~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/sparc/kernel/kprobes.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /* arch/sparc64/kernel/kprobes.c
  3  *
  4  * Copyright (C) 2004 David S. Miller <davem@davemloft.net>
  5  */
  6 
  7 #include <linux/kernel.h>
  8 #include <linux/kprobes.h>
  9 #include <linux/extable.h>
 10 #include <linux/kdebug.h>
 11 #include <linux/slab.h>
 12 #include <linux/context_tracking.h>
 13 #include <asm/signal.h>
 14 #include <asm/cacheflush.h>
 15 #include <linux/uaccess.h>
 16 
 17 /* We do not have hardware single-stepping on sparc64.
 18  * So we implement software single-stepping with breakpoint
 19  * traps.  The top-level scheme is similar to that used
 20  * in the x86 kprobes implementation.
 21  *
 22  * In the kprobe->ainsn.insn[] array we store the original
 23  * instruction at index zero and a break instruction at
 24  * index one.
 25  *
 26  * When we hit a kprobe we:
 27  * - Run the pre-handler
 28  * - Remember "regs->tnpc" and interrupt level stored in
 29  *   "regs->tstate" so we can restore them later
 30  * - Disable PIL interrupts
 31  * - Set regs->tpc to point to kprobe->ainsn.insn[0]
 32  * - Set regs->tnpc to point to kprobe->ainsn.insn[1]
 33  * - Mark that we are actively in a kprobe
 34  *
 35  * At this point we wait for the second breakpoint at
 36  * kprobe->ainsn.insn[1] to hit.  When it does we:
 37  * - Run the post-handler
 38  * - Set regs->tpc to "remembered" regs->tnpc stored above,
 39  *   restore the PIL interrupt level in "regs->tstate" as well
 40  * - Make any adjustments necessary to regs->tnpc in order
 41  *   to handle relative branches correctly.  See below.
 42  * - Mark that we are no longer actively in a kprobe.
 43  */
 44 
 45 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
 46 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 47 
 48 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
 49 
 50 int __kprobes arch_prepare_kprobe(struct kprobe *p)
 51 {
 52         if ((unsigned long) p->addr & 0x3UL)
 53                 return -EILSEQ;
 54 
 55         p->ainsn.insn[0] = *p->addr;
 56         flushi(&p->ainsn.insn[0]);
 57 
 58         p->ainsn.insn[1] = BREAKPOINT_INSTRUCTION_2;
 59         flushi(&p->ainsn.insn[1]);
 60 
 61         p->opcode = *p->addr;
 62         return 0;
 63 }
 64 
 65 void __kprobes arch_arm_kprobe(struct kprobe *p)
 66 {
 67         *p->addr = BREAKPOINT_INSTRUCTION;
 68         flushi(p->addr);
 69 }
 70 
 71 void __kprobes arch_disarm_kprobe(struct kprobe *p)
 72 {
 73         *p->addr = p->opcode;
 74         flushi(p->addr);
 75 }
 76 
 77 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
 78 {
 79         kcb->prev_kprobe.kp = kprobe_running();
 80         kcb->prev_kprobe.status = kcb->kprobe_status;
 81         kcb->prev_kprobe.orig_tnpc = kcb->kprobe_orig_tnpc;
 82         kcb->prev_kprobe.orig_tstate_pil = kcb->kprobe_orig_tstate_pil;
 83 }
 84 
 85 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
 86 {
 87         __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
 88         kcb->kprobe_status = kcb->prev_kprobe.status;
 89         kcb->kprobe_orig_tnpc = kcb->prev_kprobe.orig_tnpc;
 90         kcb->kprobe_orig_tstate_pil = kcb->prev_kprobe.orig_tstate_pil;
 91 }
 92 
 93 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
 94                                 struct kprobe_ctlblk *kcb)
 95 {
 96         __this_cpu_write(current_kprobe, p);
 97         kcb->kprobe_orig_tnpc = regs->tnpc;
 98         kcb->kprobe_orig_tstate_pil = (regs->tstate & TSTATE_PIL);
 99 }
100 
101 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs,
102                         struct kprobe_ctlblk *kcb)
103 {
104         regs->tstate |= TSTATE_PIL;
105 
106         /*single step inline, if it a breakpoint instruction*/
107         if (p->opcode == BREAKPOINT_INSTRUCTION) {
108                 regs->tpc = (unsigned long) p->addr;
109                 regs->tnpc = kcb->kprobe_orig_tnpc;
110         } else {
111                 regs->tpc = (unsigned long) &p->ainsn.insn[0];
112                 regs->tnpc = (unsigned long) &p->ainsn.insn[1];
113         }
114 }
115 
116 static int __kprobes kprobe_handler(struct pt_regs *regs)
117 {
118         struct kprobe *p;
119         void *addr = (void *) regs->tpc;
120         int ret = 0;
121         struct kprobe_ctlblk *kcb;
122 
123         /*
124          * We don't want to be preempted for the entire
125          * duration of kprobe processing
126          */
127         preempt_disable();
128         kcb = get_kprobe_ctlblk();
129 
130         if (kprobe_running()) {
131                 p = get_kprobe(addr);
132                 if (p) {
133                         if (kcb->kprobe_status == KPROBE_HIT_SS) {
134                                 regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
135                                         kcb->kprobe_orig_tstate_pil);
136                                 goto no_kprobe;
137                         }
138                         /* We have reentered the kprobe_handler(), since
139                          * another probe was hit while within the handler.
