~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/sparc/kernel/traps_64.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /* arch/sparc64/kernel/traps.c
  3  *
  4  * Copyright (C) 1995,1997,2008,2009,2012 David S. Miller (davem@davemloft.net)
  5  * Copyright (C) 1997,1999,2000 Jakub Jelinek (jakub@redhat.com)
  6  */
  7 
  8 /*
  9  * I like traps on v9, :))))
 10  */
 11 
 12 #include <linux/cpu.h>
 13 #include <linux/extable.h>
 14 #include <linux/sched/mm.h>
 15 #include <linux/sched/debug.h>
 16 #include <linux/linkage.h>
 17 #include <linux/kernel.h>
 18 #include <linux/signal.h>
 19 #include <linux/smp.h>
 20 #include <linux/mm.h>
 21 #include <linux/init.h>
 22 #include <linux/kallsyms.h>
 23 #include <linux/kdebug.h>
 24 #include <linux/ftrace.h>
 25 #include <linux/reboot.h>
 26 #include <linux/gfp.h>
 27 #include <linux/context_tracking.h>
 28 
 29 #include <asm/smp.h>
 30 #include <asm/delay.h>
 31 #include <asm/ptrace.h>
 32 #include <asm/oplib.h>
 33 #include <asm/page.h>
 34 #include <asm/unistd.h>
 35 #include <linux/uaccess.h>
 36 #include <asm/fpumacro.h>
 37 #include <asm/lsu.h>
 38 #include <asm/dcu.h>
 39 #include <asm/estate.h>
 40 #include <asm/chafsr.h>
 41 #include <asm/sfafsr.h>
 42 #include <asm/psrcompat.h>
 43 #include <asm/processor.h>
 44 #include <asm/timer.h>
 45 #include <asm/head.h>
 46 #include <asm/prom.h>
 47 #include <asm/memctrl.h>
 48 #include <asm/cacheflush.h>
 49 #include <asm/setup.h>
 50 
 51 #include "entry.h"
 52 #include "kernel.h"
 53 #include "kstack.h"
 54 
 55 /* When an irrecoverable trap occurs at tl > 0, the trap entry
 56  * code logs the trap state registers at every level in the trap
 57  * stack.  It is found at (pt_regs + sizeof(pt_regs)) and the layout
 58  * is as follows:
 59  */
 60 struct tl1_traplog {
 61         struct {
 62                 unsigned long tstate;
 63                 unsigned long tpc;
 64                 unsigned long tnpc;
 65                 unsigned long tt;
 66         } trapstack[4];
 67         unsigned long tl;
 68 };
 69 
 70 static void dump_tl1_traplog(struct tl1_traplog *p)
 71 {
 72         int i, limit;
 73 
 74         printk(KERN_EMERG "TRAPLOG: Error at trap level 0x%lx, "
 75                "dumping track stack.\n", p->tl);
 76 
 77         limit = (tlb_type == hypervisor) ? 2 : 4;
 78         for (i = 0; i < limit; i++) {
 79                 printk(KERN_EMERG
 80                        "TRAPLOG: Trap level %d TSTATE[%016lx] TPC[%016lx] "
 81                        "TNPC[%016lx] TT[%lx]\n",
 82                        i + 1,
 83                        p->trapstack[i].tstate, p->trapstack[i].tpc,
 84                        p->trapstack[i].tnpc, p->trapstack[i].tt);
 85                 printk("TRAPLOG: TPC<%pS>\n", (void *) p->trapstack[i].tpc);
 86         }
 87 }
 88 
 89 void bad_trap(struct pt_regs *regs, long lvl)
 90 {
 91         char buffer[36];
 92 
 93         if (notify_die(DIE_TRAP, "bad trap", regs,
 94                        0, lvl, SIGTRAP) == NOTIFY_STOP)
 95                 return;
 96 
 97         if (lvl < 0x100) {
 98                 sprintf(buffer, "Bad hw trap %lx at tl0\n", lvl);
 99                 die_if_kernel(buffer, regs);
100         }
101 
102         lvl -= 0x100;
103         if (regs->tstate & TSTATE_PRIV) {
104                 sprintf(buffer, "Kernel bad sw trap %lx", lvl);
105                 die_if_kernel(buffer, regs);
106         }
107         if (test_thread_flag(TIF_32BIT)) {
108                 regs->tpc &= 0xffffffff;
109                 regs->tnpc &= 0xffffffff;
110         }
111         force_sig_fault_trapno(SIGILL, ILL_ILLTRP,
112                                (void __user *)regs->tpc, lvl);
113 }
114 
115 void bad_trap_tl1(struct pt_regs *regs, long lvl)
116 {
117         char buffer[36];
118         
119         if (notify_die(DIE_TRAP_TL1, "bad trap tl1", regs,
120                        0, lvl, SIGTRAP) == NOTIFY_STOP)
