1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Hosting Protected Virtual Machines 4 * 5 * Copyright IBM Corp. 2019, 2020 6 * Author(s): Janosch Frank <frankja@linux.ibm.com> 7 */ 8 #include <linux/kvm.h> 9 #include <linux/kvm_host.h> 10 #include <linux/minmax.h> 11 #include <linux/pagemap.h> 12 #include <linux/sched/signal.h> 13 #include <asm/gmap.h> 14 #include <asm/uv.h> 15 #include <asm/mman.h> 16 #include <linux/pagewalk.h> 17 #include <linux/sched/mm.h> 18 #include <linux/mmu_notifier.h> 19 #include "kvm-s390.h" 20 21 bool kvm_s390_pv_is_protected(struct kvm *kvm) 22 { 23 lockdep_assert_held(&kvm->lock); 24 return !!kvm_s390_pv_get_handle(kvm); 25 } 26 EXPORT_SYMBOL_GPL(kvm_s390_pv_is_protected); 27 28 bool kvm_s390_pv_cpu_is_protected(struct kvm_vcpu *vcpu) 29 { 30 lockdep_assert_held(&vcpu->mutex); 31 return !!kvm_s390_pv_cpu_get_handle(vcpu); 32 } 33 EXPORT_SYMBOL_GPL(kvm_s390_pv_cpu_is_protected); 34 35 /** 36 * struct pv_vm_to_be_destroyed - Represents a protected VM that needs to 37 * be destroyed 38 * 39 * @list: list head for the list of leftover VMs 40 * @old_gmap_table: the gmap table of the leftover protected VM 41 * @handle: the handle of the leftover protected VM 42 * @stor_var: pointer to the variable storage of the leftover protected VM 43 * @stor_base: address of the base storage of the leftover protected VM 44 * 45 * Represents a protected VM that is still registered with the Ultravisor, 46 * but which does not correspond any longer to an active KVM VM. It should 47 * be destroyed at some point later, either asynchronously or when the 48 * process terminates. 49 */ 50 struct pv_vm_to_be_destroyed { 51 struct list_head list; 52 unsigned long old_gmap_table; 53 u64 handle; 54 void *stor_var; 55 unsigned long stor_base; 56 }; 57 58 static void kvm_s390_clear_pv_state(struct kvm *kvm) 59 { 60 kvm->arch.pv.handle = 0; 61 kvm->arch.pv.guest_len = 0; 62 kvm->arch.pv.stor_base = 0; 63 kvm->arch.pv.stor_var = NULL; 64 } 65 66 int kvm_s390_pv_destroy_cpu(struct kvm_vcpu *vcpu, u16 *rc, u16 *rrc) 67 { 68 int cc; 69 70 if (!kvm_s390_pv_cpu_get_handle(vcpu)) 71 return 0; 72 73 cc = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu), UVC_CMD_DESTROY_SEC_CPU, rc, rrc); 74 75 KVM_UV_EVENT(vcpu->kvm, 3, "PROTVIRT DESTROY VCPU %d: rc %x rrc %x", 76 vcpu->vcpu_id, *rc, *rrc); 77 WARN_ONCE(cc, "protvirt destroy cpu failed rc %x rrc %x", *rc, *rrc); 78 79 /* Intended memory leak for something that should never happen. */ 80 if (!cc) 81 free_pages(vcpu->arch.pv.stor_base, 82 get_order(uv_info.guest_cpu_stor_len)); 83 84 free_page((unsigned long)sida_addr(vcpu->arch.sie_block)); 85 vcpu->arch.sie_block->pv_handle_cpu = 0; 86 vcpu->arch.sie_block->pv_handle_config = 0; 87 memset(&vcpu->arch.pv, 0, sizeof(vcpu->arch.pv)); 88 vcpu->arch.sie_block->sdf = 0; 89 /* 90 * The sidad field (for sdf == 2) is now the gbea field (for sdf == 0). 91 * Use the reset value of gbea to avoid leaking the kernel pointer of 92 * the just freed sida. 93 */ 94 vcpu->arch.sie_block->gbea = 1; 95 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 96 97 return cc ? EIO : 0; 98 } 99 100 int kvm_s390_pv_create_cpu(struct kvm_vcpu *vcpu, u16 *rc, u16 *rrc) 101 { 102 struct uv_cb_csc uvcb = { 103 .header.cmd = UVC_CMD_CREATE_SEC_CPU, 104 .header.len = sizeof(uvcb), 105 }; 106 void *sida_addr; 107 int cc; 108 109 if (kvm_s390_pv_cpu_get_handle(vcpu)) 110 return -EINVAL; 111 112 vcpu->arch.pv.stor_base = __get_free_pages(GFP_KERNEL_ACCOUNT, 113 get_order(uv_info.guest_cpu_stor_len)); 114 if (!vcpu->arch.pv.stor_base) 115 return -ENOMEM; 116 117 /* Input */ 118 uvcb.guest_handle = kvm_s390_pv_get_handle(vcpu->kvm); 119 uvcb.num = vcpu->arch.sie_block->icpua; 120 uvcb.state_origin = virt_to_phys(vcpu->arch.sie_block); 121 uvcb.stor_origin = virt_to_phys((void *)vcpu->arch.pv.stor_base); 122 123 /* Alloc Secure Instruction Data Area Designation */ 124 sida_addr = (void *)__get_free_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 125 if (!sida_addr) { 126 free_pages(vcpu->arch.pv.stor_base, 127 get_order(uv_info.guest_cpu_stor_len)); 128 return -ENOMEM; 129 } 130 vcpu->arch.sie_block->sidad = virt_to_phys(sida_addr); 131 132 cc = uv_call(0, (u64)&uvcb); 133 *rc = uvcb.header.rc; 134 *rrc = uvcb.header.rrc; 135 KVM_UV_EVENT(vcpu->kvm, 3, 136 "PROTVIRT CREATE VCPU: cpu %d handle %llx rc %x rrc %x", 137 vcpu->vcpu_id, uvcb.cpu_handle, uvcb.header.rc, 138 uvcb.header.rrc); 139 140 if (cc) { 141 u16 dummy; 142 143 kvm_s390_pv_destroy_cpu(vcpu, &dummy, &dummy); 144 return -EIO; 145 } 146 147 /* Output */ 148 vcpu->arch.pv.handle = uvcb.cpu_handle; 149 vcpu->arch.sie_block->pv_handle_cpu = uvcb.cpu_handle; 150 vcpu->arch.sie_block->pv_handle_config = kvm_s390_pv_get_handle(vcpu->kvm); 151 vcpu->arch.sie_block->sdf = 2; 152 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 153 return 0; 154 } 155 156 /* only free resources when the destroy was successful */ 157 static void kvm_s390_pv_dealloc_vm(struct kvm *kvm) 158 { 159 vfree(kvm->arch.pv.stor_var); 160 free_pages(kvm->arch.pv.stor_base, 161 get_order(uv_info.guest_base_stor_len)); 162 kvm_s390_clear_pv_state(kvm); 163 } 164 165 static int kvm_s390_pv_alloc_vm(struct kvm *kvm) 166 { 167 unsigned long base = uv_info.guest_base_stor_len; 168 unsigned long virt = uv_info.guest_virt_var_stor_len; 169 unsigned long npages = 0, vlen = 0; 170 171 kvm->arch.pv.stor_var = NULL; 172 kvm->arch.pv.stor_base = __get_free_pages(GFP_KERNEL_ACCOUNT, get_order(base)); 173 if (!kvm->arch.pv.stor_base) 174 return -ENOMEM; 175 176 /* 177 * Calculate current guest storage for allocation of the 178 * variable storage, which is based on the length in MB. 179 * 180 * Slots are sorted by GFN 181 */ 182 mutex_lock(&kvm->slots_lock); 183 npages = kvm_s390_get_gfn_end(kvm_memslots(kvm)); 184 mutex_unlock(&kvm->slots_lock); 185 186 kvm->arch.pv.guest_len = npages * PAGE_SIZE; 187 188 /* Allocate variable storage */ 189 vlen = ALIGN(virt * ((npages * PAGE_SIZE) / HPAGE_SIZE), PAGE_SIZE); 190 vlen += uv_info.guest_virt_base_stor_len; 191 kvm->arch.pv.stor_var = vzalloc(vlen); 192 if (!kvm->arch.pv.stor_var) 193 goto out_err; 194 return 0; 195 196 out_err: 197 kvm_s390_pv_dealloc_vm(kvm); 198 return -ENOMEM; 199 } 200 201 /** 202 * kvm_s390_pv_dispose_one_leftover - Clean up one leftover protected VM. 203 * @kvm: the KVM that was associated with this leftover protected VM 204 * @leftover: details about the leftover protected VM that needs a clean up 205 * @rc: the RC code of the Destroy Secure Configuration UVC 206 * @rrc: the RRC code of the Destroy Secure Configuration UVC 207 * 208 * Destroy one leftover protected VM. 209 * On success, kvm->mm->context.protected_count will be decremented atomically 210 * and all other resources used by the VM will be freed. 211 * 212 * Return: 0 in case of success, otherwise 1 213 */ 214 static int kvm_s390_pv_dispose_one_leftover(struct kvm *kvm, 215 struct pv_vm_to_be_destroyed *leftover, 216 u16 *rc, u16 *rrc) 217 { 218 int cc; 219 220 /* It used the destroy-fast UVC, nothing left to do here */ 221 if (!leftover->handle) 222 goto done_fast; 223 cc = uv_cmd_nodata(leftover->handle, UVC_CMD_DESTROY_SEC_CONF, rc, rrc); 224 KVM_UV_EVENT(kvm, 3, "PROTVIRT DESTROY LEFTOVER VM: rc %x rrc %x", *rc, *rrc); 225 WARN_ONCE(cc, "protvirt destroy leftover vm failed rc %x rrc %x", *rc, *rrc); 226 if (cc) 227 return cc; 228 /* 229 * Intentionally leak unusable memory. If the UVC fails, the memory 230 * used for the VM and its metadata is permanently unusable. 