1 // SPDX-License-Identifier: GPL-2.0 2 /* pci_sabre.c: Sabre specific PCI controller support. 3 * 4 * Copyright (C) 1997, 1998, 1999, 2007 David S. Miller (davem@davemloft.net) 5 * Copyright (C) 1998, 1999 Eddie C. Dost (ecd@skynet.be) 6 * Copyright (C) 1999 Jakub Jelinek (jakub@redhat.com) 7 */ 8 9 #include <linux/kernel.h> 10 #include <linux/types.h> 11 #include <linux/pci.h> 12 #include <linux/init.h> 13 #include <linux/export.h> 14 #include <linux/slab.h> 15 #include <linux/interrupt.h> 16 #include <linux/of.h> 17 #include <linux/of_platform.h> 18 #include <linux/platform_device.h> 19 #include <linux/property.h> 20 21 #include <asm/apb.h> 22 #include <asm/iommu.h> 23 #include <asm/irq.h> 24 #include <asm/prom.h> 25 #include <asm/upa.h> 26 27 #include "pci_impl.h" 28 #include "iommu_common.h" 29 #include "psycho_common.h" 30 31 #define DRIVER_NAME "sabre" 32 #define PFX DRIVER_NAME ": " 33 34 /* SABRE PCI controller register offsets and definitions. */ 35 #define SABRE_UE_AFSR 0x0030UL 36 #define SABRE_UEAFSR_PDRD 0x4000000000000000UL /* Primary PCI DMA Read */ 37 #define SABRE_UEAFSR_PDWR 0x2000000000000000UL /* Primary PCI DMA Write */ 38 #define SABRE_UEAFSR_SDRD 0x0800000000000000UL /* Secondary PCI DMA Read */ 39 #define SABRE_UEAFSR_SDWR 0x0400000000000000UL /* Secondary PCI DMA Write */ 40 #define SABRE_UEAFSR_SDTE 0x0200000000000000UL /* Secondary DMA Translation Error */ 41 #define SABRE_UEAFSR_PDTE 0x0100000000000000UL /* Primary DMA Translation Error */ 42 #define SABRE_UEAFSR_BMSK 0x0000ffff00000000UL /* Bytemask */ 43 #define SABRE_UEAFSR_OFF 0x00000000e0000000UL /* Offset (AFAR bits [5:3] */ 44 #define SABRE_UEAFSR_BLK 0x0000000000800000UL /* Was block operation */ 45 #define SABRE_UECE_AFAR 0x0038UL 46 #define SABRE_CE_AFSR 0x0040UL 47 #define SABRE_CEAFSR_PDRD 0x4000000000000000UL /* Primary PCI DMA Read */ 48 #define SABRE_CEAFSR_PDWR 0x2000000000000000UL /* Primary PCI DMA Write */ 49 #define SABRE_CEAFSR_SDRD 0x0800000000000000UL /* Secondary PCI DMA Read */ 50 #define SABRE_CEAFSR_SDWR 0x0400000000000000UL /* Secondary PCI DMA Write */ 51 #define SABRE_CEAFSR_ESYND 0x00ff000000000000UL /* ECC Syndrome */ 52 #define SABRE_CEAFSR_BMSK 0x0000ffff00000000UL /* Bytemask */ 53 #define SABRE_CEAFSR_OFF 0x00000000e0000000UL /* Offset */ 54 #define SABRE_CEAFSR_BLK 0x0000000000800000UL /* Was block operation */ 55 #define SABRE_UECE_AFAR_ALIAS 0x0048UL /* Aliases to 0x0038 */ 56 #define SABRE_IOMMU_CONTROL 0x0200UL 57 #define SABRE_IOMMUCTRL_ERRSTS 0x0000000006000000UL /* Error status bits */ 58 #define SABRE_IOMMUCTRL_ERR 0x0000000001000000UL /* Error present in IOTLB */ 59 #define SABRE_IOMMUCTRL_LCKEN 0x0000000000800000UL /* IOTLB lock enable */ 60 #define SABRE_IOMMUCTRL_LCKPTR 0x0000000000780000UL /* IOTLB lock pointer */ 61 #define SABRE_IOMMUCTRL_TSBSZ 