~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/s390/pci/pci.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * Copyright IBM Corp. 2012
  4  *
  5  * Author(s):
  6  *   Jan Glauber <jang@linux.vnet.ibm.com>
  7  *
  8  * The System z PCI code is a rewrite from a prototype by
  9  * the following people (Kudoz!):
 10  *   Alexander Schmidt
 11  *   Christoph Raisch
 12  *   Hannes Hering
 13  *   Hoang-Nam Nguyen
 14  *   Jan-Bernd Themann
 15  *   Stefan Roscher
 16  *   Thomas Klein
 17  */
 18 
 19 #define KMSG_COMPONENT "zpci"
 20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
 21 
 22 #include <linux/kernel.h>
 23 #include <linux/slab.h>
 24 #include <linux/err.h>
 25 #include <linux/export.h>
 26 #include <linux/delay.h>
 27 #include <linux/seq_file.h>
 28 #include <linux/jump_label.h>
 29 #include <linux/pci.h>
 30 #include <linux/printk.h>
 31 #include <linux/lockdep.h>
 32 
 33 #include <asm/isc.h>
 34 #include <asm/airq.h>
 35 #include <asm/facility.h>
 36 #include <asm/pci_insn.h>
 37 #include <asm/pci_clp.h>
 38 #include <asm/pci_dma.h>
 39 
 40 #include "pci_bus.h"
 41 #include "pci_iov.h"
 42 
 43 /* list of all detected zpci devices */
 44 static LIST_HEAD(zpci_list);
 45 static DEFINE_SPINLOCK(zpci_list_lock);
 46 
 47 static DECLARE_BITMAP(zpci_domain, ZPCI_DOMAIN_BITMAP_SIZE);
 48 static DEFINE_SPINLOCK(zpci_domain_lock);
 49 
 50 #define ZPCI_IOMAP_ENTRIES                                              \
 51         min(((unsigned long) ZPCI_NR_DEVICES * PCI_STD_NUM_BARS / 2),   \
 52             ZPCI_IOMAP_MAX_ENTRIES)
 53 
 54 unsigned int s390_pci_no_rid;
 55 
 56 static DEFINE_SPINLOCK(zpci_iomap_lock);
 57 static unsigned long *zpci_iomap_bitmap;
 58 struct zpci_iomap_entry *zpci_iomap_start;
 59 EXPORT_SYMBOL_GPL(zpci_iomap_start);
 60 
 61 DEFINE_STATIC_KEY_FALSE(have_mio);
 62 
 63 static struct kmem_cache *zdev_fmb_cache;
 64 
 65 /* AEN structures that must be preserved over KVM module re-insertion */
 66 union zpci_sic_iib *zpci_aipb;
 67 EXPORT_SYMBOL_GPL(zpci_aipb);
 68 struct airq_iv *zpci_aif_sbv;
 69 EXPORT_SYMBOL_GPL(zpci_aif_sbv);
 70 
 71 struct zpci_dev *get_zdev_by_fid(u32 fid)
 72 {
 73         struct zpci_dev *tmp, *zdev = NULL;
 74 
 75         spin_lock(&zpci_list_lock);
 76         list_for_each_entry(tmp, &zpci_list, entry) {
 77                 if (tmp->fid == fid) {
 78                         zdev = tmp;
 79                         zpci_zdev_get(zdev);
 80                         break;
 81                 }
 82         }
 83         spin_unlock(&zpci_list_lock);
 84         return zdev;
 85 }
 86 
 87 void zpci_remove_reserved_devices(void)
 88 {
 89         struct zpci_dev *tmp, *zdev;
 90         enum zpci_state state;
 91         LIST_HEAD(remove);
 92 
 93         spin_lock(&zpci_list_lock);
 94         list_for_each_entry_safe(zdev, tmp, &zpci_list, entry) {
 95                 if (zdev->state == ZPCI_FN_STATE_STANDBY &&
 96                     !clp_get_state(zdev->fid, &state) &&
 97                     state == ZPCI_FN_STATE_RESERVED)
 98                         list_move_tail(&zdev->entry, &remove);
 99         }
100         spin_unlock(&zpci_list_lock);
101 
102         list_for_each_entry_safe(zdev, tmp, &remove, entry)
103                 zpci_device_reserved(zdev);
104 }
105 
106 int pci_domain_nr(struct pci_bus *bus)
107 {
108         return ((struct zpci_bus *) bus->sysdata)->domain_nr;
109 }
110 EXPORT_SYMBOL_GPL(pci_domain_nr);
111 
112 int pci_proc_domain(struct pci_bus *bus)
113 {
114         return pci_domain_nr(bus);
115 }
116 EXPORT_SYMBOL_GPL(pci_proc_domain);
117 
118 /* Modify PCI: Register I/O address translation parameters */
119 int zpci_register_ioat(struct zpci_dev *zdev, u8 dmaas,
120                        u64 base, u64 limit, u64 iota, u8 *status)
121 {
122         u64 req = ZPCI_CREATE_REQ(zdev->fh, dmaas, ZPCI_MOD_FC_REG_IOAT);
123         struct zpci_fib fib = {0};
124         u8 cc;
125 
126         WARN_ON_ONCE(iota & 0x3fff);
127         fib.pba = base;
128         /* Work around off by one in ISM virt device */
129         if (zdev->pft == PCI_FUNC_TYPE_ISM && limit > base)
130                 fib.pal = limit + (1 << 12);
131         else
132                 fib.pal = limit;
133         fib.iota = iota | ZPCI_IOTA_RTTO_FLAG;
134         fib.gd = zdev->gisa;
135         cc = zpci_mod_fc(req, &fib, status);
