1 // SPDX-License-Identifier: GPL-2.0 2 #define KMSG_COMPONENT "zpci" 3 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 4 5 #include <linux/kernel.h> 6 #include <linux/irq.h> 7 #include <linux/kernel_stat.h> 8 #include <linux/pci.h> 9 #include <linux/msi.h> 10 #include <linux/smp.h> 11 12 #include <asm/isc.h> 13 #include <asm/airq.h> 14 #include <asm/tpi.h> 15 16 static enum {FLOATING, DIRECTED} irq_delivery; 17 18 /* 19 * summary bit vector 20 * FLOATING - summary bit per function 21 * DIRECTED - summary bit per cpu (only used in fallback path) 22 */ 23 static struct airq_iv *zpci_sbv; 24 25 /* 26 * interrupt bit vectors 27 * FLOATING - interrupt bit vector per function 28 * DIRECTED - interrupt bit vector per cpu 29 */ 30 static struct airq_iv **zpci_ibv; 31 32 /* Modify PCI: Register floating adapter interruptions */ 33 static int zpci_set_airq(struct zpci_dev *zdev) 34 { 35 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_REG_INT); 36 struct zpci_fib fib = {0}; 37 u8 status; 38 39 fib.fmt0.isc = PCI_ISC; 40 fib.fmt0.sum = 1; /* enable summary notifications */ 41 fib.fmt0.noi = airq_iv_end(zdev->aibv); 42 fib.fmt0.aibv = virt_to_phys(zdev->aibv->vector); 43 fib.fmt0.aibvo = 0; /* each zdev has its own interrupt vector */ 44 fib.fmt0.aisb = virt_to_phys(zpci_sbv->vector) + (zdev->aisb / 64) * 8; 45 fib.fmt0.aisbo = zdev->aisb & 63; 46 fib.gd = zdev->gisa; 47 48 return zpci_mod_fc(req, &fib, &status) ? -EIO : 0; 49 } 50 51 /* Modify PCI: Unregister floating adapter interruptions */ 52 static int zpci_clear_airq(struct zpci_dev *zdev) 53 { 54 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_DEREG_INT); 55 struct zpci_fib fib = {0}; 56 u8 cc, status; 57 58 fib.gd = zdev->gisa; 59 60 cc = zpci_mod_fc(req, &fib, &status); 61 if (cc == 3 || (cc == 1 && status == 24)) 62 /* Function already gone or IRQs already deregistered. */ 63 cc = 0; 64 65 return cc ? -EIO : 0; 66 } 67 68 /* Modify PCI: Register CPU directed interruptions */ 69 static int zpci_set_directed_irq(struct zpci_dev *zdev) 70 { 71 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_REG_INT_D); 72 struct zpci_fib fib = {0}; 73 u8 status; 74 75 fib.fmt = 1; 76 fib.fmt1.noi = zdev->msi_nr_irqs; 77 fib.fmt1.dibvo = zdev->msi_first_bit; 78 fib.gd = zdev->gisa; 79 80 return zpci_mod_fc(req, &fib, &status) ? -EIO : 0; 81 } 82 83 /* Modify PCI: Unregister CPU directed interruptions */ 84 static int zpci_clear_directed_irq(struct zpci_dev *zdev) 85 { 86 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_DEREG_INT_D); 87 struct zpci_fib fib = {0}; 88 u8 cc, status; 89 90 fib.fmt = 1; 91 fib.gd = zdev->gisa; 92 cc = zpci_mod_fc(req, &fib, &status); 93 if (cc == 3 || (cc == 1 && status == 24)) 94 /* Function already gone or IRQs already deregistered. */ 95 cc = 0; 96 97 return cc ? -EIO : 0; 98 } 99 100 /* Register adapter interruptions */ 101 static int zpci_set_irq(struct zpci_dev *zdev) 102 { 103 int rc; 104 105 if (irq_delivery == DIRECTED) 106 rc = zpci_set_directed_irq(zdev); 