121                 return;
122 
123         dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
124 
125         sprintf (buffer, "Bad trap %lx at tl>0", lvl);
126         die_if_kernel (buffer, regs);
127 }
128 
129 #ifdef CONFIG_DEBUG_BUGVERBOSE
130 void do_BUG(const char *file, int line)
131 {
132         bust_spinlocks(1);
133         printk("kernel BUG at %s:%d!\n", file, line);
134 }
135 EXPORT_SYMBOL(do_BUG);
136 #endif
137 
138 static DEFINE_SPINLOCK(dimm_handler_lock);
139 static dimm_printer_t dimm_handler;
140 
141 static int sprintf_dimm(int synd_code, unsigned long paddr, char *buf, int buflen)
142 {
143         unsigned long flags;
144         int ret = -ENODEV;
145 
146         spin_lock_irqsave(&dimm_handler_lock, flags);
147         if (dimm_handler) {
148                 ret = dimm_handler(synd_code, paddr, buf, buflen);
149         } else if (tlb_type == spitfire) {
150                 if (prom_getunumber(synd_code, paddr, buf, buflen) == -1)
151                         ret = -EINVAL;
152                 else
153                         ret = 0;
154         } else
155                 ret = -ENODEV;
156         spin_unlock_irqrestore(&dimm_handler_lock, flags);
157 
158         return ret;
159 }
160 
161 int register_dimm_printer(dimm_printer_t func)
162 {
163         unsigned long flags;
164         int ret = 0;
165 
166         spin_lock_irqsave(&dimm_handler_lock, flags);
167         if (!dimm_handler)
168                 dimm_handler = func;
169         else
170                 ret = -EEXIST;
171         spin_unlock_irqrestore(&dimm_handler_lock, flags);
172 
173         return ret;
174 }
175 EXPORT_SYMBOL_GPL(register_dimm_printer);
176 
177 void unregister_dimm_printer(dimm_printer_t func)
178 {
179         unsigned long flags;
180 
181         spin_lock_irqsave(&dimm_handler_lock, flags);
182         if (dimm_handler == func)
183                 dimm_handler = NULL;
184         spin_unlock_irqrestore(&dimm_handler_lock, flags);
185 }
186 EXPORT_SYMBOL_GPL(unregister_dimm_printer);
187 
188 void spitfire_insn_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
189 {
190         enum ctx_state prev_state = exception_enter();
191 
192         if (notify_die(DIE_TRAP, "instruction access exception", regs,
193                        0, 0x8, SIGTRAP) == NOTIFY_STOP)
194                 goto out;
195 
196         if (regs->tstate & TSTATE_PRIV) {
197                 printk("spitfire_insn_access_exception: SFSR[%016lx] "
198                        "SFAR[%016lx], going.\n", sfsr, sfar);
199                 die_if_kernel("Iax", regs);
200         }
201         if (test_thread_flag(TIF_32BIT)) {
202                 regs->tpc &= 0xffffffff;
203                 regs->tnpc &= 0xffffffff;
204         }
205         force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *)regs->tpc);
206 out:
207         exception_exit(prev_state);
208 }
209 
210 void spitfire_insn_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
211 {
212         if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
213                        0, 0x8, SIGTRAP) == NOTIFY_STOP)
214                 return;
215 
216         dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
217         spitfire_insn_access_exception(regs, sfsr, sfar);
218 }
219 
220 void sun4v_insn_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
221 {
222         unsigned short type = (type_ctx >> 16);
223         unsigned short ctx  = (type_ctx & 0xffff);
224 
225         if (notify_die(DIE_TRAP, "instruction access exception", regs,
226                        0, 0x8, SIGTRAP) == NOTIFY_STOP)
227                 return;
228 
229         if (regs->tstate & TSTATE_PRIV) {
230                 printk("sun4v_insn_access_exception: ADDR[%016lx] "
231                        "CTX[%04x] TYPE[%04x], going.\n",
232                        addr, ctx, type);
233                 die_if_kernel("Iax", regs);