136         if (cc)
137                 zpci_dbg(3, "reg ioat fid:%x, cc:%d, status:%d\n", zdev->fid, cc, *status);
138         return cc;
139 }
140 EXPORT_SYMBOL_GPL(zpci_register_ioat);
141 
142 /* Modify PCI: Unregister I/O address translation parameters */
143 int zpci_unregister_ioat(struct zpci_dev *zdev, u8 dmaas)
144 {
145         u64 req = ZPCI_CREATE_REQ(zdev->fh, dmaas, ZPCI_MOD_FC_DEREG_IOAT);
146         struct zpci_fib fib = {0};
147         u8 cc, status;
148 
149         fib.gd = zdev->gisa;
150 
151         cc = zpci_mod_fc(req, &fib, &status);
152         if (cc)
153                 zpci_dbg(3, "unreg ioat fid:%x, cc:%d, status:%d\n", zdev->fid, cc, status);
154         return cc;
155 }
156 
157 /* Modify PCI: Set PCI function measurement parameters */
158 int zpci_fmb_enable_device(struct zpci_dev *zdev)
159 {
160         u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_SET_MEASURE);
161         struct zpci_iommu_ctrs *ctrs;
162         struct zpci_fib fib = {0};
163         u8 cc, status;
164 
165         if (zdev->fmb || sizeof(*zdev->fmb) < zdev->fmb_length)
166                 return -EINVAL;
167 
168         zdev->fmb = kmem_cache_zalloc(zdev_fmb_cache, GFP_KERNEL);
169         if (!zdev->fmb)
170                 return -ENOMEM;
171         WARN_ON((u64) zdev->fmb & 0xf);
172 
173         /* reset software counters */
174         ctrs = zpci_get_iommu_ctrs(zdev);
175         if (ctrs) {
176                 atomic64_set(&ctrs->mapped_pages, 0);
177                 atomic64_set(&ctrs->unmapped_pages, 0);
178                 atomic64_set(&ctrs->global_rpcits, 0);
179                 atomic64_set(&ctrs->sync_map_rpcits, 0);
180                 atomic64_set(&ctrs->sync_rpcits, 0);
181         }
182 
183 
184         fib.fmb_addr = virt_to_phys(zdev->fmb);
185         fib.gd = zdev->gisa;
186         cc = zpci_mod_fc(req, &fib, &status);
187         if (cc) {
188                 kmem_cache_free(zdev_fmb_cache, zdev->fmb);
189                 zdev->fmb = NULL;
190         }
191         return cc ? -EIO : 0;
192 }
193 
194 /* Modify PCI: Disable PCI function measurement */
195 int zpci_fmb_disable_device(struct zpci_dev *zdev)
196 {
197         u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_SET_MEASURE);
198         struct zpci_fib fib = {0};
199         u8 cc, status;
200 
201         if (!zdev->fmb)
202                 return -EINVAL;
203 
204         fib.gd = zdev->gisa;
205 
206         /* Function measurement is disabled if fmb address is zero */
207         cc = zpci_mod_fc(req, &fib, &status);
208         if (cc == 3) /* Function already gone. */
209                 cc = 0;
210 
211         if (!cc) {
212                 kmem_cache_free(zdev_fmb_cache, zdev->fmb);
213                 zdev->fmb = NULL;
214         }
215         return cc ? -EIO : 0;
216 }
217 
218 static int zpci_cfg_load(struct zpci_dev *zdev, int offset, u32 *val, u8 len)
219 {
220         u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len);
221         u64 data;
222         int rc;
223 
224         rc = __zpci_load(&data, req, offset);
225         if (!rc) {
226                 data = le64_to_cpu((__force __le64) data);
227                 data >>= (8 - len) * 8;
228                 *val = (u32) data;
229         } else
230                 *val = 0xffffffff;
231         return rc;
232 }
233 
234 static int zpci_cfg_store(struct zpci_dev *zdev, int offset, u32 val, u8 len)
235 {
236         u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len);
237         u64 data = val;
238         int rc;
239 
240         data <<= (8 - len) * 8;
241         data = (__force u64) cpu_to_le64(data);
242         rc = __zpci_store(data, req, offset);
243         return rc;
244 }
245 
246 resource_size_t pcibios_align_resource(void *data, const struct resource *res,
247                                        resource_size_t size,
248                                        resource_size_t align)
249 {
250         return 0;
251 }
252 
253 void __iomem *ioremap_prot(phys_addr_t phys_addr, size_t size,
254                            unsigned long prot)
255 {
256         /*
257          * When PCI MIO instructions are unavailable the "physical" address
258          * encodes a hint for accessing the PCI memory space it represents.
259          * Just pass it unchanged such that ioread/iowrite can decode it.