0x0000000000070000UL /* TSB Size */ 62 #define SABRE_IOMMU_TSBSZ_1K 0x0000000000000000 63 #define SABRE_IOMMU_TSBSZ_2K 0x0000000000010000 64 #define SABRE_IOMMU_TSBSZ_4K 0x0000000000020000 65 #define SABRE_IOMMU_TSBSZ_8K 0x0000000000030000 66 #define SABRE_IOMMU_TSBSZ_16K 0x0000000000040000 67 #define SABRE_IOMMU_TSBSZ_32K 0x0000000000050000 68 #define SABRE_IOMMU_TSBSZ_64K 0x0000000000060000 69 #define SABRE_IOMMU_TSBSZ_128K 0x0000000000070000 70 #define SABRE_IOMMUCTRL_TBWSZ 0x0000000000000004UL /* TSB assumed page size */ 71 #define SABRE_IOMMUCTRL_DENAB 0x0000000000000002UL /* Diagnostic Mode Enable */ 72 #define SABRE_IOMMUCTRL_ENAB 0x0000000000000001UL /* IOMMU Enable */ 73 #define SABRE_IOMMU_TSBBASE 0x0208UL 74 #define SABRE_IOMMU_FLUSH 0x0210UL 75 #define SABRE_IMAP_A_SLOT0 0x0c00UL 76 #define SABRE_IMAP_B_SLOT0 0x0c20UL 77 #define SABRE_IMAP_SCSI 0x1000UL 78 #define SABRE_IMAP_ETH 0x1008UL 79 #define SABRE_IMAP_BPP 0x1010UL 80 #define SABRE_IMAP_AU_REC 0x1018UL 81 #define SABRE_IMAP_AU_PLAY 0x1020UL 82 #define SABRE_IMAP_PFAIL 0x1028UL 83 #define SABRE_IMAP_KMS 0x1030UL 84 #define SABRE_IMAP_FLPY 0x1038UL 85 #define SABRE_IMAP_SHW 0x1040UL 86 #define SABRE_IMAP_KBD 0x1048UL 87 #define SABRE_IMAP_MS 0x1050UL 88 #define SABRE_IMAP_SER 0x1058UL 89 #define SABRE_IMAP_UE 0x1070UL 90 #define SABRE_IMAP_CE 0x1078UL 91 #define SABRE_IMAP_PCIERR 0x1080UL 92 #define SABRE_IMAP_GFX 0x1098UL 93 #define SABRE_IMAP_EUPA 0x10a0UL 94 #define SABRE_ICLR_A_SLOT0 0x1400UL 95 #define SABRE_ICLR_B_SLOT0 0x1480UL 96 #define SABRE_ICLR_SCSI 0x1800UL 97 #define SABRE_ICLR_ETH 0x1808UL 98 #define SABRE_ICLR_BPP 0x1810UL 99 #define SABRE_ICLR_AU_REC 0x1818UL 100 #define SABRE_ICLR_AU_PLAY 0x1820UL 101 #define SABRE_ICLR_PFAIL 0x1828UL 102 #define SABRE_ICLR_KMS 0x1830UL 103 #define SABRE_ICLR_FLPY 0x1838UL 104 #define SABRE_ICLR_SHW 0x1840UL 105 #define SABRE_ICLR_KBD 0x1848UL 106 #define SABRE_ICLR_MS 0x1850UL 107 #define SABRE_ICLR_SER 0x1858UL 108 #define SABRE_ICLR_UE 0x1870UL 109 #define SABRE_ICLR_CE 0x1878UL 110 #define SABRE_ICLR_PCIERR 0x1880UL 111 #define SABRE_WRSYNC 0x1c20UL 112 #define SABRE_PCICTRL 0x2000UL 113 #define SABRE_PCICTRL_MRLEN 0x0000001000000000UL /* Use MemoryReadLine for block loads/stores */ 114 #define SABRE_PCICTRL_SERR 0x0000000400000000UL /* Set when SERR asserted on PCI bus */ 115 #define SABRE_PCICTRL_ARBPARK 0x0000000000200000UL /* Bus Parking 0=Ultra-IIi 1=prev-bus-owner */ 116 #define SABRE_PCICTRL_CPUPRIO 0x0000000000100000UL /* Ultra-IIi granted every other bus cycle */ 117 #define SABRE_PCICTRL_ARBPRIO 0x00000000000f0000UL /* Slot which is granted every other bus cycle */ 118 #define SABRE_PCICTRL_ERREN 0x0000000000000100UL /* PCI Error Interrupt Enable */ 119 #define SABRE_PCICTRL_RTRYWE 0x0000000000000080UL /* DMA Flow Control 0=wait-if-possible 