1 // SPDX-License-Identifier: GPL-2.0 2 /* Performance event support for sparc64. 3 * 4 * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net> 5 * 6 * This code is based almost entirely upon the x86 perf event 7 * code, which is: 8 * 9 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 10 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar 11 * Copyright (C) 2009 Jaswinder Singh Rajput 12 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter 13 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra 14 */ 15 16 #include <linux/perf_event.h> 17 #include <linux/kprobes.h> 18 #include <linux/ftrace.h> 19 #include <linux/kernel.h> 20 #include <linux/kdebug.h> 21 #include <linux/mutex.h> 22 23 #include <asm/stacktrace.h> 24 #include <asm/cpudata.h> 25 #include <linux/uaccess.h> 26 #include <linux/atomic.h> 27 #include <linux/sched/clock.h> 28 #include <asm/nmi.h> 29 #include <asm/pcr.h> 30 #include <asm/cacheflush.h> 31 32 #include "kernel.h" 33 #include "kstack.h" 34 35 /* Two classes of sparc64 chips currently exist. All of which have 36 * 32-bit counters which can generate overflow interrupts on the 37 * transition from 0xffffffff to 0. 38 * 39 * All chips upto and including SPARC-T3 have two performance 40 * counters. The two 32-bit counters are accessed in one go using a 41 * single 64-bit register. 42 * 43 * On these older chips both counters are controlled using a single 44 * control register. The only way to stop all sampling is to clear 45 * all of the context (user, supervisor, hypervisor) sampling enable 46 * bits. But these bits apply to both counters, thus the two counters 47 * can't be enabled/disabled individually. 48 * 49 * Furthermore, the control register on these older chips have two 50 * event fields, one for each of the two counters. It's thus nearly 51 * impossible to have one counter going while keeping the other one 52 * stopped. Therefore it is possible to get overflow interrupts for 53 * counters not currently "in use" and that condition must be checked 54 * in the overflow interrupt handler. 55 * 56 * So we use a hack, in that we program inactive counters with the 57 * "sw_count0" and "sw_count1" events. These count how many times 58 * the instruction "sethi %hi(0xfc000), %g0" is executed. It's an 59 * unusual way to encode a NOP and therefore will not trigger in 60 * normal code. 61 * 62 * Starting with SPARC-T4 we have one control register per counter. 63 * And the counters are stored in individual registers. The registers 64 * for the counters are 64-bit but only a 32-bit counter is 65 * implemented. The event selections on SPARC-T4 lack any 66 * restrictions, therefore we can elide all of the complicated 67 * conflict resolution code we have for SPARC-T3 and earlier chips. 68 */ 69 70 #define MAX_HWEVENTS 4 71 #define MAX_PCRS 4 72 #define MAX_PERIOD ((1UL << 32) - 1) 73 74 #define PIC_UPPER_INDEX 0 75 #define PIC_LOWER_INDEX 1 76 #define PIC_NO_INDEX -1 77 78 struct cpu_hw_events { 79 /* Number of events currently scheduled onto this cpu. 80 * This tells how many entries in the arrays below 81 * are valid. 82 */ 83 int n_events; 84 85 /* Number of new events added since the last hw_perf_disable(). 86 * This works because the perf event layer always adds new 87 * events inside of a perf_{disable,enable}() sequence. 88 */ 89 int n_added; 90 91 /* Array of events current scheduled on this cpu. */ 92 struct perf_event *event[MAX_HWEVENTS]; 93 94 /* Array of encoded longs, specifying the %pcr register 95 * encoding and the mask of PIC counters this even can 96 * be scheduled on. See perf_event_encode() et al. 97 */ 98 unsigned long events[MAX_HWEVENTS]; 99 100 /* The current counter index assigned to an event. When the 101 * event hasn't been programmed into the cpu yet, this will 102 * hold PIC_NO_INDEX. The event->hw.idx value tells us where 103 * we ought to schedule the event. 104 */ 105 int current_idx[MAX_HWEVENTS]; 106 107 /* Software copy of %pcr register(s) on this cpu. */ 108 u64 pcr[MAX_HWEVENTS]; 109 110 /* Enabled/disable state. */ 111 int enabled; 112 113 unsigned int txn_flags; 114 }; 115 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, }; 116 117 /* An event map describes the characteristics of a performance 118 * counter event. In particular it gives the encoding as well as 119 * a mask telling which counters the event can be measured on. 120 * 121 * The mask is unused on SPARC-T4 and later. 122 */ 123 struct perf_event_map { 124 u16 encoding; 125 u8 pic_mask; 126 #define PIC_NONE 0x00 127 #define PIC_UPPER 0x01 128 #define PIC_LOWER 0x02 129 }; 130 131 /* Encode a perf_event_map entry into a long. */ 132 static unsigned long perf_event_encode(const struct perf_event_map *pmap) 133 { 134 return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask; 135 } 136 137 static u8 perf_event_get_msk(unsigned long val) 138 { 139 return val & 0xff; 140 } 141 142 static u64 perf_event_get_enc(unsigned long val) 143 { 144 return val >> 16; 145 } 146 147 #define C(x) PERF_COUNT_HW_CACHE_##x 148 149 #define CACHE_OP_UNSUPPORTED 0xfffe 150 #define CACHE_OP_NONSENSE 0xffff 151 152 typedef struct perf_event_map cache_map_t 153 [PERF_COUNT_HW_CACHE_MAX] 154 [PERF_COUNT_HW_CACHE_OP_MAX] 155 [PERF_COUNT_HW_CACHE_RESULT_MAX]; 156 157 struct sparc_pmu { 158 const struct perf_event_map *(*event_map)(int); 159 const cache_map_t *cache_map; 160 int max_events; 161 u32 (*read_pmc)(int); 162 void (*write_pmc)(int, u64); 163 int upper_shift; 164 int lower_shift; 165 int event_mask; 166 int user_bit; 167 int priv_bit; 168 int hv_bit; 169 int irq_bit; 170 int upper_nop; 171 int lower_nop; 172 unsigned int flags; 173 #define SPARC_PMU_ALL_EXCLUDES_SAME 0x00000001 174 #define SPARC_PMU_HAS_CONFLICTS 0x00000002 175 int max_hw_events; 176 int num_pcrs; 177 int num_pic_regs; 178 }; 179 180 static u32 sparc_default_read_pmc(int idx) 181 { 182 u64 val; 183 184 val = pcr_ops->read_pic(0); 185 if (idx == PIC_UPPER_INDEX) 186 val >>= 32; 187 188 return val & 0xffffffff; 189 } 190 191 static void sparc_default_write_pmc(int idx, u64 val) 192 { 193 u64 shift, mask, pic; 194 195 shift = 0; 196 if (idx == PIC_UPPER_INDEX) 197 shift = 32; 198 199 mask = ((u64) 0xffffffff) << shift; 200 val <<= shift; 201 202 pic = pcr_ops->read_pic(0); 203 pic &= ~mask; 204 pic |= val; 205 pcr_ops->write_pic(0, pic); 206 } 207 208 static const struct perf_event_map ultra3_perfmon_event_map[] = { 209 [PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER }, 210 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER }, 211 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER }, 212 [PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER }, 213 }; 214 215 static const struct perf_event_map *ultra3_event_map(int event_id) 