260          */
261         if (!static_branch_unlikely(&have_mio))
262                 return (void __iomem *)phys_addr;
263 
264         return generic_ioremap_prot(phys_addr, size, __pgprot(prot));
265 }
266 EXPORT_SYMBOL(ioremap_prot);
267 
268 void iounmap(volatile void __iomem *addr)
269 {
270         if (static_branch_likely(&have_mio))
271                 generic_iounmap(addr);
272 }
273 EXPORT_SYMBOL(iounmap);
274 
275 /* Create a virtual mapping cookie for a PCI BAR */
276 static void __iomem *pci_iomap_range_fh(struct pci_dev *pdev, int bar,
277                                         unsigned long offset, unsigned long max)
278 {
279         struct zpci_dev *zdev = to_zpci(pdev);
280         int idx;
281 
282         idx = zdev->bars[bar].map_idx;
283         spin_lock(&zpci_iomap_lock);
284         /* Detect overrun */
285         WARN_ON(!++zpci_iomap_start[idx].count);
286         zpci_iomap_start[idx].fh = zdev->fh;
287         zpci_iomap_start[idx].bar = bar;
288         spin_unlock(&zpci_iomap_lock);
289 
290         return (void __iomem *) ZPCI_ADDR(idx) + offset;
291 }
292 
293 static void __iomem *pci_iomap_range_mio(struct pci_dev *pdev, int bar,
294                                          unsigned long offset,
295                                          unsigned long max)
296 {
297         unsigned long barsize = pci_resource_len(pdev, bar);
298         struct zpci_dev *zdev = to_zpci(pdev);
299         void __iomem *iova;
300 
301         iova = ioremap((unsigned long) zdev->bars[bar].mio_wt, barsize);
302         return iova ? iova + offset : iova;
303 }
304 
305 void __iomem *pci_iomap_range(struct pci_dev *pdev, int bar,
306                               unsigned long offset, unsigned long max)
307 {
308         if (bar >= PCI_STD_NUM_BARS || !pci_resource_len(pdev, bar))
309                 return NULL;
310 
311         if (static_branch_likely(&have_mio))
312                 return pci_iomap_range_mio(pdev, bar, offset, max);
313         else
314                 return pci_iomap_range_fh(pdev, bar, offset, max);
315 }
316 EXPORT_SYMBOL(pci_iomap_range);
317 
318 void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long maxlen)
319 {
320         return pci_iomap_range(dev, bar, 0, maxlen);
321 }
322 EXPORT_SYMBOL(pci_iomap);
323 
324 static void __iomem *pci_iomap_wc_range_mio(struct pci_dev *pdev, int bar,
325                                             unsigned long offset, unsigned long max)
326 {
327         unsigned long barsize = pci_resource_len(pdev, bar);
328         struct zpci_dev *zdev = to_zpci(pdev);
329         void __iomem *iova;
330 
331         iova = ioremap((unsigned long) zdev->bars[bar].mio_wb, barsize);
332         return iova ? iova + offset : iova;
333 }
334 
335 void __iomem *pci_iomap_wc_range(struct pci_dev *pdev, int bar,
336                                  unsigned long offset, unsigned long max)
337 {
338         if (bar >= PCI_STD_NUM_BARS || !pci_resource_len(pdev, bar))
339                 return NULL;
340 
341         if (static_branch_likely(&have_mio))
342                 return pci_iomap_wc_range_mio(pdev, bar, offset, max);
343         else
344                 return pci_iomap_range_fh(pdev, bar, offset, max);
345 }
346 EXPORT_SYMBOL(pci_iomap_wc_range);
347 
348 void __iomem *pci_iomap_wc(struct pci_dev *dev, int bar, unsigned long maxlen)
349 {
350         return pci_iomap_wc_range(dev, bar, 0, maxlen);
351 }
352 EXPORT_SYMBOL(pci_iomap_wc);
353 
354 static void pci_iounmap_fh(struct pci_dev *pdev, void __iomem *addr)
355 {
356         unsigned int idx = ZPCI_IDX(addr);
357 
358         spin_lock(&zpci_iomap_lock);
359         /* Detect underrun */
360         WARN_ON(!zpci_iomap_start[idx].count);
361         if (!--zpci_iomap_start[idx].count) {
362                 zpci_iomap_start[idx].fh = 0;
363                 zpci_iomap_start[idx].bar = 0;
364         }
365         spin_unlock(&zpci_iomap_lock);
366 }
367 
368 static void pci_iounmap_mio(struct pci_dev *pdev, void __iomem *addr)
369 {
370         iounmap(addr);
371 }
372 
373 void pci_iounmap(struct pci_dev *pdev, void __iomem *addr)
374 {
375         if (static_branch_likely(&have_mio))
376                 pci_iounmap_mio(pdev, addr);
377         else
378                 pci_iounmap_fh(pdev, addr);
379 }
380 EXPORT_SYMBOL(pci_iounmap);
381 
382 static int pci_read(struct pci_bus *bus, unsigned int devfn, int where,
383                     int size, u32 *val)
384 {
385         struct zpci_dev *zdev = zdev_from_bus(bus, devfn);
386 
387         return (zdev) ? zpci_cfg_load(zdev, where, val, size) : -ENODEV;
388 }
389 
390 static int pci_write(struct pci_bus *bus, unsigned int devfn, int where,
391                      int size, u32 val)
392 {
393         struct zpci_dev *zdev = zdev_from_bus(bus, devfn);
394 
395         return (zdev) ? zpci_cfg_store(zdev, where, val, size) : -ENODEV;
396 }
397 
398 static struct pci_ops pci_root_ops = {
399         .read = pci_read,
400         .write = pci_write,
401 };
402 
403 static void zpci_map_resources(struct pci_dev *pdev)
404 {
405         struct zpci_dev *zdev = to_zpci(pdev);
406         resource_size_t len;
407         int i;
408 
409         for (i = 0; i < PCI_STD_NUM_BARS; i++) {
