~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/s390/mm/gmap.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  *  KVM guest address space mapping code
  4  *
  5  *    Copyright IBM Corp. 2007, 2020
  6  *    Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
  7  *               David Hildenbrand <david@redhat.com>
  8  *               Janosch Frank <frankja@linux.vnet.ibm.com>
  9  */
 10 
 11 #include <linux/kernel.h>
 12 #include <linux/pagewalk.h>
 13 #include <linux/swap.h>
 14 #include <linux/smp.h>
 15 #include <linux/spinlock.h>
 16 #include <linux/slab.h>
 17 #include <linux/swapops.h>
 18 #include <linux/ksm.h>
 19 #include <linux/mman.h>
 20 #include <linux/pgtable.h>
 21 #include <asm/page-states.h>
 22 #include <asm/pgalloc.h>
 23 #include <asm/gmap.h>
 24 #include <asm/page.h>
 25 #include <asm/tlb.h>
 26 
 27 #define GMAP_SHADOW_FAKE_TABLE 1ULL
 28 
 29 static struct page *gmap_alloc_crst(void)
 30 {
 31         struct page *page;
 32 
 33         page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER);
 34         if (!page)
 35                 return NULL;
 36         __arch_set_page_dat(page_to_virt(page), 1UL << CRST_ALLOC_ORDER);
 37         return page;
 38 }
 39 
 40 /**
 41  * gmap_alloc - allocate and initialize a guest address space
 42  * @limit: maximum address of the gmap address space
 43  *
 44  * Returns a guest address space structure.
 45  */
 46 static struct gmap *gmap_alloc(unsigned long limit)
 47 {
 48         struct gmap *gmap;
 49         struct page *page;
 50         unsigned long *table;
 51         unsigned long etype, atype;
 52 
 53         if (limit < _REGION3_SIZE) {
 54                 limit = _REGION3_SIZE - 1;
 55                 atype = _ASCE_TYPE_SEGMENT;
 56                 etype = _SEGMENT_ENTRY_EMPTY;
 57         } else if (limit < _REGION2_SIZE) {
 58                 limit = _REGION2_SIZE - 1;
 59                 atype = _ASCE_TYPE_REGION3;
 60                 etype = _REGION3_ENTRY_EMPTY;
 61         } else if (limit < _REGION1_SIZE) {
 62                 limit = _REGION1_SIZE - 1;
 63                 atype = _ASCE_TYPE_REGION2;
 64                 etype = _REGION2_ENTRY_EMPTY;
 65         } else {
 66                 limit = -1UL;
 67                 atype = _ASCE_TYPE_REGION1;
 68                 etype = _REGION1_ENTRY_EMPTY;
 69         }
 70         gmap = kzalloc(sizeof(struct gmap), GFP_KERNEL_ACCOUNT);
 71         if (!gmap)
 72                 goto out;
 73         INIT_LIST_HEAD(&gmap->crst_list);
 74         INIT_LIST_HEAD(&gmap->children);
 75         INIT_LIST_HEAD(&gmap->pt_list);
 76         INIT_RADIX_TREE(&gmap->guest_to_host, GFP_KERNEL_ACCOUNT);
 77         INIT_RADIX_TREE(&gmap->host_to_guest, GFP_ATOMIC | __GFP_ACCOUNT);
 78         INIT_RADIX_TREE(&gmap->host_to_rmap, GFP_ATOMIC | __GFP_ACCOUNT);
 79         spin_lock_init(&gmap->guest_table_lock);
 80         spin_lock_init(&gmap->shadow_lock);
 81         refcount_set(&gmap->ref_count, 1);
 82         page = gmap_alloc_crst();
 83         if (!page)
 84                 goto out_free;
 85         page->index = 0;
 86         list_add(&page->lru, &gmap->crst_list);
 87         table = page_to_virt(page);
 88         crst_table_init(table, etype);
 89         gmap->table = table;
 90         gmap->asce = atype | _ASCE_TABLE_LENGTH |
 91                 _ASCE_USER_BITS | __pa(table);
 92         gmap->asce_end = limit;
 93         return gmap;
 94 
 95 out_free:
 96         kfree(gmap);
 97 out:
 98         return NULL;
 99 }
100 
101 /**
102  * gmap_create - create a guest address space
103  * @mm: pointer to the parent mm_struct
104  * @limit: maximum size of the gmap address space
105  *
106  * Returns a guest address space structure.
107  */
108 struct gmap *gmap_create(struct mm_struct *mm, unsigned long limit)
109 {
110         struct gmap *gmap;
111         unsigned long gmap_asce;
112 
113         gmap = gmap_alloc(limit);
114         if (!gmap)
115                 return NULL;
116         gmap->mm = mm;
117         spin_lock(&mm->context.lock);
118         list_add_rcu(&gmap->list, &mm->context.gmap_list);
119         if (list_is_singular(&mm->context.gmap_list))
120                 gmap_asce = gmap->asce;
121         else
122                 gmap_asce = -1UL;
123         WRITE_ONCE(mm->context.gmap_asce, gmap_asce);
124         spin_unlock(&mm->context.lock);
125         return gmap;
126 }
127 EXPORT_SYMBOL_GPL(gmap_create);
128 
129 static void gmap_flush_tlb(struct gmap *gmap)
130 {
131         if (MACHINE_HAS_IDTE)
132                 __tlb_flush_idte(gmap->asce);
133         else
134                 __tlb_flush_global();
135 }
136 
137 static void gmap_radix_tree_free(struct radix_tree_root *root)
138 {
139         struct radix_tree_iter iter;
140         unsigned long indices[16];
141         unsigned long index;
142         void __rcu **slot;
143         int i, nr;
144 
145         /* A radix tree is freed by deleting all of its entries */
146         index = 0;
147         do {
148                 nr = 0;
149                 radix_tree_for_each_slot(slot, root, &iter, index) {
150                         indices[nr] = iter.index;
151                         if (++nr == 16)
152                                 break;
153                 }
154                 for (i = 0; i < nr; i++) {
155                         index = indices[i];
156                         radix_tree_delete(root, index);
157                 }
158         } while (nr > 0);
159 }
160 
161 static void gmap_rmap_radix_tree_free(struct radix_tree_root *root)
162 {
163         struct gmap_rmap *rmap, *rnext, *head;
164         struct radix_tree_iter iter;
165         unsigned long indices[16];
166         unsigned long index;
167         void __rcu **slot;
168         int i, nr;
169 
170         /* A radix tree is freed by deleting all of its entries */
171         index = 0;
172         do {
173                 nr = 0;
174                 radix_tree_for_each_slot(slot, root, &iter, index) {
175                         indices[nr] = iter.index;
176                         if (++nr == 16)
177                                 break;
178                 }
179                 for (i = 0; i < nr; i++) {
180                         index = indices[i];
181                         head = radix_tree_delete(root, index);
182                         gmap_for_each_rmap_safe(rmap, rnext, head)
183                                 kfree(rmap);
184                 }
185         } while (nr > 0);
186 }
187 
188 /**
189  * gmap_free - free a guest address space
190  * @gmap: pointer to the guest address space structure
191  *
192  * No locks required. There are no references to this gmap anymore.
193  */
194 static void gmap_free(struct gmap *gmap)
195 {
196         struct page *page, *next;
197 
198         /* Flush tlb of all gmaps (if not already done for shadows) */
199         if (!(gmap_is_shadow(gmap) && gmap->removed))
200                 gmap_flush_tlb(gmap);
201         /* Free all segment & region tables. */
202         list_for_each_entry_safe(page, next, &gmap->crst_list, lru)
203                 __free_pages(page, CRST_ALLOC_ORDER);
204         gmap_radix_tree_free(&gmap->guest_to_host);
205         gmap_radix_tree_free(&gmap->host_to_guest);
206 
207         /* Free additional data for a shadow gmap */
208         if (gmap_is_shadow(gmap)) {
209                 struct ptdesc *ptdesc, *n;
210 
211                 /* Free all page tables. */
212                 list_for_each_entry_safe(ptdesc, n, &gmap->pt_list, pt_list)
213                         page_table_free_pgste(ptdesc);
214                 gmap_rmap_radix_tree_free(&gmap->host_to_rmap);
215                 /* Release reference to the parent */
216                 gmap_put(gmap->parent);
217         }
218 
219         kfree(gmap);
220 }
221 
222 /**
223  * gmap_get - increase reference counter for guest address space
224  * @gmap: pointer to the guest address space structure
225  *
226  * Returns the gmap pointer
227  */
228 struct gmap *gmap_get(struct gmap *gmap)
229 {
230         refcount_inc(&gmap->ref_count);
231         return gmap;
232 }
233 EXPORT_SYMBOL_GPL(gmap_get);
234 
235 /**
236  * gmap_put - decrease reference counter for guest address space
237  * @gmap: pointer to the guest address space structure
238  *
239  * If the reference counter reaches zero the guest address space is freed.
240  */
241 void gmap_put(struct gmap *gmap)
242 {
243         if (refcount_dec_and_test(&gmap->ref_count))
244                 gmap_free(gmap);
245 }
246 EXPORT_SYMBOL_GPL(gmap_put);
247 
248 /**
249  * gmap_remove - remove a guest address space but do not free it yet
250  * @gmap: pointer to the guest address space structure
251  */
252 void gmap_remove(struct gmap *gmap)
253 {
254         struct gmap *sg, *next;
255         unsigned long gmap_asce;
256 
257         /* Remove all shadow gmaps linked to this gmap */
258         if (!list_empty(&gmap->children)) {
259                 spin_lock(&gmap->shadow_lock);
260                 list_for_each_entry_safe(sg, next, &gmap->children, list) {
261                         list_del(&sg->list);
262                         gmap_put(sg);
263                 }
264                 spin_unlock(&gmap->shadow_lock);
265         }
266         /* Remove gmap from the pre-mm list */
267         spin_lock(&gmap->mm->context.lock);
268         list_del_rcu(&gmap->list);
269         if (list_empty(&gmap->mm->context.gmap_list))
270                 gmap_asce = 0;
271         else if (list_is_singular(&gmap->mm->context.gmap_list))
272                 gmap_asce = list_first_entry(&gmap->mm->context.gmap_list,
273                                              struct gmap, list)->asce;
274         else
275                 gmap_asce = -1UL;
276         WRITE_ONCE(gmap->mm->context.gmap_asce, gmap_asce);
277         spin_unlock(&gmap->mm->context.lock);
278         synchronize_rcu();
279         /* Put reference */
280         gmap_put(gmap);
281 }
282 EXPORT_SYMBOL_GPL(gmap_remove);
283 
284 /**
285  * gmap_enable - switch primary space to the guest address space
286  * @gmap: pointer to the guest address space structure
287  */
288 void gmap_enable(struct gmap *gmap)
289 {
290         get_lowcore()->gmap = (unsigned long)gmap;
291 }
292 EXPORT_SYMBOL_GPL(gmap_enable);
293 
294 /**
295  * gmap_disable - switch back to the standard primary address space
296  * @gmap: pointer to the guest address space structure
297  */
298 void gmap_disable(struct gmap *gmap)
299 {
300         get_lowcore()->gmap = 0UL;
301 }
302 EXPORT_SYMBOL_GPL(gmap_disable);
303 
304 /**
305  * gmap_get_enabled - get a pointer to the currently enabled gmap
306  *
307  * Returns a pointer to the currently enabled gmap. 0 if none is enabled.
308  */
309 struct gmap *gmap_get_enabled(void)
310 {
311         return (struct gmap *)get_lowcore()->gmap;
312 }
313 EXPORT_SYMBOL_GPL(gmap_get_enabled);
314 
315 /*
316  * gmap_alloc_table is assumed to be called with mmap_lock held
317  */
318 static int gmap_alloc_table(struct gmap *gmap, unsigned long *table,
319                             unsigned long init, unsigned long gaddr)
320 {
321         struct page *page;
322         unsigned long *new;
323 
324         /* since we dont free the gmap table until gmap_free we can unlock */
325         page = gmap_alloc_crst();
326         if (!page)
327                 return -ENOMEM;
328         new = page_to_virt(page);
329         crst_table_init(new, init);
330         spin_lock(&gmap->guest_table_lock);
331         if (*table & _REGION_ENTRY_INVALID) {
332                 list_add(&page->lru, &gmap->crst_list);
333                 *table = __pa(new) | _REGION_ENTRY_LENGTH |
334                         (*table & _REGION_ENTRY_TYPE_MASK);
335                 page->index = gaddr;
336                 page = NULL;
337         }
338         spin_unlock(&gmap->guest_table_lock);
339         if (page)
340                 __free_pages(page, CRST_ALLOC_ORDER);
341         return 0;
342 }
343 
344 /**
345  * __gmap_segment_gaddr - find virtual address from segment pointer
346  * @entry: pointer to a segment table entry in the guest address space
347  *
348  * Returns the virtual address in the guest address space for the segment
349  */
350 static unsigned long __gmap_segment_gaddr(unsigned long *entry)
351 {
352         struct page *page;
353         unsigned long offset;
354 
355         offset = (unsigned long) entry / sizeof(unsigned long);
356         offset = (offset & (PTRS_PER_PMD - 1)) * PMD_SIZE;
357         page = pmd_pgtable_page((pmd_t *) entry);
358         return page->index + offset;
359 }
360 
361 /**
362  * __gmap_unlink_by_vmaddr - unlink a single segment via a host address
363  * @gmap: pointer to the guest address space structure
364  * @vmaddr: address in the host process address space
365  *
366  * Returns 1 if a TLB flush is required
367  */
368 static int __gmap_unlink_by_vmaddr(struct gmap *gmap, unsigned long vmaddr)
369 {
370         unsigned long *entry;
371         int flush = 0;
372 
373         BUG_ON(gmap_is_shadow(gmap));
374         spin_lock(&gmap->guest_table_lock);
375         entry = radix_tree_delete(&gmap->host_to_guest, vmaddr >> PMD_SHIFT);
376         if (entry) {
377                 flush = (*entry != _SEGMENT_ENTRY_EMPTY);
378                 *entry = _SEGMENT_ENTRY_EMPTY;
379         }
380         spin_unlock(&gmap->guest_table_lock);
381         return flush;
382 }
383 
384 /**
385  * __gmap_unmap_by_gaddr - unmap a single segment via a guest address
386  * @gmap: pointer to the guest address space structure
387  * @gaddr: address in the guest address space
388  *
389  * Returns 1 if a TLB flush is required
390  */
391 static int __gmap_unmap_by_gaddr(struct gmap *gmap, unsigned long gaddr)
392 {
393         unsigned long vmaddr;
394 
395         vmaddr = (unsigned long) radix_tree_delete(&gmap->guest_to_host,
396                                                    gaddr >> PMD_SHIFT);
397         return vmaddr ? __gmap_unlink_by_vmaddr(gmap, vmaddr) : 0;
398 }
399 
400 /**
401  * gmap_unmap_segment - unmap segment from the guest address space
402  * @gmap: pointer to the guest address space structure
403  * @to: address in the guest address space
404  * @len: length of the memory area to unmap
405  *
406  * Returns 0 if the unmap succeeded, -EINVAL if not.