231 * This can only happen in case of a serious KVM or hardware bug; it 232 * is not expected to happen in normal operation. 233 */ 234 free_pages(leftover->stor_base, get_order(uv_info.guest_base_stor_len)); 235 free_pages(leftover->old_gmap_table, CRST_ALLOC_ORDER); 236 vfree(leftover->stor_var); 237 done_fast: 238 atomic_dec(&kvm->mm->context.protected_count); 239 return 0; 240 } 241 242 /** 243 * kvm_s390_destroy_lower_2g - Destroy the first 2GB of protected guest memory. 244 * @kvm: the VM whose memory is to be cleared. 245 * 246 * Destroy the first 2GB of guest memory, to avoid prefix issues after reboot. 247 * The CPUs of the protected VM need to be destroyed beforehand. 248 */ 249 static void kvm_s390_destroy_lower_2g(struct kvm *kvm) 250 { 251 const unsigned long pages_2g = SZ_2G / PAGE_SIZE; 252 struct kvm_memory_slot *slot; 253 unsigned long len; 254 int srcu_idx; 255 256 srcu_idx = srcu_read_lock(&kvm->srcu); 257 258 /* Take the memslot containing guest absolute address 0 */ 259 slot = gfn_to_memslot(kvm, 0); 260 /* Clear all slots or parts thereof that are below 2GB */ 261 while (slot && slot->base_gfn < pages_2g) { 262 len = min_t(u64, slot->npages, pages_2g - slot->base_gfn) * PAGE_SIZE; 263 s390_uv_destroy_range(kvm->mm, slot->userspace_addr, slot->userspace_addr + len); 264 /* Take the next memslot */ 265 slot = gfn_to_memslot(kvm, slot->base_gfn + slot->npages); 266 } 267 268 srcu_read_unlock(&kvm->srcu, srcu_idx); 269 } 270 271 static int kvm_s390_pv_deinit_vm_fast(struct kvm *kvm, u16 *rc, u16 *rrc) 272 { 273 struct uv_cb_destroy_fast uvcb = { 274 .header.cmd = UVC_CMD_DESTROY_SEC_CONF_FAST, 275 .header.len = sizeof(uvcb), 276 .handle = kvm_s390_pv_get_handle(kvm), 277 }; 278 int cc; 279 280 cc = uv_call_sched(0, (u64)&uvcb); 281 if (rc) 282 *rc = uvcb.header.rc; 283 if (rrc) 284 *rrc = uvcb.header.rrc; 285 WRITE_ONCE(kvm->arch.gmap->guest_handle, 0); 286 KVM_UV_EVENT(kvm, 3, "PROTVIRT DESTROY VM FAST: rc %x rrc %x", 287 uvcb.header.rc, uvcb.header.rrc); 288 WARN_ONCE(cc && uvcb.header.rc != 0x104, 289 "protvirt destroy vm fast failed handle %llx rc %x rrc %x", 290 kvm_s390_pv_get_handle(kvm), uvcb.header.rc, uvcb.header.rrc); 291 /* Intended memory leak on "impossible" error */ 292 if (!cc) 293 kvm_s390_pv_dealloc_vm(kvm); 294 return cc ? -EIO : 0; 295 } 296 297 static inline bool is_destroy_fast_available(void) 298 { 299 return test_bit_inv(BIT_UVC_CMD_DESTROY_SEC_CONF_FAST, uv_info.inst_calls_list); 300 } 301 302 /** 303 * kvm_s390_pv_set_aside - Set aside a protected VM for later teardown. 304 * @kvm: the VM 305 * @rc: return value for the RC field of the UVCB 306 * @rrc: return value for the RRC field of the UVCB 307 * 308 * Set aside the protected VM for a subsequent teardown. The VM will be able 309 * to continue immediately as a non-secure VM, and the information needed to 310 * properly tear down the protected VM is set aside. If another protected VM 311 * was already set aside without starting its teardown, this function will 312 * fail. 313 * The CPUs of the protected VM need to be destroyed beforehand. 314 * 315 * Context: kvm->lock needs to be held 316 * 317 * Return: 0 in case of success, -EINVAL if another protected VM was already set 318 * aside, -ENOMEM if the system ran out of memory. 