234         }
235 
236         if (test_thread_flag(TIF_32BIT)) {
237                 regs->tpc &= 0xffffffff;
238                 regs->tnpc &= 0xffffffff;
239         }
240         force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *) addr);
241 }
242 
243 void sun4v_insn_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
244 {
245         if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
246                        0, 0x8, SIGTRAP) == NOTIFY_STOP)
247                 return;
248 
249         dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
250         sun4v_insn_access_exception(regs, addr, type_ctx);
251 }
252 
253 static bool is_no_fault_exception(struct pt_regs *regs)
254 {
255         unsigned char asi;
256         u32 insn;
257 
258         if (get_user(insn, (u32 __user *)regs->tpc) == -EFAULT)
259                 return false;
260 
261         /*
262          * Must do a little instruction decoding here in order to
263          * decide on a course of action. The bits of interest are:
264          *  insn[31:30] = op, where 3 indicates the load/store group
265          *  insn[24:19] = op3, which identifies individual opcodes
266          *  insn[13] indicates an immediate offset
267          *  op3[4]=1 identifies alternate space instructions
268          *  op3[5:4]=3 identifies floating point instructions
269          *  op3[2]=1 identifies stores
270          * See "Opcode Maps" in the appendix of any Sparc V9
271          * architecture spec for full details.
272          */
273         if ((insn & 0xc0800000) == 0xc0800000) {    /* op=3, op3[4]=1   */
274                 if (insn & 0x2000)                  /* immediate offset */
275                         asi = (regs->tstate >> 24); /* saved %asi       */
276                 else
277                         asi = (insn >> 5);          /* immediate asi    */
278                 if ((asi & 0xf6) == ASI_PNF) {
279                         if (insn & 0x200000)        /* op3[2], stores   */
280                                 return false;
281                         if (insn & 0x1000000)       /* op3[5:4]=3 (fp)  */
282                                 handle_ldf_stq(insn, regs);
283                         else
284                                 handle_ld_nf(insn, regs);
285                         return true;
286                 }
287         }
288         return false;
289 }
290 
291 void spitfire_data_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
292 {
293         enum ctx_state prev_state = exception_enter();
294 
295         if (notify_die(DIE_TRAP, "data access exception", regs,
296                        0, 0x30, SIGTRAP) == NOTIFY_STOP)
297                 goto out;
298 
299         if (regs->tstate & TSTATE_PRIV) {
300                 /* Test if this comes from uaccess places. */
301                 const struct exception_table_entry *entry;
302 
303                 entry = search_exception_tables(regs->tpc);
304                 if (entry) {
305                         /* Ouch, somebody is trying VM hole tricks on us... */
306 #ifdef DEBUG_EXCEPTIONS
307                         printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
308                         printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
309                                regs->tpc, entry->fixup);
310 #endif
311                         regs->tpc = entry->fixup;
312                         regs->tnpc = regs->tpc + 4;
313                         goto out;
314                 }
315                 /* Shit... */
316                 printk("spitfire_data_access_exception: SFSR[%016lx] "
317                        "SFAR[%016lx], going.\n", sfsr, sfar);
318                 die_if_kernel("Dax", regs);
319         }
320 
321         if (is_no_fault_exception(regs))
322                 return;
323 
324         force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *)sfar);
325 out:
326         exception_exit(prev_state);
327 }
328 
329 void spitfire_data_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
330 {
331         if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
332                        0, 0x30, SIGTRAP) == NOTIFY_STOP)
333                 return;
334 
335         dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
336         spitfire_data_access_exception(regs, sfsr, sfar);
337 }
338 
339 void sun4v_data_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
340 {
341         unsigned short type = (type_ctx >> 16);
342         unsigned short ctx  = (type_ctx & 0xffff);
343 
344         if (notify_die(DIE_TRAP, "data access exception", regs,
345                        0, 0x8, SIGTRAP) == NOTIFY_STOP)
346                 return;
347 
348         if (regs->tstate & TSTATE_PRIV) {
349                 /* Test if this comes from uaccess places. */
350                 const struct exception_table_entry *entry;
351 
352                 entry = search_exception_tables(regs->tpc);
353                 if (entry) {
354                         /* Ouch, somebody is trying VM hole tricks on us... */
355 #ifdef DEBUG_EXCEPTIONS
356                         printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
357                         printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
358                                regs->tpc, entry->fixup);
359 #endif
360                         regs->tpc = entry->fixup;
361                         regs->tnpc = regs->tpc + 4;
362                         return;
363                 }
364                 printk("sun4v_data_access_exception: ADDR[%016lx] "
365                        "CTX[%04x] TYPE[%04x], going.\n",
366                        addr, ctx, type);
367                 die_if_kernel("Dax", regs);
368         }
369 
370         if (test_thread_flag(TIF_32BIT)) {
371                 regs->tpc &= 0xffffffff;
372                 regs->tnpc &= 0xffffffff;
373         }
374         if (is_no_fault_exception(regs))
375                 return;
376 
377         /* MCD (Memory Corruption Detection) disabled trap (TT=0x19) in HV
378          * is vectored thorugh data access exception trap with fault type
379          * set to HV_FAULT_TYPE_MCD_DIS. Check for MCD disabled trap.
380          * Accessing an address with invalid ASI for the address, for
381          * example setting an ADI tag on an address with ASI_MCD_PRIMARY
382          * when TTE.mcd is not set for the VA, is also vectored into
383          * kerbel by HV as data access exception with fault type set to
384          * HV_FAULT_TYPE_INV_ASI.
385          */
386         switch (type) {
387         case HV_FAULT_TYPE_INV_ASI:
388                 force_sig_fault(SIGILL, ILL_ILLADR, (void __user *)addr);
389                 break;
390         case HV_FAULT_TYPE_MCD_DIS:
391                 force_sig_fault(SIGSEGV, SEGV_ACCADI, (void __user *)addr);
392                 break;
393         default:
394                 force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *)addr);
395                 break;
396         }
397 }
398 
399 void sun4v_data_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
400 {
401         if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
402                        0, 0x8, SIGTRAP) == NOTIFY_STOP)
403                 return;
404 
405         dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
406         sun4v_data_access_exception(regs, addr, type_ctx);
407 }
408 
409 #ifdef CONFIG_PCI
410 #include "pci_impl.h"
411 #endif
412 
413 /* When access exceptions happen, we must do this. */
414 static void spitfire_clean_and_reenable_l1_caches(void)
415 {
416         unsigned long va;
417 
418         if (tlb_type != spitfire)
419                 BUG();
420 
421         /* Clean 'em. */
422         for (va =  0; va < (PAGE_SIZE << 1); va += 32) {
423                 spitfire_put_icache_tag(va, 0x0);
