1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/kernel.h> 3 #include <linux/string.h> 4 #include <linux/init.h> 5 #include <linux/of.h> 6 #include <linux/of_platform.h> 7 #include <linux/platform_device.h> 8 9 #include <asm/oplib.h> 10 #include <asm/prom.h> 11 #include <asm/irq.h> 12 #include <asm/upa.h> 13 14 #include "prom.h" 15 16 #ifdef CONFIG_PCI 17 /* PSYCHO interrupt mapping support. */ 18 #define PSYCHO_IMAP_A_SLOT0 0x0c00UL 19 #define PSYCHO_IMAP_B_SLOT0 0x0c20UL 20 static unsigned long psycho_pcislot_imap_offset(unsigned long ino) 21 { 22 unsigned int bus = (ino & 0x10) >> 4; 23 unsigned int slot = (ino & 0x0c) >> 2; 24 25 if (bus == 0) 26 return PSYCHO_IMAP_A_SLOT0 + (slot * 8); 27 else 28 return PSYCHO_IMAP_B_SLOT0 + (slot * 8); 29 } 30 31 #define PSYCHO_OBIO_IMAP_BASE 0x1000UL 32 33 #define PSYCHO_ONBOARD_IRQ_BASE 0x20 34 #define psycho_onboard_imap_offset(__ino) \ 35 (PSYCHO_OBIO_IMAP_BASE + (((__ino) & 0x1f) << 3)) 36 37 #define PSYCHO_ICLR_A_SLOT0 0x1400UL 38 #define PSYCHO_ICLR_SCSI 0x1800UL 39 40 #define psycho_iclr_offset(ino) \ 41 ((ino & 0x20) ? (PSYCHO_ICLR_SCSI + (((ino) & 0x1f) << 3)) : \ 42 (PSYCHO_ICLR_A_SLOT0 + (((ino) & 0x1f)<<3))) 43 44 static unsigned int psycho_irq_build(struct device_node *dp, 45 unsigned int ino, 46 void *_data) 47 { 48 unsigned long controller_regs = (unsigned long) _data; 49 unsigned long imap, iclr; 50 unsigned long imap_off, iclr_off; 51 int inofixup = 0; 52 53 ino &= 0x3f; 54 if (ino < PSYCHO_ONBOARD_IRQ_BASE) { 55 /* PCI slot */ 56 imap_off = psycho_pcislot_imap_offset(ino); 57 } else { 58 /* Onboard device */ 59 imap_off = psycho_onboard_imap_offset(ino); 60 } 61 62 /* Now build the IRQ bucket. */ 63 imap = controller_regs + imap_off; 64 65 iclr_off = psycho_iclr_offset(ino); 66 iclr = controller_regs + iclr_off; 67 68 if ((ino & 0x20) == 0) 69 inofixup = ino & 0x03; 70 71 return build_irq(inofixup, iclr, imap); 72 } 73 74 static void __init psycho_irq_trans_init(struct device_node *dp) 75 { 76 const struct linux_prom64_registers *regs; 77 78 dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller)); 79 dp->irq_trans->irq_build = psycho_irq_build; 80 81 regs = of_get_property(dp, "reg", NULL); 82 dp->irq_trans->data = (void *) regs[2].phys_addr; 83 } 84 85 #define sabre_read(__reg) \ 86 ({ u64 __ret; \ 87 __asm__ __volatile__("ldxa [%1] %2, %0" \ 88 : "=r" (__ret) \ 89 : "r" (__reg), "i" (ASI_PHYS_BYPASS_EC_E) \ 90 : "memory"); \ 91 __ret; \ 92 }) 93 94 struct sabre_irq_data { 95 unsigned long controller_regs; 96 unsigned int pci_first_busno; 97 }; 98 #define SABRE_CONFIGSPACE 0x001000000UL 99 #define SABRE_WRSYNC 0x1c20UL 100 101 #define SABRE_CONFIG_BASE(CONFIG_SPACE) \ 102 (CONFIG_SPACE | (1UL << 24)) 103 #define SABRE_CONFIG_ENCODE(BUS, DEVFN, REG) \ 104 (((unsigned long)(BUS) << 16) | \ 105 ((unsigned long)(DEVFN) << 8) | \ 106 ((unsigned long)(REG))) 107 108 /* When a device lives behind a bridge deeper in the PCI bus topology 109 * than APB, a special sequence must run to make sure all pending DMA 110 * transfers at the time of IRQ delivery are visible in the coherency 111 * domain by the cpu. This sequence is to perform a read on the far 112 * side of the non-APB bridge, then perform a read of Sabre's DMA 113 * write-sync register. 