1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright IBM Corp. 2012 4 * 5 * Author(s): 6 * Jan Glauber <jang@linux.vnet.ibm.com> 7 * 8 * The System z PCI code is a rewrite from a prototype by 9 * the following people (Kudoz!): 10 * Alexander Schmidt 11 * Christoph Raisch 12 * Hannes Hering 13 * Hoang-Nam Nguyen 14 * Jan-Bernd Themann 15 * Stefan Roscher 16 * Thomas Klein 17 */ 18 19 #define KMSG_COMPONENT "zpci" 20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 21 22 #include <linux/kernel.h> 23 #include <linux/slab.h> 24 #include <linux/err.h> 25 #include <linux/export.h> 26 #include <linux/delay.h> 27 #include <linux/seq_file.h> 28 #include <linux/jump_label.h> 29 #include <linux/pci.h> 30 #include <linux/printk.h> 31 #include <linux/lockdep.h> 32 33 #include <asm/isc.h> 34 #include <asm/airq.h> 35 #include <asm/facility.h> 36 #include <asm/pci_insn.h> 37 #include <asm/pci_clp.h> 38 #include <asm/pci_dma.h> 39 40 #include "pci_bus.h" 41 #include "pci_iov.h" 42 43 /* list of all detected zpci devices */ 44 static LIST_HEAD(zpci_list); 45 static DEFINE_SPINLOCK(zpci_list_lock); 46 47 static DECLARE_BITMAP(zpci_domain, ZPCI_DOMAIN_BITMAP_SIZE); 48 static DEFINE_SPINLOCK(zpci_domain_lock); 49 50 #define ZPCI_IOMAP_ENTRIES \ 51 min(((unsigned long) ZPCI_NR_DEVICES * PCI_STD_NUM_BARS / 2), \ 52 ZPCI_IOMAP_MAX_ENTRIES) 53 54 unsigned int s390_pci_no_rid; 55 56 static DEFINE_SPINLOCK(zpci_iomap_lock); 57 static unsigned long *zpci_iomap_bitmap; 58 struct zpci_iomap_entry *zpci_iomap_start; 59 EXPORT_SYMBOL_GPL(zpci_iomap_start); 60 61 DEFINE_STATIC_KEY_FALSE(have_mio); 62 63 static struct kmem_cache *zdev_fmb_cache; 64 65 /* AEN structures that must be preserved over KVM module re-insertion */ 66 union zpci_sic_iib *zpci_aipb; 67 EXPORT_SYMBOL_GPL(zpci_aipb); 68 struct airq_iv *zpci_aif_sbv; 69 EXPORT_SYMBOL_GPL(zpci_aif_sbv); 70 71 struct zpci_dev *get_zdev_by_fid(u32 fid) 72 { 73 struct zpci_dev *tmp, *zdev = NULL; 74 75 spin_lock(&zpci_list_lock); 76 list_for_each_entry(tmp, &zpci_list, entry) { 77 if (tmp->fid == fid) { 78 zdev = tmp; 79 zpci_zdev_get(zdev); 80 break; 81 } 82 } 83 spin_unlock(&zpci_list_lock); 84 return zdev; 85 } 86 87 void zpci_remove_reserved_devices(void) 88 { 89 struct zpci_dev *tmp, *zdev; 90 enum zpci_state state; 91 LIST_HEAD(remove); 92 93 spin_lock(&zpci_list_lock); 94 list_for_each_entry_safe(zdev, tmp, &zpci_list, entry) { 95 if (zdev->state == ZPCI_FN_STATE_STANDBY && 96 !clp_get_state(zdev->fid, &state) && 97 state == ZPCI_FN_STATE_RESERVED) 98 list_move_tail(&zdev->entry, &remove); 99 } 100 spin_unlock(&zpci_list_lock); 101 102 list_for_each_entry_safe(zdev, tmp, &remove, entry) 103 zpci_device_reserved(zdev); 104 } 105 106 int pci_domain_nr(struct pci_bus *bus) 107 { 108 return ((struct zpci_bus *) bus->sysdata)->domain_nr; 109 } 110 EXPORT_SYMBOL_GPL(pci_domain_nr); 111 112 int pci_proc_domain(struct pci_bus *bus) 113 { 114 return pci_domain_nr(bus); 115 } 116 EXPORT_SYMBOL_GPL(pci_proc_domain); 117 118 /* Modify PCI: Register I/O address translation parameters */ 119 int zpci_register_ioat(struct zpci_dev *zdev, u8 dmaas, 120 u64 base, u64 limit, u64 iota, u8 *status) 121 { 122 u64 req = ZPCI_CREATE_REQ(zdev->fh, dmaas, ZPCI_MOD_FC_REG_IOAT); 123 struct zpci_fib fib = {0}; 124 u8 cc; 125 126 WARN_ON_ONCE(iota & 0x3fff); 127 fib.pba = base; 128 /* Work around off by one in ISM virt device */ 129 if (zdev->pft == PCI_FUNC_TYPE_ISM && limit > base) 130 fib.pal = limit + (1 << 12); 131 else 132 fib.pal = limit; 133 fib.iota = iota | ZPCI_IOTA_RTTO_FLAG; 134 fib.gd = zdev->gisa; 135 cc = zpci_mod_fc(req, &fib, status); 136 if (cc) 137 zpci_dbg(3, "reg ioat fid:%x, cc:%d, status:%d\n", zdev->fid, cc, *status); 138 return cc; 139 } 140 EXPORT_SYMBOL_GPL(zpci_register_ioat); 141 142 /* Modify PCI: Unregister I/O address translation parameters */ 143 int zpci_unregister_ioat(struct