407  */
408 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len)
409 {
410         unsigned long off;
411         int flush;
412 
413         BUG_ON(gmap_is_shadow(gmap));
414         if ((to | len) & (PMD_SIZE - 1))
415                 return -EINVAL;
416         if (len == 0 || to + len < to)
417                 return -EINVAL;
418 
419         flush = 0;
420         mmap_write_lock(gmap->mm);
421         for (off = 0; off < len; off += PMD_SIZE)
422                 flush |= __gmap_unmap_by_gaddr(gmap, to + off);
423         mmap_write_unlock(gmap->mm);
424         if (flush)
425                 gmap_flush_tlb(gmap);
426         return 0;
427 }
428 EXPORT_SYMBOL_GPL(gmap_unmap_segment);
429 
430 /**
431  * gmap_map_segment - map a segment to the guest address space
432  * @gmap: pointer to the guest address space structure
433  * @from: source address in the parent address space
434  * @to: target address in the guest address space
435  * @len: length of the memory area to map
436  *
437  * Returns 0 if the mmap succeeded, -EINVAL or -ENOMEM if not.
438  */
439 int gmap_map_segment(struct gmap *gmap, unsigned long from,
440                      unsigned long to, unsigned long len)
441 {
442         unsigned long off;
443         int flush;
444 
445         BUG_ON(gmap_is_shadow(gmap));
446         if ((from | to | len) & (PMD_SIZE - 1))
447                 return -EINVAL;
448         if (len == 0 || from + len < from || to + len < to ||
449             from + len - 1 > TASK_SIZE_MAX || to + len - 1 > gmap->asce_end)
450                 return -EINVAL;
451 
452         flush = 0;
453         mmap_write_lock(gmap->mm);
454         for (off = 0; off < len; off += PMD_SIZE) {
455                 /* Remove old translation */
456                 flush |= __gmap_unmap_by_gaddr(gmap, to + off);
457                 /* Store new translation */
458                 if (radix_tree_insert(&gmap->guest_to_host,
459                                       (to + off) >> PMD_SHIFT,
460                                       (void *) from + off))
461                         break;
462         }
463         mmap_write_unlock(gmap->mm);
464         if (flush)
465                 gmap_flush_tlb(gmap);
466         if (off >= len)
467                 return 0;
468         gmap_unmap_segment(gmap, to, len);
469         return -ENOMEM;
470 }
471 EXPORT_SYMBOL_GPL(gmap_map_segment);
472 
473 /**
474  * __gmap_translate - translate a guest address to a user space address
475  * @gmap: pointer to guest mapping meta data structure
476  * @gaddr: guest address
477  *
478  * Returns user space address which corresponds to the guest address or
479  * -EFAULT if no such mapping exists.
480  * This function does not establish potentially missing page table entries.
481  * The mmap_lock of the mm that belongs to the address space must be held
482  * when this function gets called.
483  *
484  * Note: Can also be called for shadow gmaps.
485  */
486 unsigned long __gmap_translate(struct gmap *gmap, unsigned long gaddr)
487 {
488         unsigned long vmaddr;
489 
490         vmaddr = (unsigned long)
491                 radix_tree_lookup(&gmap->guest_to_host, gaddr >> PMD_SHIFT);
492         /* Note: guest_to_host is empty for a shadow gmap */
493         return vmaddr ? (vmaddr | (gaddr & ~PMD_MASK)) : -EFAULT;
494 }
495 EXPORT_SYMBOL_GPL(__gmap_translate);
496 
497 /**
498  * gmap_translate - translate a guest address to a user space address
499  * @gmap: pointer to guest mapping meta data structure
500  * @gaddr: guest address
501  *
502  * Returns user space address which corresponds to the guest address or
503  * -EFAULT if no such mapping exists.
504  * This function does not establish potentially missing page table entries.
505  */
506 unsigned long gmap_translate(struct gmap *gmap, unsigned long gaddr)
507 {
508         unsigned long rc;
509 
510         mmap_read_lock(gmap->mm);
511         rc = __gmap_translate(gmap, gaddr);
512         mmap_read_unlock(gmap->mm);
513         return rc;
514 }
515 EXPORT_SYMBOL_GPL(gmap_translate);
516 
517 /**
518  * gmap_unlink - disconnect a page table from the gmap shadow tables
519  * @mm: pointer to the parent mm_struct
520  * @table: pointer to the host page table
521  * @vmaddr: vm address associated with the host page table
522  */
523 void gmap_unlink(struct mm_struct *mm, unsigned long *table,
524                  unsigned long vmaddr)
525 {
526         struct gmap *gmap;
527         int flush;
528 
529         rcu_read_lock();
530         list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
531                 flush = __gmap_unlink_by_vmaddr(gmap, vmaddr);
532                 if (flush)
533                         gmap_flush_tlb(gmap);
534         }
535         rcu_read_unlock();
536 }
537 
538 static void gmap_pmdp_xchg(struct gmap *gmap, pmd_t *old, pmd_t new,
539                            unsigned long gaddr);
540 
541 /**
542  * __gmap_link - set up shadow page tables to connect a host to a guest address
543  * @gmap: pointer to guest mapping meta data structure
544  * @gaddr: guest address
545  * @vmaddr: vm address
546  *
547  * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
548  * if the vm address is already mapped to a different guest segment.
549  * The mmap_lock of the mm that belongs to the address space must be held
550  * when this function gets called.
551  */
552 int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr)
553 {
554         struct mm_struct *mm;
555         unsigned long *table;
556         spinlock_t *ptl;
557         pgd_t *pgd;
558         p4d_t *p4d;
559         pud_t *pud;
560         pmd_t *pmd;
561         u64 unprot;
562         int rc;
563 
564         BUG_ON(gmap_is_shadow(gmap));
565         /* Create higher level tables in the gmap page table */
566         table = gmap->table;
567         if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION1) {
568                 table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT;
569                 if ((*table & _REGION_ENTRY_INVALID) &&
570                     gmap_alloc_table(gmap, table, _REGION2_ENTRY_EMPTY,
571                                      gaddr & _REGION1_MASK))
572                         return -ENOMEM;
573                 table = __va(*table & _REGION_ENTRY_ORIGIN);
574         }
575         if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION2) {
576                 table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT;
577                 if ((*table & _REGION_ENTRY_INVALID) &&
578                     gmap_alloc_table(gmap, table, _REGION3_ENTRY_EMPTY,
579                                      gaddr & _REGION2_MASK))
580                         return -ENOMEM;
581                 table = __va(*table & _REGION_ENTRY_ORIGIN);
582         }
583         if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION3) {
584                 table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT;
585                 if ((*table & _REGION_ENTRY_INVALID) &&
586                     gmap_alloc_table(gmap, table, _SEGMENT_ENTRY_EMPTY,
587                                      gaddr & _REGION3_MASK))
588                         return -ENOMEM;
589                 table = __va(*table & _REGION_ENTRY_ORIGIN);
590         }
591         table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
592         /* Walk the parent mm page table */
593         mm = gmap->mm;
594         pgd = pgd_offset(mm, vmaddr);
595         VM_BUG_ON(pgd_none(*pgd));
596         p4d = p4d_offset(pgd, vmaddr);
597         VM_BUG_ON(p4d_none(*p4d));
598         pud = pud_offset(p4d, vmaddr);
599         VM_BUG_ON(pud_none(*pud));
600         /* large puds cannot yet be handled */
601         if (pud_leaf(*pud))
602                 return -EFAULT;
603         pmd = pmd_offset(pud, vmaddr);
604         VM_BUG_ON(pmd_none(*pmd));
605         /* Are we allowed to use huge pages? */
606         if (pmd_leaf(*pmd) && !gmap->mm->context.allow_gmap_hpage_1m)
607                 return -EFAULT;
608         /* Link gmap segment table entry location to page table. */
609         rc = radix_tree_preload(GFP_KERNEL_ACCOUNT);
610         if (rc)
611                 return rc;
612         ptl = pmd_lock(mm, pmd);
613         spin_lock(&gmap->guest_table_lock);
614         if (*table == _SEGMENT_ENTRY_EMPTY) {
615                 rc = radix_tree_insert(&gmap->host_to_guest,
616                                        vmaddr >> PMD_SHIFT, table);
617                 if (!rc) {
618                         if (pmd_leaf(*pmd)) {
619                                 *table = (pmd_val(*pmd) &
620                                           _SEGMENT_ENTRY_HARDWARE_BITS_LARGE)
621                                         | _SEGMENT_ENTRY_GMAP_UC;
622                         } else
623                                 *table = pmd_val(*pmd) &
624                                         _SEGMENT_ENTRY_HARDWARE_BITS;
625                 }
626         } else if (*table & _SEGMENT_ENTRY_PROTECT &&
627                    !(pmd_val(*pmd) & _SEGMENT_ENTRY_PROTECT)) {
628                 unprot = (u64)*table;
629                 unprot &= ~_SEGMENT_ENTRY_PROTECT;
630                 unprot |= _SEGMENT_ENTRY_GMAP_UC;
631                 gmap_pmdp_xchg(gmap, (pmd_t *)table, __pmd(unprot), gaddr);
632         }
633         spin_unlock(&gmap->guest_table_lock);
634         spin_unlock(ptl);
635         radix_tree_preload_end();
636         return rc;
637 }
638 
639 /**
640  * gmap_fault - resolve a fault on a guest address
641  * @gmap: pointer to guest mapping meta data structure
642  * @gaddr: guest address
643  * @fault_flags: flags to pass down to handle_mm_fault()
644  *
645  * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
646  * if the vm address is already mapped to a different guest segment.
647  */
648 int gmap_fault(struct gmap *gmap, unsigned long gaddr,
649                unsigned int fault_flags)
650 {
651         unsigned long vmaddr;
652         int rc;
653         bool unlocked;
654 
655         mmap_read_lock(gmap->mm);
656 
657 retry:
658         unlocked = false;
659         vmaddr = __gmap_translate(gmap, gaddr);
660         if (IS_ERR_VALUE(vmaddr)) {
661                 rc = vmaddr;
662                 goto out_up;
663         }
664         if (fixup_user_fault(gmap->mm, vmaddr, fault_flags,
665                              &unlocked)) {
666                 rc = -EFAULT;
667                 goto out_up;
668         }
669         /*
670          * In the case that fixup_user_fault unlocked the mmap_lock during
671          * faultin redo __gmap_translate to not race with a map/unmap_segment.
672          */
673         if (unlocked)
674                 goto retry;
675 
676         rc = __gmap_link(gmap, gaddr, vmaddr);
677 out_up:
678         mmap_read_unlock(gmap->mm);
679         return rc;
680 }
681 EXPORT_SYMBOL_GPL(gmap_fault);
682 
683 /*
684  * this function is assumed to be called with mmap_lock held
685  */
686 void __gmap_zap(struct gmap *gmap, unsigned long gaddr)
687 {
688         struct vm_area_struct *vma;
689         unsigned long vmaddr;
690         spinlock_t *ptl;
691         pte_t *ptep;
692 
693         /* Find the vm address for the guest address */
694         vmaddr = (unsigned long) radix_tree_lookup(&gmap->guest_to_host,
695                                                    gaddr >> PMD_SHIFT);
696         if (vmaddr) {
697                 vmaddr |= gaddr & ~PMD_MASK;
698 
699                 vma = vma_lookup(gmap->mm, vmaddr);
700                 if (!vma || is_vm_hugetlb_page(vma))
701                         return;
702 
703                 /* Get pointer to the page table entry */
704                 ptep = get_locked_pte(gmap->mm, vmaddr, &ptl);
705                 if (likely(ptep)) {
706                         ptep_zap_unused(gmap->mm, vmaddr, ptep, 0);
707                         pte_unmap_unlock(ptep, ptl);
708                 }
709         }
710 }
711 EXPORT_SYMBOL_GPL(__gmap_zap);
712 
713 void gmap_discard(struct gmap *gmap, unsigned long from, unsigned long to)
714 {
715         unsigned long gaddr, vmaddr, size;
716         struct vm_area_struct *vma;
717 
718         mmap_read_lock(gmap->mm);
719         for (gaddr = from; gaddr < to;
720              gaddr = (gaddr + PMD_SIZE) & PMD_MASK) {
721                 /* Find the vm address for the guest address */
722                 vmaddr = (unsigned long)
723                         radix_tree_lookup(&gmap->guest_to_host,
724                                           gaddr >> PMD_SHIFT);
725                 if (!vmaddr)
726                         continue;
727                 vmaddr |= gaddr & ~PMD_MASK;
728                 /* Find vma in the parent mm */
729                 vma = find_vma(gmap->mm, vmaddr);
730                 if (!vma)
731                         continue;
732                 /*
733                  * We do not discard pages that are backed by
734                  * hugetlbfs, so we don't have to refault them.
735                  */
736                 if (is_vm_hugetlb_page(vma))
737                         continue;
738                 size = min(to - gaddr, PMD_SIZE - (gaddr & ~PMD_MASK));
739                 zap_page_range_single(vma, vmaddr, size, NULL);
740         }
741         mmap_read_unlock(gmap->mm);
742 }
743 EXPORT_SYMBOL_GPL(gmap_discard);
744 
745 static LIST_HEAD(gmap_notifier_list);
746 static DEFINE_SPINLOCK(gmap_notifier_lock);
747 
748 /**
749  * gmap_register_pte_notifier - register a pte invalidation callback
750  * @nb: pointer to the gmap notifier block
751  */
752 void gmap_register_pte_notifier(struct gmap_notifier *nb)
753 {
754         spin_lock(&gmap_notifier_lock);
755         list_add_rcu(&nb->list, &gmap_notifier_list);
756         spin_unlock(&gmap_notifier_lock);
757 }
758 EXPORT_SYMBOL_GPL(gmap_register_pte_notifier);
759 
760 /**
761  * gmap_unregister_pte_notifier - remove a pte invalidation callback
762  * @nb: pointer to the gmap notifier block
763  */
764 void gmap_unregister_pte_notifier(struct gmap_notifier *nb)
765 {
766         spin_lock(&gmap_notifier_lock);
767         list_del_rcu(&nb->list);
768         spin_unlock(&gmap_notifier_lock);
769         synchronize_rcu();
770 }
771 EXPORT_SYMBOL_GPL(gmap_unregister_pte_notifier);
772 
773 /**
774  * gmap_call_notifier - call all registered invalidation callbacks
775  * @gmap: pointer to guest mapping meta data structure
776  * @start: start virtual address in the guest address space
777  * @end: end virtual address in the guest address space
778  */
779 static void gmap_call_notifier(struct gmap *gmap, unsigned long start,
780                                unsigned long end)
781 {
782         struct gmap_notifier *nb;
783 
784         list_for_each_entry(nb, &gmap_notifier_list, list)
785                 nb->notifier_call(gmap, start, end);
786 }
787 
788 /**
789  * gmap_table_walk - walk the gmap page tables
790  * @gmap: pointer to guest mapping meta data structure
791  * @gaddr: virtual address in the guest address space
792  * @level: page table level to stop at
793  *
794  * Returns a table entry pointer for the given guest address and @level
795  * @level=0 : returns a pointer to a page table table entry (or NULL)
796  * @level=1 : returns a pointer to a segment table entry (or NULL)
797  * @level=2 : returns a pointer to a region-3 table entry (or NULL)
798  * @level=3 : returns a pointer to a region-2 table entry (or NULL)
799  * @level=4 : returns a pointer to a region-1 table entry (or NULL)
800  *
801  * Returns NULL if the gmap page tables could not be walked to the
802  * requested level.
803  *
804  * Note: Can also be called for shadow gmaps.