410                 len = pci_resource_len(pdev, i);
411                 if (!len)
412                         continue;
413 
414                 if (zpci_use_mio(zdev))
415                         pdev->resource[i].start =
416                                 (resource_size_t __force) zdev->bars[i].mio_wt;
417                 else
418                         pdev->resource[i].start = (resource_size_t __force)
419                                 pci_iomap_range_fh(pdev, i, 0, 0);
420                 pdev->resource[i].end = pdev->resource[i].start + len - 1;
421         }
422 
423         zpci_iov_map_resources(pdev);
424 }
425 
426 static void zpci_unmap_resources(struct pci_dev *pdev)
427 {
428         struct zpci_dev *zdev = to_zpci(pdev);
429         resource_size_t len;
430         int i;
431 
432         if (zpci_use_mio(zdev))
433                 return;
434 
435         for (i = 0; i < PCI_STD_NUM_BARS; i++) {
436                 len = pci_resource_len(pdev, i);
437                 if (!len)
438                         continue;
439                 pci_iounmap_fh(pdev, (void __iomem __force *)
440                                pdev->resource[i].start);
441         }
442 }
443 
444 static int zpci_alloc_iomap(struct zpci_dev *zdev)
445 {
446         unsigned long entry;
447 
448         spin_lock(&zpci_iomap_lock);
449         entry = find_first_zero_bit(zpci_iomap_bitmap, ZPCI_IOMAP_ENTRIES);
450         if (entry == ZPCI_IOMAP_ENTRIES) {
451                 spin_unlock(&zpci_iomap_lock);
452                 return -ENOSPC;
453         }
454         set_bit(entry, zpci_iomap_bitmap);
455         spin_unlock(&zpci_iomap_lock);
456         return entry;
457 }
458 
459 static void zpci_free_iomap(struct zpci_dev *zdev, int entry)
460 {
461         spin_lock(&zpci_iomap_lock);
462         memset(&zpci_iomap_start[entry], 0, sizeof(struct zpci_iomap_entry));
463         clear_bit(entry, zpci_iomap_bitmap);
464         spin_unlock(&zpci_iomap_lock);
465 }
466 
467 static void zpci_do_update_iomap_fh(struct zpci_dev *zdev, u32 fh)
468 {
469         int bar, idx;
470 
471         spin_lock(&zpci_iomap_lock);
472         for (bar = 0; bar < PCI_STD_NUM_BARS; bar++) {
473                 if (!zdev->bars[bar].size)
474                         continue;
475                 idx = zdev->bars[bar].map_idx;
476                 if (!zpci_iomap_start[idx].count)
477                         continue;
478                 WRITE_ONCE(zpci_iomap_start[idx].fh, zdev->fh);
479         }
480         spin_unlock(&zpci_iomap_lock);
481 }
482 
483 void zpci_update_fh(struct zpci_dev *zdev, u32 fh)
484 {
485         if (!fh || zdev->fh == fh)
486                 return;
487 
488         zdev->fh = fh;
489         if (zpci_use_mio(zdev))
490                 return;
491         if (zdev->has_resources && zdev_enabled(zdev))
492                 zpci_do_update_iomap_fh(zdev, fh);
493 }
494 
495 static struct resource *__alloc_res(struct zpci_dev *zdev, unsigned long start,
496                                     unsigned long size, unsigned long flags)
497 {
498         struct resource *r;
499 
500         r = kzalloc(sizeof(*r), GFP_KERNEL);
501         if (!r)
502                 return NULL;
503 
504         r->start = start;
505         r->end = r->start + size - 1;
506         r->flags = flags;
507         r->name = zdev->res_name;
508 
509         if (request_resource(&iomem_resource, r)) {
510                 kfree(r);
511                 return NULL;
512         }
513         return r;
514 }
515 
516 int zpci_setup_bus_resources(struct zpci_dev *zdev)
517 {
518         unsigned long addr, size, flags;
519         struct resource *res;
520         int i, entry;
521 
522         snprintf(zdev->res_name, sizeof(zdev->res_name),
523                  "PCI Bus %04x:%02x", zdev->uid, ZPCI_BUS_NR);
524 
525         for (i = 0; i < PCI_STD_NUM_BARS; i++) {
526                 if (!zdev->bars[i].size)
527                         continue;
528                 entry = zpci_alloc_iomap(zdev);
529                 if (entry < 0)
530                         return entry;
531                 zdev->bars[i].map_idx = entry;
532 
533                 /* only MMIO is supported */
534                 flags = IORESOURCE_MEM;
535                 if (zdev->bars[i].val & 8)
536                         flags |= IORESOURCE_PREFETCH;
537                 if (zdev->bars[i].val & 4)
538                         flags |= IORESOURCE_MEM_64;
539 
540                 if (zpci_use_mio(zdev))
541                         addr = (unsigned long) zdev->bars[i].mio_wt;
542                 else
543                         addr = ZPCI_ADDR(entry);
544                 size = 1UL << zdev->bars[i].size;
545 
546                 res = __alloc_res(zdev, addr, size, flags);
547                 if (!res) {
548                         zpci_free_iomap(zdev, entry);
549                         return -ENOMEM;
550                 }
551                 zdev->bars[i].res = res;
552         }
553         zdev->has_resources = 1;
554 
555         return 0;
556 }
557 
558 static void zpci_cleanup_bus_resources(struct zpci_dev *zdev)
559 {
560         struct resource *res;
561         int i;
562 
563         pci_lock_rescan_remove();
