1 // SPDX-License-Identifier: GPL-2.0 2 /* arch/sparc64/kernel/process.c 3 * 4 * Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net) 5 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be) 6 * Copyright (C) 1997, 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) 7 */ 8 9 /* 10 * This file handles the architecture-dependent parts of process handling.. 11 */ 12 #include <linux/errno.h> 13 #include <linux/export.h> 14 #include <linux/sched.h> 15 #include <linux/sched/debug.h> 16 #include <linux/sched/task.h> 17 #include <linux/sched/task_stack.h> 18 #include <linux/kernel.h> 19 #include <linux/mm.h> 20 #include <linux/fs.h> 21 #include <linux/smp.h> 22 #include <linux/stddef.h> 23 #include <linux/ptrace.h> 24 #include <linux/slab.h> 25 #include <linux/user.h> 26 #include <linux/delay.h> 27 #include <linux/compat.h> 28 #include <linux/tick.h> 29 #include <linux/init.h> 30 #include <linux/cpu.h> 31 #include <linux/perf_event.h> 32 #include <linux/elfcore.h> 33 #include <linux/sysrq.h> 34 #include <linux/nmi.h> 35 #include <linux/context_tracking.h> 36 #include <linux/signal.h> 37 38 #include <linux/uaccess.h> 39 #include <asm/page.h> 40 #include <asm/pgalloc.h> 41 #include <asm/processor.h> 42 #include <asm/pstate.h> 43 #include <asm/elf.h> 44 #include <asm/fpumacro.h> 45 #include <asm/head.h> 46 #include <asm/cpudata.h> 47 #include <asm/mmu_context.h> 48 #include <asm/unistd.h> 49 #include <asm/hypervisor.h> 50 #include <asm/syscalls.h> 51 #include <asm/irq_regs.h> 52 #include <asm/smp.h> 53 #include <asm/pcr.h> 54 55 #include "kstack.h" 56 57 /* Idle loop support on sparc64. */ 58 void arch_cpu_idle(void) 59 { 60 if (tlb_type != hypervisor) { 61 touch_nmi_watchdog(); 62 } else { 63 unsigned long pstate; 64 65 raw_local_irq_enable(); 66 67 /* The sun4v sleeping code requires that we have PSTATE.IE cleared over 68 * the cpu sleep hypervisor call. 69 */ 70 __asm__ __volatile__( 71 "rdpr %%pstate, %0\n\t" 72 "andn %0, %1, %0\n\t" 73 "wrpr %0, %%g0, %%pstate" 74 : "=&r" (pstate) 75 : "i" (PSTATE_IE)); 76 77 if (!need_resched() && !cpu_is_offline(smp_processor_id())) { 78 sun4v_cpu_yield(); 79 /* If resumed by cpu_poke then we need to explicitly 80 * call scheduler_ipi(). 81 */ 82 scheduler_poke(); 83 } 84 85 /* Re-enable interrupts. */ 86 __asm__ __volatile__( 87 "rdpr %%pstate, %0\n\t" 88 "or %0, %1, %0\n\t" 89 "wrpr %0, %%g0, %%pstate" 90 : "=&r" (pstate) 91 : "i" (PSTATE_IE)); 92 93 raw_local_irq_disable(); 94 } 95 } 96 97 #ifdef CONFIG_HOTPLUG_CPU 98 void __noreturn arch_cpu_idle_dead(void) 99 { 100 sched_preempt_enable_no_resched(); 101 cpu_play_dead(); 102 } 103 #endif 104 105 #ifdef CONFIG_COMPAT 106 static void show_regwindow32(struct pt_regs *regs) 107 { 108 struct reg_window32 __user *rw; 109 struct reg_window32 r_w; 110 111 __asm__ __volatile__ ("flushw"); 112 rw = compat_ptr((unsigned int)regs->u_regs[14]); 113 if (copy_from_user (&r_w, rw, sizeof(r_w))) { 114 return; 115 } 116 117 printk("l0: %08x l1: %08x l2: %08x l3: %08x " 118 "l4: %08x l5: %08x l6: %08x l7: %08x\n", 119 r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3], 120 r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]); 121 printk("i0: %08x i1: %08x i2: %08x i3: %08x " 122 "i4: %08x i5: %08x i6: %08x i7: %08x\n", 123 r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3], 124 r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]); 125 } 126 #else 127 #define show_regwindow32(regs) do { } while (0) 128 #endif 129 130 static void show_regwindow(struct pt_regs *regs) 131 { 132 struct reg_window __user *rw; 133 struct reg_window *rwk; 134 struct reg_window r_w; 135 136 if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) { 137 __asm__ __volatile__ ("flushw"); 138 rw = (struct reg_window __user *) 139 (regs->u_regs[14] + STACK_BIAS); 140 rwk = (struct reg_window *) 141 (regs->u_regs[14] + STACK_BIAS); 142 if (!