805  */
806 static inline unsigned long *gmap_table_walk(struct gmap *gmap,
807                                              unsigned long gaddr, int level)
808 {
809         const int asce_type = gmap->asce & _ASCE_TYPE_MASK;
810         unsigned long *table = gmap->table;
811 
812         if (gmap_is_shadow(gmap) && gmap->removed)
813                 return NULL;
814 
815         if (WARN_ON_ONCE(level > (asce_type >> 2) + 1))
816                 return NULL;
817 
818         if (asce_type != _ASCE_TYPE_REGION1 &&
819             gaddr & (-1UL << (31 + (asce_type >> 2) * 11)))
820                 return NULL;
821 
822         switch (asce_type) {
823         case _ASCE_TYPE_REGION1:
824                 table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT;
825                 if (level == 4)
826                         break;
827                 if (*table & _REGION_ENTRY_INVALID)
828                         return NULL;
829                 table = __va(*table & _REGION_ENTRY_ORIGIN);
830                 fallthrough;
831         case _ASCE_TYPE_REGION2:
832                 table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT;
833                 if (level == 3)
834                         break;
835                 if (*table & _REGION_ENTRY_INVALID)
836                         return NULL;
837                 table = __va(*table & _REGION_ENTRY_ORIGIN);
838                 fallthrough;
839         case _ASCE_TYPE_REGION3:
840                 table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT;
841                 if (level == 2)
842                         break;
843                 if (*table & _REGION_ENTRY_INVALID)
844                         return NULL;
845                 table = __va(*table & _REGION_ENTRY_ORIGIN);
846                 fallthrough;
847         case _ASCE_TYPE_SEGMENT:
848                 table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
849                 if (level == 1)
850                         break;
851                 if (*table & _REGION_ENTRY_INVALID)
852                         return NULL;
853                 table = __va(*table & _SEGMENT_ENTRY_ORIGIN);
854                 table += (gaddr & _PAGE_INDEX) >> _PAGE_SHIFT;
855         }
856         return table;
857 }
858 
859 /**
860  * gmap_pte_op_walk - walk the gmap page table, get the page table lock
861  *                    and return the pte pointer
862  * @gmap: pointer to guest mapping meta data structure
863  * @gaddr: virtual address in the guest address space
864  * @ptl: pointer to the spinlock pointer
865  *
866  * Returns a pointer to the locked pte for a guest address, or NULL
867  */
868 static pte_t *gmap_pte_op_walk(struct gmap *gmap, unsigned long gaddr,
869                                spinlock_t **ptl)
870 {
871         unsigned long *table;
872 
873         BUG_ON(gmap_is_shadow(gmap));
874         /* Walk the gmap page table, lock and get pte pointer */
875         table = gmap_table_walk(gmap, gaddr, 1); /* get segment pointer */
876         if (!table || *table & _SEGMENT_ENTRY_INVALID)
877                 return NULL;
878         return pte_alloc_map_lock(gmap->mm, (pmd_t *) table, gaddr, ptl);
879 }
880 
881 /**
882  * gmap_pte_op_fixup - force a page in and connect the gmap page table
883  * @gmap: pointer to guest mapping meta data structure
884  * @gaddr: virtual address in the guest address space
885  * @vmaddr: address in the host process address space
886  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
887  *
888  * Returns 0 if the caller can retry __gmap_translate (might fail again),
889  * -ENOMEM if out of memory and -EFAULT if anything goes wrong while fixing
890  * up or connecting the gmap page table.
891  */
892 static int gmap_pte_op_fixup(struct gmap *gmap, unsigned long gaddr,
893                              unsigned long vmaddr, int prot)
894 {
895         struct mm_struct *mm = gmap->mm;
896         unsigned int fault_flags;
897         bool unlocked = false;
898 
899         BUG_ON(gmap_is_shadow(gmap));
900         fault_flags = (prot == PROT_WRITE) ? FAULT_FLAG_WRITE : 0;
901         if (fixup_user_fault(mm, vmaddr, fault_flags, &unlocked))
902                 return -EFAULT;
903         if (unlocked)
904                 /* lost mmap_lock, caller has to retry __gmap_translate */
905                 return 0;
906         /* Connect the page tables */
907         return __gmap_link(gmap, gaddr, vmaddr);
908 }
909 
910 /**
911  * gmap_pte_op_end - release the page table lock
912  * @ptep: pointer to the locked pte
913  * @ptl: pointer to the page table spinlock
914  */
915 static void gmap_pte_op_end(pte_t *ptep, spinlock_t *ptl)
916 {
917         pte_unmap_unlock(ptep, ptl);
918 }
919 
920 /**
921  * gmap_pmd_op_walk - walk the gmap tables, get the guest table lock
922  *                    and return the pmd pointer
923  * @gmap: pointer to guest mapping meta data structure
924  * @gaddr: virtual address in the guest address space
925  *
926  * Returns a pointer to the pmd for a guest address, or NULL
927  */
928 static inline pmd_t *gmap_pmd_op_walk(struct gmap *gmap, unsigned long gaddr)
929 {
930         pmd_t *pmdp;
931 
932         BUG_ON(gmap_is_shadow(gmap));
933         pmdp = (pmd_t *) gmap_table_walk(gmap, gaddr, 1);
934         if (!pmdp)
935                 return NULL;
936 
937         /* without huge pages, there is no need to take the table lock */
938         if (!gmap->mm->context.allow_gmap_hpage_1m)
939                 return pmd_none(*pmdp) ? NULL : pmdp;
940 
941         spin_lock(&gmap->guest_table_lock);
942         if (pmd_none(*pmdp)) {
943                 spin_unlock(&gmap->guest_table_lock);
944                 return NULL;
945         }
946 
947         /* 4k page table entries are locked via the pte (pte_alloc_map_lock). */
948         if (!pmd_leaf(*pmdp))
949                 spin_unlock(&gmap->guest_table_lock);
950         return pmdp;
951 }
952 
953 /**
954  * gmap_pmd_op_end - release the guest_table_lock if needed
955  * @gmap: pointer to the guest mapping meta data structure
956  * @pmdp: pointer to the pmd
957  */
958 static inline void gmap_pmd_op_end(struct gmap *gmap, pmd_t *pmdp)
959 {
960         if (pmd_leaf(*pmdp))
961                 spin_unlock(&gmap->guest_table_lock);
962 }
963 
964 /*
965  * gmap_protect_pmd - remove access rights to memory and set pmd notification bits
966  * @pmdp: pointer to the pmd to be protected
967  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
968  * @bits: notification bits to set
969  *
970  * Returns:
971  * 0 if successfully protected
972  * -EAGAIN if a fixup is needed
973  * -EINVAL if unsupported notifier bits have been specified
974  *
975  * Expected to be called with sg->mm->mmap_lock in read and
976  * guest_table_lock held.
977  */
978 static int gmap_protect_pmd(struct gmap *gmap, unsigned long gaddr,
979                             pmd_t *pmdp, int prot, unsigned long bits)
980 {
981         int pmd_i = pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID;
982         int pmd_p = pmd_val(*pmdp) & _SEGMENT_ENTRY_PROTECT;
983         pmd_t new = *pmdp;
984 
985         /* Fixup needed */
986         if ((pmd_i && (prot != PROT_NONE)) || (pmd_p && (prot == PROT_WRITE)))
987                 return -EAGAIN;
988 
989         if (prot == PROT_NONE && !pmd_i) {
990                 new = set_pmd_bit(new, __pgprot(_SEGMENT_ENTRY_INVALID));
991                 gmap_pmdp_xchg(gmap, pmdp, new, gaddr);
992         }
993 
994         if (prot == PROT_READ && !pmd_p) {
995                 new = clear_pmd_bit(new, __pgprot(_SEGMENT_ENTRY_INVALID));
996                 new = set_pmd_bit(new, __pgprot(_SEGMENT_ENTRY_PROTECT));
997                 gmap_pmdp_xchg(gmap, pmdp, new, gaddr);
998         }
999 
1000         if (bits & GMAP_NOTIFY_MPROT)
1001                 set_pmd(pmdp, set_pmd_bit(*pmdp, __pgprot(_SEGMENT_ENTRY_GMAP_IN)));
1002 
1003         /* Shadow GMAP protection needs split PMDs */
1004         if (bits & GMAP_NOTIFY_SHADOW)
1005                 return -EINVAL;
1006 
1007         return 0;
1008 }
1009 
1010 /*
1011  * gmap_protect_pte - remove access rights to memory and set pgste bits
1012  * @gmap: pointer to guest mapping meta data structure
1013  * @gaddr: virtual address in the guest address space
1014  * @pmdp: pointer to the pmd associated with the pte
1015  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
1016  * @bits: notification bits to set
1017  *
1018  * Returns 0 if successfully protected, -ENOMEM if out of memory and
1019  * -EAGAIN if a fixup is needed.
1020  *
1021  * Expected to be called with sg->mm->mmap_lock in read
1022  */
1023 static int gmap_protect_pte(struct gmap *gmap, unsigned long gaddr,
1024                             pmd_t *pmdp, int prot, unsigned long bits)
1025 {
1026         int rc;
1027         pte_t *ptep;
1028         spinlock_t *ptl;
1029         unsigned long pbits = 0;
1030 
1031         if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
1032                 return -EAGAIN;
1033 
1034         ptep = pte_alloc_map_lock(gmap->mm, pmdp, gaddr, &ptl);
1035         if (!ptep)
1036                 return -ENOMEM;
1037 
1038         pbits |= (bits & GMAP_NOTIFY_MPROT) ? PGSTE_IN_BIT : 0;
1039         pbits |= (bits & GMAP_NOTIFY_SHADOW) ? PGSTE_VSIE_BIT : 0;
1040         /* Protect and unlock. */
1041         rc = ptep_force_prot(gmap->mm, gaddr, ptep, prot, pbits);
1042         gmap_pte_op_end(ptep, ptl);
1043         return rc;
1044 }
1045 
1046 /*
1047  * gmap_protect_range - remove access rights to memory and set pgste bits
1048  * @gmap: pointer to guest mapping meta data structure
1049  * @gaddr: virtual address in the guest address space
1050  * @len: size of area
1051  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
1052  * @bits: pgste notification bits to set
1053  *
1054  * Returns 0 if successfully protected, -ENOMEM if out of memory and
1055  * -EFAULT if gaddr is invalid (or mapping for shadows is missing).
1056  *
1057  * Called with sg->mm->mmap_lock in read.
1058  */
1059 static int gmap_protect_range(struct gmap *gmap, unsigned long gaddr,
1060                               unsigned long len, int prot, unsigned long bits)
1061 {
1062         unsigned long vmaddr, dist;
1063         pmd_t *pmdp;
1064         int rc;
1065 
1066         BUG_ON(gmap_is_shadow(gmap));
1067         while (len) {
1068                 rc = -EAGAIN;
1069                 pmdp = gmap_pmd_op_walk(gmap, gaddr);
1070                 if (pmdp) {
1071                         if (!pmd_leaf(*pmdp)) {
1072                                 rc = gmap_protect_pte(gmap, gaddr, pmdp, prot,
1073                                                       bits);
1074                                 if (!rc) {
1075                                         len -= PAGE_SIZE;
1076                                         gaddr += PAGE_SIZE;
1077                                 }
1078                         } else {
1079                                 rc = gmap_protect_pmd(gmap, gaddr, pmdp, prot,
1080                                                       bits);
1081                                 if (!rc) {
1082                                         dist = HPAGE_SIZE - (gaddr & ~HPAGE_MASK);
1083                                         len = len < dist ? 0 : len - dist;
1084                                         gaddr = (gaddr & HPAGE_MASK) + HPAGE_SIZE;
1085                                 }
1086                         }
1087                         gmap_pmd_op_end(gmap, pmdp);
1088                 }
1089                 if (rc) {
1090                         if (rc == -EINVAL)
1091                                 return rc;
1092 
1093                         /* -EAGAIN, fixup of userspace mm and gmap */
1094                         vmaddr = __gmap_translate(gmap, gaddr);
1095                         if (IS_ERR_VALUE(vmaddr))
1096                                 return vmaddr;
1097                         rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, prot);
1098                         if (rc)
1099                                 return rc;
1100                 }
1101         }
1102         return 0;
1103 }
1104 
1105 /**
1106  * gmap_mprotect_notify - change access rights for a range of ptes and
1107  *                        call the notifier if any pte changes again
1108  * @gmap: pointer to guest mapping meta data structure
1109  * @gaddr: virtual address in the guest address space
1110  * @len: size of area
1111  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
1112  *
1113  * Returns 0 if for each page in the given range a gmap mapping exists,
1114  * the new access rights could be set and the notifier could be armed.
1115  * If the gmap mapping is missing for one or more pages -EFAULT is
1116  * returned. If no memory could be allocated -ENOMEM is returned.
1117  * This function establishes missing page table entries.
1118  */
1119 int gmap_mprotect_notify(struct gmap *gmap, unsigned long gaddr,
1120                          unsigned long len, int prot)
1121 {
1122         int rc;
1123 
1124         if ((gaddr & ~PAGE_MASK) || (len & ~PAGE_MASK) || gmap_is_shadow(gmap))
1125                 return -EINVAL;
1126         if (!MACHINE_HAS_ESOP && prot == PROT_READ)
1127                 return -EINVAL;
1128         mmap_read_lock(gmap->mm);
1129         rc = gmap_protect_range(gmap, gaddr, len, prot, GMAP_NOTIFY_MPROT);
1130         mmap_read_unlock(gmap->mm);
1131         return rc;
1132 }
1133 EXPORT_SYMBOL_GPL(gmap_mprotect_notify);
1134 
1135 /**
1136  * gmap_read_table - get an unsigned long value from a guest page table using
1137  *                   absolute addressing, without marking the page referenced.
1138  * @gmap: pointer to guest mapping meta data structure
1139  * @gaddr: virtual address in the guest address space
1140  * @val: pointer to the unsigned long value to return
1141  *
1142  * Returns 0 if the value was read, -ENOMEM if out of memory and -EFAULT
1143  * if reading using the virtual address failed. -EINVAL if called on a gmap
1144  * shadow.
1145  *
1146  * Called with gmap->mm->mmap_lock in read.