zpci_dev *zdev, u8 dmaas) 144 { 145 u64 req = ZPCI_CREATE_REQ(zdev->fh, dmaas, ZPCI_MOD_FC_DEREG_IOAT); 146 struct zpci_fib fib = {0}; 147 u8 cc, status; 148 149 fib.gd = zdev->gisa; 150 151 cc = zpci_mod_fc(req, &fib, &status); 152 if (cc) 153 zpci_dbg(3, "unreg ioat fid:%x, cc:%d, status:%d\n", zdev->fid, cc, status); 154 return cc; 155 } 156 157 /* Modify PCI: Set PCI function measurement parameters */ 158 int zpci_fmb_enable_device(struct zpci_dev *zdev) 159 { 160 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_SET_MEASURE); 161 struct zpci_iommu_ctrs *ctrs; 162 struct zpci_fib fib = {0}; 163 u8 cc, status; 164 165 if (zdev->fmb || sizeof(*zdev->fmb) < zdev->fmb_length) 166 return -EINVAL; 167 168 zdev->fmb = kmem_cache_zalloc(zdev_fmb_cache, GFP_KERNEL); 169 if (!zdev->fmb) 170 return -ENOMEM; 171 WARN_ON((u64) zdev->fmb & 0xf); 172 173 /* reset software counters */ 174 ctrs = zpci_get_iommu_ctrs(zdev); 175 if (ctrs) { 176 atomic64_set(&ctrs->mapped_pages, 0); 177 atomic64_set(&ctrs->unmapped_pages, 0); 178 atomic64_set(&ctrs->global_rpcits, 0); 179 atomic64_set(&ctrs->sync_map_rpcits, 0); 180 atomic64_set(&ctrs->sync_rpcits, 0); 181 } 182 183 184 fib.fmb_addr = virt_to_phys(zdev->fmb); 185 fib.gd = zdev->gisa; 186 cc = zpci_mod_fc(req, &fib, &status); 187 if (cc) { 188 kmem_cache_free(zdev_fmb_cache, zdev->fmb); 189 zdev->fmb = NULL; 190 } 191 return cc ? -EIO : 0; 192 } 193 194 /* Modify PCI: Disable PCI function measurement */ 195 int zpci_fmb_disable_device(struct zpci_dev *zdev) 196 { 197 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_SET_MEASURE); 198 struct zpci_fib fib = {0}; 199 u8 cc, status; 200 201 if (!zdev->fmb) 202 return -EINVAL; 203 204 fib.gd = zdev->gisa; 205 206 /* Function measurement is disabled if fmb address is zero */ 207 cc = zpci_mod_fc(req, &fib, &status); 208 if (cc == 3) /* Function already gone. */ 209 cc = 0; 210 211 if (!cc) { 212 kmem_cache_free(zdev_fmb_cache, zdev->fmb); 213 zdev->fmb = NULL; 214 } 215 return cc ? -EIO : 0; 216 } 217 218 static int zpci_cfg_load(struct zpci_dev *zdev, int offset, u32 *val, u8 len) 219 { 220 u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len); 221 u64 data; 222 int rc; 223 224 rc = __zpci_load(&data, req, offset); 225 if (!rc) { 226 data = le64_to_cpu((__force __le64) data); 227 data >>= (8 - len) * 8; 228 *val = (u32) data; 229 } else 230 *val = 0xffffffff; 231 return rc; 232 } 233 234 static int zpci_cfg_store(struct zpci_dev *zdev, int offset, u32 val, u8 len) 235 { 236 u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len); 237 u64 data = val; 238 int rc; 239 240 data <<= (8 - len) * 8; 241 data = (__force u64) cpu_to_le64(data); 242 rc = __zpci_store(data, req, offset); 243 return rc; 244 } 245 246 resource_size_t pcibios_align_resource(void *data, const struct resource *res, 247 resource_size_t size, 248 resource_size_t align) 249 { 250 return 0; 251 } 252 253 void __iomem *ioremap_prot(phys_addr_t phys_addr, size_t size, 254 unsigned long prot) 255 { 256 /* 257 * When PCI MIO instructions are unavailable the "physical" address 258 * encodes a hint for accessing the PCI memory space it represents. 259 * Just pass it unchanged such that ioread/iowrite can decode it. 260 */ 261 if (!static_branch_unlikely(&have_mio)) 262 return (void __iomem *)phys_addr; 263 264 return generic_ioremap_prot(phys_addr, size, __pgprot(prot)); 265 } 266 EXPORT_SYMBOL(ioremap_prot); 267 268 void iounmap(volatile void __iomem *addr) 269 { 270 if (static_branch_likely(&have_mio)) 271 generic_iounmap(addr); 272 } 273 EXPORT_SYMBOL(iounmap); 274 275 /* Create a virtual mapping cookie for a PCI BAR */ 276 static void __iomem *pci_iomap_range_fh(struct pci_dev *pdev, int bar, 277 unsigned long offset, unsigned long max) 278 { 279 struct zpci_dev *zdev = to_zpci(pdev); 280 int idx; 281 282 idx = zdev->bars[bar].map_idx; 283 spin_lock(&zpci_iomap_lock); 284 /* Detect overrun */ 285 WARN_ON(!