(regs->tstate & TSTATE_PRIV)) { 143 if (copy_from_user (&r_w, rw, sizeof(r_w))) { 144 return; 145 } 146 rwk = &r_w; 147 } 148 } else { 149 show_regwindow32(regs); 150 return; 151 } 152 printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n", 153 rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]); 154 printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n", 155 rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]); 156 printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n", 157 rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]); 158 printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n", 159 rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]); 160 if (regs->tstate & TSTATE_PRIV) 161 printk("I7: <%pS>\n", (void *) rwk->ins[7]); 162 } 163 164 void show_regs(struct pt_regs *regs) 165 { 166 show_regs_print_info(KERN_DEFAULT); 167 168 printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x %s\n", regs->tstate, 169 regs->tpc, regs->tnpc, regs->y, print_tainted()); 170 printk("TPC: <%pS>\n", (void *) regs->tpc); 171 printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n", 172 regs->u_regs[0], regs->u_regs[1], regs->u_regs[2], 173 regs->u_regs[3]); 174 printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n", 175 regs->u_regs[4], regs->u_regs[5], regs->u_regs[6], 176 regs->u_regs[7]); 177 printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n", 178 regs->u_regs[8], regs->u_regs[9], regs->u_regs[10], 179 regs->u_regs[11]); 180 printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n", 181 regs->u_regs[12], regs->u_regs[13], regs->u_regs[14], 182 regs->u_regs[15]); 183 printk("RPC: <%pS>\n", (void *) regs->u_regs[15]); 184 show_regwindow(regs); 185 show_stack(current, (unsigned long *)regs->u_regs[UREG_FP], KERN_DEFAULT); 186 } 187 188 union global_cpu_snapshot global_cpu_snapshot[NR_CPUS]; 189 static DEFINE_SPINLOCK(global_cpu_snapshot_lock); 190 191 static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs, 192 int this_cpu) 193 { 194 struct global_reg_snapshot *rp; 195 196 flushw_all(); 197 198 rp = &global_cpu_snapshot[this_cpu].reg; 199 200 rp->tstate = regs->tstate; 201 rp->tpc = regs->tpc; 202 rp->tnpc = regs->tnpc; 203 rp->o7 = regs->u_regs[UREG_I7]; 204 205 if (regs->tstate & TSTATE_PRIV) { 206 struct reg_window *rw; 207 208 rw = (struct reg_window *) 209 (regs->u_regs[UREG_FP] + STACK_BIAS); 210 if (kstack_valid(tp, (unsigned long) rw)) { 211 rp->i7 = rw->ins[7]; 212 rw = (struct reg_window *) 213 (rw->ins[6] + STACK_BIAS); 214 if (kstack_valid(tp, (unsigned long) rw)) 215 rp->rpc = rw->ins[7]; 216 } 217 } else { 218 rp->i7 = 0; 219 rp->rpc = 0; 220 } 221 rp->thread = tp; 222 } 223 224 /* In order to avoid hangs we do not try to synchronize with the 225 * global register dump client cpus. The last store they make is to 226 * the thread pointer, so do a short poll waiting for that to become 227 * non-NULL. 228 */ 229 static void __global_reg_poll(struct global_reg_snapshot *gp) 230 { 231 int limit = 0; 232 233 while (!gp->thread && ++limit < 100) { 234 barrier(); 235 udelay(1); 236 } 237 } 238 239 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, int exclude_cpu) 240 { 241 struct thread_info *tp = current_thread_info(); 242 struct pt_regs *regs = get_irq_regs(); 243 unsigned long flags; 244 int this_cpu, cpu; 245 246 if (!regs) 247 regs = tp->kregs; 248 249 spin_lock_irqsave(&global_cpu_snapshot_lock, flags); 250 251 this_cpu = raw_smp_processor_id(); 252 253 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot)); 254 255 if (cpumask_test_cpu(this_cpu, mask) && this_cpu != exclude_cpu) 256 __global_reg_self(tp, regs, this_cpu); 257 258 smp_fetch_global_regs(); 259 260 for_each_cpu(cpu, mask) { 261 struct global_reg_snapshot *gp; 262 263 if (cpu == exclude_cpu) 264 continue; 265 266 gp = &global_cpu_snapshot[cpu].reg; 267 268 __global_reg_poll(gp); 269 270 tp = gp->thread; 271 printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n", 272 (cpu == this_cpu ? '*' : ' '), cpu, 273 gp->tstate, gp->tpc, gp->tnpc, 274 ((tp && tp->task) ? tp->task->comm : "NULL"), 275 ((tp && tp->task) ? tp->task->pid : -1)); 276 277 if (gp->tstate & TSTATE_PRIV) { 278 printk(" TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n", 279 (void *) gp->tpc, 280 (void *) gp->o7, 281 (void *) gp->i7, 282 (void *) gp->rpc); 283 } else { 284 printk(" TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n", 285 gp->tpc, gp->o7, gp->i7, gp->rpc); 286 } 287 288 touch_nmi_watchdog(); 289 } 290 291 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot)); 292 293 spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags); 294 } 295 296 #ifdef CONFIG_MAGIC_SYSRQ 297 298 static void sysrq_handle_globreg(u8 key) 299 { 300 trigger_all_cpu_backtrace(); 301 } 302 303 static const struct sysrq_key_op sparc_globalreg_op = { 304 .handler = sysrq_handle_globreg, 305 .help_msg = "global-regs(y)", 306 .action_msg = "Show Global CPU Regs", 307 }; 308 309 static void __global_pmu_self(int this_cpu) 310 { 311 struct global_pmu_snapshot *pp; 312 int i, num; 313 314 if (!pcr_ops) 315 return; 316 317 pp = &global_cpu_snapshot[this_cpu].pmu; 318 319 num = 1; 320 if (tlb_type == hypervisor && 321 sun4v_chip_type >= SUN4V_CHIP_NIAGARA4) 322 num = 4; 323 324 for (i = 0; i < num; i++) { 325 pp->pcr[i] = pcr_ops->read_pcr(i); 326 pp->pic[i] = pcr_ops->read_pic(i); 327 } 328 } 329 330 static void __global_pmu_poll(struct global_pmu_snapshot *pp) 331 { 332 int limit = 0; 333 334 while (!pp->pcr[0] && ++limit < 100) { 335 barrier(); 336 udelay(1); 337 } 338 } 339 340 static void pmu_snapshot_all_cpus(void) 341 { 342 unsigned long flags; 343 int this_cpu, cpu; 344 345 spin_lock_irqsave(&global_cpu_snapshot_lock, flags); 346 347 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot)); 348 349 this_cpu = raw_smp_processor_id(); 350 351 __global_pmu_self(this_cpu); 352 353 smp_fetch_global_pmu(); 354 355 for_each_online_cpu(cpu) { 356 struct global_pmu_snapshot *pp = &global_cpu_snapshot[cpu].pmu; 357 358 __global_pmu_poll(pp); 359 360 printk("%c CPU[%3d]: PCR[%08lx:%08lx:%08lx:%08lx] PIC[%08lx:%08lx:%08lx:%08lx]\n", 361 (cpu == this_cpu ? '*' : ' '), cpu, 362 pp->pcr[0], pp->pcr[1], pp->pcr[2], pp->pcr[3], 363 pp->pic[0], pp->pic[1], pp->pic[2], pp->pic[3]); 364 365 touch_nmi_watchdog(); 366 } 367 368 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot)); 369 370 spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags); 371 } 372 373 static void sysrq_handle_globpmu(u8 key) 374 { 375 pmu_snapshot_all_cpus(); 376 } 377 378 static const struct sysrq_key_op sparc_globalpmu_op = { 379 .handler = sysrq_handle_globpmu, 380 .help_msg = "global-pmu(x)", 381 .action_msg = "Show Global PMU Regs", 382 }; 383 384 static int __init sparc_sysrq_init(void) 385 { 386 int ret = register_sysrq_key('y', &sparc_globalreg_op); 387 388 if (!ret) 389 ret = register_sysrq_key('x', &sparc_globalpmu_op); 390 return ret; 391 } 392 393 core_initcall(sparc_sysrq_init); 394 395 #endif 396 397 /* Free current thread data structures etc.. */ 398 void exit_thread(struct task_struct *tsk) 399 { 400 struct thread_info *t = task_thread_info(tsk); 401 402 if (t->utraps) { 403 if (t->utraps[0] < 2) 404 kfree (t->utraps); 405 else 406 t->utraps[0]--; 407 } 408 } 409 410 void flush_thread(void) 411 { 412 struct thread_info *t = current_thread_info(); 413 struct