1147  */
1148 int gmap_read_table(struct gmap *gmap, unsigned long gaddr, unsigned long *val)
1149 {
1150         unsigned long address, vmaddr;
1151         spinlock_t *ptl;
1152         pte_t *ptep, pte;
1153         int rc;
1154 
1155         if (gmap_is_shadow(gmap))
1156                 return -EINVAL;
1157 
1158         while (1) {
1159                 rc = -EAGAIN;
1160                 ptep = gmap_pte_op_walk(gmap, gaddr, &ptl);
1161                 if (ptep) {
1162                         pte = *ptep;
1163                         if (pte_present(pte) && (pte_val(pte) & _PAGE_READ)) {
1164                                 address = pte_val(pte) & PAGE_MASK;
1165                                 address += gaddr & ~PAGE_MASK;
1166                                 *val = *(unsigned long *)__va(address);
1167                                 set_pte(ptep, set_pte_bit(*ptep, __pgprot(_PAGE_YOUNG)));
1168                                 /* Do *NOT* clear the _PAGE_INVALID bit! */
1169                                 rc = 0;
1170                         }
1171                         gmap_pte_op_end(ptep, ptl);
1172                 }
1173                 if (!rc)
1174                         break;
1175                 vmaddr = __gmap_translate(gmap, gaddr);
1176                 if (IS_ERR_VALUE(vmaddr)) {
1177                         rc = vmaddr;
1178                         break;
1179                 }
1180                 rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, PROT_READ);
1181                 if (rc)
1182                         break;
1183         }
1184         return rc;
1185 }
1186 EXPORT_SYMBOL_GPL(gmap_read_table);
1187 
1188 /**
1189  * gmap_insert_rmap - add a rmap to the host_to_rmap radix tree
1190  * @sg: pointer to the shadow guest address space structure
1191  * @vmaddr: vm address associated with the rmap
1192  * @rmap: pointer to the rmap structure
1193  *
1194  * Called with the sg->guest_table_lock
1195  */
1196 static inline void gmap_insert_rmap(struct gmap *sg, unsigned long vmaddr,
1197                                     struct gmap_rmap *rmap)
1198 {
1199         struct gmap_rmap *temp;
1200         void __rcu **slot;
1201 
1202         BUG_ON(!gmap_is_shadow(sg));
1203         slot = radix_tree_lookup_slot(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT);
1204         if (slot) {
1205                 rmap->next = radix_tree_deref_slot_protected(slot,
1206                                                         &sg->guest_table_lock);
1207                 for (temp = rmap->next; temp; temp = temp->next) {
1208                         if (temp->raddr == rmap->raddr) {
1209                                 kfree(rmap);
1210                                 return;
1211                         }
1212                 }
1213                 radix_tree_replace_slot(&sg->host_to_rmap, slot, rmap);
1214         } else {
1215                 rmap->next = NULL;
1216                 radix_tree_insert(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT,
1217                                   rmap);
1218         }
1219 }
1220 
1221 /**
1222  * gmap_protect_rmap - restrict access rights to memory (RO) and create an rmap
1223  * @sg: pointer to the shadow guest address space structure
1224  * @raddr: rmap address in the shadow gmap
1225  * @paddr: address in the parent guest address space
1226  * @len: length of the memory area to protect
1227  *
1228  * Returns 0 if successfully protected and the rmap was created, -ENOMEM
1229  * if out of memory and -EFAULT if paddr is invalid.
1230  */
1231 static int gmap_protect_rmap(struct gmap *sg, unsigned long raddr,
1232                              unsigned long paddr, unsigned long len)
1233 {
1234         struct gmap *parent;
1235         struct gmap_rmap *rmap;
1236         unsigned long vmaddr;
1237         spinlock_t *ptl;
1238         pte_t *ptep;
1239         int rc;
1240 
1241         BUG_ON(!gmap_is_shadow(sg));
1242         parent = sg->parent;
1243         while (len) {
1244                 vmaddr = __gmap_translate(parent, paddr);
1245                 if (IS_ERR_VALUE(vmaddr))
1246                         return vmaddr;
1247                 rmap = kzalloc(sizeof(*rmap), GFP_KERNEL_ACCOUNT);
1248                 if (!rmap)
1249                         return -ENOMEM;
1250                 rmap->raddr = raddr;
1251                 rc = radix_tree_preload(GFP_KERNEL_ACCOUNT);
1252                 if (rc) {
1253                         kfree(rmap);
1254                         return rc;
1255                 }
1256                 rc = -EAGAIN;
1257                 ptep = gmap_pte_op_walk(parent, paddr, &ptl);
1258                 if (ptep) {
1259                         spin_lock(&sg->guest_table_lock);
1260                         rc = ptep_force_prot(parent->mm, paddr, ptep, PROT_READ,
1261                                              PGSTE_VSIE_BIT);
1262                         if (!rc)
1263                                 gmap_insert_rmap(sg, vmaddr, rmap);
1264                         spin_unlock(&sg->guest_table_lock);
1265                         gmap_pte_op_end(ptep, ptl);
1266                 }
1267                 radix_tree_preload_end();
1268                 if (rc) {
1269                         kfree(rmap);
1270                         rc = gmap_pte_op_fixup(parent, paddr, vmaddr, PROT_READ);
1271                         if (rc)
1272                                 return rc;
1273                         continue;
1274                 }
1275                 paddr += PAGE_SIZE;
1276                 len -= PAGE_SIZE;
1277         }
1278         return 0;
1279 }
1280 
1281 #define _SHADOW_RMAP_MASK       0x7
1282 #define _SHADOW_RMAP_REGION1    0x5
1283 #define _SHADOW_RMAP_REGION2    0x4
1284 #define _SHADOW_RMAP_REGION3    0x3
1285 #define _SHADOW_RMAP_SEGMENT    0x2
1286 #define _SHADOW_RMAP_PGTABLE    0x1
1287 
1288 /**
1289  * gmap_idte_one - invalidate a single region or segment table entry
1290  * @asce: region or segment table *origin* + table-type bits
1291  * @vaddr: virtual address to identify the table entry to flush
1292  *
1293  * The invalid bit of a single region or segment table entry is set
1294  * and the associated TLB entries depending on the entry are flushed.
1295  * The table-type of the @asce identifies the portion of the @vaddr
1296  * that is used as the invalidation index.
1297  */
1298 static inline void gmap_idte_one(unsigned long asce, unsigned long vaddr)
1299 {
1300         asm volatile(
1301                 "       idte    %0,0,%1"
1302                 : : "a" (asce), "a" (vaddr) : "cc", "memory");
1303 }
1304 
1305 /**
1306  * gmap_unshadow_page - remove a page from a shadow page table
1307  * @sg: pointer to the shadow guest address space structure
1308  * @raddr: rmap address in the shadow guest address space
1309  *
1310  * Called with the sg->guest_table_lock
1311  */
1312 static void gmap_unshadow_page(struct gmap *sg, unsigned long raddr)
1313 {
1314         unsigned long *table;
1315 
1316         BUG_ON(!gmap_is_shadow(sg));
1317         table = gmap_table_walk(sg, raddr, 0); /* get page table pointer */
1318         if (!table || *table & _PAGE_INVALID)
1319                 return;
1320         gmap_call_notifier(sg, raddr, raddr + _PAGE_SIZE - 1);
1321         ptep_unshadow_pte(sg->mm, raddr, (pte_t *) table);
1322 }
1323 
1324 /**
1325  * __gmap_unshadow_pgt - remove all entries from a shadow page table
1326  * @sg: pointer to the shadow guest address space structure
1327  * @raddr: rmap address in the shadow guest address space
1328  * @pgt: pointer to the start of a shadow page table
1329  *
1330  * Called with the sg->guest_table_lock
1331  */
1332 static void __gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr,
1333                                 unsigned long *pgt)
1334 {
1335         int i;
1336 
1337         BUG_ON(!gmap_is_shadow(sg));
1338         for (i = 0; i < _PAGE_ENTRIES; i++, raddr += _PAGE_SIZE)
1339                 pgt[i] = _PAGE_INVALID;
1340 }
1341 
1342 /**
1343  * gmap_unshadow_pgt - remove a shadow page table from a segment entry
1344  * @sg: pointer to the shadow guest address space structure
1345  * @raddr: address in the shadow guest address space
1346  *
1347  * Called with the sg->guest_table_lock
1348  */
1349 static void gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr)
1350 {
1351         unsigned long *ste;
1352         phys_addr_t sto, pgt;
1353         struct ptdesc *ptdesc;
1354 
1355         BUG_ON(!gmap_is_shadow(sg));
1356         ste = gmap_table_walk(sg, raddr, 1); /* get segment pointer */
1357         if (!ste || !(*ste & _SEGMENT_ENTRY_ORIGIN))
1358                 return;
1359         gmap_call_notifier(sg, raddr, raddr + _SEGMENT_SIZE - 1);
1360         sto = __pa(ste - ((raddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT));
1361         gmap_idte_one(sto | _ASCE_TYPE_SEGMENT, raddr);
1362         pgt = *ste & _SEGMENT_ENTRY_ORIGIN;
1363         *ste = _SEGMENT_ENTRY_EMPTY;
1364         __gmap_unshadow_pgt(sg, raddr, __va(pgt));
1365         /* Free page table */
1366         ptdesc = page_ptdesc(phys_to_page(pgt));
1367         list_del(&ptdesc->pt_list);
1368         page_table_free_pgste(ptdesc);
1369 }
1370 
1371 /**
1372  * __gmap_unshadow_sgt - remove all entries from a shadow segment table
1373  * @sg: pointer to the shadow guest address space structure
1374  * @raddr: rmap address in the shadow guest address space
1375  * @sgt: pointer to the start of a shadow segment table
1376  *
1377  * Called with the sg->guest_table_lock
1378  */
1379 static void __gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr,
1380                                 unsigned long *sgt)
1381 {
1382         struct ptdesc *ptdesc;
1383         phys_addr_t pgt;
1384         int i;
1385 
1386         BUG_ON(!gmap_is_shadow(sg));
1387         for (i = 0; i < _CRST_ENTRIES; i++, raddr += _SEGMENT_SIZE) {
1388                 if (!(sgt[i] & _SEGMENT_ENTRY_ORIGIN))
1389                         continue;
1390                 pgt = sgt[i] & _REGION_ENTRY_ORIGIN;
1391                 sgt[i] = _SEGMENT_ENTRY_EMPTY;
1392                 __gmap_unshadow_pgt(sg, raddr, __va(pgt));
1393                 /* Free page table */
1394                 ptdesc = page_ptdesc(phys_to_page(pgt));
1395                 list_del(&ptdesc->pt_list);
1396                 page_table_free_pgste(ptdesc);
1397         }
1398 }
1399 
1400 /**
1401  * gmap_unshadow_sgt - remove a shadow segment table from a region-3 entry
1402  * @sg: pointer to the shadow guest address space structure
1403  * @raddr: rmap address in the shadow guest address space
1404  *
1405  * Called with the shadow->guest_table_lock
1406  */
1407 static void gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr)
1408 {
1409         unsigned long r3o, *r3e;
1410         phys_addr_t sgt;
1411         struct page *page;
1412 
1413         BUG_ON(!gmap_is_shadow(sg));
1414         r3e = gmap_table_walk(sg, raddr, 2); /* get region-3 pointer */
1415         if (!r3e || !(*r3e & _REGION_ENTRY_ORIGIN))
1416                 return;
1417         gmap_call_notifier(sg, raddr, raddr + _REGION3_SIZE - 1);
1418         r3o = (unsigned long) (r3e - ((raddr & _REGION3_INDEX) >> _REGION3_SHIFT));
1419         gmap_idte_one(__pa(r3o) | _ASCE_TYPE_REGION3, raddr);
1420         sgt = *r3e & _REGION_ENTRY_ORIGIN;
1421         *r3e = _REGION3_ENTRY_EMPTY;
1422         __gmap_unshadow_sgt(sg, raddr, __va(sgt));
1423         /* Free segment table */
1424         page = phys_to_page(sgt);
1425         list_del(&page->lru);
1426         __free_pages(page, CRST_ALLOC_ORDER);
1427 }
1428 
1429 /**
1430  * __gmap_unshadow_r3t - remove all entries from a shadow region-3 table
1431  * @sg: pointer to the shadow guest address space structure
1432  * @raddr: address in the shadow guest address space
1433  * @r3t: pointer to the start of a shadow region-3 table
1434  *
1435  * Called with the sg->guest_table_lock
1436  */
1437 static void __gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr,
1438                                 unsigned long *r3t)
1439 {
1440         struct page *page;
1441         phys_addr_t sgt;
1442         int i;
1443 
1444         BUG_ON(!gmap_is_shadow(sg));
1445         for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION3_SIZE) {
1446                 if (!(r3t[i] & _REGION_ENTRY_ORIGIN))
1447                         continue;
1448                 sgt = r3t[i] & _REGION_ENTRY_ORIGIN;
1449                 r3t[i] = _REGION3_ENTRY_EMPTY;
1450                 __gmap_unshadow_sgt(sg, raddr, __va(sgt));
1451                 /* Free segment table */
1452                 page = phys_to_page(sgt);
1453                 list_del(&page->lru);
1454                 __free_pages(page, CRST_ALLOC_ORDER);
1455         }
1456 }
1457 
1458 /**
1459  * gmap_unshadow_r3t - remove a shadow region-3 table from a region-2 entry
1460  * @sg: pointer to the shadow guest address space structure
1461  * @raddr: rmap address in the shadow guest address space
1462  *
1463  * Called with the sg->guest_table_lock
1464  */
1465 static void gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr)
1466 {
1467         unsigned long r2o, *r2e;
1468         phys_addr_t r3t;
1469         struct page *page;
1470 
1471         BUG_ON(!gmap_is_shadow(sg));
1472         r2e = gmap_table_walk(sg, raddr, 3); /* get region-2 pointer */
1473         if (!r2e || !(*r2e & _REGION_ENTRY_ORIGIN))
1474                 return;
1475         gmap_call_notifier(sg, raddr, raddr + _REGION2_SIZE - 1);
1476         r2o = (unsigned long) (r2e - ((raddr & _REGION2_INDEX) >> _REGION2_SHIFT));
1477         gmap_idte_one(__pa(r2o) | _ASCE_TYPE_REGION2, raddr);
1478         r3t = *r2e & _REGION_ENTRY_ORIGIN;
1479         *r2e = _REGION2_ENTRY_EMPTY;
1480         __gmap_unshadow_r3t(sg, raddr, __va(r3t));
1481         /* Free region 3 table */
1482         page = phys_to_page(r3t);
1483         list_del(&page->lru);
1484         __free_pages(page, CRST_ALLOC_ORDER);
1485 }
1486 
1487 /**
1488  * __gmap_unshadow_r2t - remove all entries from a shadow region-2 table
1489  * @sg: pointer to the shadow guest address space structure
1490  * @raddr: rmap address in the shadow guest address space
1491  * @r2t: pointer to the start of a shadow region-2 table
1492  *
1493  * Called with the sg->guest_table_lock
1494  */
1495 static void __gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr,
1496                                 unsigned long *r2t)
1497 {
1498         phys_addr_t r3t;
1499         struct page *page;
1500         int i;
1501 
1502         BUG_ON(!gmap_is_shadow(sg));
1503         for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION2_SIZE) {
1504                 if (!(r2t[i] & _REGION_ENTRY_ORIGIN))
1505                         continue;
1506                 r3t = r2t[i] & _REGION_ENTRY_ORIGIN;
1507                 r2t[i] = _REGION2_ENTRY_EMPTY;
1508                 __gmap_unshadow_r3t(sg, raddr, __va(r3t));
1509                 /* Free region 3 table */
1510                 page = phys_to_page(r3t);
1511                 list_del(&page->lru);
1512                 __free_pages(page, CRST_ALLOC_ORDER);
1513         }
1514 }
1515 
1516 /**
1517  * gmap_unshadow_r2t - remove a shadow region-2 table from a region-1 entry
1518  * @sg: pointer to the shadow guest address space structure
1519  * @raddr: rmap address in the shadow guest address space
1520  *
1521  * Called with the sg->guest_table_lock
1522  */
1523 static void gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr)
1524 {
1525         unsigned long r1o, *r1e;
1526         struct page *page;
1527         phys_addr_t r2t;
1528 
1529         BUG_ON(!gmap_is_shadow(sg));
1530         r1e = gmap_table_walk(sg, raddr, 4); /* get region-1 pointer */
1531         if (!r1e || !(*r1e & _REGION_ENTRY_ORIGIN))
1532                 return;
1533         gmap_call_notifier(sg, raddr, raddr + _REGION1_SIZE - 1);
1534         r1o = (unsigned long) (r1e - ((raddr & _REGION1_INDEX) >> _REGION1_SHIFT));
1535         gmap_idte_one(__pa(r1o) | _ASCE_TYPE_REGION1, raddr);
1536         r2t = *r1e & _REGION_ENTRY_ORIGIN;
1537         *r1e = _REGION1_ENTRY_EMPTY;
1538         __gmap_unshadow_r2t(sg, raddr, __va(r2t));
1539         /* Free region 2 table */
1540         page = phys_to_page(r2t);
1541         list_del(&page->lru);
1542         __free_pages(page, CRST_ALLOC_ORDER);
1543 }
1544 
1545 /**
1546  * __gmap_unshadow_r1t - remove all entries from a shadow region-1 table
1547  * @sg: pointer to the shadow guest address space structure
1548  * @raddr: rmap address in the shadow guest address space
1549  * @r1t: pointer to the start of a shadow region-1 table
1550  *
1551  * Called with the shadow->guest_table_lock
1552  */
1553 static void __gmap_unshadow_r1t(struct gmap *sg, unsigned long raddr,
1554                                 unsigned long *r1t)
1555 {
1556         unsigned long asce;
1557         struct page *page;
1558         phys_addr_t r2t;
1559         int i;
1560 
1561         BUG_ON(!gmap_is_shadow(sg));
1562         asce = __pa(r1t) | _ASCE_TYPE_REGION1;
1563         for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION1_SIZE) {
1564                 if (!(r1t[i] & _REGION_ENTRY_ORIGIN))
1565                         continue;
1566                 r2t = r1t[i] & _REGION_ENTRY_ORIGIN;
1567                 __gmap_unshadow_r2t(sg, raddr, __va(r2t));
1568                 /* Clear entry and flush translation r1t -> r2t */
1569                 gmap_idte_one(asce, raddr);
1570                 r1t[i] = _REGION1_ENTRY_EMPTY;
1571                 /* Free region 2 table */
1572                 page = phys_to_page(r2t);
1573                 list_del(&page->lru);
1574                 __free_pages(page, CRST_ALLOC_ORDER);
1575         }
1576 }
1577 
1578 /**
1579  * gmap_unshadow - remove a shadow page table completely
1580  * @sg: pointer to the shadow guest address space structure
1581  *
1582  * Called with sg->guest_table_lock
1583  */
1584 static void gmap_unshadow(struct gmap *sg)
1585 {
1586         unsigned long *table;
1587 
1588         BUG_ON(!gmap_is_shadow(sg));
1589         if (sg->removed)
1590                 return;
1591         sg->removed = 1;
1592         gmap_call_notifier(sg, 0, -1UL);
1593         gmap_flush_tlb(sg);
1594         table = __va(sg->asce & _ASCE_ORIGIN);
1595         switch (sg->asce & _ASCE_TYPE_MASK) {
1596         case _ASCE_TYPE_REGION1:
1597                 __gmap_unshadow_r1t(sg, 0, table);
1598                 break;
1599         case _ASCE_TYPE_REGION2:
1600                 __gmap_unshadow_r2t(sg, 0, table);
1601                 break;
1602         case _ASCE_TYPE_REGION3:
1603                 __gmap_unshadow_r3t(sg, 0, table);
1604                 break;
1605         case _ASCE_TYPE_SEGMENT:
1606                 __gmap_unshadow_sgt(sg, 0, table);
1607                 break;
1608         }
1609 }
1610 
1611 /**
1612  * gmap_find_shadow - find a specific asce in the list of shadow tables
1613  * @parent: pointer to the parent gmap
1614  * @asce: ASCE for which the shadow table is created
1615  * @edat_level: edat level to be used for the shadow translation
1616  *
1617  * Returns the pointer to a gmap if a shadow table with the given asce is
1618  * already available, ERR_PTR(-EAGAIN) if another one is just being created,
1619  * otherwise NULL
1620  */
1621 static struct gmap *gmap_find_shadow(struct gmap *parent, unsigned long asce,
1622                                      int edat_level)
1623 {
1624         struct gmap *sg;
1625 
1626         list_for_each_entry(sg, &parent->children, list) {
1627                 if (sg->orig_asce != asce || sg->edat_level != edat_level ||
1628                     sg->removed)
1629                         continue;
1630                 if (!sg->initialized)
1631                         return ERR_PTR(-EAGAIN);
1632                 refcount_inc(&sg->ref_count);
1633                 return sg;
1634         }
1635         return NULL;
1636 }
1637 
1638 /**
1639  * gmap_shadow_valid - check if a shadow guest address space matches the
1640  *                     given properties and is still valid
1641  * @sg: pointer to the shadow guest address space structure
1642  * @asce: ASCE for which the shadow table is requested
1643  * @edat_level: edat level to be used for the shadow translation
1644  *
1645  * Returns 1 if the gmap shadow is still valid and matches the given
1646  * properties, the caller can continue using it. Returns 0 otherwise, the
1647  * caller has to request a new shadow gmap in this case.