564         for (i = 0; i < PCI_STD_NUM_BARS; i++) {
565                 res = zdev->bars[i].res;
566                 if (!res)
567                         continue;
568 
569                 release_resource(res);
570                 pci_bus_remove_resource(zdev->zbus->bus, res);
571                 zpci_free_iomap(zdev, zdev->bars[i].map_idx);
572                 zdev->bars[i].res = NULL;
573                 kfree(res);
574         }
575         zdev->has_resources = 0;
576         pci_unlock_rescan_remove();
577 }
578 
579 int pcibios_device_add(struct pci_dev *pdev)
580 {
581         struct zpci_dev *zdev = to_zpci(pdev);
582         struct resource *res;
583         int i;
584 
585         /* The pdev has a reference to the zdev via its bus */
586         zpci_zdev_get(zdev);
587         if (pdev->is_physfn)
588                 pdev->no_vf_scan = 1;
589 
590         pdev->dev.groups = zpci_attr_groups;
591         zpci_map_resources(pdev);
592 
593         for (i = 0; i < PCI_STD_NUM_BARS; i++) {
594                 res = &pdev->resource[i];
595                 if (res->parent || !res->flags)
596                         continue;
597                 pci_claim_resource(pdev, i);
598         }
599 
600         return 0;
601 }
602 
603 void pcibios_release_device(struct pci_dev *pdev)
604 {
605         struct zpci_dev *zdev = to_zpci(pdev);
606 
607         zpci_unmap_resources(pdev);
608         zpci_zdev_put(zdev);
609 }
610 
611 int pcibios_enable_device(struct pci_dev *pdev, int mask)
612 {
613         struct zpci_dev *zdev = to_zpci(pdev);
614 
615         zpci_debug_init_device(zdev, dev_name(&pdev->dev));
616         zpci_fmb_enable_device(zdev);
617 
618         return pci_enable_resources(pdev, mask);
619 }
620 
621 void pcibios_disable_device(struct pci_dev *pdev)
622 {
623         struct zpci_dev *zdev = to_zpci(pdev);
624 
625         zpci_fmb_disable_device(zdev);
626         zpci_debug_exit_device(zdev);
627 }
628 
629 static int __zpci_register_domain(int domain)
630 {
631         spin_lock(&zpci_domain_lock);
632         if (test_bit(domain, zpci_domain)) {
633                 spin_unlock(&zpci_domain_lock);
634                 pr_err("Domain %04x is already assigned\n", domain);
635                 return -EEXIST;
636         }
637         set_bit(domain, zpci_domain);
638         spin_unlock(&zpci_domain_lock);
639         return domain;
640 }
641 
642 static int __zpci_alloc_domain(void)
643 {
644         int domain;
645 
646         spin_lock(&zpci_domain_lock);
647         /*
648          * We can always auto allocate domains below ZPCI_NR_DEVICES.
649          * There is either a free domain or we have reached the maximum in
650          * which case we would have bailed earlier.
651          */
652         domain = find_first_zero_bit(zpci_domain, ZPCI_NR_DEVICES);
653         set_bit(domain, zpci_domain);
654         spin_unlock(&zpci_domain_lock);
655         return domain;
656 }
657 
658 int zpci_alloc_domain(int domain)
659 {
660         if (zpci_unique_uid) {
661                 if (domain)
662                         return __zpci_register_domain(domain);
663                 pr_warn("UID checking was active but no UID is provided: switching to automatic domain allocation\n");
664                 update_uid_checking(false);
665         }
666         return __zpci_alloc_domain();
667 }
668 
669 void zpci_free_domain(int domain)
670 {
671         spin_lock(&zpci_domain_lock);
672         clear_bit(domain, zpci_domain);
673         spin_unlock(&zpci_domain_lock);
674 }
675 
676 
677 int zpci_enable_device(struct zpci_dev *zdev)
678 {
679         u32 fh = zdev->fh;
680         int rc = 0;
681 
682         if (clp_enable_fh(zdev, &fh, ZPCI_NR_DMA_SPACES))
683                 rc = -EIO;
684         else
685                 zpci_update_fh(zdev, fh);
686         return rc;
687 }
688 EXPORT_SYMBOL_GPL(zpci_enable_device);
689 
690 int zpci_disable_device(struct zpci_dev *zdev)
691 {
692         u32 fh = zdev->fh;
693         int cc, rc = 0;
694 
695         cc = clp_disable_fh(zdev, &fh);
696         if (!cc) {
697                 zpci_update_fh(zdev, fh);
698         } else if (cc == CLP_RC_SETPCIFN_ALRDY) {
699                 pr_info("Disabling PCI function %08x had no effect as it was already disabled\n",
700                         zdev->fid);
701                 /* Function is already disabled - update handle */
702                 rc = clp_refresh_fh(zdev->fid, &fh);
703                 if (!rc) {
704                         zpci_update_fh(zdev, fh);
705                         rc = -EINVAL;
706                 }
707         } else {
708                 rc = -EIO;
709         }
710         return rc;
711 }
712 EXPORT_SYMBOL_GPL(zpci_disable_device);
713 
714 /**
715  * zpci_hot_reset_device - perform a reset of the given zPCI function
716  * @zdev: the slot which should be reset
717  *
718  * Performs a low level reset of the zPCI function. The reset is low level in
719  * the sense that the zPCI function can be reset without detaching it from the
720  * common PCI subsystem. The reset may be performed while under control of
721  * either DMA or IOMMU APIs in which case the existing DMA/IOMMU translation
722  * table is reinstated at the end of the reset.