114 */ 115 static void sabre_wsync_handler(unsigned int ino, void *_arg1, void *_arg2) 116 { 117 unsigned int phys_hi = (unsigned int) (unsigned long) _arg1; 118 struct sabre_irq_data *irq_data = _arg2; 119 unsigned long controller_regs = irq_data->controller_regs; 120 unsigned long sync_reg = controller_regs + SABRE_WRSYNC; 121 unsigned long config_space = controller_regs + SABRE_CONFIGSPACE; 122 unsigned int bus, devfn; 123 u16 _unused; 124 125 config_space = SABRE_CONFIG_BASE(config_space); 126 127 bus = (phys_hi >> 16) & 0xff; 128 devfn = (phys_hi >> 8) & 0xff; 129 130 config_space |= SABRE_CONFIG_ENCODE(bus, devfn, 0x00); 131 132 __asm__ __volatile__("membar #Sync\n\t" 133 "lduha [%1] %2, %0\n\t" 134 "membar #Sync" 135 : "=r" (_unused) 136 : "r" ((u16 *) config_space), 137 "i" (ASI_PHYS_BYPASS_EC_E_L) 138 : "memory"); 139 140 sabre_read(sync_reg); 141 } 142 143 #define SABRE_IMAP_A_SLOT0 0x0c00UL 144 #define SABRE_IMAP_B_SLOT0 0x0c20UL 145 #define SABRE_ICLR_A_SLOT0 0x1400UL 146 #define SABRE_ICLR_B_SLOT0 0x1480UL 147 #define SABRE_ICLR_SCSI 0x1800UL 148 #define SABRE_ICLR_ETH 0x1808UL 149 #define SABRE_ICLR_BPP 0x1810UL 150 #define SABRE_ICLR_AU_REC 0x1818UL 151 #define SABRE_ICLR_AU_PLAY 0x1820UL 152 #define SABRE_ICLR_PFAIL 0x1828UL 153 #define SABRE_ICLR_KMS 0x1830UL 154 #define SABRE_ICLR_FLPY 0x1838UL 155 #define SABRE_ICLR_SHW 0x1840UL 156 #define SABRE_ICLR_KBD 0x1848UL 157 #define SABRE_ICLR_MS 0x1850UL 158 #define SABRE_ICLR_SER 0x1858UL 159 #define SABRE_ICLR_UE 0x1870UL 160 #define SABRE_ICLR_CE 0x1878UL 161 #define SABRE_ICLR_PCIERR 0x1880UL 162 163 static unsigned long sabre_pcislot_imap_offset(unsigned long ino) 164 { 165 unsigned int bus = (ino & 0x10) >> 4; 166 unsigned int slot = (ino & 0x0c) >> 2; 167 168 if (bus == 0) 169 return SABRE_IMAP_A_SLOT0 + (slot * 8); 170 else 171 return SABRE_IMAP_B_SLOT0 + (slot * 8); 172 } 173 174 #define SABRE_OBIO_IMAP_BASE 0x1000UL 175 #define SABRE_ONBOARD_IRQ_BASE 0x20 176 #define sabre_onboard_imap_offset(__ino) \ 177 (SABRE_OBIO_IMAP_BASE + (((__ino) & 0x1f) << 3)) 178 179 #define sabre_iclr_offset(ino) \ 180 ((ino & 0x20) ? (SABRE_ICLR_SCSI + (((ino) & 0x1f) << 3)) : \ 181 (SABRE_ICLR_A_SLOT0 + (((ino) & 0x1f)<<3))) 182 183 static int sabre_device_needs_wsync(struct device_node *dp) 184 { 185 struct device_node *parent = dp->parent; 186 const char *parent_model, *parent_compat; 187 188 /* This traversal up towards the root is meant to 189 * handle two cases: 190 * 191 * 1) non-PCI bus sitting under PCI, such as 'ebus' 192 * 2) the PCI controller interrupts themselves, which 193 * will use the sabre_irq_build but do not need 194 * the DMA synchronization handling 195 */ 196 while (parent) { 197 