~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/sparc/kernel/irq_64.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /* irq.c: UltraSparc IRQ handling/init/registry.
  3  *
  4  * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
  5  * Copyright (C) 1998  Eddie C. Dost    (ecd@skynet.be)
  6  * Copyright (C) 1998  Jakub Jelinek    (jj@ultra.linux.cz)
  7  */
  8 
  9 #include <linux/sched.h>
 10 #include <linux/linkage.h>
 11 #include <linux/ptrace.h>
 12 #include <linux/errno.h>
 13 #include <linux/kernel_stat.h>
 14 #include <linux/signal.h>
 15 #include <linux/mm.h>
 16 #include <linux/interrupt.h>
 17 #include <linux/slab.h>
 18 #include <linux/random.h>
 19 #include <linux/init.h>
 20 #include <linux/delay.h>
 21 #include <linux/proc_fs.h>
 22 #include <linux/seq_file.h>
 23 #include <linux/ftrace.h>
 24 #include <linux/irq.h>
 25 
 26 #include <asm/ptrace.h>
 27 #include <asm/processor.h>
 28 #include <linux/atomic.h>
 29 #include <asm/irq.h>
 30 #include <asm/io.h>
 31 #include <asm/iommu.h>
 32 #include <asm/upa.h>
 33 #include <asm/oplib.h>
 34 #include <asm/prom.h>
 35 #include <asm/timer.h>
 36 #include <asm/smp.h>
 37 #include <asm/starfire.h>
 38 #include <linux/uaccess.h>
 39 #include <asm/cache.h>
 40 #include <asm/cpudata.h>
 41 #include <asm/auxio.h>
 42 #include <asm/head.h>
 43 #include <asm/hypervisor.h>
 44 #include <asm/cacheflush.h>
 45 #include <asm/softirq_stack.h>
 46 
 47 #include "entry.h"
 48 #include "cpumap.h"
 49 #include "kstack.h"
 50 
 51 struct ino_bucket *ivector_table;
 52 unsigned long ivector_table_pa;
 53 
 54 /* On several sun4u processors, it is illegal to mix bypass and
 55  * non-bypass accesses.  Therefore we access all INO buckets
 56  * using bypass accesses only.
 57  */
 58 static unsigned long bucket_get_chain_pa(unsigned long bucket_pa)
 59 {
 60         unsigned long ret;
 61 
 62         __asm__ __volatile__("ldxa      [%1] %2, %0"
 63                              : "=&r" (ret)
 64                              : "r" (bucket_pa +
 65                                     offsetof(struct ino_bucket,
 66                                              __irq_chain_pa)),
 67                                "i" (ASI_PHYS_USE_EC));
 68 
 69         return ret;
 70 }
 71 
 72 static void bucket_clear_chain_pa(unsigned long bucket_pa)
 73 {
 74         __asm__ __volatile__("stxa      %%g0, [%0] %1"
 75                              : /* no outputs */
 76                              : "r" (bucket_pa +
 77                                     offsetof(struct ino_bucket,
 78                                              __irq_chain_pa)),
 79                                "i" (ASI_PHYS_USE_EC));
 80 }
 81 
 82 static unsigned int bucket_get_irq(unsigned long bucket_pa)
 83 {
 84         unsigned int ret;
 85 
 86         __asm__ __volatile__("lduwa     [%1] %2, %0"
 87                              : "=&r" (ret)
 88                              : "r" (bucket_pa +
 89                                     offsetof(struct ino_bucket,
 90                                              __irq)),
 91                                "i" (ASI_PHYS_USE_EC));
 92 
 93         return ret;
 94 }
 95 
 96 static void bucket_set_irq(unsigned long bucket_pa, unsigned int irq)
 97 {
 98         __asm__ __volatile__("stwa      %0, [%1] %2"
 99                              : /* no outputs */
100                              : "r" (irq),
101                                "r" (bucket_pa +
102                                     offsetof(struct ino_bucket,
103                                              __irq)),
104                                "i" (ASI_PHYS_USE_EC));
105 }
106 
107 #define irq_work_pa(__cpu)      &(trap_block[(__cpu)].irq_worklist_pa)
108 
109 static unsigned long hvirq_major __initdata;
110 static int __init early_hvirq_major(char *p)
111 {
112         int rc = kstrtoul(p, 10, &hvirq_major);
113 
114         return rc;
115 }
116 early_param("hvirq", early_hvirq_major);
117 
118 static int hv_irq_version;
119 
120 /* Major version 2.0 of HV_GRP_INTR added support for the VIRQ cookie
121  * based interfaces, but:
122  *
123  * 1) Several OSs, Solaris and Linux included, use them even when only
124  *    negotiating version 1.0 (or failing to negotiate at all).  So the
125  *    hypervisor has a workaround that provides the VIRQ interfaces even
126  *    when only verion 1.0 of the API is in use.