++zpci_iomap_start[idx].count); 286 zpci_iomap_start[idx].fh = zdev->fh; 287 zpci_iomap_start[idx].bar = bar; 288 spin_unlock(&zpci_iomap_lock); 289 290 return (void __iomem *) ZPCI_ADDR(idx) + offset; 291 } 292 293 static void __iomem *pci_iomap_range_mio(struct pci_dev *pdev, int bar, 294 unsigned long offset, 295 unsigned long max) 296 { 297 unsigned long barsize = pci_resource_len(pdev, bar); 298 struct zpci_dev *zdev = to_zpci(pdev); 299 void __iomem *iova; 300 301 iova = ioremap((unsigned long) zdev->bars[bar].mio_wt, barsize); 302 return iova ? iova + offset : iova; 303 } 304 305 void __iomem *pci_iomap_range(struct pci_dev *pdev, int bar, 306 unsigned long offset, unsigned long max) 307 { 308 if (bar >= PCI_STD_NUM_BARS || !pci_resource_len(pdev, bar)) 309 return NULL; 310 311 if (static_branch_likely(&have_mio)) 312 return pci_iomap_range_mio(pdev, bar, offset, max); 313 else 314 return pci_iomap_range_fh(pdev, bar, offset, max); 315 } 316 EXPORT_SYMBOL(pci_iomap_range); 317 318 void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long maxlen) 319 { 320 return pci_iomap_range(dev, bar, 0, maxlen); 321 } 322 EXPORT_SYMBOL(pci_iomap); 323 324 static void __iomem *pci_iomap_wc_range_mio(struct pci_dev *pdev, int bar, 325 unsigned long offset, unsigned long max) 326 { 327 unsigned long barsize = pci_resource_len(pdev, bar); 328 struct zpci_dev *zdev = to_zpci(pdev); 329 void __iomem *iova; 330 331 iova = ioremap((unsigned long) zdev->bars[bar].mio_wb, barsize); 332 return iova ? iova + offset : iova; 333 } 334 335 void __iomem *pci_iomap_wc_range(struct pci_dev *pdev, int bar, 336 unsigned long offset, unsigned long max) 337 { 338 if (bar >= PCI_STD_NUM_BARS || !pci_resource_len(pdev, bar)) 339 return NULL; 340 341 if (static_branch_likely(&have_mio)) 342 return pci_iomap_wc_range_mio(pdev, bar, offset, max); 343 else 344 return pci_iomap_range_fh(pdev, bar, offset, max); 345 } 346 EXPORT_SYMBOL(pci_iomap_wc_range); 347 348 void __iomem *pci_iomap_wc(struct pci_dev *dev, int bar, unsigned long maxlen) 349 { 350 return pci_iomap_wc_range(dev, bar, 0, maxlen); 351 } 352 EXPORT_SYMBOL(pci_iomap_wc); 353 354 static void pci_iounmap_fh(struct pci_dev *pdev, void __iomem *addr) 355 { 356 unsigned int idx = ZPCI_IDX(addr); 357 358 spin_lock(&zpci_iomap_lock); 359 /* Detect underrun */ 360 WARN_ON(!zpci_iomap_start[idx].count); 361 if (!--zpci_iomap_start[idx].count) { 362 zpci_iomap_start[idx].fh = 0; 363 zpci_iomap_start[idx].bar = 0; 364 } 365 spin_unlock(&zpci_iomap_lock); 366 } 367 368 static void pci_iounmap_mio(struct pci_dev *pdev, void __iomem *addr) 369 { 370 iounmap(addr); 371 } 372 373 void pci_iounmap(struct pci_dev *pdev, void __iomem *addr) 374 { 375 if (static_branch_likely(&have_mio)) 376 pci_iounmap_mio(pdev, addr); 377 else 378 pci_iounmap_fh(pdev, addr); 379 } 380 EXPORT_SYMBOL(pci_iounmap); 381 382 static int pci_read(struct pci_bus *bus, unsigned int devfn, int where, 383 int size, u32 *val) 384 { 385 struct zpci_dev *zdev = zdev_from_bus(bus, devfn); 386 387 return (zdev) ? zpci_cfg_load(zdev, where, val, size) : -ENODEV; 388 } 389 390 static int pci_write(struct pci_bus *bus, unsigned int devfn, int where, 391 int size, u32 val) 392 { 393 struct zpci_dev *zdev = zdev_from_bus(bus, devfn); 394 395 return (zdev) ? zpci_cfg_store(zdev, where, val, size) : -ENODEV; 396 } 397 398 static struct pci_ops pci_root_ops = { 399 .read = pci_read, 400 .write = pci_write, 401 }; 402 403 static void zpci_map_resources(struct pci_dev *pdev) 404 { 405 struct zpci_dev *zdev = to_zpci(pdev); 406 resource_size_t len; 407 int i; 408 409 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 410 len = pci_resource_len(pdev, i); 411 if (!len) 412 continue; 413 414 if (zpci_use_mio(zdev)) 415 pdev->resource[i].start = 416 (resource_size_t __force) zdev->bars[i].mio_wt; 