if (of_node_is_type(parent, "pci")) 198 break; 199 parent = parent->parent; 200 } 201 202 if (!parent) 203 return 0; 204 205 parent_model = of_get_property(parent, 206 "model", NULL); 207 if (parent_model && 208 (!strcmp(parent_model, "SUNW,sabre") || 209 !strcmp(parent_model, "SUNW,simba"))) 210 return 0; 211 212 parent_compat = of_get_property(parent, 213 "compatible", NULL); 214 if (parent_compat && 215 (!strcmp(parent_compat, "pci108e,a000") || 216 !strcmp(parent_compat, "pci108e,a001"))) 217 return 0; 218 219 return 1; 220 } 221 222 static unsigned int sabre_irq_build(struct device_node *dp, 223 unsigned int ino, 224 void *_data) 225 { 226 struct sabre_irq_data *irq_data = _data; 227 unsigned long controller_regs = irq_data->controller_regs; 228 const struct linux_prom_pci_registers *regs; 229 unsigned long imap, iclr; 230 unsigned long imap_off, iclr_off; 231 int inofixup = 0; 232 int irq; 233 234 ino &= 0x3f; 235 if (ino < SABRE_ONBOARD_IRQ_BASE) { 236 /* PCI slot */ 237 imap_off = sabre_pcislot_imap_offset(ino); 238 } else { 239 /* onboard device */ 240 imap_off = sabre_onboard_imap_offset(ino); 241 } 242 243 /* Now build the IRQ bucket. */ 244 imap = controller_regs + imap_off; 245 246 iclr_off = sabre_iclr_offset(ino); 247 iclr = controller_regs + iclr_off; 248 249 if ((ino & 0x20) == 0) 250 inofixup = ino & 0x03; 251 252 irq = build_irq(inofixup, iclr, imap); 253 254 /* If the parent device is a PCI<->PCI bridge other than 255 * APB, we have to install a pre-handler to ensure that 256 * all pending DMA is drained before the interrupt handler 257 * is run. 258 */ 259 regs = of_get_property(dp, "reg", NULL); 260 if (regs && sabre_device_needs_wsync(dp)) { 261 irq_install_pre_handler(irq, 262 sabre_wsync_handler, 263 (void *) (long) regs->phys_hi, 264 (void *) irq_data); 265 } 266 267 return irq; 268 } 269 270 static void __init sabre_irq_trans_init(struct device_node *dp) 271 { 272 const struct linux_prom64_registers *regs; 273 struct sabre_irq_data *irq_data; 274 const u32 *busrange; 275 276 dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller)); 277 dp->irq_trans->irq_build = sabre_irq_build; 278 279 irq_data = prom_early_alloc(sizeof(struct sabre_irq_data)); 280 281 regs = of_get_property(dp, "reg", NULL); 282 irq_data->controller_regs = regs[0].phys_addr; 283 284 busrange = of_get_property(dp, "bus-range", NULL); 285 irq_data->pci_first_busno = busrange[0]; 286 287 dp->irq_trans->data = irq_data; 288 } 289 290 /* SCHIZO interrupt mapping support. Unlike Psycho, for this controller the 291 * imap/iclr registers are per-PBM. 292 */ 293 #define SCHIZO_IMAP_BASE 0x1000UL 294 #define SCHIZO_ICLR_BASE 0x1400UL 295 296 static unsigned long schizo_imap_offset(unsigned long ino) 297 { 298 return SCHIZO_IMAP_BASE + (ino * 8UL); 299 } 300 301 static unsigned long schizo_iclr_offset(unsigned long ino) 302 { 303 return SCHIZO_ICLR_BASE + (ino * 8UL); 304 } 305 306 static unsigned long schizo_ino_to_iclr(unsigned long pbm_regs, 