140                          * We here save the original kprobes variables and
141                          * just single step on the instruction of the new probe
142                          * without calling any user handlers.
143                          */
144                         save_previous_kprobe(kcb);
145                         set_current_kprobe(p, regs, kcb);
146                         kprobes_inc_nmissed_count(p);
147                         kcb->kprobe_status = KPROBE_REENTER;
148                         prepare_singlestep(p, regs, kcb);
149                         return 1;
150                 } else if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
151                         /* The breakpoint instruction was removed by
152                          * another cpu right after we hit, no further
153                          * handling of this interrupt is appropriate
154                          */
155                         ret = 1;
156                 }
157                 goto no_kprobe;
158         }
159 
160         p = get_kprobe(addr);
161         if (!p) {
162                 if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
163                         /*
164                          * The breakpoint instruction was removed right
165                          * after we hit it.  Another cpu has removed
166                          * either a probepoint or a debugger breakpoint
167                          * at this address.  In either case, no further
168                          * handling of this interrupt is appropriate.
169                          */
170                         ret = 1;
171                 }
172                 /* Not one of ours: let kernel handle it */
173                 goto no_kprobe;
174         }
175 
176         set_current_kprobe(p, regs, kcb);
177         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
178         if (p->pre_handler && p->pre_handler(p, regs)) {
179                 reset_current_kprobe();
180                 preempt_enable_no_resched();
181                 return 1;
182         }
183 
184         prepare_singlestep(p, regs, kcb);
185         kcb->kprobe_status = KPROBE_HIT_SS;
186         return 1;
187 
188 no_kprobe:
189         preempt_enable_no_resched();
190         return ret;
191 }
192 
193 /* If INSN is a relative control transfer instruction,
194  * return the corrected branch destination value.
195  *
196  * regs->tpc and regs->tnpc still hold the values of the
197  * program counters at the time of trap due to the execution
198  * of the BREAKPOINT_INSTRUCTION_2 at p->ainsn.insn[1]
199  * 
200  */
201 static unsigned long __kprobes relbranch_fixup(u32 insn, struct kprobe *p,
202                                                struct pt_regs *regs)
203 {
204         unsigned long real_pc = (unsigned long) p->addr;
205 
206         /* Branch not taken, no mods necessary.  */
207         if (regs->tnpc == regs->tpc + 0x4UL)
208                 return real_pc + 0x8UL;
209 
210         /* The three cases are call, branch w/prediction,
211          * and traditional branch.
212          */
213         if ((insn & 0xc0000000) == 0x40000000 ||
214             (insn & 0xc1c00000) == 0x00400000 ||
215             (insn & 0xc1c00000) == 0x00800000) {
216                 unsigned long ainsn_addr;
217 
218                 ainsn_addr = (unsigned long) &p->ainsn.insn[0];
219 
220                 /* The instruction did all the work for us
221                  * already, just apply the offset to the correct
222                  * instruction location.
223                  */
224                 return (real_pc + (regs->tnpc - ainsn_addr));
225         }
226 
227         /* It is jmpl or some other absolute PC modification instruction,
228          * leave NPC as-is.