1648  *
1649  */
1650 int gmap_shadow_valid(struct gmap *sg, unsigned long asce, int edat_level)
1651 {
1652         if (sg->removed)
1653                 return 0;
1654         return sg->orig_asce == asce && sg->edat_level == edat_level;
1655 }
1656 EXPORT_SYMBOL_GPL(gmap_shadow_valid);
1657 
1658 /**
1659  * gmap_shadow - create/find a shadow guest address space
1660  * @parent: pointer to the parent gmap
1661  * @asce: ASCE for which the shadow table is created
1662  * @edat_level: edat level to be used for the shadow translation
1663  *
1664  * The pages of the top level page table referred by the asce parameter
1665  * will be set to read-only and marked in the PGSTEs of the kvm process.
1666  * The shadow table will be removed automatically on any change to the
1667  * PTE mapping for the source table.
1668  *
1669  * Returns a guest address space structure, ERR_PTR(-ENOMEM) if out of memory,
1670  * ERR_PTR(-EAGAIN) if the caller has to retry and ERR_PTR(-EFAULT) if the
1671  * parent gmap table could not be protected.
1672  */
1673 struct gmap *gmap_shadow(struct gmap *parent, unsigned long asce,
1674                          int edat_level)
1675 {
1676         struct gmap *sg, *new;
1677         unsigned long limit;
1678         int rc;
1679 
1680         BUG_ON(parent->mm->context.allow_gmap_hpage_1m);
1681         BUG_ON(gmap_is_shadow(parent));
1682         spin_lock(&parent->shadow_lock);
1683         sg = gmap_find_shadow(parent, asce, edat_level);
1684         spin_unlock(&parent->shadow_lock);
1685         if (sg)
1686                 return sg;
1687         /* Create a new shadow gmap */
1688         limit = -1UL >> (33 - (((asce & _ASCE_TYPE_MASK) >> 2) * 11));
1689         if (asce & _ASCE_REAL_SPACE)
1690                 limit = -1UL;
1691         new = gmap_alloc(limit);
1692         if (!new)
1693                 return ERR_PTR(-ENOMEM);
1694         new->mm = parent->mm;
1695         new->parent = gmap_get(parent);
1696         new->private = parent->private;
1697         new->orig_asce = asce;
1698         new->edat_level = edat_level;
1699         new->initialized = false;
1700         spin_lock(&parent->shadow_lock);
1701         /* Recheck if another CPU created the same shadow */
1702         sg = gmap_find_shadow(parent, asce, edat_level);
1703         if (sg) {
1704                 spin_unlock(&parent->shadow_lock);
1705                 gmap_free(new);
1706                 return sg;
1707         }
1708         if (asce & _ASCE_REAL_SPACE) {
1709                 /* only allow one real-space gmap shadow */
1710                 list_for_each_entry(sg, &parent->children, list) {
1711                         if (sg->orig_asce & _ASCE_REAL_SPACE) {
1712                                 spin_lock(&sg->guest_table_lock);
1713                                 gmap_unshadow(sg);
1714                                 spin_unlock(&sg->guest_table_lock);
1715                                 list_del(&sg->list);
1716                                 gmap_put(sg);
1717                                 break;
1718                         }
1719                 }
1720         }
1721         refcount_set(&new->ref_count, 2);
1722         list_add(&new->list, &parent->children);
1723         if (asce & _ASCE_REAL_SPACE) {
1724                 /* nothing to protect, return right away */
1725                 new->initialized = true;
1726                 spin_unlock(&parent->shadow_lock);
1727                 return new;
1728         }
1729         spin_unlock(&parent->shadow_lock);
1730         /* protect after insertion, so it will get properly invalidated */
1731         mmap_read_lock(parent->mm);
1732         rc = gmap_protect_range(parent, asce & _ASCE_ORIGIN,
1733                                 ((asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE,
1734                                 PROT_READ, GMAP_NOTIFY_SHADOW);
1735         mmap_read_unlock(parent->mm);
1736         spin_lock(&parent->shadow_lock);
1737         new->initialized = true;
1738         if (rc) {
1739                 list_del(&new->list);
1740                 gmap_free(new);
1741                 new = ERR_PTR(rc);
1742         }
1743         spin_unlock(&parent->shadow_lock);
1744         return new;
1745 }
1746 EXPORT_SYMBOL_GPL(gmap_shadow);
1747 
1748 /**
1749  * gmap_shadow_r2t - create an empty shadow region 2 table
1750  * @sg: pointer to the shadow guest address space structure
1751  * @saddr: faulting address in the shadow gmap
1752  * @r2t: parent gmap address of the region 2 table to get shadowed
1753  * @fake: r2t references contiguous guest memory block, not a r2t
1754  *
1755  * The r2t parameter specifies the address of the source table. The
1756  * four pages of the source table are made read-only in the parent gmap
1757  * address space. A write to the source table area @r2t will automatically
1758  * remove the shadow r2 table and all of its descendants.
1759  *
1760  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1761  * shadow table structure is incomplete, -ENOMEM if out of memory and
1762  * -EFAULT if an address in the parent gmap could not be resolved.
1763  *
1764  * Called with sg->mm->mmap_lock in read.
1765  */
1766 int gmap_shadow_r2t(struct gmap *sg, unsigned long saddr, unsigned long r2t,
1767                     int fake)
1768 {
1769         unsigned long raddr, origin, offset, len;
1770         unsigned long *table;
1771         phys_addr_t s_r2t;
1772         struct page *page;
1773         int rc;
1774 
1775         BUG_ON(!gmap_is_shadow(sg));
1776         /* Allocate a shadow region second table */
1777         page = gmap_alloc_crst();
1778         if (!page)
1779                 return -ENOMEM;
1780         page->index = r2t & _REGION_ENTRY_ORIGIN;
1781         if (fake)
1782                 page->index |= GMAP_SHADOW_FAKE_TABLE;
1783         s_r2t = page_to_phys(page);
1784         /* Install shadow region second table */
1785         spin_lock(&sg->guest_table_lock);
1786         table = gmap_table_walk(sg, saddr, 4); /* get region-1 pointer */
1787         if (!table) {
1788                 rc = -EAGAIN;           /* Race with unshadow */
1789                 goto out_free;
1790         }
1791         if (!(*table & _REGION_ENTRY_INVALID)) {
1792                 rc = 0;                 /* Already established */
1793                 goto out_free;
1794         } else if (*table & _REGION_ENTRY_ORIGIN) {
1795                 rc = -EAGAIN;           /* Race with shadow */
1796                 goto out_free;
1797         }
1798         crst_table_init(__va(s_r2t), _REGION2_ENTRY_EMPTY);
1799         /* mark as invalid as long as the parent table is not protected */
1800         *table = s_r2t | _REGION_ENTRY_LENGTH |
1801                  _REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID;
1802         if (sg->edat_level >= 1)
1803                 *table |= (r2t & _REGION_ENTRY_PROTECT);
1804         list_add(&page->lru, &sg->crst_list);
1805         if (fake) {
1806                 /* nothing to protect for fake tables */
1807                 *table &= ~_REGION_ENTRY_INVALID;
1808                 spin_unlock(&sg->guest_table_lock);
1809                 return 0;
1810         }
1811         spin_unlock(&sg->guest_table_lock);
1812         /* Make r2t read-only in parent gmap page table */
1813         raddr = (saddr & _REGION1_MASK) | _SHADOW_RMAP_REGION1;
1814         origin = r2t & _REGION_ENTRY_ORIGIN;
1815         offset = ((r2t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1816         len = ((r2t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1817         rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1818         spin_lock(&sg->guest_table_lock);
1819         if (!rc) {
1820                 table = gmap_table_walk(sg, saddr, 4);
1821                 if (!table || (*table & _REGION_ENTRY_ORIGIN) != s_r2t)
1822                         rc = -EAGAIN;           /* Race with unshadow */
1823                 else
1824                         *table &= ~_REGION_ENTRY_INVALID;
1825         } else {
1826                 gmap_unshadow_r2t(sg, raddr);
1827         }
1828         spin_unlock(&sg->guest_table_lock);
1829         return rc;
1830 out_free:
1831         spin_unlock(&sg->guest_table_lock);
1832         __free_pages(page, CRST_ALLOC_ORDER);
1833         return rc;
1834 }
1835 EXPORT_SYMBOL_GPL(gmap_shadow_r2t);
1836 
1837 /**
1838  * gmap_shadow_r3t - create a shadow region 3 table
1839  * @sg: pointer to the shadow guest address space structure
1840  * @saddr: faulting address in the shadow gmap
1841  * @r3t: parent gmap address of the region 3 table to get shadowed
1842  * @fake: r3t references contiguous guest memory block, not a r3t
1843  *
1844  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1845  * shadow table structure is incomplete, -ENOMEM if out of memory and
1846  * -EFAULT if an address in the parent gmap could not be resolved.
1847  *
1848  * Called with sg->mm->mmap_lock in read.
1849  */
1850 int gmap_shadow_r3t(struct gmap *sg, unsigned long saddr, unsigned long r3t,
1851                     int fake)
1852 {
1853         unsigned long raddr, origin, offset, len;
1854         unsigned long *table;
1855         phys_addr_t s_r3t;
1856         struct page *page;
1857         int rc;
1858 
1859         BUG_ON(!gmap_is_shadow(sg));
1860         /* Allocate a shadow region second table */
1861         page = gmap_alloc_crst();
1862         if (!page)
1863                 return -ENOMEM;
1864         page->index = r3t & _REGION_ENTRY_ORIGIN;
1865         if (fake)
1866                 page->index |= GMAP_SHADOW_FAKE_TABLE;
1867         s_r3t = page_to_phys(page);
1868         /* Install shadow region second table */
1869         spin_lock(&sg->guest_table_lock);
1870         table = gmap_table_walk(sg, saddr, 3); /* get region-2 pointer */
1871         if (!table) {
1872                 rc = -EAGAIN;           /* Race with unshadow */
1873                 goto out_free;
1874         }
1875         if (!(*table & _REGION_ENTRY_INVALID)) {
1876                 rc = 0;                 /* Already established */
1877                 goto out_free;
1878         } else if (*table & _REGION_ENTRY_ORIGIN) {
1879                 rc = -EAGAIN;           /* Race with shadow */
1880                 goto out_free;
1881         }
1882         crst_table_init(__va(s_r3t), _REGION3_ENTRY_EMPTY);
1883         /* mark as invalid as long as the parent table is not protected */
1884         *table = s_r3t | _REGION_ENTRY_LENGTH |
1885                  _REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID;
1886         if (sg->edat_level >= 1)
1887                 *table |= (r3t & _REGION_ENTRY_PROTECT);
1888         list_add(&page->lru, &sg->crst_list);
1889         if (fake) {
1890                 /* nothing to protect for fake tables */
1891                 *table &= ~_REGION_ENTRY_INVALID;
1892                 spin_unlock(&sg->guest_table_lock);
1893                 return 0;
1894         }
1895         spin_unlock(&sg->guest_table_lock);
1896         /* Make r3t read-only in parent gmap page table */
1897         raddr = (saddr & _REGION2_MASK) | _SHADOW_RMAP_REGION2;
1898         origin = r3t & _REGION_ENTRY_ORIGIN;
1899         offset = ((r3t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1900         len = ((r3t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1901         rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1902         spin_lock(&sg->guest_table_lock);
1903         if (!rc) {
1904                 table = gmap_table_walk(sg, saddr, 3);
1905                 if (!table || (*table & _REGION_ENTRY_ORIGIN) != s_r3t)
1906                         rc = -EAGAIN;           /* Race with unshadow */
1907                 else
1908                         *table &= ~_REGION_ENTRY_INVALID;
1909         } else {
1910                 gmap_unshadow_r3t(sg, raddr);
1911         }
1912         spin_unlock(&sg->guest_table_lock);
1913         return rc;
1914 out_free:
1915         spin_unlock(&sg->guest_table_lock);
1916         __free_pages(page, CRST_ALLOC_ORDER);
1917         return rc;
1918 }
1919 EXPORT_SYMBOL_GPL(gmap_shadow_r3t);
1920 
1921 /**
1922  * gmap_shadow_sgt - create a shadow segment table
1923  * @sg: pointer to the shadow guest address space structure
1924  * @saddr: faulting address in the shadow gmap
1925  * @sgt: parent gmap address of the segment table to get shadowed
1926  * @fake: sgt references contiguous guest memory block, not a sgt
1927  *
1928  * Returns: 0 if successfully shadowed or already shadowed, -EAGAIN if the
1929  * shadow table structure is incomplete, -ENOMEM if out of memory and
1930  * -EFAULT if an address in the parent gmap could not be resolved.