319 */ 320 int kvm_s390_pv_set_aside(struct kvm *kvm, u16 *rc, u16 *rrc) 321 { 322 struct pv_vm_to_be_destroyed *priv; 323 int res = 0; 324 325 lockdep_assert_held(&kvm->lock); 326 /* 327 * If another protected VM was already prepared for teardown, refuse. 328 * A normal deinitialization has to be performed instead. 329 */ 330 if (kvm->arch.pv.set_aside) 331 return -EINVAL; 332 333 /* Guest with segment type ASCE, refuse to destroy asynchronously */ 334 if ((kvm->arch.gmap->asce & _ASCE_TYPE_MASK) == _ASCE_TYPE_SEGMENT) 335 return -EINVAL; 336 337 priv = kzalloc(sizeof(*priv), GFP_KERNEL); 338 if (!priv) 339 return -ENOMEM; 340 341 if (is_destroy_fast_available()) { 342 res = kvm_s390_pv_deinit_vm_fast(kvm, rc, rrc); 343 } else { 344 priv->stor_var = kvm->arch.pv.stor_var; 345 priv->stor_base = kvm->arch.pv.stor_base; 346 priv->handle = kvm_s390_pv_get_handle(kvm); 347 priv->old_gmap_table = (unsigned long)kvm->arch.gmap->table; 348 WRITE_ONCE(kvm->arch.gmap->guest_handle, 0); 349 if (s390_replace_asce(kvm->arch.gmap)) 350 res = -ENOMEM; 351 } 352 353 if (res) { 354 kfree(priv); 355 return res; 356 } 357 358 kvm_s390_destroy_lower_2g(kvm); 359 kvm_s390_clear_pv_state(kvm); 360 kvm->arch.pv.set_aside = priv; 361 362 *rc = UVC_RC_EXECUTED; 363 *rrc = 42; 364 return 0; 365 } 366 367 /** 368 * kvm_s390_pv_deinit_vm - Deinitialize the current protected VM 369 * @kvm: the KVM whose protected VM needs to be deinitialized 370 * @rc: the RC code of the UVC 371 * @rrc: the RRC code of the UVC 372 * 373 * Deinitialize the current protected VM. This function will destroy and 374 * cleanup the current protected VM, but it will not cleanup the guest 375 * memory. This function should only be called when the protected VM has 376 * just been created and therefore does not have any guest memory, or when 377 * the caller cleans up the guest memory separately. 378 * 379 * This function should not fail, but if it does, the donated memory must 380 * not be freed. 381 * 382 * Context: kvm->lock needs to be held 383 * 384 * Return: 0 in case of success, otherwise -EIO 385 */ 386 int kvm_s390_pv_deinit_vm(struct kvm *kvm, u16 *rc, u16 *rrc) 387 { 388 int cc; 389 390 cc = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm), 391 UVC_CMD_DESTROY_SEC_CONF, rc, rrc); 392 WRITE_ONCE(kvm->arch.gmap->guest_handle, 0); 393 if (!cc) { 394 atomic_dec(&kvm->mm->context.protected_count); 395 kvm_s390_pv_dealloc_vm(kvm); 396 } else { 397 /* Intended memory leak on "impossible" error */ 398 s390_replace_asce(kvm->arch.gmap); 399 } 400 KVM_UV_EVENT(kvm, 3, "PROTVIRT DESTROY VM: rc %x rrc %x", *rc, *rrc); 401 WARN_ONCE(cc, "protvirt destroy vm failed rc %x rrc %x", *rc, *rrc); 402 403 return cc ? -EIO : 0; 404 } 405 406 /** 407 * kvm_s390_pv_deinit_cleanup_all - Clean up all protected VMs associated 408 * with a specific KVM. 409 * @kvm: the KVM to be cleaned up 410 * @rc: the RC code of the first failing UVC 411 * @rrc: the RRC code of the first failing UVC 412 * 413 * This function will clean up all protected VMs associated with a KVM. 414 * This includes the active one, the one prepared for deinitialization with 415 * kvm_s390_pv_set_aside, and any still pending in the need_cleanup list. 416 * 417 * Context: kvm->lock needs to be held unless being called from 418 * kvm_arch_destroy_vm. 419 * 420 * Return: 0 if all VMs are successfully cleaned up, otherwise -EIO 421 */ 422 int kvm_s390_pv_deinit_cleanup_all(struct kvm *kvm, u16 *rc, u16 *rrc) 423 { 424 struct pv_vm_to_be_destroyed *cur; 425 bool need_zap = false; 426 u16 _rc, _rrc; 427 int cc = 0; 428 429 /* 430 * Nothing to do if the counter was already 0. Otherwise make sure 431 * the counter does not reach 0 before calling s390_uv_destroy_range. 