229          */
230         return regs->tnpc;
231 }
232 
233 /* If INSN is an instruction which writes its PC location
234  * into a destination register, fix that up.
235  */
236 static void __kprobes retpc_fixup(struct pt_regs *regs, u32 insn,
237                                   unsigned long real_pc)
238 {
239         unsigned long *slot = NULL;
240 
241         /* Simplest case is 'call', which always uses %o7 */
242         if ((insn & 0xc0000000) == 0x40000000) {
243                 slot = &regs->u_regs[UREG_I7];
244         }
245 
246         /* 'jmpl' encodes the register inside of the opcode */
247         if ((insn & 0xc1f80000) == 0x81c00000) {
248                 unsigned long rd = ((insn >> 25) & 0x1f);
249 
250                 if (rd <= 15) {
251                         slot = &regs->u_regs[rd];
252                 } else {
253                         /* Hard case, it goes onto the stack. */
254                         flushw_all();
255 
256                         rd -= 16;
257                         slot = (unsigned long *)
258                                 (regs->u_regs[UREG_FP] + STACK_BIAS);
259                         slot += rd;
260                 }
261         }
262         if (slot != NULL)
263                 *slot = real_pc;
264 }
265 
266 /*
267  * Called after single-stepping.  p->addr is the address of the
268  * instruction which has been replaced by the breakpoint
269  * instruction.  To avoid the SMP problems that can occur when we
270  * temporarily put back the original opcode to single-step, we
271  * single-stepped a copy of the instruction.  The address of this
272  * copy is &p->ainsn.insn[0].
273  *
274  * This function prepares to return from the post-single-step
275  * breakpoint trap.
276  */
277 static void __kprobes resume_execution(struct kprobe *p,
278                 struct pt_regs *regs, struct kprobe_ctlblk *kcb)
279 {
280         u32 insn = p->ainsn.insn[0];
281 
282         regs->tnpc = relbranch_fixup(insn, p, regs);
283 
284         /* This assignment must occur after relbranch_fixup() */
285         regs->tpc = kcb->kprobe_orig_tnpc;
286 
287         retpc_fixup(regs, insn, (unsigned long) p->addr);
288 
289         regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
290                         kcb->kprobe_orig_tstate_pil);
291 }
292 
293 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
294 {
295         struct kprobe *cur = kprobe_running();
296         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
297 
298         if (!cur)
299                 return 0;
300 
301         if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
302                 kcb->kprobe_status = KPROBE_HIT_SSDONE;
303                 cur->post_handler(cur, regs, 0);
304         }
305 
306         resume_execution(cur, regs, kcb);
307 
308         /*Restore back the original saved kprobes variables and continue. */
309         if (kcb->kprobe_status == KPROBE_REENTER) {
310                 restore_previous_kprobe(kcb);
311                 goto out;
312         }
313         reset_current_kprobe();
314 out:
315         preempt_enable_no_resched();
316 
317         return 1;
318 }
319 
320 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
321 {
322         struct kprobe *cur = kprobe_running();
323         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
324         const struct exception_table_entry *entry;
325 
326         switch(kcb->kprobe_status) {
327         case KPROBE_HIT_SS:
328         case KPROBE_REENTER:
329                 /*
330                  * We are here because the instruction being single
331                  * stepped caused a page fault. We reset the current
332                  * kprobe and the tpc points back to the probe address
333                  * and allow the page fault handler to continue as a
334                  * normal page fault.
335                  */
336                 regs->tpc = (unsigned long)cur->addr;
337                 regs->tnpc = kcb->kprobe_orig_tnpc;
338                 regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
339                                 kcb->kprobe_orig_tstate_pil);
340                 if (kcb->kprobe_status == KPROBE_REENTER)
341                         restore_previous_kprobe(kcb);
342                 else
343                         reset_current_kprobe();
344                 preempt_enable_no_resched();
345                 break;
346         case KPROBE_HIT_ACTIVE:
347         case KPROBE_HIT_SSDONE:
348                 /*
349                  * In case the user-specified fault handler returned
350                  * zero, try to fix up.