307 unsigned int ino) 308 { 309 310 return pbm_regs + schizo_iclr_offset(ino); 311 } 312 313 static unsigned long schizo_ino_to_imap(unsigned long pbm_regs, 314 unsigned int ino) 315 { 316 return pbm_regs + schizo_imap_offset(ino); 317 } 318 319 #define schizo_read(__reg) \ 320 ({ u64 __ret; \ 321 __asm__ __volatile__("ldxa [%1] %2, %0" \ 322 : "=r" (__ret) \ 323 : "r" (__reg), "i" (ASI_PHYS_BYPASS_EC_E) \ 324 : "memory"); \ 325 __ret; \ 326 }) 327 #define schizo_write(__reg, __val) \ 328 __asm__ __volatile__("stxa %0, [%1] %2" \ 329 : /* no outputs */ \ 330 : "r" (__val), "r" (__reg), \ 331 "i" (ASI_PHYS_BYPASS_EC_E) \ 332 : "memory") 333 334 static void tomatillo_wsync_handler(unsigned int ino, void *_arg1, void *_arg2) 335 { 336 unsigned long sync_reg = (unsigned long) _arg2; 337 u64 mask = 1UL << (ino & IMAP_INO); 338 u64 val; 339 int limit; 340 341 schizo_write(sync_reg, mask); 342 343 limit = 100000; 344 val = 0; 345 while (--limit) { 346 val = schizo_read(sync_reg); 347 if (!(val & mask)) 348 break; 349 } 350 if (limit <= 0) { 351 printk("tomatillo_wsync_handler: DMA won't sync [%llx:%llx]\n", 352 val, mask); 353 } 354 355 if (_arg1) { 356 static unsigned char cacheline[64] 357 __attribute__ ((aligned (64))); 358 359 __asm__ __volatile__("rd %%fprs, %0\n\t" 360 "or %0, %4, %1\n\t" 361 "wr %1, 0x0, %%fprs\n\t" 362 "stda %%f0, [%5] %6\n\t" 363 "wr %0, 0x0, %%fprs\n\t" 364 "membar #Sync" 365 : "=&r" (mask), "=&r" (val) 366 : "" (mask), "1" (val), 367 "i" (FPRS_FEF), "r" (&cacheline[0]), 368 "i" (ASI_BLK_COMMIT_P)); 369 } 370 } 371 372 struct schizo_irq_data { 373 unsigned long pbm_regs; 374 unsigned long sync_reg; 375 u32 portid; 376 int chip_version; 377 }; 378 379 static unsigned int schizo_irq_build(struct device_node *dp, 380 unsigned int ino, 381 void *_data) 382 { 383 struct schizo_irq_data *irq_data = _data; 384 unsigned long pbm_regs = irq_data->pbm_regs; 385 unsigned long imap, iclr; 386 int ign_fixup; 387 int irq; 388 int is_tomatillo; 389 390 ino &= 0x3f; 391 392 /* Now build the IRQ bucket. */ 393 imap = schizo_ino_to_imap(pbm_regs, ino); 394 iclr = schizo_ino_to_iclr(pbm_regs, ino); 395 396 /* On Schizo, no inofixup occurs. This is because each 397 * INO has its own IMAP register. On Psycho and Sabre 398 * there is only one IMAP register for each PCI slot even 399 * though four different INOs can be generated by each 400 * PCI slot. 401 * 402 * But, for JBUS variants (essentially, Tomatillo), we have 403 * to fixup the lowest bit of the interrupt group number. 404 */ 405 ign_fixup = 0; 406 407 is_tomatillo = (irq_data->sync_reg != 0UL); 408 409 if (is_tomatillo) { 410 if (irq_data->portid & 1) 411 ign_fixup = (1 << 6); 412 } 413 414 irq = build_irq(ign_fixup, iclr, imap); 415 416 if (is_tomatillo) { 417 irq_install_pre_handler(irq, 418 tomatillo_wsync_handler, 419 ((irq_data->chip_version <= 4) ? 