417 else 418 pdev->resource[i].start = (resource_size_t __force) 419 pci_iomap_range_fh(pdev, i, 0, 0); 420 pdev->resource[i].end = pdev->resource[i].start + len - 1; 421 } 422 423 zpci_iov_map_resources(pdev); 424 } 425 426 static void zpci_unmap_resources(struct pci_dev *pdev) 427 { 428 struct zpci_dev *zdev = to_zpci(pdev); 429 resource_size_t len; 430 int i; 431 432 if (zpci_use_mio(zdev)) 433 return; 434 435 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 436 len = pci_resource_len(pdev, i); 437 if (!len) 438 continue; 439 pci_iounmap_fh(pdev, (void __iomem __force *) 440 pdev->resource[i].start); 441 } 442 } 443 444 static int zpci_alloc_iomap(struct zpci_dev *zdev) 445 { 446 unsigned long entry; 447 448 spin_lock(&zpci_iomap_lock); 449 entry = find_first_zero_bit(zpci_iomap_bitmap, ZPCI_IOMAP_ENTRIES); 450 if (entry == ZPCI_IOMAP_ENTRIES) { 451 spin_unlock(&zpci_iomap_lock); 452 return -ENOSPC; 453 } 454 set_bit(entry, zpci_iomap_bitmap); 455 spin_unlock(&zpci_iomap_lock); 456 return entry; 457 } 458 459 static void zpci_free_iomap(struct zpci_dev *zdev, int entry) 460 { 461 spin_lock(&zpci_iomap_lock); 462 memset(&zpci_iomap_start[entry], 0, sizeof(struct zpci_iomap_entry)); 463 clear_bit(entry, zpci_iomap_bitmap); 464 spin_unlock(&zpci_iomap_lock); 465 } 466 467 static void zpci_do_update_iomap_fh(struct zpci_dev *zdev, u32 fh) 468 { 469 int bar, idx; 470 471 spin_lock(&zpci_iomap_lock); 472 for (bar = 0; bar < PCI_STD_NUM_BARS; bar++) { 473 if (!zdev->bars[bar].size) 474 continue; 475 idx = zdev->bars[bar].map_idx; 476 if (!zpci_iomap_start[idx].count) 477 continue; 478 WRITE_ONCE(zpci_iomap_start[idx].fh, zdev->fh); 479 } 480 spin_unlock(&zpci_iomap_lock); 481 } 482 483 void zpci_update_fh(struct zpci_dev *zdev, u32 fh) 484 { 485 if (!fh || zdev->fh == fh) 486 return; 487 488 zdev->fh = fh; 489 if (zpci_use_mio(zdev)) 490 return; 491 if (zdev->has_resources && zdev_enabled(zdev)) 492 zpci_do_update_iomap_fh(zdev, fh); 493 } 494 495 static struct resource *__alloc_res(struct zpci_dev *zdev, unsigned long start, 496 unsigned long size, unsigned long flags) 497 { 498 struct resource *r; 499 500 r = kzalloc(sizeof(*r), GFP_KERNEL); 501 if (!r) 502 return NULL; 503 504 r->start = start; 505 r->end = r->start + size - 1; 506 r->flags = flags; 507 r->name = zdev->res_name; 508 509 if (request_resource(&iomem_resource, r)) { 510 kfree(r); 511 return NULL; 512 } 513 return r; 514 } 515 516 int zpci_setup_bus_resources(struct zpci_dev *zdev) 517 { 518 unsigned long addr, size, flags; 519 struct resource *res; 520 int i, entry; 521 522 snprintf(zdev->res_name, sizeof(zdev->res_name), 523 "PCI Bus %04x:%02x", zdev->uid, ZPCI_BUS_NR); 524 525 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 526 if (!zdev->bars[i].size) 527 continue; 528 entry = zpci_alloc_iomap(zdev); 529 if (entry < 0) 530 return entry; 531 zdev->bars[i].map_idx = entry; 532 533 /* only MMIO is supported */ 534 flags = IORESOURCE_MEM; 535 if (zdev->bars[i].val & 8) 536 flags |= IORESOURCE_PREFETCH; 537 if (zdev->bars[i].val & 4) 538 flags |= IORESOURCE_MEM_64; 539 540 if (zpci_use_mio(zdev)) 541 addr = (unsigned long) zdev->bars[i].mio_wt; 542 else 543 addr = ZPCI_ADDR(entry); 544 size = 1UL << zdev->bars[i].size; 545 546 res = __alloc_res(zdev, addr, size, flags); 547 if (!res) { 548 zpci_free_iomap(zdev, entry); 549 return -ENOMEM; 550 } 551 zdev->bars[i].res = res; 552 } 553 zdev->has_resources = 1; 554 555 return 0; 556 } 557 558 static void zpci_cleanup_bus_resources(struct zpci_dev *zdev) 559 { 560 struct resource *res; 561 int i; 562 563 pci_lock_rescan_remove(); 564 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 565 res = zdev->bars[i].res; 566 if (!res) 567 continue; 568 569 release_resource(res); 570 pci_bus_remove_resource(zdev->zbus->bus, res); 571 zpci_free_iomap(zdev, zdev->bars[i].map_idx); 572 zdev->bars[i].res = NULL; 573 kfree(res); 574 } 575 zdev->has_resources = 0; 576 pci_unlock_rescan_remove(); 577 } 578 579 int pcibios_device_add(struct pci_dev *pdev) 580 { 581 struct zpci_dev *zdev = to_zpci(pdev); 582 struct resource *res; 583 int i; 584 585 /* The pdev has a reference to the zdev via its bus */ 586 zpci_zdev_get(zdev); 587 if (pdev->is_physfn) 588 pdev->no_vf_scan = 1; 589 590 pdev->dev.groups = zpci_attr_groups; 591 zpci_map_resources(pdev); 592 593 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 594 res = &pdev->resource[i]; 595 if (res->parent || !res->flags) 596 continue; 597 pci_claim_resource(pdev, i); 598 } 599 600 return 0; 601 } 602 603 void pcibios_release_device(struct pci_dev *pdev) 604 { 605 struct zpci_dev *zdev = to_zpci(pdev); 606 607 zpci_unmap_resources(pdev); 608 zpci_zdev_put(zdev); 609 } 610 611 int pcibios_enable_device(struct pci_dev *pdev, int mask) 612 { 613 struct zpci_dev *zdev = to_zpci(pdev); 614 615 zpci_debug_init_device(zdev, dev_name(&pdev->dev)); 616 zpci_fmb_enable_device(zdev); 617 618 return pci_enable_resources(pdev, mask); 619 } 620 621 void pcibios_disable_device(struct pci_dev *pdev) 622 { 623 struct zpci_dev *zdev = to_zpci(pdev); 624 625 zpci_fmb_disable_device(zdev); 626 zpci_debug_exit_device(zdev); 627 } 628 629 static int __zpci_register_domain(int domain) 630 { 631 spin_lock(&zpci_domain_lock); 632 if (test_bit(domain, zpci_domain)) { 633 spin_unlock(&zpci_domain_lock); 634 pr_err("Domain %04x is already assigned\n", domain); 635 return -EEXIST; 636 } 637 set_bit(domain, zpci_domain); 638 spin_unlock(&zpci_domain_lock); 639 return domain; 640 } 641 642 static int __zpci_alloc_domain(void) 643 { 644 int domain; 645 646 spin_lock(&zpci_domain_lock); 647 /* 648 * We can always auto allocate domains below ZPCI_NR_DEVICES. 649 * There is either a free domain or we have reached the maximum in 650 * which case we would have bailed earlier. 651 */ 652 domain = find_first_zero_bit(zpci_domain, ZPCI_NR_DEVICES); 653 set_bit(domain, zpci_domain); 654 spin_unlock(&zpci_domain_lock); 655 return domain; 656 } 657 658 int zpci_alloc_domain(int domain) 659 { 660 if (zpci_unique_uid) { 661 if (domain) 662 return __zpci_register_domain(domain); 663 pr_warn("UID checking was active but no UID is provided: switching to automatic domain allocation\n"); 664 update_uid_checking(false); 665 } 666 return __zpci_alloc_domain(); 667 } 668 669 void zpci_free_domain(int domain) 670 { 671 spin_lock(&zpci_domain_lock); 672 clear_bit(domain, zpci_domain); 673 spin_unlock(&zpci_domain_lock); 674 } 675 676 677 int zpci_enable_device(struct zpci_dev *zdev) 678 { 679 u32 fh = zdev->fh; 680 int rc = 0; 681 682 if (clp_enable_fh(zdev, &fh, ZPCI_NR_DMA_SPACES)) 683 rc = -EIO; 684 else 685 zpci_update_fh(zdev, fh); 686 return rc; 687 } 688 EXPORT_SYMBOL_GPL(zpci_enable_device); 689 690 int zpci_disable_device(struct zpci_dev *zdev) 691 { 692 u32 fh = zdev->fh; 693 int cc, rc = 0; 694 695 cc = clp_disable_fh(zdev, &fh); 696 if (!cc) { 697 zpci_update_fh(zdev, fh); 698 } else if (cc == CLP_RC_SETPCIFN_ALRDY) { 699 pr_info("Disabling PCI function %08x had no effect as it was already disabled\n", 700 zdev->fid); 701 /* Function is already disabled - update handle */ 702 rc = clp_refresh_fh(zdev->fid, &fh); 703 if (!rc) { 704 zpci_update_fh(zdev, fh); 705 rc = -EINVAL; 706 } 707 } else { 708 rc = -EIO; 709 } 710 return rc; 711 } 712 EXPORT_SYMBOL_GPL(zpci_disable_device); 713 714 /** 715 * zpci_hot_reset_device - perform a reset of the given zPCI function 716 * @zdev: the slot which should be reset 717 * 718 * Performs a low level reset of the zPCI function. The reset is low level in 719 * the sense that the zPCI function can be reset without detaching it from the 720 * common PCI subsystem. The reset may be performed while under control of 721 * either DMA or IOMMU APIs in which case the existing DMA/IOMMU translation 722 * table is reinstated at the end of the reset. 