcpu); 5293 } 5294 5295 spin_unlock(&vcpu->kvm->arch.start_stop_lock); 5296 return 0; 5297 } 5298 5299 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 5300 struct kvm_enable_cap *cap) 5301 { 5302 int r; 5303 5304 if (cap->flags) 5305 return -EINVAL; 5306 5307 switch (cap->cap) { 5308 case KVM_CAP_S390_CSS_SUPPORT: 5309 if (!vcpu->kvm->arch.css_support) { 5310 vcpu->kvm->arch.css_support = 1; 5311 VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support"); 5312 trace_kvm_s390_enable_css(vcpu->kvm); 5313 } 5314 r = 0; 5315 break; 5316 default: 5317 r = -EINVAL; 5318 break; 5319 } 5320 return r; 5321 } 5322 5323 static long kvm_s390_vcpu_sida_op(struct kvm_vcpu *vcpu, 5324 struct kvm_s390_mem_op *mop) 5325 { 5326 void __user *uaddr = (void __user *)mop->buf; 5327 void *sida_addr; 5328 int r = 0; 5329 5330 if (mop->flags || !mop->size) 5331 return -EINVAL; 5332 if (mop->size + mop->sida_offset < mop->size) 5333 return -EINVAL; 5334 if (mop->size + mop->sida_offset > sida_size(vcpu->arch.sie_block)) 5335 return -E2BIG; 5336 if (!kvm_s390_pv_cpu_is_protected(vcpu)) 5337 return -EINVAL; 5338 5339 sida_addr = (char *)sida_addr(vcpu->arch.sie_block) + mop->sida_offset; 5340 5341 switch (mop->op) { 5342 case KVM_S390_MEMOP_SIDA_READ: 5343 if (copy_to_user(uaddr, sida_addr, mop->size)) 5344 r = -EFAULT; 5345 5346 break; 5347 case KVM_S390_MEMOP_SIDA_WRITE: 5348 if (copy_from_user(sida_addr, uaddr, mop->size)) 5349 r = -EFAULT; 5350 break; 5351 } 5352 return r; 5353 } 5354 5355 static long kvm_s390_vcpu_mem_op(struct kvm_vcpu *vcpu, 5356 struct kvm_s390_mem_op *mop) 5357 { 5358 void __user *uaddr = (void __user *)mop->buf; 5359 enum gacc_mode acc_mode; 5360 void *tmpbuf = NULL; 5361 int r; 5362 5363 r = mem_op_validate_common(mop, KVM_S390_MEMOP_F_INJECT_EXCEPTION | 5364 KVM_S390_MEMOP_F_CHECK_ONLY | 5365 KVM_S390_MEMOP_F_SKEY_PROTECTION); 5366 if (r) 5367 return r; 5368 if (mop->ar >= NUM_ACRS) 5369 return -EINVAL; 5370 if (kvm_s390_pv_cpu_is_protected(vcpu)) 5371 return -EINVAL; 5372 if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) { 5373 tmpbuf = vmalloc(mop->size); 5374 if (!tmpbuf) 5375 return -ENOMEM; 5376 } 5377 5378 acc_mode = mop->op == KVM_S390_MEMOP_LOGICAL_READ ? GACC_FETCH : GACC_STORE; 5379 if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) { 5380 r = check_gva_range(vcpu, mop->gaddr, mop->ar, mop->size, 5381 acc_mode, mop->key); 5382 goto out_inject; 5383 } 5384 if (acc_mode == GACC_FETCH) { 5385 r = read_guest_with_key(vcpu, mop->gaddr, mop->ar, tmpbuf, 5386 mop->size, mop->key); 5387 if (r) 5388 goto out_inject; 5389 if (copy_to_user(uaddr, tmpbuf, mop->size)) { 5390 r = -EFAULT; 5391 goto out_free; 5392 } 5393 } else { 5394 if (copy_from_user(tmpbuf, uaddr, mop->size)) { 5395 r = -EFAULT; 5396 goto out_free; 5397 } 5398 r = write_guest_with_key(vcpu, mop->gaddr, mop->ar, tmpbuf, 5399 mop->size, mop->key); 5400 } 5401 5402 out_inject: 5403 if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0) 5404 kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm); 5405 5406 out_free: 5407 vfree(tmpbuf); 5408 return r; 5409 } 5410 5411 static long kvm_s390_vcpu_memsida_op(struct kvm_vcpu *vcpu, 5412 struct kvm_s390_mem_op *mop) 5413 { 5414 int r, srcu_idx; 5415 5416 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 5417 5418 switch (mop->op) { 5419 case KVM_S390_MEMOP_LOGICAL_READ: 5420 case KVM_S390_MEMOP_LOGICAL_WRITE: 5421 r = kvm_s390_vcpu_mem_op(vcpu, mop); 5422 break; 5423 case KVM_S390_MEMOP_SIDA_READ: 5424 case KVM_S390_MEMOP_SIDA_WRITE: 5425 /* we are locked against sida going away by the vcpu->mutex */ 5426 r = kvm_s390_vcpu_sida_op(vcpu, mop); 5427 break; 5428 default: 5429 r = -EINVAL; 5430 } 5431 5432 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 5433 return r; 5434 } 5435 5436 long kvm_arch_vcpu_async_ioctl(struct file *filp, 5437 unsigned int ioctl, unsigned long arg) 5438 { 5439 struct kvm_vcpu *vcpu = filp->private_data; 5440 void __user *argp = (void __user *)arg; 5441 int rc; 5442 5443 switch (ioctl) { 5444 case KVM_S390_IRQ: { 5445 struct kvm_s390_irq s390irq; 5446 5447 if (copy_from_user(&s390irq, argp, sizeof(s390irq))) 5448 return -EFAULT; 5449 rc = kvm_s390_inject_vcpu(vcpu, &s390irq); 5450 break; 5451 } 5452 case KVM_S390_INTERRUPT: { 5453 struct kvm_s390_interrupt s390int; 5454 struct kvm_s390_irq s390irq = {}; 5455 5456 if (copy_from_user(&s390int, argp, sizeof(s390int))) 5457 return -EFAULT; 5458 if (s390int_to_s390irq(&s390int, &s390irq)) 5459 return -EINVAL; 5460 rc = kvm_s390_inject_vcpu(vcpu, &s390irq); 5461 break; 5462 } 5463 default: 5464 rc = -ENOIOCTLCMD; 5465 break; 5466 } 5467 5468 /* 5469 * To simplify single stepping of userspace-emulated instructions, 5470 * KVM_EXIT_S390_SIEIC exit sets KVM_GUESTDBG_EXIT_PENDING (see 5471 * should_handle_per_ifetch()). However, if userspace emulation injects 5472 * an interrupt, it needs to be cleared, so that KVM_EXIT_DEBUG happens 5473 * after (and not before) the interrupt delivery. 5474 */ 5475 if (!rc) 5476 vcpu->guest_debug &= ~KVM_GUESTDBG_EXIT_PENDING; 5477 5478 return rc; 5479 } 5480 5481 static int kvm_s390_handle_pv_vcpu_dump(struct kvm_vcpu *vcpu, 5482 struct kvm_pv_cmd *cmd) 5483 { 5484 struct kvm_s390_pv_dmp dmp; 5485 void *data; 5486 int ret; 5487 5488 /* Dump initialization is a prerequisite */ 5489 if (!vcpu->kvm->arch.pv.dumping) 5490 return -EINVAL; 5491 5492 if (copy_from_user(&dmp, (__u8 __user *)cmd->data, sizeof(dmp))) 5493 return -EFAULT; 5494 5495 /* We only handle this subcmd right now */ 5496 if (dmp.subcmd != KVM_PV_DUMP_CPU) 5497 return -EINVAL; 5498 5499 /* CPU dump length is the same as create cpu storage donation. */ 5500 if (dmp.buff_len != uv_info.guest_cpu_stor_len) 5501 return -EINVAL; 5502 5503 data = kvzalloc(uv_info.guest_cpu_stor_len, GFP_KERNEL); 5504 if (!data) 5505 return -ENOMEM; 5506 5507 ret = kvm_s390_pv_dump_cpu(vcpu, data, &cmd->rc, &cmd->rrc); 5508 5509 VCPU_EVENT(vcpu, 3, "PROTVIRT DUMP CPU %d rc %x rrc %x", 5510 vcpu->vcpu_id, cmd->rc, cmd->rrc); 5511 5512 if (ret) 5513 ret = -EINVAL; 5514 5515 /* On success copy over the dump data */ 5516 if (!ret && copy_to_user((__u8 __user *)dmp.buff_addr, data, uv_info.guest_cpu_stor_len)) 5517 ret = -EFAULT; 5518 5519 kvfree(data); 5520 return ret; 5521 } 5522 5523 long kvm_arch_vcpu_ioctl(struct file *filp, 5524 unsigned