420 (void *) 1 : (void *) 0), 421 (void *) irq_data->sync_reg); 422 } 423 424 return irq; 425 } 426 427 static void __init __schizo_irq_trans_init(struct device_node *dp, 428 int is_tomatillo) 429 { 430 const struct linux_prom64_registers *regs; 431 struct schizo_irq_data *irq_data; 432 433 dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller)); 434 dp->irq_trans->irq_build = schizo_irq_build; 435 436 irq_data = prom_early_alloc(sizeof(struct schizo_irq_data)); 437 438 regs = of_get_property(dp, "reg", NULL); 439 dp->irq_trans->data = irq_data; 440 441 irq_data->pbm_regs = regs[0].phys_addr; 442 if (is_tomatillo) 443 irq_data->sync_reg = regs[3].phys_addr + 0x1a18UL; 444 else 445 irq_data->sync_reg = 0UL; 446 irq_data->portid = of_getintprop_default(dp, "portid", 0); 447 irq_data->chip_version = of_getintprop_default(dp, "version#", 0); 448 } 449 450 static void __init schizo_irq_trans_init(struct device_node *dp) 451 { 452 __schizo_irq_trans_init(dp, 0); 453 } 454 455 static void __init tomatillo_irq_trans_init(struct device_node *dp) 456 { 457 __schizo_irq_trans_init(dp, 1); 458 } 459 460 static unsigned int pci_sun4v_irq_build(struct device_node *dp, 461 unsigned int devino, 462 void *_data) 463 { 464 u32 devhandle = (u32) (unsigned long) _data; 465 466 return sun4v_build_irq(devhandle, devino); 467 } 468 469 static void __init pci_sun4v_irq_trans_init(struct device_node *dp) 470 { 471 const struct linux_prom64_registers *regs; 472 473 dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller)); 474 dp->irq_trans->irq_build = pci_sun4v_irq_build; 475 476 regs = of_get_property(dp, "reg", NULL); 477 dp->irq_trans->data = (void *) (unsigned long) 478 ((regs->phys_addr >> 32UL) & 0x0fffffff); 479 } 480 481 struct fire_irq_data { 482 unsigned long pbm_regs; 483 u32 portid; 484 }; 485 486 #define FIRE_IMAP_BASE 0x001000 487 #define FIRE_ICLR_BASE 0x001400 488 489 static unsigned long fire_imap_offset(unsigned long ino) 490 { 491 return FIRE_IMAP_BASE + (ino * 8UL); 492 } 493 494 static unsigned long fire_iclr_offset(unsigned long ino) 495 { 496 return FIRE_ICLR_BASE + (ino * 8UL); 497 } 498 499 static unsigned long fire_ino_to_iclr(unsigned long pbm_regs, 500 unsigned int ino) 501 { 502 return pbm_regs + fire_iclr_offset(ino); 503 } 504 505 static unsigned long fire_ino_to_imap(unsigned long pbm_regs, 506 unsigned int ino) 507 { 508 return pbm_regs + fire_imap_offset(ino); 509 } 510 511 static unsigned int fire_irq_build(struct device_node *dp, 512 unsigned int ino, 513 void *_data) 514 { 515 struct fire_irq_data *irq_data = _data; 516 unsigned long pbm_regs = irq_data->pbm_regs; 517 unsigned long imap, iclr; 518 unsigned long int_ctrlr; 519 520 ino &= 0x3f; 521 522 /* Now build the IRQ bucket. */ 523 imap = fire_ino_to_imap(pbm_regs, ino); 524 iclr = fire_ino_to_iclr(pbm_regs, ino); 525 526 /* Set the interrupt controller number. */ 527 int_ctrlr = 1 << 6; 528 upa_writeq(int_ctrlr, imap); 529 530 /* The interrupt map registers do not have an INO field 531 * like other chips do. They return zero in the INO 532 * field, and the interrupt controller number is controlled 533 * in bits 6 to 9. So in order for build_irq() to get 534 * the INO right we pass it in as part of the fixup 535 * which will get added to the map register zero value 536 * read by build_irq(). 