723 * 724 * After the reset the functions internal state is reset to an initial state 725 * equivalent to its state during boot when first probing a driver. 726 * Consequently after reset the PCI function requires re-initialization via the 727 * common PCI code including re-enabling IRQs via pci_alloc_irq_vectors() 728 * and enabling the function via e.g. pci_enable_device_flags(). The caller 729 * must guard against concurrent reset attempts. 730 * 731 * In most cases this function should not be called directly but through 732 * pci_reset_function() or pci_reset_bus() which handle the save/restore and 733 * locking - asserted by lockdep. 734 * 735 * Return: 0 on success and an error value otherwise 736 */ 737 int zpci_hot_reset_device(struct zpci_dev *zdev) 738 { 739 u8 status; 740 int rc; 741 742 lockdep_assert_held(&zdev->state_lock); 743 zpci_dbg(3, "rst fid:%x, fh:%x\n", zdev->fid, zdev->fh); 744 if (zdev_enabled(zdev)) { 745 /* Disables device access, DMAs and IRQs (reset state) */ 746 rc = zpci_disable_device(zdev); 747 /* 748 * Due to a z/VM vs LPAR inconsistency in the error state the 749 * FH may indicate an enabled device but disable says the 750 * device is already disabled don't treat it as an error here. 751 */ 752 if (rc == -EINVAL) 753 rc = 0; 754 if (rc) 755 return rc; 756 } 757 758 rc = zpci_enable_device(zdev); 759 if (rc) 760 return rc; 761 762 if (zdev->dma_table) 763 rc = zpci_register_ioat(zdev, 0, zdev->start_dma, zdev->end_dma, 764 virt_to_phys(zdev->dma_table), &status); 765 if (rc) { 766 zpci_disable_device(zdev); 767 return rc; 768 } 769 770 return 0; 771 } 772 773 /** 774 * zpci_create_device() - Create a new zpci_dev and add it to the zbus 775 * @fid: Function ID of the device to be created 776 * @fh: Current Function Handle of the device to be created 777 * @state: Initial state after creation either Standby or Configured 778 * 779 * Creates a new zpci device and adds it to its, possibly newly created, zbus 780 * as well as zpci_list. 781 * 782 * Returns: the zdev on success or an error pointer otherwise 783 */ 784 struct zpci_dev *zpci_create_device(u32 fid, u32 fh, enum zpci_state state) 785 { 786 struct zpci_dev *zdev; 787 int rc; 788 789 zpci_dbg(1, "add fid:%x, fh:%x, c:%d\n", fid, fh, state); 790 zdev = kzalloc(sizeof(*zdev), GFP_KERNEL); 791 if (!zdev) 792 return ERR_PTR(-ENOMEM); 793 794 /* FID and Function Handle are the static/dynamic identifiers */ 795 zdev->fid = fid; 796 zdev->fh = fh; 797 798 /* Query function properties and update zdev */ 799 rc = clp_query_pci_fn(zdev); 800 if (rc) 801 goto error; 802 zdev->state = state; 803 804 kref_init(&zdev->kref); 805 mutex_init(&zdev->state_lock); 806 mutex_init(&zdev->fmb_lock); 807 mutex_init(&zdev->kzdev_lock); 808 809 rc = zpci_init_iommu(zdev); 810 if (rc) 811 goto error; 812 813 rc = zpci_bus_device_register(zdev, &pci_root_ops); 814 if (rc) 815 goto error_destroy_iommu; 816 817 spin_lock(&zpci_list_lock); 818 list_add_tail(&zdev->entry, &zpci_list); 819 spin_unlock(&zpci_list_lock); 820 821 return zdev; 822 823 error_destroy_iommu: 824 zpci_destroy_iommu(zdev); 825 error: 826 zpci_dbg(0, "add fid:%x, rc:%d\n", fid, rc); 827 kfree(zdev); 828 return ERR_PTR(rc); 829 } 830 831 bool zpci_is_device_configured(struct zpci_dev *zdev) 832 { 833 enum zpci_state state = zdev->state; 834 835 return state != ZPCI_FN_STATE_RESERVED && 836 state != ZPCI_FN_STATE_STANDBY; 837 } 838 839 /** 840 * zpci_scan_configured_device() - Scan a freshly configured zpci_dev 841 * @zdev: The zpci_dev to be configured 842 * @fh: The general function handle supplied by the platform 843 * 844 * Given a device in the configuration state Configured, enables, scans and 845 * adds it to the common code PCI subsystem if possible. If any failure occurs, 846 * the zpci_dev is left disabled. 