127  *
128  * 2) Second, and more importantly, with major version 2.0 these VIRQ
129  *    interfaces only were actually hooked up for LDC interrupts, even
130  *    though the Hypervisor specification clearly stated:
131  *
132  *      The new interrupt API functions will be available to a guest
133  *      when it negotiates version 2.0 in the interrupt API group 0x2. When
134  *      a guest negotiates version 2.0, all interrupt sources will only
135  *      support using the cookie interface, and any attempt to use the
136  *      version 1.0 interrupt APIs numbered 0xa0 to 0xa6 will result in the
137  *      ENOTSUPPORTED error being returned.
138  *
139  *   with an emphasis on "all interrupt sources".
140  *
141  * To correct this, major version 3.0 was created which does actually
142  * support VIRQs for all interrupt sources (not just LDC devices).  So
143  * if we want to move completely over the cookie based VIRQs we must
144  * negotiate major version 3.0 or later of HV_GRP_INTR.
145  */
146 static bool sun4v_cookie_only_virqs(void)
147 {
148         if (hv_irq_version >= 3)
149                 return true;
150         return false;
151 }
152 
153 static void __init irq_init_hv(void)
154 {
155         unsigned long hv_error, major, minor = 0;
156 
157         if (tlb_type != hypervisor)
158                 return;
159 
160         if (hvirq_major)
161                 major = hvirq_major;
162         else
163                 major = 3;
164 
165         hv_error = sun4v_hvapi_register(HV_GRP_INTR, major, &minor);
166         if (!hv_error)
167                 hv_irq_version = major;
168         else
169                 hv_irq_version = 1;
170 
171         pr_info("SUN4V: Using IRQ API major %d, cookie only virqs %s\n",
172                 hv_irq_version,
173                 sun4v_cookie_only_virqs() ? "enabled" : "disabled");
174 }
175 
176 /* This function is for the timer interrupt.*/
177 int __init arch_probe_nr_irqs(void)
178 {
179         return 1;
180 }
181 
182 #define DEFAULT_NUM_IVECS       (0xfffU)
183 static unsigned int nr_ivec = DEFAULT_NUM_IVECS;
184 #define NUM_IVECS (nr_ivec)
185 
186 static unsigned int __init size_nr_ivec(void)
187 {
188         if (tlb_type == hypervisor) {
189                 switch (sun4v_chip_type) {
190                 /* Athena's devhandle|devino is large.*/
191                 case SUN4V_CHIP_SPARC64X:
192                         nr_ivec = 0xffff;
193                         break;
194                 }
195         }
196         return nr_ivec;
197 }
198 
199 struct irq_handler_data {
200         union {
201                 struct {
202                         unsigned int dev_handle;
203                         unsigned int dev_ino;
204                 };
205                 unsigned long sysino;
206         };
207         struct ino_bucket bucket;
208         unsigned long   iclr;
209         unsigned long   imap;
210 };
211 
212 static inline unsigned int irq_data_to_handle(struct irq_data *data)
213 {
214         struct irq_handler_data *ihd = irq_data_get_irq_handler_data(data);
215 
216         return ihd->dev_handle;
217 }
218 
219 static inline unsigned int irq_data_to_ino(struct irq_data *data)
220 {
221         struct irq_handler_data *ihd = irq_data_get_irq_handler_data(data);
222 
223         return ihd->dev_ino;
224 }
225 
226 static inline unsigned long irq_data_to_sysino(struct irq_data *data)
227 {
228         struct irq_handler_data *ihd = irq_data_get_irq_handler_data(data);
229 
230         return ihd->sysino;
231 }
232 
233 void irq_free(unsigned int irq)
234 {
235         void *data = irq_get_handler_data(irq);
236 
237         kfree(data);
238         irq_set_handler_data(irq, NULL);
239         irq_free_descs(irq, 1);
240 }
241 
242 unsigned int irq_alloc(unsigned int dev_handle, unsigned int dev_ino)
243 {
244         int irq;
245 
246         irq = __irq_alloc_descs(-1, 1, 1, numa_node_id(), NULL, NULL);
247         if (irq <= 0)
248                 goto out;
249 
250         return irq;
251 out:
252         return 0;
253 }
254 
255 static unsigned int cookie_exists(u32 devhandle, unsigned int devino)
256 {
257         unsigned long hv_err, cookie;
258         struct ino_bucket *bucket;
259         unsigned int irq = 0U;
260 
261         hv_err = sun4v_vintr_get_cookie(devhandle, devino, &cookie);
262         if (hv_err) {
263                 pr_err("HV get cookie failed hv_err = %ld\n", hv_err);
264                 goto out;
265         }
266 
267         if (cookie & ((1UL << 63UL))) {
268                 cookie = ~cookie;
269                 bucket = (struct ino_bucket *) __va(cookie);
270                 irq = bucket->__irq;
271         }
272 out:
273         return irq;
274 }
275 
276 static unsigned int sysino_exists(u32 devhandle, unsigned int devino)
277 {
278         unsigned long sysino = sun4v_devino_to_sysino(devhandle, devino);
279         struct ino_bucket *bucket;
280         unsigned int irq;
281 
282         bucket = &ivector_table[sysino];
283         irq = bucket_get_irq(__pa(bucket));
284 
285         return irq;
286 }
287 
288 void ack_bad_irq(unsigned int irq)
289 {
290         pr_crit("BAD IRQ ack %d\n", irq);