537 */ 538 ino |= (irq_data->portid << 6); 539 ino -= int_ctrlr; 540 return build_irq(ino, iclr, imap); 541 } 542 543 static void __init fire_irq_trans_init(struct device_node *dp) 544 { 545 const struct linux_prom64_registers *regs; 546 struct fire_irq_data *irq_data; 547 548 dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller)); 549 dp->irq_trans->irq_build = fire_irq_build; 550 551 irq_data = prom_early_alloc(sizeof(struct fire_irq_data)); 552 553 regs = of_get_property(dp, "reg", NULL); 554 dp->irq_trans->data = irq_data; 555 556 irq_data->pbm_regs = regs[0].phys_addr; 557 irq_data->portid = of_getintprop_default(dp, "portid", 0); 558 } 559 #endif /* CONFIG_PCI */ 560 561 #ifdef CONFIG_SBUS 562 /* INO number to IMAP register offset for SYSIO external IRQ's. 563 * This should conform to both Sunfire/Wildfire server and Fusion 564 * desktop designs. 565 */ 566 #define SYSIO_IMAP_SLOT0 0x2c00UL 567 #define SYSIO_IMAP_SLOT1 0x2c08UL 568 #define SYSIO_IMAP_SLOT2 0x2c10UL 569 #define SYSIO_IMAP_SLOT3 0x2c18UL 570 #define SYSIO_IMAP_SCSI 0x3000UL 571 #define SYSIO_IMAP_ETH 0x3008UL 572 #define SYSIO_IMAP_BPP 0x3010UL 573 #define SYSIO_IMAP_AUDIO 0x3018UL 574 #define SYSIO_IMAP_PFAIL 0x3020UL 575 #define SYSIO_IMAP_KMS 0x3028UL 576 #define SYSIO_IMAP_FLPY 0x3030UL 577 #define SYSIO_IMAP_SHW 0x3038UL 578 #define SYSIO_IMAP_KBD 0x3040UL 579 #define SYSIO_IMAP_MS 0x3048UL 580 #define SYSIO_IMAP_SER 0x3050UL 581 #define SYSIO_IMAP_TIM0 0x3060UL 582 #define SYSIO_IMAP_TIM1 0x3068UL 583 #define SYSIO_IMAP_UE 0x3070UL 584 #define SYSIO_IMAP_CE 0x3078UL 585 #define SYSIO_IMAP_SBERR 0x3080UL 586 #define SYSIO_IMAP_PMGMT 0x3088UL 587 #define SYSIO_IMAP_GFX 0x3090UL 588 #define SYSIO_IMAP_EUPA 0x3098UL 589 590 #define bogon ((unsigned long) -1) 591 static unsigned long sysio_irq_offsets[] = { 592 /* SBUS Slot 0 --> 3, level 1 --> 7 */ 593 SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, 594 SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, 595 SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, 596 SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, 597 SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, 598 SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, 599 SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, 600 SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, 601 602 /* Onboard devices (not relevant/used on SunFire). */ 603 SYSIO_IMAP_SCSI, 604 SYSIO_IMAP_ETH, 605 SYSIO_IMAP_BPP, 606 bogon, 607 SYSIO_IMAP_AUDIO, 608 SYSIO_IMAP_PFAIL, 609 bogon, 610 bogon, 611 SYSIO_IMAP_KMS, 612 SYSIO_IMAP_FLPY, 613 SYSIO_IMAP_SHW, 614 SYSIO_IMAP_KBD, 615 SYSIO_IMAP_MS, 616 SYSIO_IMAP_SER, 617 bogon, 618 bogon, 619 SYSIO_IMAP_TIM0, 620 SYSIO_IMAP_TIM1, 621 bogon, 622 bogon, 623 SYSIO_IMAP_UE, 624 SYSIO_IMAP_CE, 625 SYSIO_IMAP_SBERR, 626 SYSIO_IMAP_PMGMT, 627 SYSIO_IMAP_GFX, 628 SYSIO_IMAP_EUPA, 629 }; 630 631 #undef bogon 632 633 #define NUM_SYSIO_OFFSETS ARRAY_SIZE(sysio_irq_offsets) 634 635 /* Convert Interrupt Mapping register pointer to associated 636 * Interrupt Clear register pointer, SYSIO specific version. 