216 { 217 return &ultra3_perfmon_event_map[event_id]; 218 } 219 220 static const cache_map_t ultra3_cache_map = { 221 [C(L1D)] = { 222 [C(OP_READ)] = { 223 [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, }, 224 [C(RESULT_MISS)] = { 0x09, PIC_UPPER, }, 225 }, 226 [C(OP_WRITE)] = { 227 [C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER }, 228 [C(RESULT_MISS)] = { 0x0a, PIC_UPPER }, 229 }, 230 [C(OP_PREFETCH)] = { 231 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, 232 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, 233 }, 234 }, 235 [C(L1I)] = { 236 [C(OP_READ)] = { 237 [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, }, 238 [C(RESULT_MISS)] = { 0x09, PIC_UPPER, }, 239 }, 240 [ C(OP_WRITE) ] = { 241 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE }, 242 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE }, 243 }, 244 [ C(OP_PREFETCH) ] = { 245 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 246 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 247 }, 248 }, 249 [C(LL)] = { 250 [C(OP_READ)] = { 251 [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, }, 252 [C(RESULT_MISS)] = { 0x0c, PIC_UPPER, }, 253 }, 254 [C(OP_WRITE)] = { 255 [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER }, 256 [C(RESULT_MISS)] = { 0x0c, PIC_UPPER }, 257 }, 258 [C(OP_PREFETCH)] = { 259 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, 260 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, 261 }, 262 }, 263 [C(DTLB)] = { 264 [C(OP_READ)] = { 265 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, 266 [C(RESULT_MISS)] = { 0x12, PIC_UPPER, }, 267 }, 268 [ C(OP_WRITE) ] = { 269 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 270 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 271 }, 272 [ C(OP_PREFETCH) ] = { 273 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 274 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 275 }, 276 }, 277 [C(ITLB)] = { 278 [C(OP_READ)] = { 279 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, 280 [C(RESULT_MISS)] = { 0x11, PIC_UPPER, }, 281 }, 282 [ C(OP_WRITE) ] = { 283 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 284 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 285 }, 286 [ C(OP_PREFETCH) ] = { 287 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 288 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 289 }, 290 }, 291 [C(BPU)] = { 292 [C(OP_READ)] = { 293 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, 294 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, 295 }, 296 [ C(OP_WRITE) ] = { 297 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 298 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 299 }, 300 [ C(OP_PREFETCH) ] = { 301 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 302 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 303 }, 304 }, 305 [C(NODE)] = { 306 [C(OP_READ)] = { 307 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, 308 [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 309 }, 310 [ C(OP_WRITE) ] = { 311 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 312 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 313 }, 314 [ C(OP_PREFETCH) ] = { 315 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 316 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 317 }, 318 }, 319 }; 320 321 static const struct sparc_pmu ultra3_pmu = { 322 .event_map = ultra3_event_map, 323 .cache_map = &ultra3_cache_map, 324 .max_events = ARRAY_SIZE(ultra3_perfmon_event_map), 325 .read_pmc = sparc_default_read_pmc, 326 .write_pmc = sparc_default_write_pmc, 327 .upper_shift = 11, 328 .lower_shift = 4, 329 .event_mask = 0x3f, 330 .user_bit = PCR_UTRACE, 331 .priv_bit = PCR_STRACE, 332 .upper_nop = 0x1c, 333 .lower_nop = 0x14, 334 .flags = (SPARC_PMU_ALL_EXCLUDES_SAME | 335 SPARC_PMU_HAS_CONFLICTS), 336 .max_hw_events = 2, 337 .num_pcrs = 1, 338 .num_pic_regs = 1, 339 }; 340 341 /* Niagara1 is very limited. The upper PIC is hard-locked to count 342 * only instructions, so it is free running which creates all kinds of 343 * problems. Some hardware designs make one wonder if the creator 344 * even looked at how this stuff gets used by software. 345 */ 346 static const struct perf_event_map niagara1_perfmon_event_map[] = { 347 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER }, 348 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER }, 349 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE }, 350 [PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER }, 351 }; 352 353 static const struct perf_event_map *niagara1_event_map(int event_id) 354 { 355 return &niagara1_perfmon_event_map[event_id]; 356 } 357 358 static const cache_map_t niagara1_cache_map = { 359 [C(L1D)] = { 360 [C(OP_READ)] = { 361 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, 362 [C(RESULT_MISS)] = { 0x03, PIC_LOWER, }, 363 }, 364 [C(OP_WRITE)] = { 365 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, 366 [C(RESULT_MISS)] = { 0x03, PIC_LOWER, }, 367 }, 368 [C(OP_PREFETCH)] = { 369 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, 370 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, 371 }, 372 }, 373 [C(L1I)] = { 374 [C(OP_READ)] = { 375 [C(RESULT_ACCESS)] = { 0x00, PIC_UPPER }, 376 [C(RESULT_MISS)] = { 0x02, PIC_LOWER, }, 377 }, 378 [ C(OP_WRITE) ] = { 379 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE }, 380 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE }, 381 }, 382 [ C(OP_PREFETCH) ] = { 383 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 384 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 385 }, 386 }, 387 [C(LL)] = { 388 [C(OP_READ)] = { 389 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, 390 [C(RESULT_MISS)] = { 0x07, PIC_LOWER, }, 391 }, 392 [C(OP_WRITE)] = { 393 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, 394 [C(RESULT_MISS)] = { 0x07, PIC_LOWER, }, 395 }, 396 [C(OP_PREFETCH)] = { 397 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, 398 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, 399 }, 400 }, 401 [C(DTLB)] = { 402 [C(OP_READ)] = { 403 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, 404 [C(RESULT_MISS)] = { 0x05, PIC_LOWER, }, 405 }, 406 [ C(OP_WRITE) ] = { 407 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 408 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 409 }, 410 [ C(OP_PREFETCH) ] = { 411 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 412 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 413 }, 414 }, 415 [C(ITLB)] = { 416 [C(OP_READ)] = { 417 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, 418 [C(RESULT_MISS)] = { 0x04, PIC_LOWER, }, 419 }, 420 [ C(OP_WRITE) ] = { 421 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 422 