432 */ 433 if (!atomic_inc_not_zero(&kvm->mm->context.protected_count)) 434 return 0; 435 436 *rc = 1; 437 /* If the current VM is protected, destroy it */ 438 if (kvm_s390_pv_get_handle(kvm)) { 439 cc = kvm_s390_pv_deinit_vm(kvm, rc, rrc); 440 need_zap = true; 441 } 442 443 /* If a previous protected VM was set aside, put it in the need_cleanup list */ 444 if (kvm->arch.pv.set_aside) { 445 list_add(kvm->arch.pv.set_aside, &kvm->arch.pv.need_cleanup); 446 kvm->arch.pv.set_aside = NULL; 447 } 448 449 /* Cleanup all protected VMs in the need_cleanup list */ 450 while (!list_empty(&kvm->arch.pv.need_cleanup)) { 451 cur = list_first_entry(&kvm->arch.pv.need_cleanup, typeof(*cur), list); 452 need_zap = true; 453 if (kvm_s390_pv_dispose_one_leftover(kvm, cur, &_rc, &_rrc)) { 454 cc = 1; 455 /* 456 * Only return the first error rc and rrc, so make 457 * sure it is not overwritten. All destroys will 458 * additionally be reported via KVM_UV_EVENT(). 459 */ 460 if (*rc == UVC_RC_EXECUTED) { 461 *rc = _rc; 462 *rrc = _rrc; 463 } 464 } 465 list_del(&cur->list); 466 kfree(cur); 467 } 468 469 /* 470 * If the mm still has a mapping, try to mark all its pages as 471 * accessible. The counter should not reach zero before this 472 * cleanup has been performed. 473 */ 474 if (need_zap && mmget_not_zero(kvm->mm)) { 475 s390_uv_destroy_range(kvm->mm, 0, TASK_SIZE); 476 mmput(kvm->mm); 477 } 478 479 /* Now the counter can safely reach 0 */ 480 atomic_dec(&kvm->mm->context.protected_count); 481 return cc ? -EIO : 0; 482 } 483 484 /** 485 * kvm_s390_pv_deinit_aside_vm - Teardown a previously set aside protected VM. 486 * @kvm: the VM previously associated with the protected VM 487 * @rc: return value for the RC field of the UVCB 488 * @rrc: return value for the RRC field of the UVCB 489 * 490 * Tear down the protected VM that had been previously prepared for teardown 491 * using kvm_s390_pv_set_aside_vm. Ideally this should be called by 492 * userspace asynchronously from a separate thread. 493 * 494 * Context: kvm->lock must not be held. 495 * 496 * Return: 0 in case of success, -EINVAL if no protected VM had been 497 * prepared for asynchronous teardowm, -EIO in case of other errors. 498 */ 499 int kvm_s390_pv_deinit_aside_vm(struct kvm *kvm, u16 *rc, u16 *rrc) 500 { 501 struct pv_vm_to_be_destroyed *p; 502 int ret = 0; 503 504 lockdep_assert_not_held(&kvm->lock); 505 mutex_lock(&kvm->lock); 506 p = kvm->arch.pv.set_aside; 507 kvm->arch.pv.set_aside = NULL; 508 mutex_unlock(&kvm->lock); 509 if (!p) 510 return -EINVAL; 511 512 /* When a fatal signal is received, stop immediately */ 513 if (s390_uv_destroy_range_interruptible(kvm->mm, 0, TASK_SIZE_MAX)) 514 goto done; 515 if (kvm_s390_pv_dispose_one_leftover(kvm, p, rc, rrc)) 516 ret = -EIO; 517 kfree(p); 518 p = NULL; 519 done: 520 /* 521 * p is not NULL if we aborted because of a fatal signal, in which 522 * case queue the leftover for later cleanup. 523 */ 524 if (p) { 525 mutex_lock(&kvm->lock); 526 list_add(&p->list, &kvm->arch.pv.need_cleanup); 527 mutex_unlock(&kvm->lock); 528 /* Did not finish, but pretend things went well */ 529 *rc = UVC_RC_EXECUTED; 530 *rrc = 42; 531 } 532 return ret; 533 } 534 535 static void kvm_s390_pv_mmu_notifier_release(struct mmu_notifier *subscription, 536 struct mm_struct *mm) 537 { 538 struct kvm *kvm = container_of(subscription, struct kvm, arch.pv.mmu_notifier); 539 u16 dummy; 540 int r; 541 542 /* 543 * No locking is needed since this is the last thread of the last user of this 544 * struct mm. 545 * When the struct kvm gets deinitialized, this notifier is also 546 * unregistered. This means that if this notifier runs, then the 547 * struct kvm is still valid. 