637 */ 638 #define SYSIO_ICLR_UNUSED0 0x3400UL 639 #define SYSIO_ICLR_SLOT0 0x3408UL 640 #define SYSIO_ICLR_SLOT1 0x3448UL 641 #define SYSIO_ICLR_SLOT2 0x3488UL 642 #define SYSIO_ICLR_SLOT3 0x34c8UL 643 static unsigned long sysio_imap_to_iclr(unsigned long imap) 644 { 645 unsigned long diff = SYSIO_ICLR_UNUSED0 - SYSIO_IMAP_SLOT0; 646 return imap + diff; 647 } 648 649 static unsigned int sbus_of_build_irq(struct device_node *dp, 650 unsigned int ino, 651 void *_data) 652 { 653 unsigned long reg_base = (unsigned long) _data; 654 const struct linux_prom_registers *regs; 655 unsigned long imap, iclr; 656 int sbus_slot = 0; 657 int sbus_level = 0; 658 659 ino &= 0x3f; 660 661 regs = of_get_property(dp, "reg", NULL); 662 if (regs) 663 sbus_slot = regs->which_io; 664 665 if (ino < 0x20) 666 ino += (sbus_slot * 8); 667 668 imap = sysio_irq_offsets[ino]; 669 if (imap == ((unsigned long)-1)) { 670 prom_printf("get_irq_translations: Bad SYSIO INO[%x]\n", 671 ino); 672 prom_halt(); 673 } 674 imap += reg_base; 675 676 /* SYSIO inconsistency. For external SLOTS, we have to select 677 * the right ICLR register based upon the lower SBUS irq level 678 * bits. 679 */ 680 if (ino >= 0x20) { 681 iclr = sysio_imap_to_iclr(imap); 682 } else { 683 sbus_level = ino & 0x7; 684 685 switch(sbus_slot) { 686 case 0: 687 iclr = reg_base + SYSIO_ICLR_SLOT0; 688 break; 689 case 1: 690 iclr = reg_base + SYSIO_ICLR_SLOT1; 691 break; 692 case 2: 693 iclr = reg_base + SYSIO_ICLR_SLOT2; 694 break; 695 default: 696 case 3: 697 iclr = reg_base + SYSIO_ICLR_SLOT3; 698 break; 699 } 700 701 iclr += ((unsigned long)sbus_level - 1UL) * 8UL; 702 } 703 return build_irq(sbus_level, iclr, imap); 704 } 705 706 static void __init sbus_irq_trans_init(struct device_node *dp) 707 { 708 const struct linux_prom64_registers *regs; 709 710 dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller)); 711 dp->irq_trans->irq_build = sbus_of_build_irq; 712 713 regs = of_get_property(dp, "reg", NULL); 714 dp->irq_trans->data = (void *) (unsigned long) regs->phys_addr; 715 } 716 #endif /* CONFIG_SBUS */ 717 718 719 static unsigned int central_build_irq(struct device_node *dp, 720 unsigned int ino, 721 void *_data) 722 { 723 struct device_node *central_dp = _data; 724 struct platform_device *central_op = of_find_device_by_node(central_dp); 725 struct resource *res; 726 unsigned long imap, iclr; 727 u32 tmp; 728 729 if (of_node_name_eq(dp, "eeprom")) { 730 res = ¢ral_op->resource[5]; 731 } else if (of_node_name_eq(dp, "zs")) { 732 res = ¢ral_op->resource[4]; 733 } else if (of_node_name_eq(dp, "clock-board")) { 734 res = ¢ral_op->resource[3]; 735 } else { 736 return