291 }
292 
293 void irq_install_pre_handler(int irq,
294                              void (*func)(unsigned int, void *, void *),
295                              void *arg1, void *arg2)
296 {
297         pr_warn("IRQ pre handler NOT supported.\n");
298 }
299 
300 /*
301  * /proc/interrupts printing:
302  */
303 int arch_show_interrupts(struct seq_file *p, int prec)
304 {
305         int j;
306 
307         seq_printf(p, "NMI: ");
308         for_each_online_cpu(j)
309                 seq_printf(p, "%10u ", cpu_data(j).__nmi_count);
310         seq_printf(p, "     Non-maskable interrupts\n");
311         return 0;
312 }
313 
314 static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid)
315 {
316         unsigned int tid;
317 
318         if (this_is_starfire) {
319                 tid = starfire_translate(imap, cpuid);
320                 tid <<= IMAP_TID_SHIFT;
321                 tid &= IMAP_TID_UPA;
322         } else {
323                 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
324                         unsigned long ver;
325 
326                         __asm__ ("rdpr %%ver, %0" : "=r" (ver));
327                         if ((ver >> 32UL) == __JALAPENO_ID ||
328                             (ver >> 32UL) == __SERRANO_ID) {
329                                 tid = cpuid << IMAP_TID_SHIFT;
330                                 tid &= IMAP_TID_JBUS;
331                         } else {
332                                 unsigned int a = cpuid & 0x1f;
333                                 unsigned int n = (cpuid >> 5) & 0x1f;
334 
335                                 tid = ((a << IMAP_AID_SHIFT) |
336                                        (n << IMAP_NID_SHIFT));
337                                 tid &= (IMAP_AID_SAFARI |
338                                         IMAP_NID_SAFARI);
339                         }
340                 } else {
341                         tid = cpuid << IMAP_TID_SHIFT;
342                         tid &= IMAP_TID_UPA;
343                 }
344         }
345 
346         return tid;
347 }
348 
349 #ifdef CONFIG_SMP
350 static int irq_choose_cpu(unsigned int irq, const struct cpumask *affinity)
351 {
352         int cpuid;
353 
354         if (cpumask_equal(affinity, cpu_online_mask)) {
355                 cpuid = map_to_cpu(irq);
356         } else {
357                 cpuid = cpumask_first_and(affinity, cpu_online_mask);
358                 cpuid = cpuid < nr_cpu_ids ? cpuid : map_to_cpu(irq);
359         }
360 
361         return cpuid;
362 }
363 #else
364 #define irq_choose_cpu(irq, affinity)   \
365         real_hard_smp_processor_id()
366 #endif
367 
368 static void sun4u_irq_enable(struct irq_data *data)
369 {
370         struct irq_handler_data *handler_data;
371 
372         handler_data = irq_data_get_irq_handler_data(data);
373         if (likely(handler_data)) {
374                 unsigned long cpuid, imap, val;
375                 unsigned int tid;
376 
377                 cpuid = irq_choose_cpu(data->irq,
378                                        irq_data_get_affinity_mask(data));
379                 imap = handler_data->imap;
380 
381                 tid = sun4u_compute_tid(imap, cpuid);
382 
383                 val = upa_readq(imap);
384                 val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
385                          IMAP_AID_SAFARI | IMAP_NID_SAFARI);
386                 val |= tid | IMAP_VALID;
387                 upa_writeq(val, imap);
388                 upa_writeq(ICLR_IDLE, handler_data->iclr);
389         }
390 }
391 
392 static int sun4u_set_affinity(struct irq_data *data,
393                                const struct cpumask *mask, bool force)
394 {
395         struct irq_handler_data *handler_data;
396 
397         handler_data = irq_data_get_irq_handler_data(data);
398         if (likely(handler_data)) {
399                 unsigned long cpuid, imap, val;
400                 unsigned int tid;
401 
402                 cpuid = irq_choose_cpu(data->irq, mask);
403                 imap = handler_data->imap;
404 
405                 tid = sun4u_compute_tid(imap, cpuid);
406 
407                 val = upa_readq(imap);
408                 val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
409                          IMAP_AID_SAFARI | IMAP_NID_SAFARI);
410                 val |= tid | IMAP_VALID;
411                 upa_writeq(val, imap);
412                 upa_writeq(ICLR_IDLE, handler_data->iclr);
413         }
414 
415         return 0;
416 }
417 
418 /* Don't do anything.  The desc->status check for IRQ_DISABLED in
419  * handler_irq() will skip the handler call and that will leave the
420  * interrupt in the sent state.  The next ->enable() call will hit the
421  * ICLR register to reset the state machine.
422  *
423  * This scheme is necessary, instead of clearing the Valid bit in the
424  * IMAP register, to handle the case of IMAP registers being shared by
425  * multiple INOs (and thus ICLR registers).  Since we use a different
426  * virtual IRQ for each shared IMAP instance, the generic code thinks
427  * there is only one user so it prematurely calls ->disable() on
428  * free_irq().