1=retry */ 120 #define SABRE_PCICTRL_AEN 0x000000000000000fUL /* Slot PCI arbitration enables */ 121 #define SABRE_PIOAFSR 0x2010UL 122 #define SABRE_PIOAFSR_PMA 0x8000000000000000UL /* Primary Master Abort */ 123 #define SABRE_PIOAFSR_PTA 0x4000000000000000UL /* Primary Target Abort */ 124 #define SABRE_PIOAFSR_PRTRY 0x2000000000000000UL /* Primary Excessive Retries */ 125 #define SABRE_PIOAFSR_PPERR 0x1000000000000000UL /* Primary Parity Error */ 126 #define SABRE_PIOAFSR_SMA 0x0800000000000000UL /* Secondary Master Abort */ 127 #define SABRE_PIOAFSR_STA 0x0400000000000000UL /* Secondary Target Abort */ 128 #define SABRE_PIOAFSR_SRTRY 0x0200000000000000UL /* Secondary Excessive Retries */ 129 #define SABRE_PIOAFSR_SPERR 0x0100000000000000UL /* Secondary Parity Error */ 130 #define SABRE_PIOAFSR_BMSK 0x0000ffff00000000UL /* Byte Mask */ 131 #define SABRE_PIOAFSR_BLK 0x0000000080000000UL /* Was Block Operation */ 132 #define SABRE_PIOAFAR 0x2018UL 133 #define SABRE_PCIDIAG 0x2020UL 134 #define SABRE_PCIDIAG_DRTRY 0x0000000000000040UL /* Disable PIO Retry Limit */ 135 #define SABRE_PCIDIAG_IPAPAR 0x0000000000000008UL /* Invert PIO Address Parity */ 136 #define SABRE_PCIDIAG_IPDPAR 0x0000000000000004UL /* Invert PIO Data Parity */ 137 #define SABRE_PCIDIAG_IDDPAR 0x0000000000000002UL /* Invert DMA Data Parity */ 138 #define SABRE_PCIDIAG_ELPBK 0x0000000000000001UL /* Loopback Enable - not supported */ 139 #define SABRE_PCITASR 0x2028UL 140 #define SABRE_PCITASR_EF 0x0000000000000080UL /* Respond to 0xe0000000-0xffffffff */ 141 #define SABRE_PCITASR_CD 0x0000000000000040UL /* Respond to 0xc0000000-0xdfffffff */ 142 #define SABRE_PCITASR_AB 0x0000000000000020UL /* Respond to 0xa0000000-0xbfffffff */ 143 #define SABRE_PCITASR_89 0x0000000000000010UL /* Respond to 0x80000000-0x9fffffff */ 144 #define SABRE_PCITASR_67 0x0000000000000008UL /* Respond to 0x60000000-0x7fffffff */ 145 #define SABRE_PCITASR_45 0x0000000000000004UL /* Respond to 0x40000000-0x5fffffff */ 146 #define SABRE_PCITASR_23 0x0000000000000002UL /* Respond to 0x20000000-0x3fffffff */ 147 #define SABRE_PCITASR_01 0x0000000000000001UL /* Respond to 0x00000000-0x1fffffff */ 148 #define SABRE_PIOBUF_DIAG 0x5000UL 149 #define SABRE_DMABUF_DIAGLO 0x5100UL 150 #define SABRE_DMABUF_DIAGHI 0x51c0UL 151 #define SABRE_IMAP_GFX_ALIAS 0x6000UL /* Aliases to 0x1098 */ 152 #define SABRE_IMAP_EUPA_ALIAS 0x8000UL /* Aliases to 0x10a0 */ 153 #define SABRE_IOMMU_VADIAG 0xa400UL 154 #define SABRE_IOMMU_TCDIAG 0xa408UL 155 #define SABRE_IOMMU_TAG 0xa580UL 156 #define SABRE_IOMMUTAG_ERRSTS 0x0000000001800000UL /* Error status bits */ 157 #define SABRE_IOMMUTAG_ERR 0x0000000000400000UL /* Error present */ 158 #define SABRE_IOMMUTAG_WRITE 0x0000000000200000UL /* Page is writable */ 159 #define SABRE_IOMMUTAG_STREAM 0x0000000000100000UL /* Streamable bit - unused */ 160 #define SABRE_IOMMUTAG_SIZE 0x0000000000080000UL /* 0=8k 1=16k */ 161 #define SABRE_IOMMUTAG_VPN 0x000000000007ffffUL /* Virtual Page Number [31:13] */ 162 #define SABRE_IOMMU_DATA 0xa600UL 163 #define SABRE_IOMMUDATA_VALID 0x0000000040000000UL /* Valid */ 164 #define SABRE_IOMMUDATA_USED 0x0000000020000000UL /* Used (for LRU algorithm) */ 165 #define SABRE_IOMMUDATA_CACHE 0x0000000010000000UL /* Cacheable */ 166 #define SABRE_IOMMUDATA_PPN 0x00000000001fffffUL /* Physical Page Number [33:13] */ 167 #define SABRE_PCI_IRQSTATE 0xa800UL 168 #define SABRE_OBIO_IRQSTATE 0xa808UL 169 #define SABRE_FFBCFG 0xf000UL 170 #define SABRE_FFBCFG_SPRQS 0x000000000f000000 /* Slave P_RQST queue size */ 171 #define SABRE_FFBCFG_ONEREAD 0x0000000000004000 /* Slave supports one outstanding read */ 172 #define SABRE_MCCTRL0 0xf010UL 173 #define SABRE_MCCTRL0_RENAB 0x0000000080000000 /* Refresh Enable */ 174 #define SABRE_MCCTRL0_EENAB 0x0000000010000000 /* Enable all ECC functions */ 175 #define SABRE_MCCTRL0_11BIT 0x0000000000001000 /* Enable 11-bit column addressing */ 176 #define SABRE_MCCTRL0_DPP 0x0000000000000f00 /* DIMM Pair Present Bits */ 177 #define SABRE_MCCTRL0_RINTVL 0x00000000000000ff /* Refresh Interval */ 178 #define SABRE_MCCTRL1 0xf018UL 179 #define SABRE_MCCTRL1_AMDC 0x0000000038000000 /* Advance Memdata Clock */ 180 #define SABRE_MCCTRL1_ARDC 0x0000000007000000 /* Advance DRAM Read Data Clock */ 181 #define SABRE_MCCTRL1_CSR 0x0000000000e00000 /* CAS to RAS delay for CBR refresh */ 182 #define SABRE_MCCTRL1_CASRW 0x00000000001c0000 /* CAS length for read/write */ 183 #define SABRE_MCCTRL1_RCD 0x0000000000038000 /* RAS to CAS delay */ 184 #define SABRE_MCCTRL1_CP 0x0000000000007000 /* CAS Precharge */ 185 #define SABRE_MCCTRL1_RP 0x0000000000000e00 /* RAS Precharge */ 186 #define SABRE_MCCTRL1_RAS 0x00000000000001c0 /* Length of RAS for refresh */ 187 #define SABRE_MCCTRL1_CASRW2 0x0000000000000038 /* Must be same as CASRW */ 188 #define SABRE_MCCTRL1_RSC 0x0000000000000007 /* RAS after CAS hold time */ 189 #define SABRE_RESETCTRL 0xf020UL 190 191 #define SABRE_CONFIGSPACE 0x001000000UL 192 #define SABRE_IOSPACE 0x002000000UL 193 #define SABRE_IOSPACE_SIZE 0x000ffffffUL 194 #define SABRE_MEMSPACE 0x100000000UL 195 #define SABRE_MEMSPACE_SIZE 0x07fffffffUL 196 197 static int hummingbird_p; 198 static struct pci_bus *sabre_root_bus; 199 200 static irqreturn_t sabre_ue_intr(int irq, void *dev_id) 201 { 202 struct pci_pbm_info *pbm = dev_id; 203 unsigned long afsr_reg = pbm->controller_regs + SABRE_UE_AFSR; 204 unsigned long afar_reg = pbm->controller_regs + SABRE_UECE_AFAR; 205 unsigned long afsr, afar, error_bits; 206 int reported; 207 208 /* Latch uncorrectable error status. */ 209 afar = upa_readq(afar_reg); 210 afsr = upa_readq(afsr_reg); 