ino; 737 } 738 739 imap = res->start + 0x00UL; 740 iclr = res->start + 0x10UL; 741 742 /* Set the INO state to idle, and disable. */ 743 upa_writel(0, iclr); 744 upa_readl(iclr); 745 746 tmp = upa_readl(imap); 747 tmp &= ~0x80000000; 748 upa_writel(tmp, imap); 749 750 return build_irq(0, iclr, imap); 751 } 752 753 static void __init central_irq_trans_init(struct device_node *dp) 754 { 755 dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller)); 756 dp->irq_trans->irq_build = central_build_irq; 757 758 dp->irq_trans->data = dp; 759 } 760 761 struct irq_trans { 762 const char *name; 763 void (*init)(struct device_node *); 764 }; 765 766 #ifdef CONFIG_PCI 767 static struct irq_trans __initdata pci_irq_trans_table[] = { 768 { "SUNW,sabre", sabre_irq_trans_init }, 769 { "pci108e,a000", sabre_irq_trans_init }, 770 { "pci108e,a001", sabre_irq_trans_init }, 771 { "SUNW,psycho", psycho_irq_trans_init }, 772 { "pci108e,8000", psycho_irq_trans_init }, 773 { "SUNW,schizo", schizo_irq_trans_init }, 774 { "pci108e,8001", schizo_irq_trans_init }, 775 { "SUNW,schizo+", schizo_irq_trans_init }, 776 { "pci108e,8002", schizo_irq_trans_init }, 777 { "SUNW,tomatillo", tomatillo_irq_trans_init }, 778 { "pci108e,a801", tomatillo_irq_trans_init }, 779 { "SUNW,sun4v-pci", pci_sun4v_irq_trans_init }, 780 { "pciex108e,80f0", fire_irq_trans_init }, 781 }; 782 #endif 783 784 static unsigned int sun4v_vdev_irq_build(struct device_node *dp, 785 unsigned int devino, 786 void *_data) 787 { 788 u32 devhandle = (u32) (unsigned long) _data; 789 790 return sun4v_build_irq(devhandle, devino); 791 } 792 793 static void __init sun4v_vdev_irq_trans_init(struct device_node *dp) 794 { 795 const struct linux_prom64_registers *regs; 796 797 dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller)); 798 dp->irq_trans->irq_build = sun4v_vdev_irq_build; 799 800 regs = of_get_property(dp, "reg", NULL); 801 dp->irq_trans->data = (void *) (unsigned long) 802 ((regs->phys_addr >> 32UL) & 0x0fffffff); 803 } 804 805 void __init irq_trans_init(struct device_node *dp) 806 { 807 #ifdef CONFIG_PCI 808 const char *model; 809 int i; 810 #endif 811 812 #ifdef CONFIG_PCI 813 model = of_get_property(dp, "model", NULL); 814 if (!model) 815 model = of_get_property(dp, "compatible", NULL); 816 if (model) { 817 for (i = 0; i < ARRAY_SIZE(pci_irq_trans_table); i++) { 818 struct irq_trans *t = &pci_irq_trans_table[i]; 819 820 if (!strcmp(model, t->name)) { 821 t->init(dp); 822 return; 823 } 824 } 825 } 826 #endif 827 #ifdef CONFIG_SBUS 828 if (of_node_name_eq(dp, "sbus") || 829 of_node_name_eq(dp, "sbi")) { 830 sbus_irq_trans_init(dp); 831 return; 832 } 833 #endif 834 if (of_node_name_eq(dp, "fhc") && 835 of_node_name_eq(dp->parent, "central")) { 836 central_irq_trans_init(dp); 837 return; 838 } 839 if (of_node_name_eq(dp, "virtual-devices") || 840 of_node_name_eq(dp, "niu")) { 841 sun4v_vdev_irq_trans_init(dp); 842 return; 843 } 844 } 845
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.