107 else 108 rc = zpci_set_airq(zdev); 109 110 if (!rc) 111 zdev->irqs_registered = 1; 112 113 return rc; 114 } 115 116 /* Clear adapter interruptions */ 117 static int zpci_clear_irq(struct zpci_dev *zdev) 118 { 119 int rc; 120 121 if (irq_delivery == DIRECTED) 122 rc = zpci_clear_directed_irq(zdev); 123 else 124 rc = zpci_clear_airq(zdev); 125 126 if (!rc) 127 zdev->irqs_registered = 0; 128 129 return rc; 130 } 131 132 static int zpci_set_irq_affinity(struct irq_data *data, const struct cpumask *dest, 133 bool force) 134 { 135 struct msi_desc *entry = irq_data_get_msi_desc(data); 136 struct msi_msg msg = entry->msg; 137 int cpu_addr = smp_cpu_get_cpu_address(cpumask_first(dest)); 138 139 msg.address_lo &= 0xff0000ff; 140 msg.address_lo |= (cpu_addr << 8); 141 pci_write_msi_msg(data->irq, &msg); 142 143 return IRQ_SET_MASK_OK; 144 } 145 146 static struct irq_chip zpci_irq_chip = { 147 .name = "PCI-MSI", 148 .irq_unmask = pci_msi_unmask_irq, 149 .irq_mask = pci_msi_mask_irq, 150 }; 151 152 static void zpci_handle_cpu_local_irq(bool rescan) 153 { 154 struct airq_iv *dibv = zpci_ibv[smp_processor_id()]; 155 union zpci_sic_iib iib = {{0}}; 156 unsigned long bit; 157 int irqs_on = 0; 158 159 for (bit = 0;;) { 160 /* Scan the directed IRQ bit vector */ 161 bit = airq_iv_scan(dibv, bit, airq_iv_end(dibv)); 162 if (bit == -1UL) { 163 if (!rescan || irqs_on++) 164 /* End of second scan with interrupts on. */ 165 break; 166 /* First scan complete, re-enable interrupts. */ 167 if (zpci_set_irq_ctrl(SIC_IRQ_MODE_D_SINGLE, PCI_ISC, &iib)) 168 break; 169 bit = 0; 170 continue; 171 } 172 inc_irq_stat(IRQIO_MSI); 173 generic_handle_irq(airq_iv_get_data(dibv, bit)); 174 } 175 } 176 177 struct cpu_irq_data { 178 call_single_data_t csd; 179 atomic_t scheduled; 180 }; 181 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_irq_data, irq_data); 182 183 static void zpci_handle_remote_irq(void *data) 184 { 185 atomic_t *scheduled = data; 186 187 do { 188 zpci_handle_cpu_local_irq(false); 189 } while (atomic_dec_return(scheduled)); 190 } 191 192 static void zpci_handle_fallback_irq(void) 193 { 194 struct cpu_irq_data *cpu_data; 195 union zpci_sic_iib iib = {{0}}; 196 unsigned long cpu; 197 int irqs_on = 0; 198 199 for (cpu = 0;;) { 200 cpu = airq_iv_scan(zpci_sbv, cpu, airq_iv_end(zpci_sbv)); 201 if (cpu == -1UL) { 202 if (irqs_on++) 203 /* End of second scan with interrupts on. */ 204 break; 205 /* First scan complete, re-enable interrupts. */ 206 if (zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, PCI_ISC, &iib)) 207 break; 208 cpu = 0; 209 continue; 210 } 211 cpu_data = &per_cpu(irq_data, cpu); 212 if (atomic_inc_return(&cpu_data->scheduled) > 1) 213 continue; 214 215 INIT_CSD(&cpu_data->csd, zpci_handle_remote_irq, &cpu_data->scheduled); 216 smp_call_function_single_async(cpu, &cpu_data->csd); 217 } 218 } 219 220 static void zpci_directed_irq_handler(struct airq_struct *airq, 221 struct tpi_info *tpi_info) 222 { 223 bool floating = !tpi_info->directed_irq; 224 225 if (floating) { 226 inc_irq_stat(IRQIO_PCF); 227 zpci_handle_fallback_irq(); 228 } else { 229 inc_irq_stat(IRQIO_PCD); 230 zpci_handle_cpu_local_irq(true); 231 } 232 } 233 234 static void zpci_floating_irq_handler(struct airq_struct *airq, 235 struct tpi_info *tpi_info) 236 { 237 union zpci_sic_iib iib = {{0}}; 238 unsigned long si, ai; 239 struct airq_iv *aibv; 240 int irqs_on = 0; 241 242 inc_irq_stat(IRQIO_PCF); 243 for (si = 0;;) { 244 /* Scan adapter summary indicator bit vector */ 245 si = airq_iv_scan(zpci_sbv, si, airq_iv_end(zpci_sbv)); 246 if (si == -1UL) { 247 if (irqs_on++) 248 /* End of second scan with interrupts on. */ 249 break; 250 /* First scan complete, re-enable interrupts. */ 251 if (zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, PCI_ISC, &iib)) 252 break; 253 si = 0; 254 continue; 255 } 256 257 /* Scan the adapter interrupt vector for this device. */ 258 aibv = zpci_ibv[si]; 259 for (ai = 0;;) { 260 ai = airq_iv_scan(aibv, ai, airq_iv_end(aibv)); 261 if (ai == -1UL) 262 break; 263 inc_irq_stat(IRQIO_MSI); 264 airq_iv_lock(aibv, ai); 265 generic_handle_irq(airq_iv_get_data(aibv, ai)); 266 airq_iv_unlock(aibv, ai); 267 } 268 } 269 } 270 271 static int __alloc_airq(struct zpci_dev *zdev, int msi_vecs, 272 unsigned long *bit) 273 { 274 if (irq_delivery == DIRECTED) { 275 /* Allocate cpu vector bits */ 276 *bit = airq_iv_alloc(zpci_ibv[0], msi_vecs); 277 if (*bit == -1UL) 278 return -EIO; 279 } else { 280 /* Allocate adapter summary indicator bit */ 281 *bit = airq_iv_alloc_bit(zpci_sbv); 282 if (*bit == -1UL) 283 return -EIO; 284 zdev->aisb = *bit; 285 286 /* Create adapter interrupt vector */ 287 zdev->aibv = airq_iv_create(msi_vecs, AIRQ_IV_DATA | AIRQ_IV_BITLOCK, NULL); 288 if (!zdev->aibv) 289 return -ENOMEM; 290 291 /* Wire up shortcut pointer */ 292 zpci_ibv[*bit] = zdev->aibv; 293 /* Each function has its own interrupt vector */ 294 *bit = 0; 295 } 296 return 0; 297 } 298 299 int arch_setup_msi_irqs(struct pci_dev *pdev, int nvec, int type) 300 { 301 unsigned int hwirq, msi_vecs, irqs_per_msi, i, cpu; 302 struct zpci_dev *zdev = to_zpci(pdev); 303 struct msi_desc *msi; 304 struct msi_msg msg; 305 unsigned long bit; 306 int cpu_addr; 307 int rc, irq; 308 309 zdev->aisb = -1UL; 310 zdev->msi_first_bit = -1U; 311 312 msi_vecs = min_t(unsigned int, nvec, zdev->max_msi); 313 if (msi_vecs < nvec) { 314 pr_info("%s requested %d irqs, allocate system limit of %d", 315 pci_name(pdev), nvec, zdev->max_msi); 316 } 317 318 rc = __alloc_airq(zdev, msi_vecs, &bit); 319 if (rc < 0) 320 return rc; 321 322 /* 323 * Request MSI interrupts: 324 * When using MSI, nvec_used interrupt sources and their irq 325 * descriptors are controlled through one msi descriptor. 326 * Thus the outer loop over msi descriptors shall run only once, 327 * while two inner loops iterate over the interrupt vectors. 328 * When using MSI-X, each interrupt vector/irq descriptor 329 * is bound to exactly one msi descriptor (nvec_used is one). 