429  *
430  * We have to provide an explicit ->disable() method instead of using
431  * NULL to get the default.  The reason is that if the generic code
432  * sees that, it also hooks up a default ->shutdown method which
433  * invokes ->mask() which we do not want.  See irq_chip_set_defaults().
434  */
435 static void sun4u_irq_disable(struct irq_data *data)
436 {
437 }
438 
439 static void sun4u_irq_eoi(struct irq_data *data)
440 {
441         struct irq_handler_data *handler_data;
442 
443         handler_data = irq_data_get_irq_handler_data(data);
444         if (likely(handler_data))
445                 upa_writeq(ICLR_IDLE, handler_data->iclr);
446 }
447 
448 static void sun4v_irq_enable(struct irq_data *data)
449 {
450         unsigned long cpuid = irq_choose_cpu(data->irq,
451                                              irq_data_get_affinity_mask(data));
452         unsigned int ino = irq_data_to_sysino(data);
453         int err;
454 
455         err = sun4v_intr_settarget(ino, cpuid);
456         if (err != HV_EOK)
457                 printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
458                        "err(%d)\n", ino, cpuid, err);
459         err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
460         if (err != HV_EOK)
461                 printk(KERN_ERR "sun4v_intr_setstate(%x): "
462                        "err(%d)\n", ino, err);
463         err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED);
464         if (err != HV_EOK)
465                 printk(KERN_ERR "sun4v_intr_setenabled(%x): err(%d)\n",
466                        ino, err);
467 }
468 
469 static int sun4v_set_affinity(struct irq_data *data,
470                                const struct cpumask *mask, bool force)
471 {
472         unsigned long cpuid = irq_choose_cpu(data->irq, mask);
473         unsigned int ino = irq_data_to_sysino(data);
474         int err;
475 
476         err = sun4v_intr_settarget(ino, cpuid);
477         if (err != HV_EOK)
478                 printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
479                        "err(%d)\n", ino, cpuid, err);
480 
481         return 0;
482 }
483 
484 static void sun4v_irq_disable(struct irq_data *data)
485 {
486         unsigned int ino = irq_data_to_sysino(data);
487         int err;
488 
489         err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED);
490         if (err != HV_EOK)
491                 printk(KERN_ERR "sun4v_intr_setenabled(%x): "
492                        "err(%d)\n", ino, err);
493 }
494 
495 static void sun4v_irq_eoi(struct irq_data *data)
496 {
497         unsigned int ino = irq_data_to_sysino(data);
498         int err;
499 
500         err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
501         if (err != HV_EOK)
502                 printk(KERN_ERR "sun4v_intr_setstate(%x): "
503                        "err(%d)\n", ino, err);
504 }
505 
506 static void sun4v_virq_enable(struct irq_data *data)
507 {
508         unsigned long dev_handle = irq_data_to_handle(data);
509         unsigned long dev_ino = irq_data_to_ino(data);
510         unsigned long cpuid;
511         int err;
512 
513         cpuid = irq_choose_cpu(data->irq, irq_data_get_affinity_mask(data));
514 
515         err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
516         if (err != HV_EOK)
517                 printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
518                        "err(%d)\n",
519                        dev_handle, dev_ino, cpuid, err);
520         err = sun4v_vintr_set_state(dev_handle, dev_ino,
521                                     HV_INTR_STATE_IDLE);
522         if (err != HV_EOK)
523                 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
524                        "HV_INTR_STATE_IDLE): err(%d)\n",
525                        dev_handle, dev_ino, err);
526         err = sun4v_vintr_set_valid(dev_handle, dev_ino,
527                                     HV_INTR_ENABLED);
528         if (err != HV_EOK)
529                 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
530                        "HV_INTR_ENABLED): err(%d)\n",
531                        dev_handle, dev_ino, err);
532 }
533 
534 static int sun4v_virt_set_affinity(struct irq_data *data,
535                                     const struct cpumask *mask, bool force)
536 {
537         unsigned long dev_handle = irq_data_to_handle(data);
538         unsigned long dev_ino = irq_data_to_ino(data);
539         unsigned long cpuid;
540         int err;
541 
542         cpuid = irq_choose_cpu(data->irq, mask);
543 
544         err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
545         if (err != HV_EOK)
546                 printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
547                        "err(%d)\n",
548                        dev_handle, dev_ino, cpuid, err);
549 
550         return 0;
551 }
552 
553 static void sun4v_virq_disable(struct irq_data *data)