351                  */
352 
353                 entry = search_exception_tables(regs->tpc);
354                 if (entry) {
355                         regs->tpc = entry->fixup;
356                         regs->tnpc = regs->tpc + 4;
357                         return 1;
358                 }
359 
360                 /*
361                  * fixup_exception() could not handle it,
362                  * Let do_page_fault() fix it.
363                  */
364                 break;
365         default:
366                 break;
367         }
368 
369         return 0;
370 }
371 
372 /*
373  * Wrapper routine to for handling exceptions.
374  */
375 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
376                                        unsigned long val, void *data)
377 {
378         struct die_args *args = (struct die_args *)data;
379         int ret = NOTIFY_DONE;
380 
381         if (args->regs && user_mode(args->regs))
382                 return ret;
383 
384         switch (val) {
385         case DIE_DEBUG:
386                 if (kprobe_handler(args->regs))
387                         ret = NOTIFY_STOP;
388                 break;
389         case DIE_DEBUG_2:
390                 if (post_kprobe_handler(args->regs))
391                         ret = NOTIFY_STOP;
392                 break;
393         default:
394                 break;
395         }
396         return ret;
397 }
398 
399 asmlinkage void __kprobes kprobe_trap(unsigned long trap_level,
400                                       struct pt_regs *regs)
401 {
402         enum ctx_state prev_state = exception_enter();
403 
404         BUG_ON(trap_level != 0x170 && trap_level != 0x171);
405 
406         if (user_mode(regs)) {
407                 local_irq_enable();
408                 bad_trap(regs, trap_level);
409                 goto out;
410         }
411 
412         /* trap_level == 0x170 --> ta 0x70
413          * trap_level == 0x171 --> ta 0x71
414          */
415         if (notify_die((trap_level == 0x170) ? DIE_DEBUG : DIE_DEBUG_2,
416                        (trap_level == 0x170) ? "debug" : "debug_2",
417                        regs, 0, trap_level, SIGTRAP) != NOTIFY_STOP)
418                 bad_trap(regs, trap_level);
419 out:
420         exception_exit(prev_state);
421 }
422 
423 /* The value stored in the return address register is actually 2
424  * instructions before where the callee will return to.
425  * Sequences usually look something like this
426  *
427  *              call    some_function   <--- return register points here
428  *               nop                    <--- call delay slot
429  *              whatever                <--- where callee returns to
430  *
431  * To keep trampoline_probe_handler logic simpler, we normalize the
432  * value kept in ri->ret_addr so we don't need to keep adjusting it
433  * back and forth.
434  */
435 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
436                                       struct pt_regs *regs)
437 {
438         ri->ret_addr = (kprobe_opcode_t *)(regs->u_regs[UREG_RETPC] + 8);
439         ri->fp = NULL;
440 
441         /* Replace the return addr with trampoline addr */
442         regs->u_regs[UREG_RETPC] =
443                 ((unsigned long)__kretprobe_trampoline) - 8;
444 }
445 
446 /*
447  * Called when the probe at kretprobe trampoline is hit
448  */
449 static int __kprobes trampoline_probe_handler(struct kprobe *p,
450                                               struct pt_regs *regs)
451 {
452         unsigned long orig_ret_address = 0;
453 
454         orig_ret_address = __kretprobe_trampoline_handler(regs, NULL);
455         regs->tpc = orig_ret_address;
456         regs->tnpc = orig_ret_address + 4;
457 
458         /*
459          * By returning a non-zero value, we are telling
460          * kprobe_handler() that we don't want the post_handler
461          * to run (and have re-enabled preemption)
462          */
463         return 1;
464 }
465 
466 static void __used kretprobe_trampoline_holder(void)
467 {
468         asm volatile(".global __kretprobe_trampoline\n"
469                      "__kretprobe_trampoline:\n"
470                      "\tnop\n"
471                      "\tnop\n");
472 }
473 static struct kprobe trampoline_p = {
474         .addr = (kprobe_opcode_t *) &__kretprobe_trampoline,
475         .pre_handler = trampoline_probe_handler
476 };
477 
478 int __init arch_init_kprobes(void)
479 {
480         return register_kprobe(&trampoline_p);
481 }
482 
483 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
484 {
485         if (p->addr == (kprobe_opcode_t *)&__kretprobe_trampoline)
486                 return 1;
487 
488         return 0;
489 }
490 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php