723  *
724  * After the reset the functions internal state is reset to an initial state
725  * equivalent to its state during boot when first probing a driver.
726  * Consequently after reset the PCI function requires re-initialization via the
727  * common PCI code including re-enabling IRQs via pci_alloc_irq_vectors()
728  * and enabling the function via e.g. pci_enable_device_flags(). The caller
729  * must guard against concurrent reset attempts.
730  *
731  * In most cases this function should not be called directly but through
732  * pci_reset_function() or pci_reset_bus() which handle the save/restore and
733  * locking - asserted by lockdep.
734  *
735  * Return: 0 on success and an error value otherwise
736  */
737 int zpci_hot_reset_device(struct zpci_dev *zdev)
738 {
739         u8 status;
740         int rc;
741 
742         lockdep_assert_held(&zdev->state_lock);
743         zpci_dbg(3, "rst fid:%x, fh:%x\n", zdev->fid, zdev->fh);
744         if (zdev_enabled(zdev)) {
745                 /* Disables device access, DMAs and IRQs (reset state) */
746                 rc = zpci_disable_device(zdev);
747                 /*
748                  * Due to a z/VM vs LPAR inconsistency in the error state the
749                  * FH may indicate an enabled device but disable says the
750                  * device is already disabled don't treat it as an error here.
751                  */
752                 if (rc == -EINVAL)
753                         rc = 0;
754                 if (rc)
755                         return rc;
756         }
757 
758         rc = zpci_enable_device(zdev);
759         if (rc)
760                 return rc;
761 
762         if (zdev->dma_table)
763                 rc = zpci_register_ioat(zdev, 0, zdev->start_dma, zdev->end_dma,
764                                         virt_to_phys(zdev->dma_table), &status);
765         if (rc) {
766                 zpci_disable_device(zdev);
767                 return rc;
768         }
769 
770         return 0;
771 }
772 
773 /**
774  * zpci_create_device() - Create a new zpci_dev and add it to the zbus
775  * @fid: Function ID of the device to be created
776  * @fh: Current Function Handle of the device to be created
777  * @state: Initial state after creation either Standby or Configured
778  *
779  * Creates a new zpci device and adds it to its, possibly newly created, zbus
780  * as well as zpci_list.
781  *
782  * Returns: the zdev on success or an error pointer otherwise
783  */
784 struct zpci_dev *zpci_create_device(u32 fid, u32 fh, enum zpci_state state)
785 {
786         struct zpci_dev *zdev;
787         int rc;
788 
789         zpci_dbg(1, "add fid:%x, fh:%x, c:%d\n", fid, fh, state);
790         zdev = kzalloc(sizeof(*zdev), GFP_KERNEL);
791         if (!zdev)
792                 return ERR_PTR(-ENOMEM);
793 
794         /* FID and Function Handle are the static/dynamic identifiers */
795         zdev->fid = fid;
796         zdev->fh = fh;
797 
798         /* Query function properties and update zdev */
799         rc = clp_query_pci_fn(zdev);
800         if (rc)
801                 goto error;
802         zdev->state =  state;
803 
804         kref_init(&zdev->kref);
805         mutex_init(&zdev->state_lock);
806         mutex_init(&zdev->fmb_lock);
807         mutex_init(&zdev->kzdev_lock);
808 
809         rc = zpci_init_iommu(zdev);
810         if (rc)
811                 goto error;
812 
813         rc = zpci_bus_device_register(zdev, &pci_root_ops);
814         if (rc)
815                 goto error_destroy_iommu;
816 
817         spin_lock(&zpci_list_lock);
818         list_add_tail(&zdev->entry, &zpci_list);
819         spin_unlock(&zpci_list_lock);
820 
821         return zdev;
822 
823 error_destroy_iommu:
824         zpci_destroy_iommu(zdev);
825 error:
826         zpci_dbg(0, "add fid:%x, rc:%d\n", fid, rc);
827         kfree(zdev);
828         return ERR_PTR(rc);
829 }
830 
831 bool zpci_is_device_configured(struct zpci_dev *zdev)
832 {
833         enum zpci_state state = zdev->state;
834 
835         return state != ZPCI_FN_STATE_RESERVED &&
836                 state != ZPCI_FN_STATE_STANDBY;
837 }
838 
839 /**
840  * zpci_scan_configured_device() - Scan a freshly configured zpci_dev
841  * @zdev: The zpci_dev to be configured
842  * @fh: The general function handle supplied by the platform
843  *
844  * Given a device in the configuration state Configured, enables, scans and
845  * adds it to the common code PCI subsystem if possible. If any failure occurs,
846  * the zpci_dev is left disabled.