330 * So the inner loops are executed once, while the outer iterates 331 * over the MSI-X descriptors. 332 */ 333 hwirq = bit; 334 msi_for_each_desc(msi, &pdev->dev, MSI_DESC_NOTASSOCIATED) { 335 if (hwirq - bit >= msi_vecs) 336 break; 337 irqs_per_msi = min_t(unsigned int, msi_vecs, msi->nvec_used); 338 irq = __irq_alloc_descs(-1, 0, irqs_per_msi, 0, THIS_MODULE, 339 (irq_delivery == DIRECTED) ? 340 msi->affinity : NULL); 341 if (irq < 0) 342 return -ENOMEM; 343 344 for (i = 0; i < irqs_per_msi; i++) { 345 rc = irq_set_msi_desc_off(irq, i, msi); 346 if (rc) 347 return rc; 348 irq_set_chip_and_handler(irq + i, &zpci_irq_chip, 349 handle_percpu_irq); 350 } 351 352 msg.data = hwirq - bit; 353 if (irq_delivery == DIRECTED) { 354 if (msi->affinity) 355 cpu = cpumask_first(&msi->affinity->mask); 356 else 357 cpu = 0; 358 cpu_addr = smp_cpu_get_cpu_address(cpu); 359 360 msg.address_lo = zdev->msi_addr & 0xff0000ff; 361 msg.address_lo |= (cpu_addr << 8); 362 363 for_each_possible_cpu(cpu) { 364 for (i = 0; i < irqs_per_msi; i++) 365 airq_iv_set_data(zpci_ibv[cpu], 366 hwirq + i, irq + i); 367 } 368 } else { 369 msg.address_lo = zdev->msi_addr & 0xffffffff; 370 for (i = 0; i < irqs_per_msi; i++) 371 airq_iv_set_data(zdev->aibv, hwirq + i, irq + i); 372 } 373 msg.address_hi = zdev->msi_addr >> 32; 374 pci_write_msi_msg(irq, &msg); 375 hwirq += irqs_per_msi; 376 } 377 378 zdev->msi_first_bit = bit; 379 zdev->msi_nr_irqs = hwirq - bit; 380 381 rc = zpci_set_irq(zdev); 382 if (rc) 383 return rc; 384 385 return (zdev->msi_nr_irqs == nvec) ? 0 : zdev->msi_nr_irqs; 386 } 387 388 void arch_teardown_msi_irqs(struct pci_dev *pdev) 389 { 390 struct zpci_dev *zdev = to_zpci(pdev); 391 struct msi_desc *msi; 392 unsigned int i; 393 int rc; 394 395 /* Disable interrupts */ 396 rc = zpci_clear_irq(zdev); 397 if (rc) 398 return; 399 400 /* Release MSI interrupts */ 401 msi_for_each_desc(msi, &pdev->dev, MSI_DESC_ASSOCIATED) { 402 for (i = 0; i < msi->nvec_used; i++) { 403 irq_set_msi_desc(msi->irq + i, NULL); 404 irq_free_desc(msi->irq + i); 405 } 406 msi->msg.address_lo = 0; 407 msi->msg.address_hi = 0; 408 msi->msg.data = 0; 409 msi->irq = 0; 410 } 411 412 if (zdev->aisb != -1UL) { 413 zpci_ibv[zdev->aisb] = NULL; 414 airq_iv_free_bit(zpci_sbv, zdev->aisb); 415 zdev->aisb = -1UL; 416 } 417 if (zdev->aibv) { 418 airq_iv_release(zdev->aibv); 419 zdev->aibv = NULL; 420 } 421 422 if ((irq_delivery == DIRECTED) && zdev->msi_first_bit != -1U) 423 airq_iv_free(zpci_ibv[0], zdev->msi_first_bit, zdev->msi_nr_irqs); 424 } 425 426 bool arch_restore_msi_irqs(struct pci_dev *pdev) 427 { 428 struct zpci_dev *zdev = to_zpci(pdev); 429 430 if (!zdev->irqs_registered) 431 zpci_set_irq(zdev); 432 return true; 433 } 434 435 static struct airq_struct zpci_airq = { 436 .handler = zpci_floating_irq_handler, 437 .isc = PCI_ISC, 438 }; 439 440 static void __init cpu_enable_directed_irq(void *unused) 441 { 442 union zpci_sic_iib iib = {{0}}; 443 union