847 * 848 * Return: 0 on success, or an error code otherwise 849 */ 850 int zpci_scan_configured_device(struct zpci_dev *zdev, u32 fh) 851 { 852 zpci_update_fh(zdev, fh); 853 return zpci_bus_scan_device(zdev); 854 } 855 856 /** 857 * zpci_deconfigure_device() - Deconfigure a zpci_dev 858 * @zdev: The zpci_dev to configure 859 * 860 * Deconfigure a zPCI function that is currently configured and possibly known 861 * to the common code PCI subsystem. 862 * If any failure occurs the device is left as is. 863 * 864 * Return: 0 on success, or an error code otherwise 865 */ 866 int zpci_deconfigure_device(struct zpci_dev *zdev) 867 { 868 int rc; 869 870 lockdep_assert_held(&zdev->state_lock); 871 if (zdev->state != ZPCI_FN_STATE_CONFIGURED) 872 return 0; 873 874 if (zdev->zbus->bus) 875 zpci_bus_remove_device(zdev, false); 876 877 if (zdev_enabled(zdev)) { 878 rc = zpci_disable_device(zdev); 879 if (rc) 880 return rc; 881 } 882 883 rc = sclp_pci_deconfigure(zdev->fid); 884 zpci_dbg(3, "deconf fid:%x, rc:%d\n", zdev->fid, rc); 885 if (rc) 886 return rc; 887 zdev->state = ZPCI_FN_STATE_STANDBY; 888 889 return 0; 890 } 891 892 /** 893 * zpci_device_reserved() - Mark device as reserved 894 * @zdev: the zpci_dev that was reserved 895 * 896 * Handle the case that a given zPCI function was reserved by another system. 897 * After a call to this function the zpci_dev can not be found via 898 * get_zdev_by_fid() anymore but may still be accessible via existing 899 * references though it will not be functional anymore. 900 */ 901 void zpci_device_reserved(struct zpci_dev *zdev) 902 { 903 /* 904 * Remove device from zpci_list as it is going away. This also 905 * makes sure we ignore subsequent zPCI events for this device. 906 */ 907 spin_lock(&zpci_list_lock); 908 list_del(&zdev->entry); 909 spin_unlock(&zpci_list_lock); 910 zdev->state = ZPCI_FN_STATE_RESERVED; 911 zpci_dbg(3, "rsv fid:%x\n", zdev->fid); 912 zpci_zdev_put(zdev); 913 } 914 915 void zpci_release_device(struct kref *kref) 916 { 917 struct zpci_dev *zdev = container_of(kref, struct zpci_dev, kref); 918 int ret; 919 920 if (zdev->has_hp_slot) 921 zpci_exit_slot(zdev); 922 923 if (zdev->zbus->bus) 924 zpci_bus_remove_device(zdev, false); 925 926 if (zdev_enabled(zdev)) 927 zpci_disable_device(zdev); 928 929 switch (zdev->state) { 930 case ZPCI_FN_STATE_CONFIGURED: 931 ret = sclp_pci_deconfigure(zdev->fid); 932 zpci_dbg(3, "deconf fid:%x, rc:%d\n", zdev->fid, ret); 933 fallthrough; 934 case ZPCI_FN_STATE_STANDBY: 935 if (zdev->has_hp_slot) 936 zpci_exit_slot(zdev); 937 spin_lock(&zpci_list_lock); 938 list_del(&zdev->entry); 939 spin_unlock(&zpci_list_lock); 940 zpci_dbg(3, "rsv fid:%x\n", zdev->fid); 941 fallthrough; 942 case ZPCI_FN_STATE_RESERVED: 943 if (zdev->has_resources) 944 zpci_cleanup_bus_resources(zdev); 945 zpci_bus_device_unregister(zdev); 946 zpci_destroy_iommu(zdev); 947 fallthrough; 948 default: 949 break; 950 } 951 zpci_dbg(3, "rem fid:%x\n", zdev->fid); 952 kfree_rcu(zdev, rcu); 953 } 954 955 int zpci_report_error(struct pci_dev *pdev, 956 struct zpci_report_error_header *report) 957 { 958 struct zpci_dev *zdev = to_zpci(pdev); 959 960 return sclp_pci_report(report, zdev->fh, zdev->fid); 961 } 962 EXPORT_SYMBOL(zpci_report_error); 963 964 /** 965 * zpci_clear_error_state() - Clears the zPCI error state of the device 966 * @zdev: The zdev for which the zPCI error state should be reset 967 * 968 * Clear the zPCI error state of the device. If clearing the zPCI error state 969 * fails the device is left in the error state. In this case it may make sense 970 * to call zpci_io_perm_failure() on the associated pdev if it exists. 