847  *
848  * Return: 0 on success, or an error code otherwise
849  */
850 int zpci_scan_configured_device(struct zpci_dev *zdev, u32 fh)
851 {
852         zpci_update_fh(zdev, fh);
853         return zpci_bus_scan_device(zdev);
854 }
855 
856 /**
857  * zpci_deconfigure_device() - Deconfigure a zpci_dev
858  * @zdev: The zpci_dev to configure
859  *
860  * Deconfigure a zPCI function that is currently configured and possibly known
861  * to the common code PCI subsystem.
862  * If any failure occurs the device is left as is.
863  *
864  * Return: 0 on success, or an error code otherwise
865  */
866 int zpci_deconfigure_device(struct zpci_dev *zdev)
867 {
868         int rc;
869 
870         lockdep_assert_held(&zdev->state_lock);
871         if (zdev->state != ZPCI_FN_STATE_CONFIGURED)
872                 return 0;
873 
874         if (zdev->zbus->bus)
875                 zpci_bus_remove_device(zdev, false);
876 
877         if (zdev_enabled(zdev)) {
878                 rc = zpci_disable_device(zdev);
879                 if (rc)
880                         return rc;
881         }
882 
883         rc = sclp_pci_deconfigure(zdev->fid);
884         zpci_dbg(3, "deconf fid:%x, rc:%d\n", zdev->fid, rc);
885         if (rc)
886                 return rc;
887         zdev->state = ZPCI_FN_STATE_STANDBY;
888 
889         return 0;
890 }
891 
892 /**
893  * zpci_device_reserved() - Mark device as reserved
894  * @zdev: the zpci_dev that was reserved
895  *
896  * Handle the case that a given zPCI function was reserved by another system.
897  * After a call to this function the zpci_dev can not be found via
898  * get_zdev_by_fid() anymore but may still be accessible via existing
899  * references though it will not be functional anymore.
900  */
901 void zpci_device_reserved(struct zpci_dev *zdev)
902 {
903         /*
904          * Remove device from zpci_list as it is going away. This also
905          * makes sure we ignore subsequent zPCI events for this device.
906          */
907         spin_lock(&zpci_list_lock);
908         list_del(&zdev->entry);
909         spin_unlock(&zpci_list_lock);
910         zdev->state = ZPCI_FN_STATE_RESERVED;
911         zpci_dbg(3, "rsv fid:%x\n", zdev->fid);
912         zpci_zdev_put(zdev);
913 }
914 
915 void zpci_release_device(struct kref *kref)
916 {
917         struct zpci_dev *zdev = container_of(kref, struct zpci_dev, kref);
918         int ret;
919 
920         if (zdev->has_hp_slot)
921                 zpci_exit_slot(zdev);
922 
923         if (zdev->zbus->bus)
924                 zpci_bus_remove_device(zdev, false);
925 
926         if (zdev_enabled(zdev))
927                 zpci_disable_device(zdev);
928 
929         switch (zdev->state) {
930         case ZPCI_FN_STATE_CONFIGURED:
931                 ret = sclp_pci_deconfigure(zdev->fid);
932                 zpci_dbg(3, "deconf fid:%x, rc:%d\n", zdev->fid, ret);
933                 fallthrough;
934         case ZPCI_FN_STATE_STANDBY:
935                 if (zdev->has_hp_slot)
936                         zpci_exit_slot(zdev);
937                 spin_lock(&zpci_list_lock);
938                 list_del(&zdev->entry);
939                 spin_unlock(&zpci_list_lock);
940                 zpci_dbg(3, "rsv fid:%x\n", zdev->fid);
941                 fallthrough;
942         case ZPCI_FN_STATE_RESERVED:
943                 if (zdev->has_resources)
944                         zpci_cleanup_bus_resources(zdev);
945                 zpci_bus_device_unregister(zdev);
946                 zpci_destroy_iommu(zdev);
947                 fallthrough;
948         default:
949                 break;
950         }
951         zpci_dbg(3, "rem fid:%x\n", zdev->fid);
952         kfree_rcu(zdev, rcu);
953 }
954 
955 int zpci_report_error(struct pci_dev *pdev,
956                       struct zpci_report_error_header *report)
957 {
958         struct zpci_dev *zdev = to_zpci(pdev);
959 
960         return sclp_pci_report(report, zdev->fh, zdev->fid);
961 }
962 EXPORT_SYMBOL(zpci_report_error);
963 
964 /**
965  * zpci_clear_error_state() - Clears the zPCI error state of the device
966  * @zdev: The zdev for which the zPCI error state should be reset
967  *
968  * Clear the zPCI error state of the device. If clearing the zPCI error state
969  * fails the device is left in the error state. In this case it may make sense
970  * to call zpci_io_perm_failure() on the associated pdev if it exists.