zpci_sic_iib ziib = {{0}}; 444 445 iib.cdiib.dibv_addr = virt_to_phys(zpci_ibv[smp_processor_id()]->vector); 446 447 zpci_set_irq_ctrl(SIC_IRQ_MODE_SET_CPU, 0, &iib); 448 zpci_set_irq_ctrl(SIC_IRQ_MODE_D_SINGLE, PCI_ISC, &ziib); 449 } 450 451 static int __init zpci_directed_irq_init(void) 452 { 453 union zpci_sic_iib iib = {{0}}; 454 unsigned int cpu; 455 456 zpci_sbv = airq_iv_create(num_possible_cpus(), 0, NULL); 457 if (!zpci_sbv) 458 return -ENOMEM; 459 460 iib.diib.isc = PCI_ISC; 461 iib.diib.nr_cpus = num_possible_cpus(); 462 iib.diib.disb_addr = virt_to_phys(zpci_sbv->vector); 463 zpci_set_irq_ctrl(SIC_IRQ_MODE_DIRECT, 0, &iib); 464 465 zpci_ibv = kcalloc(num_possible_cpus(), sizeof(*zpci_ibv), 466 GFP_KERNEL); 467 if (!zpci_ibv) 468 return -ENOMEM; 469 470 for_each_possible_cpu(cpu) { 471 /* 472 * Per CPU IRQ vectors look the same but bit-allocation 473 * is only done on the first vector. 474 */ 475 zpci_ibv[cpu] = airq_iv_create(cache_line_size() * BITS_PER_BYTE, 476 AIRQ_IV_DATA | 477 AIRQ_IV_CACHELINE | 478 (!cpu ? AIRQ_IV_ALLOC : 0), NULL); 479 if (!zpci_ibv[cpu]) 480 return -ENOMEM; 481 } 482 on_each_cpu(cpu_enable_directed_irq, NULL, 1); 483 484 zpci_irq_chip.irq_set_affinity = zpci_set_irq_affinity; 485 486 return 0; 487 } 488 489 static int __init zpci_floating_irq_init(void) 490 { 491 zpci_ibv = kcalloc(ZPCI_NR_DEVICES, sizeof(*zpci_ibv), GFP_KERNEL); 492 if (!zpci_ibv) 493 return -ENOMEM; 494 495 zpci_sbv = airq_iv_create(ZPCI_NR_DEVICES, AIRQ_IV_ALLOC, NULL); 496 if (!zpci_sbv) 497 goto out_free; 498 499 return 0; 500 501 out_free: 502 kfree(zpci_ibv); 503 return -ENOMEM; 504 } 505 506 int __init zpci_irq_init(void) 507 { 508 union zpci_sic_iib iib = {{0}}; 509 int rc; 510 511 irq_delivery = sclp.has_dirq ? DIRECTED : FLOATING; 512 if (s390_pci_force_floating) 513 irq_delivery = FLOATING; 514 515 if (irq_delivery == DIRECTED) 516 zpci_airq.handler = zpci_directed_irq_handler; 517 518 rc = register_adapter_interrupt(&zpci_airq); 519 if (rc) 520 goto out; 521 /* Set summary to 1 to be called every time for the ISC. */ 522 *zpci_airq.lsi_ptr = 1; 523 524 switch (irq_delivery) { 525 case FLOATING: 526 rc = zpci_floating_irq_init(); 527 break; 528 case DIRECTED: 529 rc = zpci_directed_irq_init(); 530 break; 531 } 532 533 if (rc) 534 goto out_airq; 535 536 /* 537 * Enable floating IRQs (with suppression after one IRQ). When using 538 * directed IRQs this enables the fallback path. 539 */ 540 zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, PCI_ISC, &iib); 541 542 return 0; 543 out_airq: 544 unregister_adapter_interrupt(&zpci_airq); 545 out: 546 return rc; 547 } 548 549 void __init zpci_irq_exit(void) 550 { 551 unsigned int cpu; 552 553 if (irq_delivery == DIRECTED) { 554 for_each_possible_cpu(cpu) { 555 airq_iv_release(zpci_ibv[cpu]); 556 } 557 } 558 kfree(zpci_ibv); 559 if (zpci_sbv) 560 airq_iv_release(zpci_sbv); 561 unregister_adapter_interrupt(&zpci_airq); 562 } 563
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.