971 * 972 * Returns: 0 on success, -EIO otherwise 973 */ 974 int zpci_clear_error_state(struct zpci_dev *zdev) 975 { 976 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_RESET_ERROR); 977 struct zpci_fib fib = {0}; 978 u8 status; 979 int cc; 980 981 cc = zpci_mod_fc(req, &fib, &status); 982 if (cc) { 983 zpci_dbg(3, "ces fid:%x, cc:%d, status:%x\n", zdev->fid, cc, status); 984 return -EIO; 985 } 986 987 return 0; 988 } 989 990 /** 991 * zpci_reset_load_store_blocked() - Re-enables L/S from error state 992 * @zdev: The zdev for which to unblock load/store access 993 * 994 * Re-enables load/store access for a PCI function in the error state while 995 * keeping DMA blocked. In this state drivers can poke MMIO space to determine 996 * if error recovery is possible while catching any rogue DMA access from the 997 * device. 998 * 999 * Returns: 0 on success, -EIO otherwise 1000 */ 1001 int zpci_reset_load_store_blocked(struct zpci_dev *zdev) 1002 { 1003 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_RESET_BLOCK); 1004 struct zpci_fib fib = {0}; 1005 u8 status; 1006 int cc; 1007 1008 cc = zpci_mod_fc(req, &fib, &status); 1009 if (cc) { 1010 zpci_dbg(3, "rls fid:%x, cc:%d, status:%x\n", zdev->fid, cc, status); 1011 return -EIO; 1012 } 1013 1014 return 0; 1015 } 1016 1017 static int zpci_mem_init(void) 1018 { 1019 BUILD_BUG_ON(!is_power_of_2(__alignof__(struct zpci_fmb)) || 1020 __alignof__(struct zpci_fmb) < sizeof(struct zpci_fmb)); 1021 1022 zdev_fmb_cache = kmem_cache_create("PCI_FMB_cache", sizeof(struct zpci_fmb), 1023 __alignof__(struct zpci_fmb), 0, NULL); 1024 if (!zdev_fmb_cache) 1025 goto error_fmb; 1026 1027 zpci_iomap_start = kcalloc(ZPCI_IOMAP_ENTRIES, 1028 sizeof(*zpci_iomap_start), GFP_KERNEL); 1029 if (!zpci_iomap_start) 1030 goto error_iomap; 1031 1032 zpci_iomap_bitmap = kcalloc(BITS_TO_LONGS(ZPCI_IOMAP_ENTRIES), 1033 sizeof(*zpci_iomap_bitmap), GFP_KERNEL); 1034 if (!zpci_iomap_bitmap) 1035 goto error_iomap_bitmap; 1036 1037 if (static_branch_likely(&have_mio)) 1038 clp_setup_writeback_mio(); 1039 1040 return 0; 1041 error_iomap_bitmap: 1042 kfree(zpci_iomap_start); 1043 error_iomap: 1044 kmem_cache_destroy(zdev_fmb_cache); 1045 error_fmb: 1046 return -ENOMEM; 1047 } 1048 1049 static void zpci_mem_exit(void) 1050 { 1051 kfree(zpci_iomap_bitmap); 1052 kfree(zpci_iomap_start); 1053 kmem_cache_destroy(zdev_fmb_cache); 1054 } 1055 1056 static unsigned int s390_pci_probe __initdata = 1; 1057 unsigned int s390_pci_force_floating __initdata; 1058 static unsigned int s390_pci_initialized; 1059 1060 char * __init pcibios_setup(char *str) 1061 { 1062 if (!strcmp(str, "off")) { 1063 s390_pci_probe = 0; 1064 return NULL; 1065 } 1066 if (!strcmp(str, "nomio")) { 1067 get_lowcore()->machine_flags &= ~MACHINE_FLAG_PCI_MIO; 1068 return NULL; 1069 } 1070 if (!strcmp(str, "force_floating")) { 1071 s390_pci_force_floating = 1; 1072 return NULL; 1073 } 1074 if (!strcmp(str, "norid")) { 1075 s390_pci_no_rid = 1; 1076 return NULL; 1077 } 1078 return str; 1079 } 1080 1081 bool zpci_is_enabled(void) 1082 { 1083 return s390_pci_initialized; 1084 } 1085 1086 static int __init pci_base_init(void) 1087 { 1088 int rc; 1089 1090 if (!s390_pci_probe) 1091 return 0; 1092 1093 if (!test_facility(69) || !test_facility(71)) { 1094 pr_info("PCI is not supported because CPU facilities 69 or 71 are not available\n"); 1095 return 0; 1096 } 1097 1098 if (MACHINE_HAS_PCI_MIO) { 1099 static_branch_enable(&have_mio); 1100 system_ctl_set_bit(2, CR2_MIO_ADDRESSING_BIT); 1101 } 1102 1103 rc = zpci_debug_init(); 1104 if (rc) 1105 goto out; 1106 1107 rc = zpci_mem_init(); 1108 if (rc) 1109 goto out_mem; 1110 1111 rc = zpci_irq_init(); 1112 if (rc) 1113 goto out_irq; 1114 1115 rc = clp_scan_pci_devices(); 1116 if (rc) 1117 goto out_find; 1118 zpci_bus_scan_busses(); 1119 1120 s390_pci_initialized = 1; 1121 return 0; 1122 1123 out_find: 1124 zpci_irq_exit(); 1125 out_irq: 1126 zpci_mem_exit(); 1127 out_mem: 1128 zpci_debug_exit(); 1129 out: 1130 return rc; 1131 } 1132 subsys_initcall_sync(pci_base_init); 1133
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.