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 423 }, 424 [ C(OP_PREFETCH) ] = { 425 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 426 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 427 }, 428 }, 429 [C(BPU)] = { 430 [C(OP_READ)] = { 431 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, 432 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, 433 }, 434 [ C(OP_WRITE) ] = { 435 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 436 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 437 }, 438 [ C(OP_PREFETCH) ] = { 439 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 440 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 441 }, 442 }, 443 [C(NODE)] = { 444 [C(OP_READ)] = { 445 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, 446 [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 447 }, 448 [ C(OP_WRITE) ] = { 449 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 450 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 451 }, 452 [ C(OP_PREFETCH) ] = { 453 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 454 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 455 }, 456 }, 457 }; 458 459 static const struct sparc_pmu niagara1_pmu = { 460 .event_map = niagara1_event_map, 461 .cache_map = &niagara1_cache_map, 462 .max_events = ARRAY_SIZE(niagara1_perfmon_event_map), 463 .read_pmc = sparc_default_read_pmc, 464 .write_pmc = sparc_default_write_pmc, 465 .upper_shift = 0, 466 .lower_shift = 4, 467 .event_mask = 0x7, 468 .user_bit = PCR_UTRACE, 469 .priv_bit = PCR_STRACE, 470 .upper_nop = 0x0, 471 .lower_nop = 0x0, 472 .flags = (SPARC_PMU_ALL_EXCLUDES_SAME | 473 SPARC_PMU_HAS_CONFLICTS), 474 .max_hw_events = 2, 475 .num_pcrs = 1, 476 .num_pic_regs = 1, 477 }; 478 479 static const struct perf_event_map niagara2_perfmon_event_map[] = { 480 [PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER }, 481 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER }, 482 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER }, 483 [PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER }, 484 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER }, 485 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER }, 486 }; 487 488 static const struct perf_event_map *niagara2_event_map(int event_id) 489 { 490 return &niagara2_perfmon_event_map[event_id]; 491 } 492 493 static const cache_map_t niagara2_cache_map = { 494 [C(L1D)] = { 495 [C(OP_READ)] = { 496 [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, }, 497 [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, }, 498 }, 499 [C(OP_WRITE)] = { 500 [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, }, 501 [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, }, 502 }, 503 [C(OP_PREFETCH)] = { 504 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, 505 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, 506 }, 507 }, 508 [C(L1I)] = { 509 [C(OP_READ)] = { 510 [C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, }, 511 [C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, }, 512 }, 513 [ C(OP_WRITE) ] = { 514 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE }, 515 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE }, 516 }, 517 [ C(OP_PREFETCH) ] = { 518 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 519 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 520 }, 521 }, 522 [C(LL)] = { 523 [C(OP_READ)] = { 524 [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, }, 525 [C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, }, 526 }, 527 [C(OP_WRITE)] = { 528 [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, }, 529 [C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, }, 530 }, 531 [C(OP_PREFETCH)] = { 532 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, 533 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, 534 }, 535 }, 536 [C(DTLB)] = { 537 [C(OP_READ)] = { 538 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, 539 [C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, }, 540 }, 541 [ C(OP_WRITE) ] = { 542 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 543 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 544 }, 545 [ C(OP_PREFETCH) ] = { 546 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 547 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 548 }, 549 }, 550 [C(ITLB)] = { 551 [C(OP_READ)] = { 552 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, 553 [C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, }, 554 }, 555 [ C(OP_WRITE) ] = { 556 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 557 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 558 }, 559 [ C(OP_PREFETCH) ] = { 560 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 561 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 562 }, 563 }, 564 [C(BPU)] = { 565 [C(OP_READ)] = { 566 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, 567 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, 568 }, 569 [ C(OP_WRITE) ] = { 570 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 571 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 572 }, 573 [ C(OP_PREFETCH) ] = { 574 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 575 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 576 }, 577 }, 578 [C(NODE)] = { 579 [C(OP_READ)] = { 580 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, 581 [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 582 }, 583 [ C(OP_WRITE) ] = { 584 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 585 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 586 }, 587 [ C(OP_PREFETCH) ] = { 588 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 589 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 590 }, 591 }, 592 }; 593 594 static const struct sparc_pmu niagara2_pmu = { 595 .event_map = niagara2_event_map, 596 .cache_map = &niagara2_cache_map, 597 .max_events = ARRAY_SIZE(niagara2_perfmon_event_map), 598 .read_pmc = sparc_default_read_pmc, 599 .write_pmc = sparc_default_write_pmc, 600 .upper_shift = 19, 601 .lower_shift = 6, 602 .event_mask = 0xfff, 603 .user_bit = PCR_UTRACE, 604 .priv_bit = PCR_STRACE, 605 .hv_bit = PCR_N2_HTRACE, 606 .irq_bit = 0x30, 607 .upper_nop = 0x220, 608 .lower_nop = 0x220, 609 .flags = (SPARC_PMU_ALL_EXCLUDES_SAME | 610 SPARC_PMU_HAS_CONFLICTS), 611 .max_hw_events = 2, 612 .num_pcrs = 1, 613 .num_pic_regs = 1, 614 }; 615 616 static const struct perf_event_map niagara4_perfmon_event_map[] = { 617 [PERF_COUNT_HW_CPU_CYCLES] = { (26 << 6) }, 618 [PERF_COUNT_HW_INSTRUCTIONS] = { (3 << 6) | 0x3f }, 619 [PERF_COUNT_HW_CACHE_REFERENCES] = { (3 << 6) | 0x04 }, 620 [PERF_COUNT_HW_CACHE_MISSES] = { (16 << 6) | 0x07 }, 621 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { (4 << 6) | 0x01 }, 622 [PERF_COUNT_HW_BRANCH_MISSES] = { (25 << 6) | 0x0f }, 623 }; 624 625 static const struct perf_event_map *niagara4_event_map(int event_id) 626 { 627 return &niagara4_perfmon_event_map[event_id]; 628 } 629 630 static const cache_map_t niagara4_cache_map = { 631 [C(L1D)] = { 632 [C(OP_READ)] = { 633 [C(RESULT_ACCESS)] = { (3 << 6) | 0x04 }, 634 [C(RESULT_MISS)] = { (16 << 6) | 0x07 }, 635 }, 636 [C(OP_WRITE)] = { 637 [C(RESULT_ACCESS)] = { (3 << 6) | 0x08 }, 638 [C(RESULT_MISS)] = { (16 << 6) | 0x07 }, 639 }, 640 [C(OP_PREFETCH)] = { 641 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, 642 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, 643 }, 644 }, 645 [C(L1I)] = { 646 [C(OP_READ)] = { 647 [C(RESULT_ACCESS)] = { (3 << 6) | 0x3f }, 648 [C(RESULT_MISS)] = { (11 << 6) | 0x03 }, 649 }, 650 [ C(OP_WRITE) ] = { 651 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE }, 652 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE }, 653 }, 654 [ C(OP_PREFETCH) ] = { 655 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 656 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 657 }, 658 }, 659 [C(LL)] = { 660 [C(OP_READ)] = { 661 [C(RESULT_ACCESS)] = { (3 << 6) | 0x04 }, 662 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, 663 }, 664 [C(OP_WRITE)] = { 665 [C(RESULT_ACCESS)] = { (3 << 6) | 0x08 }, 666 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, 667 }, 668 [C(OP_PREFETCH)] = { 669 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, 670 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, 671 }, 672 }, 673 [C(DTLB)] = { 674 [C(OP_READ)] = { 675 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, 676 [C(RESULT_MISS)] = { (17 << 6) | 0x3f }, 677 }, 678 [ C(OP_WRITE) ] = { 679 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 680 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 681 }, 682 [ C(OP_PREFETCH) ] = { 683 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 684 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 685 }, 686 }, 687 [C(ITLB)] = { 688 [C(OP_READ)] = { 689 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, 690 [C(RESULT_MISS)] = { (6 << 6) | 0x3f }, 691 }, 692 [ C(OP_WRITE) ] = { 693 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 694 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 695 }, 696 [ C(OP_PREFETCH) ] = { 697 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 698 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 699 }, 700 }, 701 [C(BPU)] = { 702 [C(OP_READ)] = { 703 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, 704 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, 705 }, 706 [ C(OP_WRITE) ] = { 707 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 708 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 709 }, 710 [ C(OP_PREFETCH) ] = { 711 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 712 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 713 }, 714 }, 715 [C(NODE)] = { 716 [C(OP_READ)] = { 717 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, 718 [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 719 }, 720 [ C(OP_WRITE) ] = { 721 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 722 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 723 }, 724 [ C(OP_PREFETCH) ] = { 725 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 726 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 727 }, 728 }, 729 }; 730 731 static u32 sparc_vt_read_pmc(int idx) 732 { 733 u64 val = pcr_ops->read_pic(idx); 734 735 return val & 0xffffffff; 736 } 737 738 static void sparc_vt_write_pmc(int idx, u64 val) 739 { 740 u64 pcr; 741 742 pcr = pcr_ops->read_pcr(idx); 743 /* ensure ov and ntc are reset */ 744 pcr &= ~(PCR_N4_OV | PCR_N4_NTC); 745 746 pcr_ops->write_pic(idx, val & 0xffffffff); 747 748 pcr_ops->write_pcr(idx, pcr); 749 } 750 751 static const struct sparc_pmu niagara4_pmu = { 752 .event_map = niagara4_event_map, 753 .cache_map = &niagara4_cache_map, 754 .max_events = ARRAY_SIZE(niagara4_perfmon_event_map), 755 .read_pmc = sparc_vt_read_pmc, 756 .write_pmc = sparc_vt_write_pmc, 757 .upper_shift = 5, 758 .lower_shift = 5, 759 .event_mask = 0x7ff, 760 .user_bit = PCR_N4_UTRACE, 761 .priv_bit = PCR_N4_STRACE, 762 763 /* We explicitly don't support hypervisor tracing. The T4 764 * generates the overflow event for precise events via a trap 765 * which will not be generated (ie. it's completely lost) if 766 * we happen to be in the hypervisor when the event triggers. 767 * Essentially, the overflow event reporting is completely 768 * unusable when you have hypervisor mode tracing enabled. 769 */ 770 .hv_bit = 0, 771 772 .irq_bit = PCR_N4_TOE, 773 .upper_nop = 0, 774 .lower_nop = 0, 775 .flags = 0, 776 .max_hw_events = 4, 777 .num_pcrs = 4, 778 .num_pic_regs = 4, 779 }; 780 781 static const struct sparc_pmu sparc_m7_pmu = { 782 .event_map = niagara4_event_map, 783 .cache_map = &niagara4_cache_map, 784 .max_events = ARRAY_SIZE(niagara4_perfmon_event_map), 785 .read_pmc = sparc_vt_read_pmc, 786 .write_pmc = sparc_vt_write_pmc, 787 .upper_shift = 5, 788 .lower_shift = 5, 789 .event_mask = 0x7ff, 790 .user_bit = PCR_N4_UTRACE, 791 .priv_bit = PCR_N4_STRACE, 792 793 /* We explicitly don't support hypervisor tracing. */ 794 .hv_bit = 0, 795 796 .irq_bit = PCR_N4_TOE, 797 .upper_nop = 0, 798 .lower_nop = 0, 799 .flags = 0, 800 .max_hw_events = 4, 801 .num_pcrs = 4, 802 .num_pic_regs = 4, 803 }; 804 static const struct sparc_pmu *sparc_pmu __read_mostly; 805 806 static u64 event_encoding(u64 event_id, int idx) 807 { 808 if (idx == PIC_UPPER_INDEX) 809 event_id <<= sparc_pmu->upper_shift; 810 else 811 event_id <<= sparc_pmu->lower_shift; 812 return event_id; 813 } 814 815 static u64 mask_for_index(int idx) 816 { 817 return event_encoding(sparc_pmu->event_mask, idx); 818 } 819 820 static u64 nop_for_index(int idx) 821 { 822 return event_encoding(idx == PIC_UPPER_INDEX ? 