1931  *
1932  * Called with sg->mm->mmap_lock in read.
1933  */
1934 int gmap_shadow_sgt(struct gmap *sg, unsigned long saddr, unsigned long sgt,
1935                     int fake)
1936 {
1937         unsigned long raddr, origin, offset, len;
1938         unsigned long *table;
1939         phys_addr_t s_sgt;
1940         struct page *page;
1941         int rc;
1942 
1943         BUG_ON(!gmap_is_shadow(sg) || (sgt & _REGION3_ENTRY_LARGE));
1944         /* Allocate a shadow segment table */
1945         page = gmap_alloc_crst();
1946         if (!page)
1947                 return -ENOMEM;
1948         page->index = sgt & _REGION_ENTRY_ORIGIN;
1949         if (fake)
1950                 page->index |= GMAP_SHADOW_FAKE_TABLE;
1951         s_sgt = page_to_phys(page);
1952         /* Install shadow region second table */
1953         spin_lock(&sg->guest_table_lock);
1954         table = gmap_table_walk(sg, saddr, 2); /* get region-3 pointer */
1955         if (!table) {
1956                 rc = -EAGAIN;           /* Race with unshadow */
1957                 goto out_free;
1958         }
1959         if (!(*table & _REGION_ENTRY_INVALID)) {
1960                 rc = 0;                 /* Already established */
1961                 goto out_free;
1962         } else if (*table & _REGION_ENTRY_ORIGIN) {
1963                 rc = -EAGAIN;           /* Race with shadow */
1964                 goto out_free;
1965         }
1966         crst_table_init(__va(s_sgt), _SEGMENT_ENTRY_EMPTY);
1967         /* mark as invalid as long as the parent table is not protected */
1968         *table = s_sgt | _REGION_ENTRY_LENGTH |
1969                  _REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID;
1970         if (sg->edat_level >= 1)
1971                 *table |= sgt & _REGION_ENTRY_PROTECT;
1972         list_add(&page->lru, &sg->crst_list);
1973         if (fake) {
1974                 /* nothing to protect for fake tables */
1975                 *table &= ~_REGION_ENTRY_INVALID;
1976                 spin_unlock(&sg->guest_table_lock);
1977                 return 0;
1978         }
1979         spin_unlock(&sg->guest_table_lock);
1980         /* Make sgt read-only in parent gmap page table */
1981         raddr = (saddr & _REGION3_MASK) | _SHADOW_RMAP_REGION3;
1982         origin = sgt & _REGION_ENTRY_ORIGIN;
1983         offset = ((sgt & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1984         len = ((sgt & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1985         rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1986         spin_lock(&sg->guest_table_lock);
1987         if (!rc) {
1988                 table = gmap_table_walk(sg, saddr, 2);
1989                 if (!table || (*table & _REGION_ENTRY_ORIGIN) != s_sgt)
1990                         rc = -EAGAIN;           /* Race with unshadow */
1991                 else
1992                         *table &= ~_REGION_ENTRY_INVALID;
1993         } else {
1994                 gmap_unshadow_sgt(sg, raddr);
1995         }
1996         spin_unlock(&sg->guest_table_lock);
1997         return rc;
1998 out_free:
1999         spin_unlock(&sg->guest_table_lock);
2000         __free_pages(page, CRST_ALLOC_ORDER);
2001         return rc;
2002 }
2003 EXPORT_SYMBOL_GPL(gmap_shadow_sgt);
2004 
2005 /**
2006  * gmap_shadow_pgt_lookup - find a shadow page table
2007  * @sg: pointer to the shadow guest address space structure
2008  * @saddr: the address in the shadow aguest address space
2009  * @pgt: parent gmap address of the page table to get shadowed
2010  * @dat_protection: if the pgtable is marked as protected by dat
2011  * @fake: pgt references contiguous guest memory block, not a pgtable
2012  *
2013  * Returns 0 if the shadow page table was found and -EAGAIN if the page
2014  * table was not found.
2015  *
2016  * Called with sg->mm->mmap_lock in read.
2017  */
2018 int gmap_shadow_pgt_lookup(struct gmap *sg, unsigned long saddr,
2019                            unsigned long *pgt, int *dat_protection,
2020                            int *fake)
2021 {
2022         unsigned long *table;
2023         struct page *page;
2024         int rc;
2025 
2026         BUG_ON(!gmap_is_shadow(sg));
2027         spin_lock(&sg->guest_table_lock);
2028         table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */
2029         if (table && !(*table & _SEGMENT_ENTRY_INVALID)) {
2030                 /* Shadow page tables are full pages (pte+pgste) */
2031                 page = pfn_to_page(*table >> PAGE_SHIFT);
2032                 *pgt = page->index & ~GMAP_SHADOW_FAKE_TABLE;
2033                 *dat_protection = !!(*table & _SEGMENT_ENTRY_PROTECT);
2034                 *fake = !!(page->index & GMAP_SHADOW_FAKE_TABLE);
2035                 rc = 0;
2036         } else  {
2037                 rc = -EAGAIN;
2038         }
2039         spin_unlock(&sg->guest_table_lock);
2040         return rc;
2041 
2042 }
2043 EXPORT_SYMBOL_GPL(gmap_shadow_pgt_lookup);
2044 
2045 /**
2046  * gmap_shadow_pgt - instantiate a shadow page table
2047  * @sg: pointer to the shadow guest address space structure
2048  * @saddr: faulting address in the shadow gmap
2049  * @pgt: parent gmap address of the page table to get shadowed
2050  * @fake: pgt references contiguous guest memory block, not a pgtable
2051  *
2052  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
2053  * shadow table structure is incomplete, -ENOMEM if out of memory,
2054  * -EFAULT if an address in the parent gmap could not be resolved and
2055  *
2056  * Called with gmap->mm->mmap_lock in read
2057  */
2058 int gmap_shadow_pgt(struct gmap *sg, unsigned long saddr, unsigned long pgt,
2059                     int fake)
2060 {
2061         unsigned long raddr, origin;
2062         unsigned long *table;
2063         struct ptdesc *ptdesc;
2064         phys_addr_t s_pgt;
2065         int rc;
2066 
2067         BUG_ON(!gmap_is_shadow(sg) || (pgt & _SEGMENT_ENTRY_LARGE));
2068         /* Allocate a shadow page table */
2069         ptdesc = page_table_alloc_pgste(sg->mm);
2070         if (!ptdesc)
2071                 return -ENOMEM;
2072         ptdesc->pt_index = pgt & _SEGMENT_ENTRY_ORIGIN;
2073         if (fake)
2074                 ptdesc->pt_index |= GMAP_SHADOW_FAKE_TABLE;
2075         s_pgt = page_to_phys(ptdesc_page(ptdesc));
2076         /* Install shadow page table */
2077         spin_lock(&sg->guest_table_lock);
2078         table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */
2079         if (!table) {
2080                 rc = -EAGAIN;           /* Race with unshadow */
2081                 goto out_free;
2082         }
2083         if (!(*table & _SEGMENT_ENTRY_INVALID)) {
2084                 rc = 0;                 /* Already established */
2085                 goto out_free;
2086         } else if (*table & _SEGMENT_ENTRY_ORIGIN) {
2087                 rc = -EAGAIN;           /* Race with shadow */
2088                 goto out_free;
2089         }
2090         /* mark as invalid as long as the parent table is not protected */
2091         *table = (unsigned long) s_pgt | _SEGMENT_ENTRY |
2092                  (pgt & _SEGMENT_ENTRY_PROTECT) | _SEGMENT_ENTRY_INVALID;
2093         list_add(&ptdesc->pt_list, &sg->pt_list);
2094         if (fake) {
2095                 /* nothing to protect for fake tables */
2096                 *table &= ~_SEGMENT_ENTRY_INVALID;
2097                 spin_unlock(&sg->guest_table_lock);
2098                 return 0;
2099         }
2100         spin_unlock(&sg->guest_table_lock);
2101         /* Make pgt read-only in parent gmap page table (not the pgste) */
2102         raddr = (saddr & _SEGMENT_MASK) | _SHADOW_RMAP_SEGMENT;
2103         origin = pgt & _SEGMENT_ENTRY_ORIGIN & PAGE_MASK;
2104         rc = gmap_protect_rmap(sg, raddr, origin, PAGE_SIZE);
2105         spin_lock(&sg->guest_table_lock);
2106         if (!rc) {
2107                 table = gmap_table_walk(sg, saddr, 1);
2108                 if (!table || (*table & _SEGMENT_ENTRY_ORIGIN) != s_pgt)
2109                         rc = -EAGAIN;           /* Race with unshadow */
2110                 else
2111                         *table &= ~_SEGMENT_ENTRY_INVALID;
2112         } else {
2113                 gmap_unshadow_pgt(sg, raddr);
2114         }
2115         spin_unlock(&sg->guest_table_lock);
2116         return rc;
2117 out_free:
2118         spin_unlock(&sg->guest_table_lock);
2119         page_table_free_pgste(ptdesc);
2120         return rc;
2121 
2122 }
2123 EXPORT_SYMBOL_GPL(gmap_shadow_pgt);
2124 
2125 /**
2126  * gmap_shadow_page - create a shadow page mapping
2127  * @sg: pointer to the shadow guest address space structure
2128  * @saddr: faulting address in the shadow gmap
2129  * @pte: pte in parent gmap address space to get shadowed
2130  *
2131  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
2132  * shadow table structure is incomplete, -ENOMEM if out of memory and
2133  * -EFAULT if an address in the parent gmap could not be resolved.
2134  *
2135  * Called with sg->mm->mmap_lock in read.
2136  */
2137 int gmap_shadow_page(struct gmap *sg, unsigned long saddr, pte_t pte)
2138 {
2139         struct gmap *parent;
2140         struct gmap_rmap *rmap;
2141         unsigned long vmaddr, paddr;
2142         spinlock_t *ptl;
2143         pte_t *sptep, *tptep;
2144         int prot;
2145         int rc;
2146 
2147         BUG_ON(!gmap_is_shadow(sg));
2148         parent = sg->parent;
2149         prot = (pte_val(pte) & _PAGE_PROTECT) ? PROT_READ : PROT_WRITE;
2150 
2151         rmap = kzalloc(sizeof(*rmap), GFP_KERNEL_ACCOUNT);
2152         if (!rmap)
2153                 return -ENOMEM;
2154         rmap->raddr = (saddr & PAGE_MASK) | _SHADOW_RMAP_PGTABLE;
2155 
2156         while (1) {
2157                 paddr = pte_val(pte) & PAGE_MASK;
2158                 vmaddr = __gmap_translate(parent, paddr);
2159                 if (IS_ERR_VALUE(vmaddr)) {
2160                         rc = vmaddr;
2161                         break;
2162                 }
2163                 rc = radix_tree_preload(GFP_KERNEL_ACCOUNT);
2164                 if (rc)
2165                         break;
2166                 rc = -EAGAIN;
2167                 sptep = gmap_pte_op_walk(parent, paddr, &ptl);
2168                 if (sptep) {
2169                         spin_lock(&sg->guest_table_lock);
2170                         /* Get page table pointer */
2171                         tptep = (pte_t *) gmap_table_walk(sg, saddr, 0);
2172                         if (!tptep) {
2173                                 spin_unlock(&sg->guest_table_lock);
2174                                 gmap_pte_op_end(sptep, ptl);
2175                                 radix_tree_preload_end();
2176                                 break;
2177                         }
2178                         rc = ptep_shadow_pte(sg->mm, saddr, sptep, tptep, pte);
2179                         if (rc > 0) {
2180                                 /* Success and a new mapping */
2181                                 gmap_insert_rmap(sg, vmaddr, rmap);
2182                                 rmap = NULL;
2183                                 rc = 0;
2184                         }
2185                         gmap_pte_op_end(sptep, ptl);
2186                         spin_unlock(&sg->guest_table_lock);
2187                 }
2188                 radix_tree_preload_end();
2189                 if (!rc)
2190                         break;
2191                 rc = gmap_pte_op_fixup(parent, paddr, vmaddr, prot);
2192                 if (rc)
2193                         break;
2194         }
2195         kfree(rmap);
2196         return rc;
2197 }
2198 EXPORT_SYMBOL_GPL(gmap_shadow_page);
2199 
2200 /*
2201  * gmap_shadow_notify - handle notifications for shadow gmap
2202  *
2203  * Called with sg->parent->shadow_lock.
2204  */
2205 static void gmap_shadow_notify(struct gmap *sg, unsigned long vmaddr,
2206                                unsigned long gaddr)
2207 {
2208         struct gmap_rmap *rmap, *rnext, *head;
2209         unsigned long start, end, bits, raddr;
2210 
2211         BUG_ON(!gmap_is_shadow(sg));
2212 
2213         spin_lock(&sg->guest_table_lock);
2214         if (sg->removed) {
2215                 spin_unlock(&sg->guest_table_lock);
2216                 return;
2217         }
2218         /* Check for top level table */
2219         start = sg->orig_asce & _ASCE_ORIGIN;
2220         end = start + ((sg->orig_asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE;
2221         if (!(sg->orig_asce & _ASCE_REAL_SPACE) && gaddr >= start &&
2222             gaddr < end) {
2223                 /* The complete shadow table has to go */
2224                 gmap_unshadow(sg);
2225                 spin_unlock(&sg->guest_table_lock);
2226                 list_del(&sg->list);
2227                 gmap_put(sg);
2228                 return;
2229         }
2230         /* Remove the page table tree from on specific entry */
2231         head = radix_tree_delete(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT);
2232         gmap_for_each_rmap_safe(rmap, rnext, head) {
2233                 bits = rmap->raddr & _SHADOW_RMAP_MASK;
2234                 raddr = rmap->raddr ^ bits;
2235                 switch (bits) {
2236                 case _SHADOW_RMAP_REGION1:
2237                         gmap_unshadow_r2t(sg, raddr);
2238                         break;
2239                 case _SHADOW_RMAP_REGION2:
2240                         gmap_unshadow_r3t(sg, raddr);
2241                         break;
2242                 case _SHADOW_RMAP_REGION3:
2243                         gmap_unshadow_sgt(sg, raddr);
2244                         break;
2245                 case _SHADOW_RMAP_SEGMENT:
2246                         gmap_unshadow_pgt(sg, raddr);
2247                         break;
2248                 case _SHADOW_RMAP_PGTABLE:
2249                         gmap_unshadow_page(sg, raddr);
2250                         break;
2251                 }
2252                 kfree(rmap);
2253         }
2254         spin_unlock(&sg->guest_table_lock);
2255 }
2256 
2257 /**
2258  * ptep_notify - call all invalidation callbacks for a specific pte.