mm_struct *mm; 414 415 mm = t->task->mm; 416 if (mm) 417 tsb_context_switch(mm); 418 419 set_thread_wsaved(0); 420 421 /* Clear FPU register state. */ 422 t->fpsaved[0] = 0; 423 } 424 425 /* It's a bit more tricky when 64-bit tasks are involved... */ 426 static unsigned long clone_stackframe(unsigned long csp, unsigned long psp) 427 { 428 bool stack_64bit = test_thread_64bit_stack(psp); 429 unsigned long fp, distance, rval; 430 431 if (stack_64bit) { 432 csp += STACK_BIAS; 433 psp += STACK_BIAS; 434 __get_user(fp, &(((struct reg_window __user *)psp)->ins[6])); 435 fp += STACK_BIAS; 436 if (test_thread_flag(TIF_32BIT)) 437 fp &= 0xffffffff; 438 } else 439 __get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6])); 440 441 /* Now align the stack as this is mandatory in the Sparc ABI 442 * due to how register windows work. This hides the 443 * restriction from thread libraries etc. 444 */ 445 csp &= ~15UL; 446 447 distance = fp - psp; 448 rval = (csp - distance); 449 if (raw_copy_in_user((void __user *)rval, (void __user *)psp, distance)) 450 rval = 0; 451 else if (!stack_64bit) { 452 if (put_user(((u32)csp), 453 &(((struct reg_window32 __user *)rval)->ins[6]))) 454 rval = 0; 455 } else { 456 if (put_user(((u64)csp - STACK_BIAS), 457 &(((struct reg_window __user *)rval)->ins[6]))) 458 rval = 0; 459 else 460 rval = rval - STACK_BIAS; 461 } 462 463 return rval; 464 } 465 466 /* Standard stuff. */ 467 static inline void shift_window_buffer(int first_win, int last_win, 468 struct thread_info *t) 469 { 470 int i; 471 472 for (i = first_win; i < last_win; i++) { 473 t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1]; 474 memcpy(&t->reg_window[i], &t->reg_window[i+1], 475 sizeof(struct reg_window)); 476 } 477 } 478 479 void synchronize_user_stack(void) 480 { 481 struct thread_info *t = current_thread_info(); 482 unsigned long window; 483 484 flush_user_windows(); 485 if ((window = get_thread_wsaved()) != 0) { 486 window -= 1; 487 do { 488 struct reg_window *rwin = &t->reg_window[window]; 489 int winsize = sizeof(struct reg_window); 490 unsigned long sp; 491 492 sp = t->rwbuf_stkptrs[window]; 493 494 if (test_thread_64bit_stack(sp)) 495 sp += STACK_BIAS; 496 else 497 winsize = sizeof(struct reg_window32); 498 499 if (!copy_to_user((char __user *)sp, rwin, winsize)) { 500 shift_window_buffer(window, get_thread_wsaved() - 1, t); 501 set_thread_wsaved(get_thread_wsaved() - 1); 502 } 503 } while (window--); 504 } 505 } 506 507 static void stack_unaligned(unsigned long sp) 508 { 509 force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *) sp); 510 } 511 512 static const char uwfault32[] = KERN_INFO \ 513 "%s[%d]: bad register window fault: SP %08lx (orig_sp %08lx) TPC %08lx O7 %08lx\n"; 514 static const char uwfault64[] = KERN_INFO \ 515 "%s[%d]: bad register window fault: SP %016lx (orig_sp %016lx) TPC %08lx O7 %016lx\n"; 516 517 void fault_in_user_windows(struct pt_regs *regs) 518 { 519 struct thread_info *t = current_thread_info(); 520 unsigned long window; 521 522 flush_user_windows(); 523 window = get_thread_wsaved(); 524 525 if (likely(window != 0)) { 526 window -= 1; 527 do { 528 struct reg_window *rwin = &t->reg_window[window]; 529 int winsize = sizeof(struct reg_window); 530 unsigned long sp, orig_sp; 531 532 orig_sp = sp = t->rwbuf_stkptrs[window]; 533 534 if (test_thread_64bit_stack(sp)) 535 sp += STACK_BIAS; 536 else 537 winsize = sizeof(struct reg_window32); 538 539 if (unlikely(sp & 0x7UL)) 540 stack_unaligned(sp); 541 542 if (unlikely(copy_to_user((char __user *)sp, 543 rwin, winsize))) { 544 if (show_unhandled_signals) 545 printk_ratelimited(is_compat_task() ? 