823 sparc_pmu->upper_nop : 824 sparc_pmu->lower_nop, idx); 825 } 826 827 static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx) 828 { 829 u64 enc, val, mask = mask_for_index(idx); 830 int pcr_index = 0; 831 832 if (sparc_pmu->num_pcrs > 1) 833 pcr_index = idx; 834 835 enc = perf_event_get_enc(cpuc->events[idx]); 836 837 val = cpuc->pcr[pcr_index]; 838 val &= ~mask; 839 val |= event_encoding(enc, idx); 840 cpuc->pcr[pcr_index] = val; 841 842 pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]); 843 } 844 845 static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx) 846 { 847 u64 mask = mask_for_index(idx); 848 u64 nop = nop_for_index(idx); 849 int pcr_index = 0; 850 u64 val; 851 852 if (sparc_pmu->num_pcrs > 1) 853 pcr_index = idx; 854 855 val = cpuc->pcr[pcr_index]; 856 val &= ~mask; 857 val |= nop; 858 cpuc->pcr[pcr_index] = val; 859 860 pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]); 861 } 862 863 static u64 sparc_perf_event_update(struct perf_event *event, 864 struct hw_perf_event *hwc, int idx) 865 { 866 int shift = 64 - 32; 867 u64 prev_raw_count, new_raw_count; 868 s64 delta; 869 870 again: 871 prev_raw_count = local64_read(&hwc->prev_count); 872 new_raw_count = sparc_pmu->read_pmc(idx); 873 874 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count, 875 new_raw_count) != prev_raw_count) 876 goto again; 877 878 delta = (new_raw_count << shift) - (prev_raw_count << shift); 879 delta >>= shift; 880 881 local64_add(delta, &event->count); 882 local64_sub(delta, &hwc->period_left); 883 884 return new_raw_count; 885 } 886 887 static int sparc_perf_event_set_period(struct perf_event *event, 888 struct hw_perf_event *hwc, int idx) 889 { 890 s64 left = local64_read(&hwc->period_left); 891 s64 period = hwc->sample_period; 892 int ret = 0; 893 894 /* The period may have been changed by PERF_EVENT_IOC_PERIOD */ 895 if (unlikely(period != hwc->last_period)) 896 left = period - (hwc->last_period - left); 897 898 if (unlikely(left <= -period)) { 899 left = period; 900 local64_set(&hwc->period_left, left); 901 hwc->last_period = period; 902 ret = 1; 903 } 904 905 if (unlikely(left <= 0)) { 906 left += period; 907 local64_set(&hwc->period_left, left); 908 hwc->last_period = period; 909 ret = 1; 910 } 911 if (left > MAX_PERIOD) 912 left = MAX_PERIOD; 913 914 local64_set(&hwc->prev_count, (u64)-left); 915 916 sparc_pmu->write_pmc(idx, (u64)(-left) & 0xffffffff); 917 918 perf_event_update_userpage(event); 919 920 return ret; 921 } 922 923 static void read_in_all_counters(struct cpu_hw_events *cpuc) 924 { 925 int i; 926 927 for (i = 0; i < cpuc->n_events; i++) { 928 struct perf_event *cp = cpuc->event[i]; 929 930 if (cpuc->current_idx[i] != PIC_NO_INDEX && 931 cpuc->current_idx[i] != cp->hw.idx) { 932 sparc_perf_event_update(cp, &cp->hw, 933 cpuc->current_idx[i]); 934 cpuc->current_idx[i] = PIC_NO_INDEX; 935 if (cp->hw.state & PERF_HES_STOPPED) 936 cp->hw.state |= PERF_HES_ARCH; 937 } 938 } 939 } 940 941 /* On this PMU all PICs are programmed using a single PCR. Calculate 942 * the combined control register value. 943 * 944 * For such chips we require that all of the events have the same 945 * configuration, so just fetch the settings from the first entry. 946 */ 947 static void calculate_single_pcr(struct cpu_hw_events *cpuc) 948 { 949 int i; 950 951 if (!cpuc->n_added) 952 goto out; 953 954 /* Assign to counters all unassigned events. */ 955 for (i = 0; i < cpuc->n_events; i++) { 956 struct perf_event *cp = cpuc->event[i]; 957 struct hw_perf_event *hwc = &cp->hw; 958 int idx = hwc->idx; 959 u64 enc; 960 961 if (cpuc->current_idx[i] != PIC_NO_INDEX) 962 continue; 963 964 sparc_perf_event_set_period(cp, hwc, idx); 965 cpuc->current_idx[i] = idx; 966 967 enc = perf_event_get_enc(cpuc->events[i]); 968 cpuc->pcr[0] &= ~mask_for_index(idx); 969 if (hwc->state & PERF_HES_ARCH) { 970 cpuc->pcr[0] |= nop_for_index(idx); 971 } else { 972 cpuc->pcr[0] |= event_encoding(enc, idx); 973 hwc->state = 0; 974 } 975 } 976 out: 977 cpuc->pcr[0] |= cpuc->event[0]->hw.config_base; 978 } 979 980 static void sparc_pmu_start(struct perf_event *event, int flags); 981 982 /* On this PMU each PIC has its own PCR control register. */ 983 static void calculate_multiple_pcrs(struct cpu_hw_events *cpuc) 984 { 985 int i; 986 987 if (!cpuc->n_added) 988 goto out; 989 990 for (i = 0; i < cpuc->n_events; i++) { 991 struct perf_event *cp = cpuc->event[i]; 992 struct hw_perf_event *hwc = &cp->hw; 993 int idx = hwc->idx; 994 995 if (cpuc->current_idx[i] != PIC_NO_INDEX) 996 continue; 997 998 cpuc->current_idx[i] = idx; 999 1000 if (cp->hw.state & PERF_HES_ARCH) 1001 continue; 1002 1003 sparc_pmu_start(cp, PERF_EF_RELOAD); 1004 } 1005 out: 1006 for (i = 0; i < cpuc->n_events; i++) { 1007 struct perf_event *cp = cpuc->event[i]; 1008 int idx = cp->hw.idx; 1009 1010 cpuc->pcr[idx] |= cp->hw.config_base; 1011 } 1012 } 1013 1014 /* If performance event entries have been added, move existing events 1015 * around (if necessary) and then assign new entries to counters. 1016 */ 1017 static void update_pcrs_for_enable(struct cpu_hw_events *cpuc) 1018 { 1019 if (cpuc->n_added) 1020 read_in_all_counters(cpuc); 1021 1022 if (sparc_pmu->num_pcrs == 1) { 1023 calculate_single_pcr(cpuc); 1024 } else { 1025 calculate_multiple_pcrs(cpuc); 1026 } 1027 } 1028 1029 static void sparc_pmu_enable(struct pmu *pmu) 1030 { 1031 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1032 int i; 1033 1034 if (cpuc->enabled) 1035 return; 1036 1037 cpuc->enabled = 1; 1038 barrier(); 1039 1040 if (cpuc->n_events) 1041 update_pcrs_for_enable(cpuc); 1042 1043 for (i = 0; i < sparc_pmu->num_pcrs; i++) 1044 pcr_ops->write_pcr(i, cpuc->pcr[i]); 1045 } 1046 1047 static void sparc_pmu_disable(struct pmu *pmu) 1048 { 1049 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1050 int i; 1051 1052 if (!cpuc->enabled) 1053 return; 1054 1055 cpuc->enabled = 0; 1056 cpuc->n_added = 0; 1057 1058 for (i = 0; i < sparc_pmu->num_pcrs; i++) { 1059 u64 val = cpuc->pcr[i]; 1060 1061 val &= ~(sparc_pmu->user_bit | sparc_pmu->priv_bit | 1062 sparc_pmu->hv_bit | sparc_pmu->irq_bit); 1063 cpuc->pcr[i] = val; 1064 pcr_ops->write_pcr(i, cpuc->pcr[i]); 1065 } 1066 } 1067 1068 static int active_event_index(struct cpu_hw_events *cpuc, 1069 struct perf_event *event) 1070 { 1071 int i; 1072 1073 for (i = 0; i < cpuc->n_events; i++) { 1074 if (cpuc->event[i] == event) 1075 break; 1076 } 1077 BUG_ON(i == cpuc->n_events); 1078 return cpuc->current_idx[i]; 1079 } 1080 1081 static void sparc_pmu_start(struct perf_event *event, int flags) 1082 { 1083 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1084 int idx = active_event_index(cpuc, event); 1085 1086 if (flags & PERF_EF_RELOAD) { 1087 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE)); 1088 sparc_perf_event_set_period(event, &event->hw, idx); 1089 } 1090 1091 event->hw.state = 0; 1092 1093 sparc_pmu_enable_event(cpuc, &event->hw, idx); 1094 1095 perf_event_update_userpage(event); 1096 } 1097 1098 static void sparc_pmu_stop(struct perf_event *event, int flags) 1099 { 1100 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1101 int idx = active_event_index(cpuc, event); 1102 1103 if (!(event->hw.state & PERF_HES_STOPPED)) { 1104 sparc_pmu_disable_event(cpuc, &event->hw, idx); 1105 event->hw.state |= PERF_HES_STOPPED; 1106 } 1107 1108 if (!(event->hw.state & PERF_HES_UPTODATE) && (flags & PERF_EF_UPDATE)) { 1109 sparc_perf_event_update(event, &event->hw, idx); 1110 event->hw.state |= PERF_HES_UPTODATE; 1111 } 1112 } 1113 1114 static void sparc_pmu_del(struct perf_event *event, int _flags) 1115 { 1116 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1117 unsigned long flags; 1118 int i; 1119 1120 local_irq_save(flags); 1121 1122 for (i = 0; i < cpuc->n_events; i++) { 1123 if (event == cpuc->event[i]) { 1124 /* Absorb the final count and turn off the 1125 * event. 