2259  * @mm: pointer to the process mm_struct
2260  * @vmaddr: virtual address in the process address space
2261  * @pte: pointer to the page table entry
2262  * @bits: bits from the pgste that caused the notify call
2263  *
2264  * This function is assumed to be called with the page table lock held
2265  * for the pte to notify.
2266  */
2267 void ptep_notify(struct mm_struct *mm, unsigned long vmaddr,
2268                  pte_t *pte, unsigned long bits)
2269 {
2270         unsigned long offset, gaddr = 0;
2271         unsigned long *table;
2272         struct gmap *gmap, *sg, *next;
2273 
2274         offset = ((unsigned long) pte) & (255 * sizeof(pte_t));
2275         offset = offset * (PAGE_SIZE / sizeof(pte_t));
2276         rcu_read_lock();
2277         list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2278                 spin_lock(&gmap->guest_table_lock);
2279                 table = radix_tree_lookup(&gmap->host_to_guest,
2280                                           vmaddr >> PMD_SHIFT);
2281                 if (table)
2282                         gaddr = __gmap_segment_gaddr(table) + offset;
2283                 spin_unlock(&gmap->guest_table_lock);
2284                 if (!table)
2285                         continue;
2286 
2287                 if (!list_empty(&gmap->children) && (bits & PGSTE_VSIE_BIT)) {
2288                         spin_lock(&gmap->shadow_lock);
2289                         list_for_each_entry_safe(sg, next,
2290                                                  &gmap->children, list)
2291                                 gmap_shadow_notify(sg, vmaddr, gaddr);
2292                         spin_unlock(&gmap->shadow_lock);
2293                 }
2294                 if (bits & PGSTE_IN_BIT)
2295                         gmap_call_notifier(gmap, gaddr, gaddr + PAGE_SIZE - 1);
2296         }
2297         rcu_read_unlock();
2298 }
2299 EXPORT_SYMBOL_GPL(ptep_notify);
2300 
2301 static void pmdp_notify_gmap(struct gmap *gmap, pmd_t *pmdp,
2302                              unsigned long gaddr)
2303 {
2304         set_pmd(pmdp, clear_pmd_bit(*pmdp, __pgprot(_SEGMENT_ENTRY_GMAP_IN)));
2305         gmap_call_notifier(gmap, gaddr, gaddr + HPAGE_SIZE - 1);
2306 }
2307 
2308 /**
2309  * gmap_pmdp_xchg - exchange a gmap pmd with another
2310  * @gmap: pointer to the guest address space structure
2311  * @pmdp: pointer to the pmd entry
2312  * @new: replacement entry
2313  * @gaddr: the affected guest address
2314  *
2315  * This function is assumed to be called with the guest_table_lock
2316  * held.
2317  */
2318 static void gmap_pmdp_xchg(struct gmap *gmap, pmd_t *pmdp, pmd_t new,
2319                            unsigned long gaddr)
2320 {
2321         gaddr &= HPAGE_MASK;
2322         pmdp_notify_gmap(gmap, pmdp, gaddr);
2323         new = clear_pmd_bit(new, __pgprot(_SEGMENT_ENTRY_GMAP_IN));
2324         if (MACHINE_HAS_TLB_GUEST)
2325                 __pmdp_idte(gaddr, (pmd_t *)pmdp, IDTE_GUEST_ASCE, gmap->asce,
2326                             IDTE_GLOBAL);
2327         else if (MACHINE_HAS_IDTE)
2328                 __pmdp_idte(gaddr, (pmd_t *)pmdp, 0, 0, IDTE_GLOBAL);
2329         else
2330                 __pmdp_csp(pmdp);
2331         set_pmd(pmdp, new);
2332 }
2333 
2334 static void gmap_pmdp_clear(struct mm_struct *mm, unsigned long vmaddr,
2335                             int purge)
2336 {
2337         pmd_t *pmdp;
2338         struct gmap *gmap;
2339         unsigned long gaddr;
2340 
2341         rcu_read_lock();
2342         list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2343                 spin_lock(&gmap->guest_table_lock);
2344                 pmdp = (pmd_t *)radix_tree_delete(&gmap->host_to_guest,
2345                                                   vmaddr >> PMD_SHIFT);
2346                 if (pmdp) {
2347                         gaddr = __gmap_segment_gaddr((unsigned long *)pmdp);
2348                         pmdp_notify_gmap(gmap, pmdp, gaddr);
2349                         WARN_ON(pmd_val(*pmdp) & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2350                                                    _SEGMENT_ENTRY_GMAP_UC));
2351                         if (purge)
2352                                 __pmdp_csp(pmdp);
2353                         set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
2354                 }
2355                 spin_unlock(&gmap->guest_table_lock);
2356         }
2357         rcu_read_unlock();
2358 }
2359 
2360 /**
2361  * gmap_pmdp_invalidate - invalidate all affected guest pmd entries without
2362  *                        flushing
2363  * @mm: pointer to the process mm_struct
2364  * @vmaddr: virtual address in the process address space
2365  */
2366 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr)
2367 {
2368         gmap_pmdp_clear(mm, vmaddr, 0);
2369 }
2370 EXPORT_SYMBOL_GPL(gmap_pmdp_invalidate);
2371 
2372 /**
2373  * gmap_pmdp_csp - csp all affected guest pmd entries
2374  * @mm: pointer to the process mm_struct
2375  * @vmaddr: virtual address in the process address space
2376  */
2377 void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr)
2378 {
2379         gmap_pmdp_clear(mm, vmaddr, 1);
2380 }
2381 EXPORT_SYMBOL_GPL(gmap_pmdp_csp);
2382 
2383 /**
2384  * gmap_pmdp_idte_local - invalidate and clear a guest pmd entry
2385  * @mm: pointer to the process mm_struct
2386  * @vmaddr: virtual address in the process address space
2387  */
2388 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr)
2389 {
2390         unsigned long *entry, gaddr;
2391         struct gmap *gmap;
2392         pmd_t *pmdp;
2393 
2394         rcu_read_lock();
2395         list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2396                 spin_lock(&gmap->guest_table_lock);
2397                 entry = radix_tree_delete(&gmap->host_to_guest,
2398                                           vmaddr >> PMD_SHIFT);
2399                 if (entry) {
2400                         pmdp = (pmd_t *)entry;
2401                         gaddr = __gmap_segment_gaddr(entry);
2402                         pmdp_notify_gmap(gmap, pmdp, gaddr);
2403                         WARN_ON(*entry & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2404                                            _SEGMENT_ENTRY_GMAP_UC));
2405                         if (MACHINE_HAS_TLB_GUEST)
2406                                 __pmdp_idte(gaddr, pmdp, IDTE_GUEST_ASCE,
2407                                             gmap->asce, IDTE_LOCAL);
2408                         else if (MACHINE_HAS_IDTE)
2409                                 __pmdp_idte(gaddr, pmdp, 0, 0, IDTE_LOCAL);
2410                         *entry = _SEGMENT_ENTRY_EMPTY;
2411                 }
2412                 spin_unlock(&gmap->guest_table_lock);
2413         }
2414         rcu_read_unlock();
2415 }
2416 EXPORT_SYMBOL_GPL(gmap_pmdp_idte_local);
2417 
2418 /**
2419  * gmap_pmdp_idte_global - invalidate and clear a guest pmd entry
2420  * @mm: pointer to the process mm_struct
2421  * @vmaddr: virtual address in the process address space
2422  */
2423 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr)
2424 {
2425         unsigned long *entry, gaddr;
2426         struct gmap *gmap;
2427         pmd_t *pmdp;
2428 
2429         rcu_read_lock();
2430         list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2431                 spin_lock(&gmap->guest_table_lock);
2432                 entry = radix_tree_delete(&gmap->host_to_guest,
2433                                           vmaddr >> PMD_SHIFT);
2434                 if (entry) {
2435                         pmdp = (pmd_t *)entry;
2436                         gaddr = __gmap_segment_gaddr(entry);
2437                         pmdp_notify_gmap(gmap, pmdp, gaddr);
2438                         WARN_ON(*entry & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2439                                            _SEGMENT_ENTRY_GMAP_UC));
2440                         if (MACHINE_HAS_TLB_GUEST)
2441                                 __pmdp_idte(gaddr, pmdp, IDTE_GUEST_ASCE,
2442                                             gmap->asce, IDTE_GLOBAL);
2443                         else if (MACHINE_HAS_IDTE)
2444                                 __pmdp_idte(gaddr, pmdp, 0, 0, IDTE_GLOBAL);
2445                         else
2446                                 __pmdp_csp(pmdp);
2447                         *entry = _SEGMENT_ENTRY_EMPTY;
2448                 }
2449                 spin_unlock(&gmap->guest_table_lock);
2450         }
2451         rcu_read_unlock();
2452 }
2453 EXPORT_SYMBOL_GPL(gmap_pmdp_idte_global);
2454 
2455 /**
2456  * gmap_test_and_clear_dirty_pmd - test and reset segment dirty status
2457  * @gmap: pointer to guest address space
2458  * @pmdp: pointer to the pmd to be tested
2459  * @gaddr: virtual address in the guest address space
2460  *
2461  * This function is assumed to be called with the guest_table_lock
2462  * held.
2463  */
2464 static bool gmap_test_and_clear_dirty_pmd(struct gmap *gmap, pmd_t *pmdp,
2465                                           unsigned long gaddr)
2466 {
2467         if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
2468                 return false;
2469 
2470         /* Already protected memory, which did not change is clean */
2471         if (pmd_val(*pmdp) & _SEGMENT_ENTRY_PROTECT &&
2472             !(pmd_val(*pmdp) & _SEGMENT_ENTRY_GMAP_UC))
2473                 return false;
2474 
2475         /* Clear UC indication and reset protection */
2476         set_pmd(pmdp, clear_pmd_bit(*pmdp, __pgprot(_SEGMENT_ENTRY_GMAP_UC)));
2477         gmap_protect_pmd(gmap, gaddr, pmdp, PROT_READ, 0);
2478         return true;
2479 }
2480 
2481 /**
2482  * gmap_sync_dirty_log_pmd - set bitmap based on dirty status of segment
2483  * @gmap: pointer to guest address space
2484  * @bitmap: dirty bitmap for this pmd
2485  * @gaddr: virtual address in the guest address space
2486  * @vmaddr: virtual address in the host address space
2487  *
2488  * This function is assumed to be called with the guest_table_lock
2489  * held.
2490  */
2491 void gmap_sync_dirty_log_pmd(struct gmap *gmap, unsigned long bitmap[4],
2492                              unsigned long gaddr, unsigned long vmaddr)
2493 {
2494         int i;
2495         pmd_t *pmdp;
2496         pte_t *ptep;
2497         spinlock_t *ptl;
2498 
2499         pmdp = gmap_pmd_op_walk(gmap, gaddr);
2500         if (!pmdp)
2501                 return;
2502 
2503         if (pmd_leaf(*pmdp)) {
2504                 if (gmap_test_and_clear_dirty_pmd(gmap, pmdp, gaddr))
2505                         bitmap_fill(bitmap, _PAGE_ENTRIES);
2506         } else {
2507                 for (i = 0; i < _PAGE_ENTRIES; i++, vmaddr += PAGE_SIZE) {
2508                         ptep = pte_alloc_map_lock(gmap->mm, pmdp, vmaddr, &ptl);
2509                         if (!ptep)
2510                                 continue;
2511                         if (ptep_test_and_clear_uc(gmap->mm, vmaddr, ptep))
2512                                 set_bit(i, bitmap);
2513                         pte_unmap_unlock(ptep, ptl);
2514                 }
2515         }
2516         gmap_pmd_op_end(gmap, pmdp);
2517 }
2518 EXPORT_SYMBOL_GPL(gmap_sync_dirty_log_pmd);
2519 
2520 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2521 static int thp_split_walk_pmd_entry(pmd_t *pmd, unsigned long addr,
2522                                     unsigned long end, struct mm_walk *walk)
2523 {
2524         struct vm_area_struct *vma = walk->vma;
2525 
2526         split_huge_pmd(vma, pmd, addr);
2527         return 0;
2528 }
2529 
2530 static const struct mm_walk_ops thp_split_walk_ops = {
2531         .pmd_entry      = thp_split_walk_pmd_entry,
2532         .walk_lock      = PGWALK_WRLOCK_VERIFY,
2533 };
2534 
2535 static inline void thp_split_mm(struct mm_struct *mm)
2536 {
2537         struct vm_area_struct *vma;
2538         VMA_ITERATOR(vmi, mm, 0);
2539 
2540         for_each_vma(vmi, vma) {
2541                 vm_flags_mod(vma, VM_NOHUGEPAGE, VM_HUGEPAGE);
2542                 walk_page_vma(vma, &thp_split_walk_ops, NULL);
2543         }
2544         mm->def_flags |= VM_NOHUGEPAGE;
2545 }
2546 #else
2547 static inline void thp_split_mm(struct mm_struct *mm)
2548 {
2549 }
2550 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2551 
2552 /*
2553  * switch on pgstes for its userspace process (for kvm)
2554  */
2555 int s390_enable_sie(void)
2556 {
2557         struct mm_struct *mm = current->mm;
2558 
2559         /* Do we have pgstes? if yes, we are done */
2560         if (mm_has_pgste(mm))
2561                 return 0;
2562         /* Fail if the page tables are 2K */
2563         if (!mm_alloc_pgste(mm))
2564                 return -EINVAL;
2565         mmap_write_lock(mm);
2566         mm->context.has_pgste = 1;
2567         /* split thp mappings and disable thp for future mappings */
2568         thp_split_mm(mm);
2569         mmap_write_unlock(mm);
2570         return 0;
2571 }
2572 EXPORT_SYMBOL_GPL(s390_enable_sie);
2573 
2574 static int find_zeropage_pte_entry(pte_t *pte, unsigned long addr,
2575                                    unsigned long end, struct mm_walk *walk)
2576 {
2577         unsigned long *found_addr = walk->private;
2578 
2579         /* Return 1 of the page is a zeropage. */
2580         if (is_zero_pfn(pte_pfn(*pte))) {
2581                 /*
2582                  * Shared zeropage in e.g., a FS DAX mapping? We cannot do the
2583                  * right thing and likely don't care: FAULT_FLAG_UNSHARE
2584                  * currently only works in COW mappings, which is also where
2585                  * mm_forbids_zeropage() is checked.