548 */ 549 r = kvm_s390_cpus_from_pv(kvm, &dummy, &dummy); 550 if (!r && is_destroy_fast_available() && kvm_s390_pv_get_handle(kvm)) 551 kvm_s390_pv_deinit_vm_fast(kvm, &dummy, &dummy); 552 } 553 554 static const struct mmu_notifier_ops kvm_s390_pv_mmu_notifier_ops = { 555 .release = kvm_s390_pv_mmu_notifier_release, 556 }; 557 558 int kvm_s390_pv_init_vm(struct kvm *kvm, u16 *rc, u16 *rrc) 559 { 560 struct uv_cb_cgc uvcb = { 561 .header.cmd = UVC_CMD_CREATE_SEC_CONF, 562 .header.len = sizeof(uvcb) 563 }; 564 int cc, ret; 565 u16 dummy; 566 567 ret = kvm_s390_pv_alloc_vm(kvm); 568 if (ret) 569 return ret; 570 571 /* Inputs */ 572 uvcb.guest_stor_origin = 0; /* MSO is 0 for KVM */ 573 uvcb.guest_stor_len = kvm->arch.pv.guest_len; 574 uvcb.guest_asce = kvm->arch.gmap->asce; 575 uvcb.guest_sca = virt_to_phys(kvm->arch.sca); 576 uvcb.conf_base_stor_origin = 577 virt_to_phys((void *)kvm->arch.pv.stor_base); 578 uvcb.conf_virt_stor_origin = (u64)kvm->arch.pv.stor_var; 579 uvcb.flags.ap_allow_instr = kvm->arch.model.uv_feat_guest.ap; 580 uvcb.flags.ap_instr_intr = kvm->arch.model.uv_feat_guest.ap_intr; 581 582 cc = uv_call_sched(0, (u64)&uvcb); 583 *rc = uvcb.header.rc; 584 *rrc = uvcb.header.rrc; 585 KVM_UV_EVENT(kvm, 3, "PROTVIRT CREATE VM: handle %llx len %llx rc %x rrc %x flags %04x", 586 uvcb.guest_handle, uvcb.guest_stor_len, *rc, *rrc, uvcb.flags.raw); 587 588 /* Outputs */ 589 kvm->arch.pv.handle = uvcb.guest_handle; 590 591 atomic_inc(&kvm->mm->context.protected_count); 592 if (cc) { 593 if (uvcb.header.rc & UVC_RC_NEED_DESTROY) { 594 kvm_s390_pv_deinit_vm(kvm, &dummy, &dummy); 595 } else { 596 atomic_dec(&kvm->mm->context.protected_count); 597 kvm_s390_pv_dealloc_vm(kvm); 598 } 599 return -EIO; 600 } 601 kvm->arch.gmap->guest_handle = uvcb.guest_handle; 602 /* Add the notifier only once. No races because we hold kvm->lock */ 603 if (kvm->arch.pv.mmu_notifier.ops != &kvm_s390_pv_mmu_notifier_ops) { 604 kvm->arch.pv.mmu_notifier.ops = &kvm_s390_pv_mmu_notifier_ops; 605 mmu_notifier_register(&kvm->arch.pv.mmu_notifier, kvm->mm); 606 } 607 return 0; 608 } 609 610 int kvm_s390_pv_set_sec_parms(struct kvm *kvm, void *hdr, u64 length, u16 *rc, 611 u16 *rrc) 612 { 613 struct uv_cb_ssc uvcb = { 614 .header.cmd = UVC_CMD_SET_SEC_CONF_PARAMS, 615 .header.len = sizeof(uvcb), 616 .sec_header_origin = (u64)hdr, 617 .sec_header_len = length, 618 .guest_handle = kvm_s390_pv_get_handle(kvm), 619 }; 620 int cc = uv_call(0, (u64)&uvcb); 621 622 *rc = uvcb.header.rc; 623 *rrc = uvcb.header.rrc; 624 KVM_UV_EVENT(kvm, 3, "PROTVIRT VM SET PARMS: rc %x rrc %x", 625 *rc, *rrc); 626 return cc ? -EINVAL : 0; 627 } 628 629 static int unpack_one(struct kvm *kvm, unsigned long addr, u64 tweak, 630 u64 offset, u16 *rc, u16 *rrc) 631 { 632 struct uv_cb_unp uvcb = { 633 .header.cmd = UVC_CMD_UNPACK_IMG, 634 .header.len = sizeof(uvcb), 635 .guest_handle = kvm_s390_pv_get_handle(kvm), 636 .gaddr = addr, 637 .tweak[0] = tweak, 638 .tweak[1] = offset, 639 }; 640 int ret = gmap_make_secure(kvm->arch.gmap, addr, &uvcb); 641 642 *rc = uvcb.header.rc; 643 *rrc = uvcb.header.rrc; 644 645 if (ret && ret != -EAGAIN) 646 KVM_UV_EVENT(kvm, 3, "PROTVIRT VM UNPACK: failed addr %llx with rc %x rrc %x", 647 uvcb.gaddr, *rc, *rrc); 648 return ret; 649 } 650 651 int kvm_s390_pv_unpack(struct kvm *kvm, unsigned long addr, unsigned long size, 652 unsigned long tweak, u16 *rc, u16 *rrc) 653 { 654 u64 offset = 0; 655 int ret = 0; 656 657 if (addr & ~PAGE_MASK || !size || size & ~PAGE_MASK) 658 return -EINVAL; 659 660 KVM_UV_EVENT(kvm, 3, "PROTVIRT VM UNPACK: start addr %lx size %lx", 661 addr, size); 662 663 while (offset < size) { 664 ret = unpack_one(kvm, addr, tweak, offset, rc, rrc); 665 if (ret == -EAGAIN) { 666 cond_resched(); 667 if (fatal_signal_pending(current)) 668 break; 669 continue; 670 } 671 if (ret) 672 break; 673 addr += PAGE_SIZE; 674 offset += PAGE_SIZE; 675 } 676 if (!ret) 677 KVM_UV_EVENT(kvm, 3, "%s", "PROTVIRT VM UNPACK: successful"); 678 return ret; 679 } 680 681 int kvm_s390_pv_set_cpu_state(struct kvm_vcpu *vcpu, u8 state) 682 { 683 struct uv_cb_cpu_set_state uvcb = { 684 .header.cmd = UVC_CMD_CPU_SET_STATE, 685 .header.len = sizeof(uvcb), 686 .cpu_handle = kvm_s390_pv_cpu_get_handle(vcpu), 687 .state = state, 688 }; 689 int cc; 690 691 cc = uv_call(0, (u64)&uvcb); 692 KVM_UV_EVENT(vcpu->kvm, 3, "PROTVIRT SET CPU %d STATE %d rc %x rrc %x", 693 vcpu->vcpu_id, state, uvcb.header.rc, uvcb.header.rrc); 694 if (cc) 695 return -EINVAL; 696 return 0; 697 } 698 699 int kvm_s390_pv_dump_cpu(struct kvm_vcpu *vcpu, void *buff, u16 *rc, u16 *rrc) 700 { 701 struct uv_cb_dump_cpu uvcb = { 702 .header.cmd = UVC_CMD_DUMP_CPU, 703 .header.len = sizeof(uvcb), 704 .cpu_handle = vcpu->arch.pv.handle, 705 .dump_area_origin = (u64)buff, 706 }; 707 int cc; 708 709 cc = uv_call_sched(0, (u64)&uvcb); 710 *rc = uvcb.header.rc; 711 *rrc = uvcb.header.rrc; 712 return cc; 713 } 714 715 /* Size of the cache for the storage state dump data. 1MB for now */ 716 #define DUMP_BUFF_LEN HPAGE_SIZE 717 718 /** 719 * kvm_s390_pv_dump_stor_state 720 * 721 * @kvm: pointer to the guest's KVM struct 722 * @buff_user: Userspace pointer where we will write the results to 723 * @gaddr: Starting absolute guest address for which the storage state 724 * is requested. 725 * @buff_user_len: Length of the buff_user buffer 726 * @rc: Pointer to where the uvcb return code is stored 727 * @rrc: Pointer to where the uvcb return reason code is stored 728 * 729 * Stores buff_len bytes of tweak component values to buff_user 730 * starting with the 1MB block specified by the absolute guest address 731 * (gaddr). The gaddr pointer will be updated with the last address 732 * for which data was written when returning to userspace. buff_user 733 * might be written to even if an error rc is returned. For instance 734 * if we encounter a fault after writing the first page of data. 735 * 736 * Context: kvm->lock needs to be held 737 * 738 * Return: 739 * 0 on success 740 * -ENOMEM if allocating the cache fails 741 * -EINVAL if gaddr is not aligned to 1MB 742 * -EINVAL if buff_user_len is not aligned to uv_info.conf_dump_storage_state_len 743 * -EINVAL if the UV call fails, rc and rrc will be set in this case 744 * -EFAULT if copying the result to buff_user failed 745 */ 746 int kvm_s390_pv_dump_stor_state(struct kvm *kvm, void __user *buff_user, 747 u64 *gaddr, u64 buff_user_len, u16 *rc, u16 *rrc) 748 { 749 struct uv_cb_dump_stor_state uvcb = { 750 .header.cmd = UVC_CMD_DUMP_CONF_STOR_STATE, 751 .header.len = sizeof(uvcb), 752 .config_handle = kvm->arch.pv.handle, 753 .gaddr = *gaddr, 754 .dump_area_origin = 0, 755 }; 756 const u64 increment_len = uv_info.conf_dump_storage_state_len; 757 size_t buff_kvm_size; 758 size_t size_done = 0; 759 u8 *buff_kvm = NULL; 760 int cc, ret; 761 762 ret = -EINVAL; 763 /* UV call processes 1MB guest storage chunks at a time */ 764 if (!IS_ALIGNED(*gaddr, HPAGE_SIZE)) 765 goto out; 766 767 /* 768 * We provide the storage state for 1MB chunks of guest 769 * storage. The buffer will need to be aligned to 770 * conf_dump_storage_state_len so we don't end on a partial 771 * chunk. 