211 212 /* Clear the primary/secondary error status bits. */ 213 error_bits = afsr & 214 (SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR | 215 SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR | 216 SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE); 217 if (!error_bits) 218 return IRQ_NONE; 219 upa_writeq(error_bits, afsr_reg); 220 221 /* Log the error. */ 222 printk("%s: Uncorrectable Error, primary error type[%s%s]\n", 223 pbm->name, 224 ((error_bits & SABRE_UEAFSR_PDRD) ? 225 "DMA Read" : 226 ((error_bits & SABRE_UEAFSR_PDWR) ? 227 "DMA Write" : "???")), 228 ((error_bits & SABRE_UEAFSR_PDTE) ? 229 ":Translation Error" : "")); 230 printk("%s: bytemask[%04lx] dword_offset[%lx] was_block(%d)\n", 231 pbm->name, 232 (afsr & SABRE_UEAFSR_BMSK) >> 32UL, 233 (afsr & SABRE_UEAFSR_OFF) >> 29UL, 234 ((afsr & SABRE_UEAFSR_BLK) ? 1 : 0)); 235 printk("%s: UE AFAR [%016lx]\n", pbm->name, afar); 236 printk("%s: UE Secondary errors [", pbm->name); 237 reported = 0; 238 if (afsr & SABRE_UEAFSR_SDRD) { 239 reported++; 240 printk("(DMA Read)"); 241 } 242 if (afsr & SABRE_UEAFSR_SDWR) { 243 reported++; 244 printk("(DMA Write)"); 245 } 246 if (afsr & SABRE_UEAFSR_SDTE) { 247 reported++; 248 printk("(Translation Error)"); 249 } 250 if (!reported) 251 printk("(none)"); 252 printk("]\n"); 253 254 /* Interrogate IOMMU for error status. */ 255 psycho_check_iommu_error(pbm, afsr, afar, UE_ERR); 256 257 return IRQ_HANDLED; 258 } 259 260 static irqreturn_t sabre_ce_intr(int irq, void *dev_id) 261 { 262 struct pci_pbm_info *pbm = dev_id; 263 unsigned long afsr_reg = pbm->controller_regs + SABRE_CE_AFSR; 264 unsigned long afar_reg = pbm->controller_regs + SABRE_UECE_AFAR; 265 unsigned long afsr, afar, error_bits; 266 int reported; 267 268 /* Latch error status. */ 269 afar = upa_readq(afar_reg); 270 afsr = upa_readq(afsr_reg); 271 272 /* Clear primary/secondary error status bits. */ 273 error_bits = afsr & 274 (SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR | 275 SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR); 276 if (!error_bits) 277 return IRQ_NONE; 278 upa_writeq(error_bits, afsr_reg); 279 280 /* Log the error. */ 281 printk("%s: Correctable Error, primary error type[%s]\n", 282 pbm->name, 283 ((error_bits & SABRE_CEAFSR_PDRD) ? 284 "DMA Read" : 285 ((error_bits & SABRE_CEAFSR_PDWR) ? 286 "DMA Write" : "???"))); 287 288 /* XXX Use syndrome and afar to print out module string just like 289 * XXX UDB CE trap handler does... -DaveM 290 */ 291 printk("%s: syndrome[%02lx] bytemask[%04lx] dword_offset[%lx] " 292 "was_block(%d)\n", 293 pbm->name, 294 (afsr & SABRE_CEAFSR_ESYND) >> 48UL, 295 (afsr & SABRE_CEAFSR_BMSK) >> 32UL, 296 (afsr & SABRE_CEAFSR_OFF) >> 29UL, 297 ((afsr & SABRE_CEAFSR_BLK) ? 