971  *
972  * Returns: 0 on success, -EIO otherwise
973  */
974 int zpci_clear_error_state(struct zpci_dev *zdev)
975 {
976         u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_RESET_ERROR);
977         struct zpci_fib fib = {0};
978         u8 status;
979         int cc;
980 
981         cc = zpci_mod_fc(req, &fib, &status);
982         if (cc) {
983                 zpci_dbg(3, "ces fid:%x, cc:%d, status:%x\n", zdev->fid, cc, status);
984                 return -EIO;
985         }
986 
987         return 0;
988 }
989 
990 /**
991  * zpci_reset_load_store_blocked() - Re-enables L/S from error state
992  * @zdev: The zdev for which to unblock load/store access
993  *
994  * Re-enables load/store access for a PCI function in the error state while
995  * keeping DMA blocked. In this state drivers can poke MMIO space to determine
996  * if error recovery is possible while catching any rogue DMA access from the
997  * device.
998  *
999  * Returns: 0 on success, -EIO otherwise
1000  */
1001 int zpci_reset_load_store_blocked(struct zpci_dev *zdev)
1002 {
1003         u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_RESET_BLOCK);
1004         struct zpci_fib fib = {0};
1005         u8 status;
1006         int cc;
1007 
1008         cc = zpci_mod_fc(req, &fib, &status);
1009         if (cc) {
1010                 zpci_dbg(3, "rls fid:%x, cc:%d, status:%x\n", zdev->fid, cc, status);
1011                 return -EIO;
1012         }
1013 
1014         return 0;
1015 }
1016 
1017 static int zpci_mem_init(void)
1018 {
1019         BUILD_BUG_ON(!is_power_of_2(__alignof__(struct zpci_fmb)) ||
1020                      __alignof__(struct zpci_fmb) < sizeof(struct zpci_fmb));
1021 
1022         zdev_fmb_cache = kmem_cache_create("PCI_FMB_cache", sizeof(struct zpci_fmb),
1023                                            __alignof__(struct zpci_fmb), 0, NULL);
1024         if (!zdev_fmb_cache)
1025                 goto error_fmb;
1026 
1027         zpci_iomap_start = kcalloc(ZPCI_IOMAP_ENTRIES,
1028                                    sizeof(*zpci_iomap_start), GFP_KERNEL);
1029         if (!zpci_iomap_start)
1030                 goto error_iomap;
1031 
1032         zpci_iomap_bitmap = kcalloc(BITS_TO_LONGS(ZPCI_IOMAP_ENTRIES),
1033                                     sizeof(*zpci_iomap_bitmap), GFP_KERNEL);
1034         if (!zpci_iomap_bitmap)
1035                 goto error_iomap_bitmap;
1036 
1037         if (static_branch_likely(&have_mio))
1038                 clp_setup_writeback_mio();
1039 
1040         return 0;
1041 error_iomap_bitmap:
1042         kfree(zpci_iomap_start);
1043 error_iomap:
1044         kmem_cache_destroy(zdev_fmb_cache);
1045 error_fmb:
1046         return -ENOMEM;
1047 }
1048 
1049 static void zpci_mem_exit(void)
1050 {
1051         kfree(zpci_iomap_bitmap);
1052         kfree(zpci_iomap_start);
1053         kmem_cache_destroy(zdev_fmb_cache);
1054 }
1055 
1056 static unsigned int s390_pci_probe __initdata = 1;
1057 unsigned int s390_pci_force_floating __initdata;
1058 static unsigned int s390_pci_initialized;
1059 
1060 char * __init pcibios_setup(char *str)
1061 {
1062         if (!strcmp(str, "off")) {
1063                 s390_pci_probe = 0;
1064                 return NULL;
1065         }
1066         if (!strcmp(str, "nomio")) {
1067                 get_lowcore()->machine_flags &= ~MACHINE_FLAG_PCI_MIO;
1068                 return NULL;
1069         }
1070         if (!strcmp(str, "force_floating")) {
1071                 s390_pci_force_floating = 1;
1072                 return NULL;
1073         }
1074         if (!strcmp(str, "norid")) {
1075                 s390_pci_no_rid = 1;
1076                 return NULL;
1077         }
1078         return str;
1079 }
1080 
1081 bool zpci_is_enabled(void)
1082 {
1083         return s390_pci_initialized;
1084 }
1085 
1086 static int __init pci_base_init(void)
1087 {
1088         int rc;
1089 
1090         if (!s390_pci_probe)
1091                 return 0;
1092 
1093         if (!test_facility(69) || !test_facility(71)) {
1094                 pr_info("PCI is not supported because CPU facilities 69 or 71 are not available\n");
1095                 return 0;
1096         }
1097 
1098         if (MACHINE_HAS_PCI_MIO) {
1099                 static_branch_enable(&have_mio);
1100                 system_ctl_set_bit(2, CR2_MIO_ADDRESSING_BIT);
1101         }
1102 
1103         rc = zpci_debug_init();
1104         if (rc)
1105                 goto out;
1106 
1107         rc = zpci_mem_init();
1108         if (rc)
1109                 goto out_mem;
1110 
1111         rc = zpci_irq_init();
1112         if (rc)
1113                 goto out_irq;
1114 
1115         rc = clp_scan_pci_devices();
1116         if (rc)
1117                 goto out_find;
1118         zpci_bus_scan_busses();
1119 
1120         s390_pci_initialized = 1;
1121         return 0;
1122 
1123 out_find:
1124         zpci_irq_exit();
1125 out_irq:
1126         zpci_mem_exit();
1127 out_mem:
1128         zpci_debug_exit();
1129 out:
1130         return rc;
1131 }
1132 subsys_initcall_sync(pci_base_init);
1133 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php