2586                  */
2587                 if (!is_cow_mapping(walk->vma->vm_flags))
2588                         return -EFAULT;
2589 
2590                 *found_addr = addr;
2591                 return 1;
2592         }
2593         return 0;
2594 }
2595 
2596 static const struct mm_walk_ops find_zeropage_ops = {
2597         .pte_entry      = find_zeropage_pte_entry,
2598         .walk_lock      = PGWALK_WRLOCK,
2599 };
2600 
2601 /*
2602  * Unshare all shared zeropages, replacing them by anonymous pages. Note that
2603  * we cannot simply zap all shared zeropages, because this could later
2604  * trigger unexpected userfaultfd missing events.
2605  *
2606  * This must be called after mm->context.allow_cow_sharing was
2607  * set to 0, to avoid future mappings of shared zeropages.
2608  *
2609  * mm contracts with s390, that even if mm were to remove a page table,
2610  * and racing with walk_page_range_vma() calling pte_offset_map_lock()
2611  * would fail, it will never insert a page table containing empty zero
2612  * pages once mm_forbids_zeropage(mm) i.e.
2613  * mm->context.allow_cow_sharing is set to 0.
2614  */
2615 static int __s390_unshare_zeropages(struct mm_struct *mm)
2616 {
2617         struct vm_area_struct *vma;
2618         VMA_ITERATOR(vmi, mm, 0);
2619         unsigned long addr;
2620         vm_fault_t fault;
2621         int rc;
2622 
2623         for_each_vma(vmi, vma) {
2624                 /*
2625                  * We could only look at COW mappings, but it's more future
2626                  * proof to catch unexpected zeropages in other mappings and
2627                  * fail.
2628                  */
2629                 if ((vma->vm_flags & VM_PFNMAP) || is_vm_hugetlb_page(vma))
2630                         continue;
2631                 addr = vma->vm_start;
2632 
2633 retry:
2634                 rc = walk_page_range_vma(vma, addr, vma->vm_end,
2635                                          &find_zeropage_ops, &addr);
2636                 if (rc < 0)
2637                         return rc;
2638                 else if (!rc)
2639                         continue;
2640 
2641                 /* addr was updated by find_zeropage_pte_entry() */
2642                 fault = handle_mm_fault(vma, addr,
2643                                         FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE,
2644                                         NULL);
2645                 if (fault & VM_FAULT_OOM)
2646                         return -ENOMEM;
2647                 /*
2648                  * See break_ksm(): even after handle_mm_fault() returned 0, we
2649                  * must start the lookup from the current address, because
2650                  * handle_mm_fault() may back out if there's any difficulty.
2651                  *
2652                  * VM_FAULT_SIGBUS and VM_FAULT_SIGSEGV are unexpected but
2653                  * maybe they could trigger in the future on concurrent
2654                  * truncation. In that case, the shared zeropage would be gone
2655                  * and we can simply retry and make progress.
2656                  */
2657                 cond_resched();
2658                 goto retry;
2659         }
2660 
2661         return 0;
2662 }
2663 
2664 static int __s390_disable_cow_sharing(struct mm_struct *mm)
2665 {
2666         int rc;
2667 
2668         if (!mm->context.allow_cow_sharing)
2669                 return 0;
2670 
2671         mm->context.allow_cow_sharing = 0;
2672 
2673         /* Replace all shared zeropages by anonymous pages. */
2674         rc = __s390_unshare_zeropages(mm);
2675         /*
2676          * Make sure to disable KSM (if enabled for the whole process or
2677          * individual VMAs). Note that nothing currently hinders user space
2678          * from re-enabling it.
2679          */
2680         if (!rc)
2681                 rc = ksm_disable(mm);
2682         if (rc)
2683                 mm->context.allow_cow_sharing = 1;
2684         return rc;
2685 }
2686 
2687 /*
2688  * Disable most COW-sharing of memory pages for the whole process:
2689  * (1) Disable KSM and unmerge/unshare any KSM pages.
2690  * (2) Disallow shared zeropages and unshare any zerpages that are mapped.
2691  *
2692  * Not that we currently don't bother with COW-shared pages that are shared
2693  * with parent/child processes due to fork().
2694  */
2695 int s390_disable_cow_sharing(void)
2696 {
2697         int rc;
2698 
2699         mmap_write_lock(current->mm);
2700         rc = __s390_disable_cow_sharing(current->mm);
2701         mmap_write_unlock(current->mm);
2702         return rc;
2703 }
2704 EXPORT_SYMBOL_GPL(s390_disable_cow_sharing);
2705 
2706 /*
2707  * Enable storage key handling from now on and initialize the storage
2708  * keys with the default key.
2709  */
2710 static int __s390_enable_skey_pte(pte_t *pte, unsigned long addr,
2711                                   unsigned long next, struct mm_walk *walk)
2712 {
2713         /* Clear storage key */
2714         ptep_zap_key(walk->mm, addr, pte);
2715         return 0;
2716 }
2717 
2718 /*
2719  * Give a chance to schedule after setting a key to 256 pages.
2720  * We only hold the mm lock, which is a rwsem and the kvm srcu.
2721  * Both can sleep.
2722  */
2723 static int __s390_enable_skey_pmd(pmd_t *pmd, unsigned long addr,
2724                                   unsigned long next, struct mm_walk *walk)
2725 {
2726         cond_resched();
2727         return 0;
2728 }
2729 
2730 static int __s390_enable_skey_hugetlb(pte_t *pte, unsigned long addr,
2731                                       unsigned long hmask, unsigned long next,
2732                                       struct mm_walk *walk)
2733 {
2734         pmd_t *pmd = (pmd_t *)pte;
2735         unsigned long start, end;
2736         struct folio *folio = page_folio(pmd_page(*pmd));
2737 
2738         /*
2739          * The write check makes sure we do not set a key on shared
2740          * memory. This is needed as the walker does not differentiate
2741          * between actual guest memory and the process executable or
2742          * shared libraries.
2743          */
2744         if (pmd_val(*pmd) & _SEGMENT_ENTRY_INVALID ||
2745             !(pmd_val(*pmd) & _SEGMENT_ENTRY_WRITE))
2746                 return 0;
2747 
2748         start = pmd_val(*pmd) & HPAGE_MASK;
2749         end = start + HPAGE_SIZE;
2750         __storage_key_init_range(start, end);
2751         set_bit(PG_arch_1, &folio->flags);
2752         cond_resched();
2753         return 0;
2754 }
2755 
2756 static const struct mm_walk_ops enable_skey_walk_ops = {
2757         .hugetlb_entry          = __s390_enable_skey_hugetlb,
2758         .pte_entry              = __s390_enable_skey_pte,
2759         .pmd_entry              = __s390_enable_skey_pmd,
2760         .walk_lock              = PGWALK_WRLOCK,
2761 };
2762 
2763 int s390_enable_skey(void)
2764 {
2765         struct mm_struct *mm = current->mm;
2766         int rc = 0;
2767 
2768         mmap_write_lock(mm);
2769         if (mm_uses_skeys(mm))
2770                 goto out_up;
2771 
2772         mm->context.uses_skeys = 1;
2773         rc = __s390_disable_cow_sharing(mm);
2774         if (rc) {
2775                 mm->context.uses_skeys = 0;
2776                 goto out_up;
2777         }
2778         walk_page_range(mm, 0, TASK_SIZE, &enable_skey_walk_ops, NULL);
2779 
2780 out_up:
2781         mmap_write_unlock(mm);
2782         return rc;
2783 }
2784 EXPORT_SYMBOL_GPL(s390_enable_skey);
2785 
2786 /*
2787  * Reset CMMA state, make all pages stable again.
2788  */
2789 static int __s390_reset_cmma(pte_t *pte, unsigned long addr,
2790                              unsigned long next, struct mm_walk *walk)
2791 {
2792         ptep_zap_unused(walk->mm, addr, pte, 1);
2793         return 0;
2794 }
2795 
2796 static const struct mm_walk_ops reset_cmma_walk_ops = {
2797         .pte_entry              = __s390_reset_cmma,
2798         .walk_lock              = PGWALK_WRLOCK,
2799 };
2800 
2801 void s390_reset_cmma(struct mm_struct *mm)
2802 {
2803         mmap_write_lock(mm);
2804         walk_page_range(mm, 0, TASK_SIZE, &reset_cmma_walk_ops, NULL);
2805         mmap_write_unlock(mm);
2806 }
2807 EXPORT_SYMBOL_GPL(s390_reset_cmma);
2808 
2809 #define GATHER_GET_PAGES 32
2810 
2811 struct reset_walk_state {
2812         unsigned long next;
2813         unsigned long count;
2814         unsigned long pfns[GATHER_GET_PAGES];
2815 };
2816 
2817 static int s390_gather_pages(pte_t *ptep, unsigned long addr,
2818                              unsigned long next, struct mm_walk *walk)
2819 {
2820         struct reset_walk_state *p = walk->private;
2821         pte_t pte = READ_ONCE(*ptep);
2822 
2823         if (pte_present(pte)) {
2824                 /* we have a reference from the mapping, take an extra one */
2825                 get_page(phys_to_page(pte_val(pte)));
2826                 p->pfns[p->count] = phys_to_pfn(pte_val(pte));
2827                 p->next = next;
2828                 p->count++;
2829         }
2830         return p->count >= GATHER_GET_PAGES;
2831 }
2832 
2833 static const struct mm_walk_ops gather_pages_ops = {
2834         .pte_entry = s390_gather_pages,
2835         .walk_lock = PGWALK_RDLOCK,
2836 };
2837 
2838 /*
2839  * Call the Destroy secure page UVC on each page in the given array of PFNs.
2840  * Each page needs to have an extra reference, which will be released here.
2841  */
2842 void s390_uv_destroy_pfns(unsigned long count, unsigned long *pfns)
2843 {
2844         struct folio *folio;
2845         unsigned long i;
2846 
2847         for (i = 0; i < count; i++) {
2848                 folio = pfn_folio(pfns[i]);
2849                 /* we always have an extra reference */
2850                 uv_destroy_folio(folio);
2851                 /* get rid of the extra reference */
2852                 folio_put(folio);
2853                 cond_resched();
2854         }
2855 }
2856 EXPORT_SYMBOL_GPL(s390_uv_destroy_pfns);
2857 
2858 /**
2859  * __s390_uv_destroy_range - Call the destroy secure page UVC on each page
2860  * in the given range of the given address space.
2861  * @mm: the mm to operate on
2862  * @start: the start of the range
2863  * @end: the end of the range
2864  * @interruptible: if not 0, stop when a fatal signal is received
2865  *
2866  * Walk the given range of the given address space and call the destroy
2867  * secure page UVC on each page. Optionally exit early if a fatal signal is
2868  * pending.
2869  *
2870  * Return: 0 on success, -EINTR if the function stopped before completing
2871  */
2872 int __s390_uv_destroy_range(struct mm_struct *mm, unsigned long start,
2873                             unsigned long end, bool interruptible)
2874 {
2875         struct reset_walk_state state = { .next = start };
2876         int r = 1;
2877 
2878         while (r > 0) {
2879                 state.count = 0;
2880                 mmap_read_lock(mm);
2881                 r = walk_page_range(mm, state.next, end, &gather_pages_ops, &state);
2882                 mmap_read_unlock(mm);
2883                 cond_resched();
2884                 s390_uv_destroy_pfns(state.count, state.pfns);
2885                 if (interruptible && fatal_signal_pending(current))
2886                         return -EINTR;
2887         }
2888         return 0;
2889 }
2890 EXPORT_SYMBOL_GPL(__s390_uv_destroy_range);
2891 
2892 /**
2893  * s390_unlist_old_asce - Remove the topmost level of page tables from the
2894  * list of page tables of the gmap.
2895  * @gmap: the gmap whose table is to be removed
2896  *
2897  * On s390x, KVM keeps a list of all pages containing the page tables of the
2898  * gmap (the CRST list). This list is used at tear down time to free all
2899  * pages that are now not needed anymore.
2900  *
2901  * This function removes the topmost page of the tree (the one pointed to by
2902  * the ASCE) from the CRST list.
2903  *
2904  * This means that it will not be freed when the VM is torn down, and needs
2905  * to be handled separately by the caller, unless a leak is actually
2906  * intended. Notice that this function will only remove the page from the
2907  * list, the page will still be used as a top level page table (and ASCE).
2908  */
2909 void s390_unlist_old_asce(struct gmap *gmap)
2910 {
2911         struct page *old;
2912 
2913         old = virt_to_page(gmap->table);
2914         spin_lock(&gmap->guest_table_lock);
2915         list_del(&old->lru);
2916         /*
2917          * Sometimes the topmost page might need to be "removed" multiple
2918          * times, for example if the VM is rebooted into secure mode several
2919          * times concurrently, or if s390_replace_asce fails after calling
2920          * s390_remove_old_asce and is attempted again later. In that case
2921          * the old asce has been removed from the list, and therefore it
2922          * will not be freed when the VM terminates, but the ASCE is still
2923          * in use and still pointed to.
2924          * A subsequent call to replace_asce will follow the pointer and try
2925          * to remove the same page from the list again.
2926          * Therefore it's necessary that the page of the ASCE has valid
2927          * pointers, so list_del can work (and do nothing) without
2928          * dereferencing stale or invalid pointers.
2929          */
2930         INIT_LIST_HEAD(&old->lru);
2931         spin_unlock(&gmap->guest_table_lock);
2932 }
2933 EXPORT_SYMBOL_GPL(s390_unlist_old_asce);
2934 
2935 /**
2936  * s390_replace_asce - Try to replace the current ASCE of a gmap with a copy
2937  * @gmap: the gmap whose ASCE needs to be replaced
2938  *
2939  * If the ASCE is a SEGMENT type then this function will return -EINVAL,
2940  * otherwise the pointers in the host_to_guest radix tree will keep pointing
2941  * to the wrong pages, causing use-after-free and memory corruption.
2942  * If the allocation of the new top level page table fails, the ASCE is not
2943  * replaced.
2944  * In any case, the old ASCE is always removed from the gmap CRST list.
2945  * Therefore the caller has to make sure to save a pointer to it
2946  * beforehand, unless a leak is actually intended.
2947  */
2948 int s390_replace_asce(struct gmap *gmap)
2949 {
2950         unsigned long asce;
2951         struct page *page;
2952         void *table;
2953 
2954         s390_unlist_old_asce(gmap);
2955 
2956         /* Replacing segment type ASCEs would cause serious issues */
2957         if ((gmap->asce & _ASCE_TYPE_MASK) == _ASCE_TYPE_SEGMENT)
2958                 return -EINVAL;
2959 
2960         page = gmap_alloc_crst();
2961         if (!page)
2962                 return -ENOMEM;
2963         page->index = 0;
2964         table = page_to_virt(page);
2965         memcpy(table, gmap->table, 1UL << (CRST_ALLOC_ORDER + PAGE_SHIFT));
2966 
2967         /*
2968          * The caller has to deal with the old ASCE, but here we make sure
2969          * the new one is properly added to the CRST list, so that
2970          * it will be freed when the VM is torn down.
2971          */
2972         spin_lock(&gmap->guest_table_lock);
2973         list_add(&page->lru, &gmap->crst_list);
2974         spin_unlock(&gmap->guest_table_lock);
2975 
2976         /* Set new table origin while preserving existing ASCE control bits */
2977         asce = (gmap->asce & ~_ASCE_ORIGIN) | __pa(table);
2978         WRITE_ONCE(gmap->asce, asce);
2979         WRITE_ONCE(gmap->mm->context.gmap_asce, asce);
2980         WRITE_ONCE(gmap->table, table);
2981 
2982         return 0;
2983 }
2984 EXPORT_SYMBOL_GPL(s390_replace_asce);
2985 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php