554 {
555         unsigned long dev_handle = irq_data_to_handle(data);
556         unsigned long dev_ino = irq_data_to_ino(data);
557         int err;
558 
559 
560         err = sun4v_vintr_set_valid(dev_handle, dev_ino,
561                                     HV_INTR_DISABLED);
562         if (err != HV_EOK)
563                 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
564                        "HV_INTR_DISABLED): err(%d)\n",
565                        dev_handle, dev_ino, err);
566 }
567 
568 static void sun4v_virq_eoi(struct irq_data *data)
569 {
570         unsigned long dev_handle = irq_data_to_handle(data);
571         unsigned long dev_ino = irq_data_to_ino(data);
572         int err;
573 
574         err = sun4v_vintr_set_state(dev_handle, dev_ino,
575                                     HV_INTR_STATE_IDLE);
576         if (err != HV_EOK)
577                 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
578                        "HV_INTR_STATE_IDLE): err(%d)\n",
579                        dev_handle, dev_ino, err);
580 }
581 
582 static struct irq_chip sun4u_irq = {
583         .name                   = "sun4u",
584         .irq_enable             = sun4u_irq_enable,
585         .irq_disable            = sun4u_irq_disable,
586         .irq_eoi                = sun4u_irq_eoi,
587         .irq_set_affinity       = sun4u_set_affinity,
588         .flags                  = IRQCHIP_EOI_IF_HANDLED,
589 };
590 
591 static struct irq_chip sun4v_irq = {
592         .name                   = "sun4v",
593         .irq_enable             = sun4v_irq_enable,
594         .irq_disable            = sun4v_irq_disable,
595         .irq_eoi                = sun4v_irq_eoi,
596         .irq_set_affinity       = sun4v_set_affinity,
597         .flags                  = IRQCHIP_EOI_IF_HANDLED,
598 };
599 
600 static struct irq_chip sun4v_virq = {
601         .name                   = "vsun4v",
602         .irq_enable             = sun4v_virq_enable,
603         .irq_disable            = sun4v_virq_disable,
604         .irq_eoi                = sun4v_virq_eoi,
605         .irq_set_affinity       = sun4v_virt_set_affinity,
606         .flags                  = IRQCHIP_EOI_IF_HANDLED,
607 };
608 
609 unsigned int build_irq(int inofixup, unsigned long iclr, unsigned long imap)
610 {
611         struct irq_handler_data *handler_data;
612         struct ino_bucket *bucket;
613         unsigned int irq;
614         int ino;
615 
616         BUG_ON(tlb_type == hypervisor);
617 
618         ino = (upa_readq(imap) & (IMAP_IGN | IMAP_INO)) + inofixup;
619         bucket = &ivector_table[ino];
620         irq = bucket_get_irq(__pa(bucket));
621         if (!irq) {
622                 irq = irq_alloc(0, ino);
623                 bucket_set_irq(__pa(bucket), irq);
624                 irq_set_chip_and_handler_name(irq, &sun4u_irq,
625                                               handle_fasteoi_irq, "IVEC");
626         }
627 
628         handler_data = irq_get_handler_data(irq);
629         if (unlikely(handler_data))
630                 goto out;
631 
632         handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
633         if (unlikely(!handler_data)) {
634                 prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
635                 prom_halt();
636         }
637         irq_set_handler_data(irq, handler_data);
638 
639         handler_data->imap  = imap;
640         handler_data->iclr  = iclr;
641 
642 out:
643         return irq;
644 }
645 
646 static unsigned int sun4v_build_common(u32 devhandle, unsigned int devino,
647                 void (*handler_data_init)(struct irq_handler_data *data,
648                 u32 devhandle, unsigned int devino),
649                 struct irq_chip *chip)
650 {
651         struct irq_handler_data *data;
652         unsigned int irq;
653 
654         irq = irq_alloc(devhandle, devino);
655         if (!irq)
656                 goto out;
657 
658         data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
659         if (unlikely(!data)) {
660                 pr_err("IRQ handler data allocation failed.\n");
661                 irq_free(irq);
662                 irq = 0;
663                 goto out;
664         }
665 
666         irq_set_handler_data(irq, data);
667         handler_data_init(data, devhandle, devino);
668         irq_set_chip_and_handler_name(irq, chip, handle_fasteoi_irq, "IVEC");
669         data->imap = ~0UL;
670         data->iclr = ~0UL;
671 out:
672         return irq;
673 }
674 
675 static unsigned long cookie_assign(unsigned int irq, u32 devhandle,
676                 unsigned int devino)
677 {
678         struct irq_handler_data *ihd = irq_get_handler_data(irq);
679         unsigned long hv_error, cookie;
680 
681         /* handler_irq needs to find the irq. cookie is seen signed in
682          * sun4v_dev_mondo and treated as a non ivector_table delivery.