772 */ 773 if (!buff_user_len || 774 !IS_ALIGNED(buff_user_len, increment_len)) 775 goto out; 776 777 /* 778 * Allocate a buffer from which we will later copy to the user 779 * process. We don't want userspace to dictate our buffer size 780 * so we limit it to DUMP_BUFF_LEN. 781 */ 782 ret = -ENOMEM; 783 buff_kvm_size = min_t(u64, buff_user_len, DUMP_BUFF_LEN); 784 buff_kvm = vzalloc(buff_kvm_size); 785 if (!buff_kvm) 786 goto out; 787 788 ret = 0; 789 uvcb.dump_area_origin = (u64)buff_kvm; 790 /* We will loop until the user buffer is filled or an error occurs */ 791 do { 792 /* Get 1MB worth of guest storage state data */ 793 cc = uv_call_sched(0, (u64)&uvcb); 794 795 /* All or nothing */ 796 if (cc) { 797 ret = -EINVAL; 798 break; 799 } 800 801 size_done += increment_len; 802 uvcb.dump_area_origin += increment_len; 803 buff_user_len -= increment_len; 804 uvcb.gaddr += HPAGE_SIZE; 805 806 /* KVM Buffer full, time to copy to the process */ 807 if (!buff_user_len || size_done == DUMP_BUFF_LEN) { 808 if (copy_to_user(buff_user, buff_kvm, size_done)) { 809 ret = -EFAULT; 810 break; 811 } 812 813 buff_user += size_done; 814 size_done = 0; 815 uvcb.dump_area_origin = (u64)buff_kvm; 816 } 817 } while (buff_user_len); 818 819 /* Report back where we ended dumping */ 820 *gaddr = uvcb.gaddr; 821 822 /* Lets only log errors, we don't want to spam */ 823 out: 824 if (ret) 825 KVM_UV_EVENT(kvm, 3, 826 "PROTVIRT DUMP STORAGE STATE: addr %llx ret %d, uvcb rc %x rrc %x", 827 uvcb.gaddr, ret, uvcb.header.rc, uvcb.header.rrc); 828 *rc = uvcb.header.rc; 829 *rrc = uvcb.header.rrc; 830 vfree(buff_kvm); 831 832 return ret; 833 } 834 835 /** 836 * kvm_s390_pv_dump_complete 837 * 838 * @kvm: pointer to the guest's KVM struct 839 * @buff_user: Userspace pointer where we will write the results to 840 * @rc: Pointer to where the uvcb return code is stored 841 * @rrc: Pointer to where the uvcb return reason code is stored 842 * 843 * Completes the dumping operation and writes the completion data to 844 * user space. 845 * 846 * Context: kvm->lock needs to be held 847 * 848 * Return: 849 * 0 on success 850 * -ENOMEM if allocating the completion buffer fails 851 * -EINVAL if the UV call fails, rc and rrc will be set in this case 852 * -EFAULT if copying the result to buff_user failed 853 */ 854 int kvm_s390_pv_dump_complete(struct kvm *kvm, void __user *buff_user, 855 u16 *rc, u16 *rrc) 856 { 857 struct uv_cb_dump_complete complete = { 858 .header.len = sizeof(complete), 859 .header.cmd = UVC_CMD_DUMP_COMPLETE, 860 .config_handle = kvm_s390_pv_get_handle(kvm), 861 }; 862 u64 *compl_data; 863 int ret; 864 865 /* Allocate dump area */ 866 compl_data = vzalloc(uv_info.conf_dump_finalize_len); 867 if (!compl_data) 868 return -ENOMEM; 869 complete.dump_area_origin = (u64)compl_data; 870 871 ret = uv_call_sched(0, (u64)&complete); 872 *rc = complete.header.rc; 873 *rrc = complete.header.rrc; 874 KVM_UV_EVENT(kvm, 3, "PROTVIRT DUMP COMPLETE: rc %x rrc %x", 875 complete.header.rc, complete.header.rrc); 876 877 if (!ret) { 878 /* 879 * kvm_s390_pv_dealloc_vm() will also (mem)set 880 * this to false on a reboot or other destroy 881 * operation for this vm. 882 */ 883 kvm->arch.pv.dumping = false; 884 kvm_s390_vcpu_unblock_all(kvm); 885 ret = copy_to_user(buff_user, compl_data, uv_info.conf_dump_finalize_len); 886 if (ret) 887 ret = -EFAULT; 888 } 889 vfree(compl_data); 890 /* If the UVC returned an error, translate it to -EINVAL */ 891 if (ret > 0) 892 ret = -EINVAL; 893 return ret; 894 } 895
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.