int ioctl, unsigned long arg) 5525 { 5526 struct kvm_vcpu *vcpu = filp->private_data; 5527 void __user *argp = (void __user *)arg; 5528 int idx; 5529 long r; 5530 u16 rc, rrc; 5531 5532 vcpu_load(vcpu); 5533 5534 switch (ioctl) { 5535 case KVM_S390_STORE_STATUS: 5536 idx = srcu_read_lock(&vcpu->kvm->srcu); 5537 r = kvm_s390_store_status_unloaded(vcpu, arg); 5538 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5539 break; 5540 case KVM_S390_SET_INITIAL_PSW: { 5541 psw_t psw; 5542 5543 r = -EFAULT; 5544 if (copy_from_user(&psw, argp, sizeof(psw))) 5545 break; 5546 r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw); 5547 break; 5548 } 5549 case KVM_S390_CLEAR_RESET: 5550 r = 0; 5551 kvm_arch_vcpu_ioctl_clear_reset(vcpu); 5552 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 5553 r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu), 5554 UVC_CMD_CPU_RESET_CLEAR, &rc, &rrc); 5555 VCPU_EVENT(vcpu, 3, "PROTVIRT RESET CLEAR VCPU: rc %x rrc %x", 5556 rc, rrc); 5557 } 5558 break; 5559 case KVM_S390_INITIAL_RESET: 5560 r = 0; 5561 kvm_arch_vcpu_ioctl_initial_reset(vcpu); 5562 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 5563 r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu), 5564 UVC_CMD_CPU_RESET_INITIAL, 5565 &rc, &rrc); 5566 VCPU_EVENT(vcpu, 3, "PROTVIRT RESET INITIAL VCPU: rc %x rrc %x", 5567 rc, rrc); 5568 } 5569 break; 5570 case KVM_S390_NORMAL_RESET: 5571 r = 0; 5572 kvm_arch_vcpu_ioctl_normal_reset(vcpu); 5573 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 5574 r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu), 5575 UVC_CMD_CPU_RESET, &rc, &rrc); 5576 VCPU_EVENT(vcpu, 3, "PROTVIRT RESET NORMAL VCPU: rc %x rrc %x", 5577 rc, rrc); 5578 } 5579 break; 5580 case KVM_SET_ONE_REG: 5581 case KVM_GET_ONE_REG: { 5582 struct kvm_one_reg reg; 5583 r = -EINVAL; 5584 if (kvm_s390_pv_cpu_is_protected(vcpu)) 5585 break; 5586 r = -EFAULT; 5587 if (copy_from_user(®, argp, sizeof(reg))) 5588 break; 5589 if (ioctl == KVM_SET_ONE_REG) 5590 r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, ®); 5591 else 5592 r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, ®); 5593 break; 5594 } 5595 #ifdef CONFIG_KVM_S390_UCONTROL 5596 case KVM_S390_UCAS_MAP: { 5597 struct kvm_s390_ucas_mapping ucasmap; 5598 5599 if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) { 5600 r = -EFAULT; 5601 break; 5602 } 5603 5604 if (!kvm_is_ucontrol(vcpu->kvm)) { 5605 r = -EINVAL; 5606 break; 5607 } 5608 5609 r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr, 5610 ucasmap.vcpu_addr, ucasmap.length); 5611 break; 5612 } 5613 case KVM_S390_UCAS_UNMAP: { 5614 struct kvm_s390_ucas_mapping ucasmap; 5615 5616 if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) { 5617 r = -EFAULT; 5618 break; 5619 } 5620 5621 if (!kvm_is_ucontrol(vcpu->kvm)) { 5622 r = -EINVAL; 5623 break; 5624 } 5625 5626 r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr, 5627 ucasmap.length); 5628 break; 5629 } 5630 #endif 5631 case KVM_S390_VCPU_FAULT: { 5632 r = gmap_fault(vcpu->arch.gmap, arg, 0); 5633 break; 5634 } 5635 case KVM_ENABLE_CAP: 5636 { 5637 struct kvm_enable_cap cap; 5638 r = -EFAULT; 5639 if (copy_from_user(&cap, argp, sizeof(cap))) 5640 break; 5641 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 5642 break; 5643 } 5644 case KVM_S390_MEM_OP: { 5645 struct kvm_s390_mem_op mem_op; 5646 5647 if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0) 5648 r = kvm_s390_vcpu_memsida_op(vcpu, &mem_op); 5649 else 5650 r = -EFAULT; 5651 break; 5652 } 5653 case KVM_S390_SET_IRQ_STATE: { 5654 struct kvm_s390_irq_state irq_state; 5655 5656 r = -EFAULT; 5657 if (copy_from_user(&irq_state, argp, sizeof(irq_state))) 5658 break; 5659 if (irq_state.len > VCPU_IRQS_MAX_BUF || 5660 irq_state.len == 0 || 5661 irq_state.len % sizeof(struct kvm_s390_irq) > 0) { 5662 r = -EINVAL; 5663 break; 5664 } 5665 /* do not use irq_state.flags, it will break old QEMUs */ 5666 r = kvm_s390_set_irq_state(vcpu, 5667 (void __user *) irq_state.buf, 5668 irq_state.len); 5669 break; 5670 } 5671 case KVM_S390_GET_IRQ_STATE: { 5672 struct kvm_s390_irq_state irq_state; 5673 5674 r = -EFAULT; 5675 if (copy_from_user(&irq_state, argp, sizeof(irq_state))) 5676 break; 5677 if (irq_state.len == 0) { 5678 r = -EINVAL; 5679 break; 5680 } 5681 /* do not use irq_state.flags, it will break old QEMUs */ 5682 r = kvm_s390_get_irq_state(vcpu, 5683 (__u8 __user *) irq_state.buf, 5684 irq_state.len); 5685 break; 5686 } 5687 case KVM_S390_PV_CPU_COMMAND: { 5688 struct kvm_pv_cmd cmd; 5689 5690 r = -EINVAL; 5691 if (!is_prot_virt_host()) 5692 break; 5693 5694 r = -EFAULT; 5695 if (copy_from_user(&cmd, argp, sizeof(cmd))) 5696 break; 5697 5698 r = -EINVAL; 5699 if (cmd.flags) 5700 break; 5701 5702 /* We only handle this cmd right now */ 5703 if (cmd.cmd != KVM_PV_DUMP) 5704 break; 5705 5706 r = kvm_s390_handle_pv_vcpu_dump(vcpu, &cmd); 5707 5708 /* Always copy over UV rc / rrc data */ 5709 if (copy_to_user((__u8 __user *)argp, &cmd.rc, 5710 sizeof(cmd.rc) + sizeof(cmd.rrc))) 5711 r = -EFAULT; 5712 break; 5713 } 5714 default: 5715 r = -ENOTTY; 5716 } 5717 5718 vcpu_put(vcpu); 5719 return r; 5720 } 5721 5722 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 5723 { 5724 #ifdef CONFIG_KVM_S390_UCONTROL 5725 if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET) 5726 && (kvm_is_ucontrol(vcpu->kvm))) { 5727 vmf->page = virt_to_page(vcpu->arch.sie_block); 5728 get_page(vmf->page); 5729 return 0; 5730 } 5731 #endif 5732 return VM_FAULT_SIGBUS; 5733 } 5734 5735 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm) 5736 { 5737 return true; 5738 } 5739 5740 /* Section: memory related */ 5741 int kvm_arch_prepare_memory_region(struct kvm *kvm, 5742 const struct kvm_memory_slot *old, 5743 struct kvm_memory_slot *new, 5744 enum kvm_mr_change change) 5745 { 5746 gpa_t size; 5747 5748 if (kvm_is_ucontrol(kvm)) 5749 return -EINVAL; 5750 5751 /* When we are protected, we should not change the memory slots */ 5752 if (kvm_s390_pv_get_handle(kvm)) 5753 return -EINVAL; 5754 5755 if (change != KVM_MR_DELETE && change != KVM_MR_FLAGS_ONLY) { 5756 /* 5757 * A few sanity checks. We can have memory slots which have to be 5758 * located/ended at a segment boundary (1MB). The memory in userland is 5759 * ok to be fragmented into various different vmas. It is okay to mmap() 5760 * and