683          */
684         ihd->bucket.__irq = irq;
685         cookie = ~__pa(&ihd->bucket);
686 
687         hv_error = sun4v_vintr_set_cookie(devhandle, devino, cookie);
688         if (hv_error)
689                 pr_err("HV vintr set cookie failed = %ld\n", hv_error);
690 
691         return hv_error;
692 }
693 
694 static void cookie_handler_data(struct irq_handler_data *data,
695                                 u32 devhandle, unsigned int devino)
696 {
697         data->dev_handle = devhandle;
698         data->dev_ino = devino;
699 }
700 
701 static unsigned int cookie_build_irq(u32 devhandle, unsigned int devino,
702                                      struct irq_chip *chip)
703 {
704         unsigned long hv_error;
705         unsigned int irq;
706 
707         irq = sun4v_build_common(devhandle, devino, cookie_handler_data, chip);
708 
709         hv_error = cookie_assign(irq, devhandle, devino);
710         if (hv_error) {
711                 irq_free(irq);
712                 irq = 0;
713         }
714 
715         return irq;
716 }
717 
718 static unsigned int sun4v_build_cookie(u32 devhandle, unsigned int devino)
719 {
720         unsigned int irq;
721 
722         irq = cookie_exists(devhandle, devino);
723         if (irq)
724                 goto out;
725 
726         irq = cookie_build_irq(devhandle, devino, &sun4v_virq);
727 
728 out:
729         return irq;
730 }
731 
732 static void sysino_set_bucket(unsigned int irq)
733 {
734         struct irq_handler_data *ihd = irq_get_handler_data(irq);
735         struct ino_bucket *bucket;
736         unsigned long sysino;
737 
738         sysino = sun4v_devino_to_sysino(ihd->dev_handle, ihd->dev_ino);
739         BUG_ON(sysino >= nr_ivec);
740         bucket = &ivector_table[sysino];
741         bucket_set_irq(__pa(bucket), irq);
742 }
743 
744 static void sysino_handler_data(struct irq_handler_data *data,
745                                 u32 devhandle, unsigned int devino)
746 {
747         unsigned long sysino;
748 
749         sysino = sun4v_devino_to_sysino(devhandle, devino);
750         data->sysino = sysino;
751 }
752 
753 static unsigned int sysino_build_irq(u32 devhandle, unsigned int devino,
754                                      struct irq_chip *chip)
755 {
756         unsigned int irq;
757 
758         irq = sun4v_build_common(devhandle, devino, sysino_handler_data, chip);
759         if (!irq)
760                 goto out;
761 
762         sysino_set_bucket(irq);
763 out:
764         return irq;
765 }
766 
767 static int sun4v_build_sysino(u32 devhandle, unsigned int devino)
768 {
769         int irq;
770 
771         irq = sysino_exists(devhandle, devino);
772         if (irq)
773                 goto out;
774 
775         irq = sysino_build_irq(devhandle, devino, &sun4v_irq);
776 out:
777         return irq;
778 }
779 
780 unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino)
781 {
782         unsigned int irq;
783 
784         if (sun4v_cookie_only_virqs())
785                 irq = sun4v_build_cookie(devhandle, devino);
786         else
787                 irq = sun4v_build_sysino(devhandle, devino);
788 
789         return irq;
790 }
791 
792 unsigned int sun4v_build_virq(u32 devhandle, unsigned int devino)
793 {
794         int irq;
795 
796         irq = cookie_build_irq(devhandle, devino, &sun4v_virq);
797         if (!irq)
798                 goto out;
799 
800         /* This is borrowed from the original function.
801          */
802         irq_set_status_flags(irq, IRQ_NOAUTOEN);
803 
804 out:
805         return irq;
806 }
807 
808 void *hardirq_stack[NR_CPUS];
809 void *softirq_stack[NR_CPUS];
810 
811 void __irq_entry handler_irq(int pil, struct pt_regs *regs)
812 {
813         unsigned long pstate, bucket_pa;
814         struct pt_regs *old_regs;
815         void *orig_sp;
816 
817         clear_softint(1 << pil);
818 
819         old_regs = set_irq_regs(regs);
820         irq_enter();
821 
822         /* Grab an atomic snapshot of the pending IVECs.  */
823         __asm__ __volatile__("rdpr      %%pstate, %0\n\t"
824                              "wrpr      %0, %3, %%pstate\n\t"
825                              "ldx       [%2], %1\n\t"
826                              "stx       %%g0, [%2]\n\t"
827                              "wrpr      %0, 0x0, %%pstate\n\t"
828                              : "=&r" (pstate), "=&r" (bucket_pa)
829                              : "r" (irq_work_pa(smp_processor_id())),
830                                "i" (PSTATE_IE)
831                              : "memory");
832 
833         orig_sp = set_hardirq_stack();
834 
835         while (bucket_pa) {
836                 unsigned long next_pa;
837                 unsigned int irq;
838 
839                 next_pa = bucket_get_chain_pa(bucket_pa);
840                 irq = bucket_get_irq(bucket_pa);
841                 bucket_clear_chain_pa(bucket_pa);
842 
843                 generic_handle_irq(irq);
844 
845                 bucket_pa = next_pa;
846         }
847 
848         restore_hardirq_stack(orig_sp);
849 
850         irq_exit();
851         set_irq_regs(old_regs);
852 }
853 
854 #ifdef CONFIG_SOFTIRQ_ON_OWN_STACK
855 void do_softirq_own_stack(void)
856 {
857         void *orig_sp, *sp = softirq_stack[smp_processor_id()];
858 
859         sp += THREAD_SIZE - 192 - STACK_BIAS;
860 
861         __asm__ __volatile__("mov %%sp, %0\n\t"
862                              "mov %1, %%sp"
863                              : "=&r" (orig_sp)