1126 */ 1127 sparc_pmu_stop(event, PERF_EF_UPDATE); 1128 1129 /* Shift remaining entries down into 1130 * the existing slot. 1131 */ 1132 while (++i < cpuc->n_events) { 1133 cpuc->event[i - 1] = cpuc->event[i]; 1134 cpuc->events[i - 1] = cpuc->events[i]; 1135 cpuc->current_idx[i - 1] = 1136 cpuc->current_idx[i]; 1137 } 1138 1139 perf_event_update_userpage(event); 1140 1141 cpuc->n_events--; 1142 break; 1143 } 1144 } 1145 1146 local_irq_restore(flags); 1147 } 1148 1149 static void sparc_pmu_read(struct perf_event *event) 1150 { 1151 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1152 int idx = active_event_index(cpuc, event); 1153 struct hw_perf_event *hwc = &event->hw; 1154 1155 sparc_perf_event_update(event, hwc, idx); 1156 } 1157 1158 static atomic_t active_events = ATOMIC_INIT(0); 1159 static DEFINE_MUTEX(pmc_grab_mutex); 1160 1161 static void perf_stop_nmi_watchdog(void *unused) 1162 { 1163 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1164 int i; 1165 1166 stop_nmi_watchdog(NULL); 1167 for (i = 0; i < sparc_pmu->num_pcrs; i++) 1168 cpuc->pcr[i] = pcr_ops->read_pcr(i); 1169 } 1170 1171 static void perf_event_grab_pmc(void) 1172 { 1173 if (atomic_inc_not_zero(&active_events)) 1174 return; 1175 1176 mutex_lock(&pmc_grab_mutex); 1177 if (atomic_read(&active_events) == 0) { 1178 if (atomic_read(&nmi_active) > 0) { 1179 on_each_cpu(perf_stop_nmi_watchdog, NULL, 1); 1180 BUG_ON(atomic_read(&nmi_active) != 0); 1181 } 1182 atomic_inc(&active_events); 1183 } 1184 mutex_unlock(&pmc_grab_mutex); 1185 } 1186 1187 static void perf_event_release_pmc(void) 1188 { 1189 if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) { 1190 if (atomic_read(&nmi_active) == 0) 1191 on_each_cpu(start_nmi_watchdog, NULL, 1); 1192 mutex_unlock(&pmc_grab_mutex); 1193 } 1194 } 1195 1196 static const struct perf_event_map *sparc_map_cache_event(u64 config) 1197 { 1198 unsigned int cache_type, cache_op, cache_result; 1199 const struct perf_event_map *pmap; 1200 1201 if (!sparc_pmu->cache_map) 1202 return ERR_PTR(-ENOENT); 1203 1204 cache_type = (config >> 0) & 0xff; 1205 if (cache_type >= PERF_COUNT_HW_CACHE_MAX) 1206 return ERR_PTR(-EINVAL); 1207 1208 cache_op = (config >> 8) & 0xff; 1209 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX) 1210 return ERR_PTR(-EINVAL); 1211 1212 cache_result = (config >> 16) & 0xff; 1213 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 1214 return ERR_PTR(-EINVAL); 1215 1216 pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]); 1217 1218 if (pmap->encoding == CACHE_OP_UNSUPPORTED) 1219 return ERR_PTR(-ENOENT); 1220 1221 if (pmap->encoding == CACHE_OP_NONSENSE) 1222 return ERR_PTR(-EINVAL); 1223 1224 return pmap; 1225 } 1226 1227 static void hw_perf_event_destroy(struct perf_event *event) 1228 { 1229 perf_event_release_pmc(); 1230 } 1231 1232 /* Make sure all events can be scheduled into the hardware at 1233 * the same time. This is simplified by the fact that we only 1234 * need to support 2 simultaneous HW events. 1235 * 1236 * As a side effect, the evts[]->hw.idx values will be assigned 1237 * on success. These are pending indexes. When the events are 1238 * actually programmed into the chip, these values will propagate 1239 * to the per-cpu cpuc->current_idx[] slots, see the code in 1240 * maybe_change_configuration() for details. 1241 */ 1242 static int sparc_check_constraints(struct perf_event **evts, 1243 unsigned long *events, int n_ev) 1244 { 1245 u8 msk0 = 0, msk1 = 0; 1246 int idx0 = 0; 1247 1248 /* This case is possible when we are invoked from 1249 * hw_perf_group_sched_in(). 1250 */ 1251 if (!n_ev) 1252 return 0; 1253 1254 if (n_ev > sparc_pmu->max_hw_events) 1255 return -1; 1256 1257 if (!(sparc_pmu->flags & SPARC_PMU_HAS_CONFLICTS)) { 1258 int i; 1259 1260 for (i = 0; i < n_ev; i++) 1261 evts[i]->hw.idx = i; 1262 return 0; 1263 } 1264 1265 msk0 = perf_event_get_msk(events[0]); 1266 if (n_ev == 1) { 1267 if (msk0 & PIC_LOWER) 1268 idx0 = 1; 1269 goto success; 1270 } 1271 BUG_ON(n_ev != 2); 1272 msk1 = perf_event_get_msk(events[1]); 1273 1274 /* If both events can go on any counter, OK. */ 1275 if (msk0 == (PIC_UPPER | PIC_LOWER) && 1276 msk1 == (PIC_UPPER | PIC_LOWER)) 1277 goto success; 1278 1279 /* If one event is limited to a specific counter, 1280 * and the other can go on both, OK. 1281 */ 1282 if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) && 1283 msk1 == (PIC_UPPER | PIC_LOWER)) { 1284 if (msk0 & PIC_LOWER) 1285 idx0 = 1; 1286 goto success; 1287 } 1288 1289 if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) && 1290 msk0 == (PIC_UPPER | PIC_LOWER)) { 1291 if (msk1 & PIC_UPPER) 1292 idx0 = 1; 1293 goto success; 1294 } 1295 1296 /* If the events are fixed to different counters, OK. */ 1297 if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) || 1298 (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) { 1299 if (msk0 & PIC_LOWER) 1300 idx0 = 1; 1301 goto success; 1302 } 1303 1304 /* Otherwise, there is a conflict. */ 1305 return -1; 1306 1307 success: 1308 evts[0]->hw.idx = idx0; 1309 if (n_ev == 2) 1310 evts[1]->hw.idx = idx0 ^ 1; 1311 return 0; 1312 } 1313 1314 static int check_excludes(struct perf_event **evts, int n_prev, int n_new) 1315 { 1316 int eu = 0, ek = 0, eh = 0; 1317 struct perf_event *event; 1318 int i, n, first; 1319 1320 if (!(sparc_pmu->flags & SPARC_PMU_ALL_EXCLUDES_SAME)) 1321 return 0; 1322 1323 n = n_prev + n_new; 1324 if (n <= 1) 1325 return 0; 1326 1327 first = 1; 1328 for (i = 0; i < n; i++) { 1329 event = evts[i]; 1330 if (first) { 1331 eu = event->attr.exclude_user; 1332 ek = event->attr.exclude_kernel; 1333 eh = event->attr.exclude_hv; 1334 first = 0; 1335 } else if (event->attr.exclude_user != eu || 1336 event->attr.exclude_kernel != ek || 1337 event->attr.exclude_hv != eh) { 1338 return -EAGAIN; 1339 } 1340 } 1341 1342 return 0; 1343 } 1344 1345 static int collect_events(struct perf_event *group, int max_count, 1346 struct perf_event *evts[], unsigned long *events, 1347 int *current_idx) 1348 { 1349 struct perf_event *event; 1350 int n = 0; 1351 1352 if (!is_software_event(group)) { 1353 if (n >= max_count) 1354 return -1; 1355 evts[n] = group; 1356 events[n] = group->hw.event_base; 1357 current_idx[n++] = PIC_NO_INDEX; 1358 } 1359 for_each_sibling_event(event, group) { 1360 if (!is_software_event(event) && 1361 event->state != PERF_EVENT_STATE_OFF) { 1362 if (n >= max_count) 1363 return -1; 1364 evts[n] = event; 1365 events[n] = event->hw.event_base; 1366 current_idx[n++] = PIC_NO_INDEX; 1367 } 1368 } 1369 return n; 1370 } 1371 1372 static int sparc_pmu_add(struct perf_event *event, int ef_flags) 1373 { 1374 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1375 int n0, ret = -EAGAIN; 1376 unsigned long flags; 1377 1378 local_irq_save(flags); 1379 1380 n0 = cpuc->n_events; 1381 if (n0 >= sparc_pmu->max_hw_events) 1382 goto out; 1383 1384 cpuc->event[n0] = event; 1385 cpuc->events[n0] = event->hw.event_base; 1386 cpuc->current_idx[n0] = PIC_NO_INDEX; 1387 1388 event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED; 1389 if (!