1 : 0)); 298 printk("%s: CE AFAR [%016lx]\n", pbm->name, afar); 299 printk("%s: CE Secondary errors [", pbm->name); 300 reported = 0; 301 if (afsr & SABRE_CEAFSR_SDRD) { 302 reported++; 303 printk("(DMA Read)"); 304 } 305 if (afsr & SABRE_CEAFSR_SDWR) { 306 reported++; 307 printk("(DMA Write)"); 308 } 309 if (!reported) 310 printk("(none)"); 311 printk("]\n"); 312 313 return IRQ_HANDLED; 314 } 315 316 static void sabre_register_error_handlers(struct pci_pbm_info *pbm) 317 { 318 struct device_node *dp = pbm->op->dev.of_node; 319 struct platform_device *op; 320 unsigned long base = pbm->controller_regs; 321 u64 tmp; 322 int err; 323 324 if (pbm->chip_type == PBM_CHIP_TYPE_SABRE) 325 dp = dp->parent; 326 327 op = of_find_device_by_node(dp); 328 if (!op) 329 return; 330 331 /* Sabre/Hummingbird IRQ property layout is: 332 * 0: PCI ERR 333 * 1: UE ERR 334 * 2: CE ERR 335 * 3: POWER FAIL 336 */ 337 if (op->archdata.num_irqs < 4) 338 return; 339 340 /* We clear the error bits in the appropriate AFSR before 341 * registering the handler so that we don't get spurious 342 * interrupts. 343 */ 344 upa_writeq((SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR | 345 SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR | 346 SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE), 347 base + SABRE_UE_AFSR); 348 349 err = request_irq(op->archdata.irqs[1], sabre_ue_intr, 0, "SABRE_UE", pbm); 350 if (err) 351 printk(KERN_WARNING "%s: Couldn't register UE, err=%d.\n", 352 pbm->name, err); 353 354 upa_writeq((SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR | 355 SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR), 356 base + SABRE_CE_AFSR); 357 358 359 err = request_irq(op->archdata.irqs[2], sabre_ce_intr, 0, "SABRE_CE", pbm); 360 if (err) 361 printk(KERN_WARNING "%s: Couldn't register CE, err=%d.\n", 362 pbm->name, err); 363 err = request_irq(op->archdata.irqs[0], psycho_pcierr_intr, 0, 364 "SABRE_PCIERR", pbm); 365 if (err) 366 printk(KERN_WARNING "%s: Couldn't register PCIERR, err=%d.\n", 367 pbm->name, err); 368 369 tmp = upa_readq(base + SABRE_PCICTRL); 370 tmp |= SABRE_PCICTRL_ERREN; 371 upa_writeq(tmp, base + SABRE_PCICTRL); 372 } 373 374 static void apb_init(struct pci_bus *sabre_bus) 375 { 376 struct pci_dev *pdev; 377 378 list_for_each_entry(pdev, &sabre_bus->devices, bus_list) { 379 if (pdev->vendor == PCI_VENDOR_ID_SUN && 380 pdev->device == PCI_DEVICE_ID_SUN_SIMBA) { 381 u16 word16; 382 383 pci_read_config_word(pdev, PCI_COMMAND, &word16); 384 word16 |= PCI_COMMAND_SERR | PCI_COMMAND_PARITY | 385 PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY | 386 PCI_COMMAND_IO; 387 pci_write_config_word(pdev, PCI_COMMAND, word16); 388 389 /* Status register bits are "write 1 to clear". */ 390 pci_write_config_word(pdev, PCI_STATUS, 0xffff); 391 pci_write_config_word(pdev, PCI_SEC_STATUS, 0xffff); 392 393 /* Use a primary/seconday latency timer value 394 * of 64. 