864                              : "r" (sp));
865         __do_softirq();
866         __asm__ __volatile__("mov %0, %%sp"
867                              : : "r" (orig_sp));
868 }
869 #endif
870 
871 #ifdef CONFIG_HOTPLUG_CPU
872 void fixup_irqs(void)
873 {
874         unsigned int irq;
875 
876         for (irq = 0; irq < NR_IRQS; irq++) {
877                 struct irq_desc *desc = irq_to_desc(irq);
878                 struct irq_data *data;
879                 unsigned long flags;
880 
881                 if (!desc)
882                         continue;
883                 data = irq_desc_get_irq_data(desc);
884                 raw_spin_lock_irqsave(&desc->lock, flags);
885                 if (desc->action && !irqd_is_per_cpu(data)) {
886                         if (data->chip->irq_set_affinity)
887                                 data->chip->irq_set_affinity(data,
888                                         irq_data_get_affinity_mask(data),
889                                         false);
890                 }
891                 raw_spin_unlock_irqrestore(&desc->lock, flags);
892         }
893 
894         tick_ops->disable_irq();
895 }
896 #endif
897 
898 struct sun5_timer {
899         u64     count0;
900         u64     limit0;
901         u64     count1;
902         u64     limit1;
903 };
904 
905 static struct sun5_timer *prom_timers;
906 static u64 prom_limit0, prom_limit1;
907 
908 static void map_prom_timers(void)
909 {
910         struct device_node *dp;
911         const unsigned int *addr;
912 
913         /* PROM timer node hangs out in the top level of device siblings... */
914         dp = of_find_node_by_path("/");
915         dp = dp->child;
916         while (dp) {
917                 if (of_node_name_eq(dp, "counter-timer"))
918                         break;
919                 dp = dp->sibling;
920         }
921 
922         /* Assume if node is not present, PROM uses different tick mechanism
923          * which we should not care about.
924          */
925         if (!dp) {
926                 prom_timers = (struct sun5_timer *) 0;
927                 return;
928         }
929 
930         /* If PROM is really using this, it must be mapped by him. */
931         addr = of_get_property(dp, "address", NULL);
932         if (!addr) {
933                 prom_printf("PROM does not have timer mapped, trying to continue.\n");
934                 prom_timers = (struct sun5_timer *) 0;
935                 return;
936         }
937         prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]);
938 }
939 
940 static void kill_prom_timer(void)
941 {
942         if (!prom_timers)
943                 return;
944 
945         /* Save them away for later. */
946         prom_limit0 = prom_timers->limit0;
947         prom_limit1 = prom_timers->limit1;
948 
949         /* Just as in sun4c PROM uses timer which ticks at IRQ 14.
950          * We turn both off here just to be paranoid.
951          */
952         prom_timers->limit0 = 0;
953         prom_timers->limit1 = 0;
954 
955         /* Wheee, eat the interrupt packet too... */
956         __asm__ __volatile__(
957 "       mov     0x40, %%g2\n"
958 "       ldxa    [%%g0] %0, %%g1\n"
959 "       ldxa    [%%g2] %1, %%g1\n"
960 "       stxa    %%g0, [%%g0] %0\n"
961 "       membar  #Sync\n"
962         : /* no outputs */
963         : "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R)
964         : "g1", "g2");
965 }
966 
967 void notrace init_irqwork_curcpu(void)
968 {
969         int cpu = hard_smp_processor_id();
970 
971         trap_block[cpu].irq_worklist_pa = 0UL;
972 }
973 
974 /* Please be very careful with register_one_mondo() and
975  * sun4v_register_mondo_queues().
976  *
977  * On SMP this gets invoked from the CPU trampoline before
978  * the cpu has fully taken over the trap table from OBP,
979  * and its kernel stack + %g6 thread register state is
980  * not fully cooked yet.
981  *
982  * Therefore you cannot make any OBP calls, not even prom_printf,
983  * from these two routines.
984  */
985 static void notrace register_one_mondo(unsigned long paddr, unsigned long type,
986                                        unsigned long qmask)
987 {
988         unsigned long num_entries = (qmask + 1) / 64;
989         unsigned long status;
990 
991         status = sun4v_cpu_qconf(type, paddr, num_entries);
992         if (status != HV_EOK) {
993                 prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, "
994                             "err %lu\n", type, paddr, num_entries, status);
995                 prom_halt();
996         }
997 }
998 
999 void notrace sun4v_register_mondo_queues(int this_cpu)
1000 {
1001         struct trap_per_cpu *tb = &trap_block[this_cpu];
1002 
1003         register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO,
1004                            tb->cpu_mondo_qmask);
1005         register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO,
1006                            tb->dev_mondo_qmask);
1007         register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR,
1008                            tb->resum_qmask);
1009         register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR,
1010                            tb->nonresum_qmask);
1011 }
1012 
1013 /* Each queue region must be a power of 2 multiple of 64 bytes in
1014  * size.  The base real address must be aligned to the size of the
1015  * region.  Thus, an 8KB queue must be 8KB aligned, for example.