(ef_flags & PERF_EF_START)) 1390 event->hw.state |= PERF_HES_ARCH; 1391 1392 /* 1393 * If group events scheduling transaction was started, 1394 * skip the schedulability test here, it will be performed 1395 * at commit time(->commit_txn) as a whole 1396 */ 1397 if (cpuc->txn_flags & PERF_PMU_TXN_ADD) 1398 goto nocheck; 1399 1400 if (check_excludes(cpuc->event, n0, 1)) 1401 goto out; 1402 if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1)) 1403 goto out; 1404 1405 nocheck: 1406 cpuc->n_events++; 1407 cpuc->n_added++; 1408 1409 ret = 0; 1410 out: 1411 local_irq_restore(flags); 1412 return ret; 1413 } 1414 1415 static int sparc_pmu_event_init(struct perf_event *event) 1416 { 1417 struct perf_event_attr *attr = &event->attr; 1418 struct perf_event *evts[MAX_HWEVENTS]; 1419 struct hw_perf_event *hwc = &event->hw; 1420 unsigned long events[MAX_HWEVENTS]; 1421 int current_idx_dmy[MAX_HWEVENTS]; 1422 const struct perf_event_map *pmap; 1423 int n; 1424 1425 if (atomic_read(&nmi_active) < 0) 1426 return -ENODEV; 1427 1428 /* does not support taken branch sampling */ 1429 if (has_branch_stack(event)) 1430 return -EOPNOTSUPP; 1431 1432 switch (attr->type) { 1433 case PERF_TYPE_HARDWARE: 1434 if (attr->config >= sparc_pmu->max_events) 1435 return -EINVAL; 1436 pmap = sparc_pmu->event_map(attr->config); 1437 break; 1438 1439 case PERF_TYPE_HW_CACHE: 1440 pmap = sparc_map_cache_event(attr->config); 1441 if (IS_ERR(pmap)) 1442 return PTR_ERR(pmap); 1443 break; 1444 1445 case PERF_TYPE_RAW: 1446 pmap = NULL; 1447 break; 1448 1449 default: 1450 return -ENOENT; 1451 1452 } 1453 1454 if (pmap) { 1455 hwc->event_base = perf_event_encode(pmap); 1456 } else { 1457 /* 1458 * User gives us "(encoding << 16) | pic_mask" for 1459 * PERF_TYPE_RAW events. 1460 */ 1461 hwc->event_base = attr->config; 1462 } 1463 1464 /* We save the enable bits in the config_base. */ 1465 hwc->config_base = sparc_pmu->irq_bit; 1466 if (!attr->exclude_user) 1467 hwc->config_base |= sparc_pmu->user_bit; 1468 if (!attr->exclude_kernel) 1469 hwc->config_base |= sparc_pmu->priv_bit; 1470 if (!attr->exclude_hv) 1471 hwc->config_base |= sparc_pmu->hv_bit; 1472 1473 n = 0; 1474 if (event->group_leader != event) { 1475 n = collect_events(event->group_leader, 1476 sparc_pmu->max_hw_events - 1, 1477 evts, events, current_idx_dmy); 1478 if (n < 0) 1479 return -EINVAL; 1480 } 1481 events[n] = hwc->event_base; 1482 evts[n] = event; 1483 1484 if (check_excludes(evts, n, 1)) 1485 return -EINVAL; 1486 1487 if (sparc_check_constraints(evts, events, n + 1)) 1488 return -EINVAL; 1489 1490 hwc->idx = PIC_NO_INDEX; 1491 1492 /* Try to do all error checking before this point, as unwinding 1493 * state after grabbing the PMC is difficult. 1494 */ 1495 perf_event_grab_pmc(); 1496 event->destroy = hw_perf_event_destroy; 1497 1498 if (!hwc->sample_period) { 1499 hwc->sample_period = MAX_PERIOD; 1500 hwc->last_period = hwc->sample_period; 1501 local64_set(&hwc->period_left, hwc->sample_period); 1502 } 1503 1504 return 0; 1505 } 1506 1507 /* 1508 * Start group events scheduling transaction 1509 * Set the flag to make pmu::enable() not perform the 1510 * schedulability test, it will be performed at commit time 1511 */ 1512 static void sparc_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags) 1513 { 1514 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 1515 1516 WARN_ON_ONCE(cpuhw->txn_flags); /* txn already in flight */ 1517 1518 cpuhw->txn_flags = txn_flags; 1519 if (txn_flags & ~PERF_PMU_TXN_ADD) 1520 return; 1521 1522 perf_pmu_disable(pmu); 1523 } 1524 1525 /* 1526 * Stop group events scheduling transaction 1527 * Clear the flag and pmu::enable() will perform the 1528 * schedulability test. 1529 */ 1530 static void sparc_pmu_cancel_txn(struct pmu *pmu) 1531 { 1532 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 1533 unsigned int txn_flags; 1534 1535 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */ 1536 1537 txn_flags = cpuhw->txn_flags; 1538 cpuhw->txn_flags = 0; 1539 if (txn_flags & ~PERF_PMU_TXN_ADD) 1540 return; 1541 1542 perf_pmu_enable(pmu); 1543 } 1544 1545 /* 1546 * Commit group events scheduling transaction 1547 * Perform the group schedulability test as a whole 1548 * Return 0 if success 1549 */ 1550 static int sparc_pmu_commit_txn(struct pmu *pmu) 1551 { 1552 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1553 int n; 1554 1555 if (!sparc_pmu) 1556 return -EINVAL; 1557 1558 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */ 1559 1560 if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) { 1561 cpuc->txn_flags = 0; 1562 return 0; 1563 } 1564 1565 n = cpuc->n_events; 1566 if (check_excludes(cpuc->event, 0, n)) 1567 return -EINVAL; 1568 if (sparc_check_constraints(cpuc->event, cpuc->events, n)) 1569 return -EAGAIN; 1570 1571 cpuc->txn_flags = 0; 1572 perf_pmu_enable(pmu); 1573 return 0; 1574 } 1575 1576 static struct pmu pmu = { 1577 .pmu_enable = sparc_pmu_enable, 1578 .pmu_disable = sparc_pmu_disable, 1579 .event_init = sparc_pmu_event_init, 1580 .add = sparc_pmu_add, 1581 .del = sparc_pmu_del, 1582 .start = sparc_pmu_start, 1583 .stop = sparc_pmu_stop, 1584 .read = sparc_pmu_read, 1585 .start_txn = sparc_pmu_start_txn, 1586 .cancel_txn = sparc_pmu_cancel_txn, 1587 .commit_txn = sparc_pmu_commit_txn, 1588 }; 1589 1590 void perf_event_print_debug(void) 1591 { 1592 unsigned long flags; 1593 int cpu, i; 1594 1595 if (!sparc_pmu) 1596 return; 1597 1598 local_irq_save(flags); 1599 1600 cpu = smp_processor_id(); 1601 1602 pr_info("\n"); 1603 for (i = 0; i < sparc_pmu->num_pcrs; i++) 1604 pr_info("CPU#%d: PCR%d[%016llx]\n", 1605 cpu, i, pcr_ops->read_pcr(i)); 1606 for (i = 0; i < sparc_pmu->num_pic_regs; i++) 1607 pr_info("CPU#%d: PIC%d[%016llx]\n", 1608 cpu, i, pcr_ops->read_pic(i)); 1609 1610 local_irq_restore(flags); 1611 } 1612 1613 static int __kprobes perf_event_nmi_handler(struct notifier_block *self, 1614 unsigned long cmd, void *__args) 1615 { 1616 struct die_args *args = __args; 1617 struct perf_sample_data data; 1618 struct cpu_hw_events *cpuc; 1619 struct pt_regs *regs; 1620 u64 finish_clock; 1621 u64 start_clock; 1622 int i; 1623 1624 if (!atomic_read(&active_events)) 1625 return NOTIFY_DONE; 1626 1627 switch (cmd) { 1628 case DIE_NMI: 1629 break; 1630 1631 default: 1632 return NOTIFY_DONE; 1633 } 1634 1635 start_clock = sched_clock(); 1636 1637 regs = args->regs; 1638 1639 cpuc = this_cpu_ptr(&cpu_hw_events); 1640 1641 /* If the PMU has the TOE IRQ enable bits, we need to do a 1642 * dummy write to the %pcr to clear the overflow bits and thus 1643 * the interrupt. 