395 */ 396 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 64); 397 pci_write_config_byte(pdev, PCI_SEC_LATENCY_TIMER, 64); 398 399 /* Enable reporting/forwarding of master aborts, 400 * parity, and SERR. 401 */ 402 pci_write_config_byte(pdev, PCI_BRIDGE_CONTROL, 403 (PCI_BRIDGE_CTL_PARITY | 404 PCI_BRIDGE_CTL_SERR | 405 PCI_BRIDGE_CTL_MASTER_ABORT)); 406 } 407 } 408 } 409 410 static void sabre_scan_bus(struct pci_pbm_info *pbm, struct device *parent) 411 { 412 static int once; 413 414 /* The APB bridge speaks to the Sabre host PCI bridge 415 * at 66Mhz, but the front side of APB runs at 33Mhz 416 * for both segments. 417 * 418 * Hummingbird systems do not use APB, so they run 419 * at 66MHZ. 420 */ 421 if (hummingbird_p) 422 pbm->is_66mhz_capable = 1; 423 else 424 pbm->is_66mhz_capable = 0; 425 426 /* This driver has not been verified to handle 427 * multiple SABREs yet, so trap this. 428 * 429 * Also note that the SABRE host bridge is hardwired 430 * to live at bus 0. 431 */ 432 if (once != 0) { 433 printk(KERN_ERR PFX "Multiple controllers unsupported.\n"); 434 return; 435 } 436 once++; 437 438 pbm->pci_bus = pci_scan_one_pbm(pbm, parent); 439 if (!pbm->pci_bus) 440 return; 441 442 sabre_root_bus = pbm->pci_bus; 443 444 apb_init(pbm->pci_bus); 445 446 sabre_register_error_handlers(pbm); 447 } 448 449 static void sabre_pbm_init(struct pci_pbm_info *pbm, 450 struct platform_device *op) 451 { 452 psycho_pbm_init_common(pbm, op, "SABRE", PBM_CHIP_TYPE_SABRE); 453 pbm->pci_afsr = pbm->controller_regs + SABRE_PIOAFSR; 454 pbm->pci_afar = pbm->controller_regs + SABRE_PIOAFAR; 455 pbm->pci_csr = pbm->controller_regs + SABRE_PCICTRL; 456 sabre_scan_bus(pbm, &op->dev); 457 } 458 459 static const struct of_device_id sabre_match[]; 460 static int sabre_probe(struct platform_device *op) 461 { 462 const struct linux_prom64_registers *pr_regs; 463 struct device_node *dp = op->dev.of_node; 464 struct pci_pbm_info *pbm; 465 u32 upa_portid, dma_mask; 466 struct iommu *iommu; 467 int tsbsize, err; 468 const u32 *vdma; 469 u64 clear_irq; 470 471 hummingbird_p = (uintptr_t)device_get_match_data(&op->dev); 472 if (!hummingbird_p) { 473 struct device_node *cpu_dp; 474 475 /* Of course, Sun has to encode things a thousand 476 * different ways, inconsistently. 477 */ 478 for_each_node_by_type(cpu_dp, "cpu") { 479 if (of_node_name_eq(cpu_dp, "SUNW,UltraSPARC-IIe")) 480 hummingbird_p = 1; 481 } 482 } 483 484 err = -ENOMEM; 485 pbm = kzalloc(sizeof(*pbm), GFP_KERNEL); 486 if (!pbm) { 487 printk(KERN_ERR PFX "Cannot allocate pci_pbm_info.\n"); 488 goto out_err; 489 } 490 491 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL); 492 if (!iommu) { 493 printk(KERN_ERR PFX "Cannot allocate PBM iommu.