1016  */
1017 static void __init alloc_one_queue(unsigned long *pa_ptr, unsigned long qmask)
1018 {
1019         unsigned long size = PAGE_ALIGN(qmask + 1);
1020         unsigned long order = get_order(size);
1021         unsigned long p;
1022 
1023         p = __get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
1024         if (!p) {
1025                 prom_printf("SUN4V: Error, cannot allocate queue.\n");
1026                 prom_halt();
1027         }
1028 
1029         *pa_ptr = __pa(p);
1030 }
1031 
1032 static void __init init_cpu_send_mondo_info(struct trap_per_cpu *tb)
1033 {
1034 #ifdef CONFIG_SMP
1035         unsigned long page;
1036         void *mondo, *p;
1037 
1038         BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > PAGE_SIZE);
1039 
1040         /* Make sure mondo block is 64byte aligned */
1041         p = kzalloc(127, GFP_KERNEL);
1042         if (!p) {
1043                 prom_printf("SUN4V: Error, cannot allocate mondo block.\n");
1044                 prom_halt();
1045         }
1046         mondo = (void *)(((unsigned long)p + 63) & ~0x3f);
1047         tb->cpu_mondo_block_pa = __pa(mondo);
1048 
1049         page = get_zeroed_page(GFP_KERNEL);
1050         if (!page) {
1051                 prom_printf("SUN4V: Error, cannot allocate cpu list page.\n");
1052                 prom_halt();
1053         }
1054 
1055         tb->cpu_list_pa = __pa(page);
1056 #endif
1057 }
1058 
1059 /* Allocate mondo and error queues for all possible cpus.  */
1060 static void __init sun4v_init_mondo_queues(void)
1061 {
1062         int cpu;
1063 
1064         for_each_possible_cpu(cpu) {
1065                 struct trap_per_cpu *tb = &trap_block[cpu];
1066 
1067                 alloc_one_queue(&tb->cpu_mondo_pa, tb->cpu_mondo_qmask);
1068                 alloc_one_queue(&tb->dev_mondo_pa, tb->dev_mondo_qmask);
1069                 alloc_one_queue(&tb->resum_mondo_pa, tb->resum_qmask);
1070                 alloc_one_queue(&tb->resum_kernel_buf_pa, tb->resum_qmask);
1071                 alloc_one_queue(&tb->nonresum_mondo_pa, tb->nonresum_qmask);
1072                 alloc_one_queue(&tb->nonresum_kernel_buf_pa,
1073                                 tb->nonresum_qmask);
1074         }
1075 }
1076 
1077 static void __init init_send_mondo_info(void)
1078 {
1079         int cpu;
1080 
1081         for_each_possible_cpu(cpu) {
1082                 struct trap_per_cpu *tb = &trap_block[cpu];
1083 
1084                 init_cpu_send_mondo_info(tb);
1085         }
1086 }
1087 
1088 static struct irqaction timer_irq_action = {
1089         .name = "timer",
1090 };
1091 
1092 static void __init irq_ivector_init(void)
1093 {
1094         unsigned long size, order;
1095         unsigned int ivecs;
1096 
1097         /* If we are doing cookie only VIRQs then we do not need the ivector
1098          * table to process interrupts.
1099          */
1100         if (sun4v_cookie_only_virqs())
1101                 return;
1102 
1103         ivecs = size_nr_ivec();
1104         size = sizeof(struct ino_bucket) * ivecs;
1105         order = get_order(size);
1106         ivector_table = (struct ino_bucket *)
1107                 __get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
1108         if (!ivector_table) {
1109                 prom_printf("Fatal error, cannot allocate ivector_table\n");
1110                 prom_halt();
1111         }
1112         __flush_dcache_range((unsigned long) ivector_table,
1113                              ((unsigned long) ivector_table) + size);
1114 
1115         ivector_table_pa = __pa(ivector_table);
1116 }
1117 
1118 /* Only invoked on boot processor.*/
1119 void __init init_IRQ(void)
1120 {
1121         irq_init_hv();
1122         irq_ivector_init();
1123         map_prom_timers();
1124         kill_prom_timer();
1125 
1126         if (tlb_type == hypervisor)
1127                 sun4v_init_mondo_queues();
1128 
1129         init_send_mondo_info();
1130 
1131         if (tlb_type == hypervisor) {
1132                 /* Load up the boot cpu's entries.  */
1133                 sun4v_register_mondo_queues(hard_smp_processor_id());
1134         }
1135 
1136         /* We need to clear any IRQ's pending in the soft interrupt
1137          * registers, a spurious one could be left around from the
1138          * PROM timer which we just disabled.
1139          */
1140         clear_softint(get_softint());
1141 
1142         /* Now that ivector table is initialized, it is safe
1143          * to receive IRQ vector traps.  We will normally take
1144          * one or two right now, in case some device PROM used
1145          * to boot us wants to speak to us.  We just ignore them.
1146          */
1147         __asm__ __volatile__("rdpr      %%pstate, %%g1\n\t"
1148                              "or        %%g1, %0, %%g1\n\t"
1149                              "wrpr      %%g1, 0x0, %%pstate"
1150                              : /* No outputs */
1151                              : "i" (PSTATE_IE)
1152                              : "g1");
1153 
1154         irq_to_desc(0)->action = &timer_irq_action;
1155 }
1156 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php