1644 * 1645 * Do this before we peek at the counters to determine 1646 * overflow so we don't lose any events. 1647 */ 1648 if (sparc_pmu->irq_bit && 1649 sparc_pmu->num_pcrs == 1) 1650 pcr_ops->write_pcr(0, cpuc->pcr[0]); 1651 1652 for (i = 0; i < cpuc->n_events; i++) { 1653 struct perf_event *event = cpuc->event[i]; 1654 int idx = cpuc->current_idx[i]; 1655 struct hw_perf_event *hwc; 1656 u64 val; 1657 1658 if (sparc_pmu->irq_bit && 1659 sparc_pmu->num_pcrs > 1) 1660 pcr_ops->write_pcr(idx, cpuc->pcr[idx]); 1661 1662 hwc = &event->hw; 1663 val = sparc_perf_event_update(event, hwc, idx); 1664 if (val & (1ULL << 31)) 1665 continue; 1666 1667 perf_sample_data_init(&data, 0, hwc->last_period); 1668 if (!sparc_perf_event_set_period(event, hwc, idx)) 1669 continue; 1670 1671 if (perf_event_overflow(event, &data, regs)) 1672 sparc_pmu_stop(event, 0); 1673 } 1674 1675 finish_clock = sched_clock(); 1676 1677 perf_sample_event_took(finish_clock - start_clock); 1678 1679 return NOTIFY_STOP; 1680 } 1681 1682 static __read_mostly struct notifier_block perf_event_nmi_notifier = { 1683 .notifier_call = perf_event_nmi_handler, 1684 }; 1685 1686 static bool __init supported_pmu(void) 1687 { 1688 if (!strcmp(sparc_pmu_type, "ultra3") || 1689 !strcmp(sparc_pmu_type, "ultra3+") || 1690 !strcmp(sparc_pmu_type, "ultra3i") || 1691 !strcmp(sparc_pmu_type, "ultra4+")) { 1692 sparc_pmu = &ultra3_pmu; 1693 return true; 1694 } 1695 if (!strcmp(sparc_pmu_type, "niagara")) { 1696 sparc_pmu = &niagara1_pmu; 1697 return true; 1698 } 1699 if (!strcmp(sparc_pmu_type, "niagara2") || 1700 !strcmp(sparc_pmu_type, "niagara3")) { 1701 sparc_pmu = &niagara2_pmu; 1702 return true; 1703 } 1704 if (!strcmp(sparc_pmu_type, "niagara4") || 1705 !strcmp(sparc_pmu_type, "niagara5")) { 1706 sparc_pmu = &niagara4_pmu; 1707 return true; 1708 } 1709 if (!strcmp(sparc_pmu_type, "sparc-m7")) { 1710 sparc_pmu = &sparc_m7_pmu; 1711 return true; 1712 } 1713 return false; 1714 } 1715 1716 static int __init init_hw_perf_events(void) 1717 { 1718 int err; 1719 1720 pr_info("Performance events: "); 1721 1722 err = pcr_arch_init(); 1723 if (err || !supported_pmu()) { 1724 pr_cont("No support for PMU type '%s'\n", sparc_pmu_type); 1725 return 0; 1726 } 1727 1728 pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type); 1729 1730 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW); 1731 register_die_notifier(&perf_event_nmi_notifier); 1732 1733 return 0; 1734 } 1735 pure_initcall(init_hw_perf_events); 1736 1737 void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, 1738 struct pt_regs *regs) 1739 { 1740 unsigned long ksp, fp; 1741 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1742 int graph = 0; 1743 #endif 1744 1745 stack_trace_flush(); 1746 1747 perf_callchain_store(entry, regs->tpc); 1748 1749 ksp = regs->u_regs[UREG_I6]; 1750 fp = ksp + STACK_BIAS; 1751 do { 1752 struct sparc_stackf *sf; 1753 struct pt_regs *regs; 1754 unsigned long pc; 1755 1756 if (!kstack_valid(current_thread_info(), fp)) 1757 break; 1758 1759 sf = (struct sparc_stackf *) fp; 1760 regs = (struct pt_regs *) (sf + 1); 1761 1762 if (kstack_is_trap_frame(current_thread_info(), regs)) { 1763 if (user_mode(regs)) 1764 break; 1765 pc = regs->tpc; 1766 fp = regs->u_regs[UREG_I6] + STACK_BIAS; 1767 } else { 1768 pc = sf->callers_pc; 1769 fp = (unsigned long)sf->fp + STACK_BIAS; 1770 } 1771 perf_callchain_store(entry, pc); 1772 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1773 if ((pc + 8UL) == (unsigned long) &return_to_handler) { 1774 struct ftrace_ret_stack *ret_stack; 1775 ret_stack = ftrace_graph_get_ret_stack(current, 1776 graph); 1777 if (ret_stack) { 1778 pc = ret_stack->ret; 1779 perf_callchain_store(entry, pc); 1780 graph++; 1781 } 1782 } 1783 #endif 1784 } while (entry->nr < entry->max_stack); 1785 } 1786 1787 static inline int 1788 valid_user_frame(const void __user *fp, unsigned long size) 1789 { 1790 /* addresses should be at least 4-byte aligned */ 1791 if (((unsigned long) fp) & 3) 1792 return 0; 1793 1794 return (__range_not_ok(fp, size, TASK_SIZE) == 0); 1795 } 1796 1797 static void perf_callchain_user_64(struct perf_callchain_entry_ctx *entry, 1798 struct pt_regs *regs) 1799 { 1800 unsigned long ufp; 1801 1802 ufp = regs->u_regs[UREG_FP] + STACK_BIAS; 1803 do { 1804 struct sparc_stackf __user *usf; 1805 struct sparc_stackf sf; 1806 unsigned long pc; 1807 1808 usf = (struct sparc_stackf __user *)ufp; 1809 if (!valid_user_frame(usf, sizeof(sf))) 1810 break; 1811 1812 if (__copy_from_user_inatomic(&sf, usf, sizeof(sf))) 1813 break; 1814 1815 pc = sf.callers_pc; 1816 ufp = (unsigned long)sf.fp + STACK_BIAS; 1817 perf_callchain_store(entry, pc); 1818 } while (entry->nr < entry->max_stack); 1819 } 1820 1821 static void perf_callchain_user_32(struct perf_callchain_entry_ctx *entry, 1822 struct pt_regs *regs) 1823 { 1824 unsigned long ufp; 1825 1826 ufp = regs->u_regs[UREG_FP] & 0xffffffffUL; 1827 do { 1828 unsigned long pc; 1829 1830 if (thread32_stack_is_64bit(ufp)) { 1831 struct sparc_stackf __user *usf; 1832 struct sparc_stackf sf; 1833 1834 ufp += STACK_BIAS; 1835 usf = (struct sparc_stackf __user *)ufp; 1836 if (__copy_from_user_inatomic(&sf, usf, sizeof(sf))) 1837 break; 1838 pc = sf.callers_pc & 0xffffffff; 1839 ufp = ((unsigned long) sf.fp) & 0xffffffff; 1840 } else { 1841 struct sparc_stackf32 __user *usf; 1842 struct sparc_stackf32 sf; 1843 usf = (struct sparc_stackf32 __user *)ufp; 1844 if (__copy_from_user_inatomic(&sf, usf, sizeof(sf))) 1845 break; 1846 pc = sf.callers_pc; 1847 ufp = (unsigned long)sf.fp; 1848 } 1849 perf_callchain_store(entry, pc); 1850 } while (entry->nr < entry->max_stack); 1851 } 1852 1853 void 1854 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs) 1855 { 1856 u64 saved_fault_address = current_thread_info()->fault_address; 1857 u8 saved_fault_code = get_thread_fault_code(); 1858 1859 perf_callchain_store(entry, regs->tpc); 1860 1861 if (!current->mm) 1862 return; 1863 1864 flushw_user(); 1865 1866 pagefault_disable(); 1867 1868 if (test_thread_flag(TIF_32BIT)) 1869 perf_callchain_user_32(entry, regs); 1870 else 1871 perf_callchain_user_64(entry, regs); 1872 1873 pagefault_enable(); 1874 1875 set_thread_fault_code(saved_fault_code); 1876 current_thread_info()->fault_address = saved_fault_address; 1877 } 1878
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.