546 uwfault32 : uwfault64, 547 current->comm, current->pid, 548 sp, orig_sp, 549 regs->tpc, 550 regs->u_regs[UREG_I7]); 551 goto barf; 552 } 553 } while (window--); 554 } 555 set_thread_wsaved(0); 556 return; 557 558 barf: 559 set_thread_wsaved(window + 1); 560 force_sig(SIGSEGV); 561 } 562 563 /* Copy a Sparc thread. The fork() return value conventions 564 * under SunOS are nothing short of bletcherous: 565 * Parent --> %o0 == childs pid, %o1 == 0 566 * Child --> %o0 == parents pid, %o1 == 1 567 */ 568 int copy_thread(struct task_struct *p, const struct kernel_clone_args *args) 569 { 570 unsigned long clone_flags = args->flags; 571 unsigned long sp = args->stack; 572 unsigned long tls = args->tls; 573 struct thread_info *t = task_thread_info(p); 574 struct pt_regs *regs = current_pt_regs(); 575 struct sparc_stackf *parent_sf; 576 unsigned long child_stack_sz; 577 char *child_trap_frame; 578 579 /* Calculate offset to stack_frame & pt_regs */ 580 child_stack_sz = (STACKFRAME_SZ + TRACEREG_SZ); 581 child_trap_frame = (task_stack_page(p) + 582 (THREAD_SIZE - child_stack_sz)); 583 584 t->new_child = 1; 585 t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS; 586 t->kregs = (struct pt_regs *) (child_trap_frame + 587 sizeof(struct sparc_stackf)); 588 t->fpsaved[0] = 0; 589 590 if (unlikely(args->fn)) { 591 memset(child_trap_frame, 0, child_stack_sz); 592 __thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] = 593 (current_pt_regs()->tstate + 1) & TSTATE_CWP; 594 t->kregs->u_regs[UREG_G1] = (unsigned long) args->fn; 595 t->kregs->u_regs[UREG_G2] = (unsigned long) args->fn_arg; 596 return 0; 597 } 598 599 parent_sf = ((struct sparc_stackf *) regs) - 1; 600 memcpy(child_trap_frame, parent_sf, child_stack_sz); 601 if (t->flags & _TIF_32BIT) { 602 sp &= 0x00000000ffffffffUL; 603 regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL; 604 } 605 t->kregs->u_regs[UREG_FP] = sp; 606 __thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] = 607 (regs->tstate + 1) & TSTATE_CWP; 608 if (sp != regs->u_regs[UREG_FP]) { 609 unsigned long csp; 610 611 csp = clone_stackframe(sp, regs->u_regs[UREG_FP]); 612 if (!csp) 613 return -EFAULT; 614 t->kregs->u_regs[UREG_FP] = csp; 615 } 616 if (t->utraps) 617 t->utraps[0]++; 618 619 /* Set the return value for the child. */ 620 t->kregs->u_regs[UREG_I0] = current->pid; 621 t->kregs->u_regs[UREG_I1] = 1; 622 623 /* Set the second return value for the parent. */ 624 regs->u_regs[UREG_I1] = 0; 625 626 if (clone_flags & CLONE_SETTLS) 627 t->kregs->u_regs[UREG_G7] = tls; 628 629 return 0; 630 } 631 632 /* TIF_MCDPER in thread info flags for current task is updated lazily upon 633 * a context switch. Update this flag in current task's thread flags 634 * before dup so the dup'd task will inherit the current TIF_MCDPER flag. 635 */ 636 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 637 { 638 if (adi_capable()) { 639 register unsigned long tmp_mcdper; 640 641 __asm__ __volatile__( 642 ".word 0x83438000\n\t" /* rd %mcdper, %g1 */ 643 "mov %%g1, %0\n\t" 644 : "=r" (tmp_mcdper) 645 : 646 : "g1"); 647 if (tmp_mcdper) 648 set_thread_flag(TIF_MCDPER); 649 else 650 clear_thread_flag(TIF_MCDPER); 651 } 652 653 *dst = *src; 654 return 0; 655 } 656 657 unsigned long __get_wchan(struct task_struct *task) 658 { 659 unsigned long pc, fp, bias = 0; 660 struct thread_info *tp; 661 struct reg_window *rw; 662 unsigned long ret = 0; 663 int count = 0; 664 665 tp = task_thread_info(task); 666 bias = STACK_BIAS; 667 fp = task_thread_info(task)->ksp + bias; 668 669 do { 670 if (!kstack_valid(tp, fp)) 671 break; 672 rw = (struct reg_window *) fp; 673 pc = rw->ins[7]; 674 if (!in_sched_functions(pc)) { 675 ret = pc; 676 goto out; 677 } 678 fp = rw->ins[6] + bias; 679 } while (++count < 16); 680 681 out: 682 return ret; 683 } 684
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.