munmap() stuff in this slot after doing this call at any time 5761 */ 5762 5763 if (new->userspace_addr & 0xffffful) 5764 return -EINVAL; 5765 5766 size = new->npages * PAGE_SIZE; 5767 if (size & 0xffffful) 5768 return -EINVAL; 5769 5770 if ((new->base_gfn * PAGE_SIZE) + size > kvm->arch.mem_limit) 5771 return -EINVAL; 5772 } 5773 5774 if (!kvm->arch.migration_mode) 5775 return 0; 5776 5777 /* 5778 * Turn off migration mode when: 5779 * - userspace creates a new memslot with dirty logging off, 5780 * - userspace modifies an existing memslot (MOVE or FLAGS_ONLY) and 5781 * dirty logging is turned off. 5782 * Migration mode expects dirty page logging being enabled to store 5783 * its dirty bitmap. 5784 */ 5785 if (change != KVM_MR_DELETE && 5786 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 5787 WARN(kvm_s390_vm_stop_migration(kvm), 5788 "Failed to stop migration mode"); 5789 5790 return 0; 5791 } 5792 5793 void kvm_arch_commit_memory_region(struct kvm *kvm, 5794 struct kvm_memory_slot *old, 5795 const struct kvm_memory_slot *new, 5796 enum kvm_mr_change change) 5797 { 5798 int rc = 0; 5799 5800 switch (change) { 5801 case KVM_MR_DELETE: 5802 rc = gmap_unmap_segment(kvm->arch.gmap, old->base_gfn * PAGE_SIZE, 5803 old->npages * PAGE_SIZE); 5804 break; 5805 case KVM_MR_MOVE: 5806 rc = gmap_unmap_segment(kvm->arch.gmap, old->base_gfn * PAGE_SIZE, 5807 old->npages * PAGE_SIZE); 5808 if (rc) 5809 break; 5810 fallthrough; 5811 case KVM_MR_CREATE: 5812 rc = gmap_map_segment(kvm->arch.gmap, new->userspace_addr, 5813 new->base_gfn * PAGE_SIZE, 5814 new->npages * PAGE_SIZE); 5815 break; 5816 case KVM_MR_FLAGS_ONLY: 5817 break; 5818 default: 5819 WARN(1, "Unknown KVM MR CHANGE: %d\n", change); 5820 } 5821 if (rc) 5822 pr_warn("failed to commit memory region\n"); 5823 return; 5824 } 5825 5826 static inline unsigned long nonhyp_mask(int i) 5827 { 5828 unsigned int nonhyp_fai = (sclp.hmfai << i * 2) >> 30; 5829 5830 return 0x0000ffffffffffffUL >> (nonhyp_fai << 4); 5831 } 5832 5833 static int __init kvm_s390_init(void) 5834 { 5835 int i, r; 5836 5837 if (!sclp.has_sief2) { 5838 pr_info("SIE is not available\n"); 5839 return -ENODEV; 5840 } 5841 5842 if (nested && hpage) { 5843 pr_info("A KVM host that supports nesting cannot back its KVM guests with huge pages\n"); 5844 return -EINVAL; 5845 } 5846 5847 for (i = 0; i < 16; i++) 5848 kvm_s390_fac_base[i] |= 5849 stfle_fac_list[i] & nonhyp_mask(i); 5850 5851 r = __kvm_s390_init(); 5852 if (r) 5853 return r; 5854 5855 r = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE); 5856 if (r) { 5857 __kvm_s390_exit(); 5858 return r; 5859 } 5860 return 0; 5861 } 5862 5863 static void __exit kvm_s390_exit(void) 5864 { 5865 kvm_exit(); 5866 5867 __kvm_s390_exit(); 5868 } 5869 5870 module_init(kvm_s390_init); 5871 module_exit(kvm_s390_exit); 5872 5873 /* 5874 * Enable autoloading of the kvm module. 5875 * Note that we add the module alias here instead of virt/kvm/kvm_main.c 5876 * since x86 takes a different approach. 5877 */ 5878 #include <linux/miscdevice.h> 5879 MODULE_ALIAS_MISCDEV(KVM_MINOR); 5880 MODULE_ALIAS("devname:kvm"); 5881
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.