\n"); 494 goto out_free_controller; 495 } 496 497 pbm->iommu = iommu; 498 499 upa_portid = of_getintprop_default(dp, "upa-portid", 0xff); 500 501 pbm->portid = upa_portid; 502 503 /* 504 * Map in SABRE register set and report the presence of this SABRE. 505 */ 506 507 pr_regs = of_get_property(dp, "reg", NULL); 508 err = -ENODEV; 509 if (!pr_regs) { 510 printk(KERN_ERR PFX "No reg property\n"); 511 goto out_free_iommu; 512 } 513 514 /* 515 * First REG in property is base of entire SABRE register space. 516 */ 517 pbm->controller_regs = pr_regs[0].phys_addr; 518 519 /* Clear interrupts */ 520 521 /* PCI first */ 522 for (clear_irq = SABRE_ICLR_A_SLOT0; clear_irq < SABRE_ICLR_B_SLOT0 + 0x80; clear_irq += 8) 523 upa_writeq(0x0UL, pbm->controller_regs + clear_irq); 524 525 /* Then OBIO */ 526 for (clear_irq = SABRE_ICLR_SCSI; clear_irq < SABRE_ICLR_SCSI + 0x80; clear_irq += 8) 527 upa_writeq(0x0UL, pbm->controller_regs + clear_irq); 528 529 /* Error interrupts are enabled later after the bus scan. */ 530 upa_writeq((SABRE_PCICTRL_MRLEN | SABRE_PCICTRL_SERR | 531 SABRE_PCICTRL_ARBPARK | SABRE_PCICTRL_AEN), 532 pbm->controller_regs + SABRE_PCICTRL); 533 534 /* Now map in PCI config space for entire SABRE. */ 535 pbm->config_space = pbm->controller_regs + SABRE_CONFIGSPACE; 536 537 vdma = of_get_property(dp, "virtual-dma", NULL); 538 if (!vdma) { 539 printk(KERN_ERR PFX "No virtual-dma property\n"); 540 goto out_free_iommu; 541 } 542 543 dma_mask = vdma[0]; 544 switch(vdma[1]) { 545 case 0x20000000: 546 dma_mask |= 0x1fffffff; 547 tsbsize = 64; 548 break; 549 case 0x40000000: 550 dma_mask |= 0x3fffffff; 551 tsbsize = 128; 552 break; 553 554 case 0x80000000: 555 dma_mask |= 0x7fffffff; 556 tsbsize = 128; 557 break; 558 default: 559 printk(KERN_ERR PFX "Strange virtual-dma size.\n"); 560 goto out_free_iommu; 561 } 562 563 err = psycho_iommu_init(pbm, tsbsize, vdma[0], dma_mask, SABRE_WRSYNC); 564 if (err) 565 goto out_free_iommu; 566 567 /* 568 * Look for APB underneath. 569 */ 570 sabre_pbm_init(pbm, op); 571 572 pbm->next = pci_pbm_root; 573 pci_pbm_root = pbm; 574 575 dev_set_drvdata(&op->dev, pbm); 576 577 return 0; 578 579 out_free_iommu: 580 kfree(pbm->iommu); 581 582 out_free_controller: 583 kfree(pbm); 584 585 out_err: 586 return err; 587 } 588 589 static const struct of_device_id sabre_match[] = { 590 { 591 .name = "pci", 592 .compatible = "pci108e,a001", 593 .data = (void *) 1, 594 }, 595 { 596 .name = "pci", 597 .compatible = "pci108e,a000", 598 }, 599 {}, 600 }; 601 602 static struct platform_driver sabre_driver = { 603 .driver = { 604 .name = DRIVER_NAME, 605 .of_match_table = sabre_match, 606 }, 607 .probe = sabre_probe, 608 }; 609 610 static int __init sabre_init(void) 611 { 612 return platform_driver_register(&sabre_driver); 613 } 614 615 subsys_initcall(sabre_init); 616
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.