424                 spitfire_put_dcache_tag(va, 0x0);
425         }
426 
427         /* Re-enable in LSU. */
428         __asm__ __volatile__("flush %%g6\n\t"
429                              "membar #Sync\n\t"
430                              "stxa %0, [%%g0] %1\n\t"
431                              "membar #Sync"
432                              : /* no outputs */
433                              : "r" (LSU_CONTROL_IC | LSU_CONTROL_DC |
434                                     LSU_CONTROL_IM | LSU_CONTROL_DM),
435                              "i" (ASI_LSU_CONTROL)
436                              : "memory");
437 }
438 
439 static void spitfire_enable_estate_errors(void)
440 {
441         __asm__ __volatile__("stxa      %0, [%%g0] %1\n\t"
442                              "membar    #Sync"
443                              : /* no outputs */
444                              : "r" (ESTATE_ERR_ALL),
445                                "i" (ASI_ESTATE_ERROR_EN));
446 }
447 
448 static char ecc_syndrome_table[] = {
449         0x4c, 0x40, 0x41, 0x48, 0x42, 0x48, 0x48, 0x49,
450         0x43, 0x48, 0x48, 0x49, 0x48, 0x49, 0x49, 0x4a,
451         0x44, 0x48, 0x48, 0x20, 0x48, 0x39, 0x4b, 0x48,
452         0x48, 0x25, 0x31, 0x48, 0x28, 0x48, 0x48, 0x2c,
453         0x45, 0x48, 0x48, 0x21, 0x48, 0x3d, 0x04, 0x48,
454         0x48, 0x4b, 0x35, 0x48, 0x2d, 0x48, 0x48, 0x29,
455         0x48, 0x00, 0x01, 0x48, 0x0a, 0x48, 0x48, 0x4b,
456         0x0f, 0x48, 0x48, 0x4b, 0x48, 0x49, 0x49, 0x48,
457         0x46, 0x48, 0x48, 0x2a, 0x48, 0x3b, 0x27, 0x48,
458         0x48, 0x4b, 0x33, 0x48, 0x22, 0x48, 0x48, 0x2e,
459         0x48, 0x19, 0x1d, 0x48, 0x1b, 0x4a, 0x48, 0x4b,
460         0x1f, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
461         0x48, 0x4b, 0x24, 0x48, 0x07, 0x48, 0x48, 0x36,
462         0x4b, 0x48, 0x48, 0x3e, 0x48, 0x30, 0x38, 0x48,
463         0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x16, 0x48,
464         0x48, 0x12, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
465         0x47, 0x48, 0x48, 0x2f, 0x48, 0x3f, 0x4b, 0x48,
466         0x48, 0x06, 0x37, 0x48, 0x23, 0x48, 0x48, 0x2b,
467         0x48, 0x05, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x32,
468         0x26, 0x48, 0x48, 0x3a, 0x48, 0x34, 0x3c, 0x48,
469         0x48, 0x11, 0x15, 0x48, 0x13, 0x4a, 0x48, 0x4b,
470         0x17, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
471         0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x1e, 0x48,
472         0x48, 0x1a, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
473         0x48, 0x08, 0x0d, 0x48, 0x02, 0x48, 0x48, 0x49,
474         0x03, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x4b, 0x48,
475         0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x10, 0x48,
476         0x48, 0x14, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
477         0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x18, 0x48,
478         0x48, 0x1c, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
479         0x4a, 0x0c, 0x09, 0x48, 0x0e, 0x48, 0x48, 0x4b,
480         0x0b, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x4b, 0x4a
481 };
482 
483 static char *syndrome_unknown = "<Unknown>";
484 
485 static void spitfire_log_udb_syndrome(unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long bit)
486 {
487         unsigned short scode;
488         char memmod_str[64], *p;
489 
490         if (udbl & bit) {
491                 scode = ecc_syndrome_table[udbl & 0xff];
492                 if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0)
493                         p = syndrome_unknown;
494                 else
495                         p = memmod_str;
496                 printk(KERN_WARNING "CPU[%d]: UDBL Syndrome[%x] "
497                        "Memory Module \"%s\"\n",
498                        smp_processor_id(), scode, p);
499         }
500 
501         if (udbh & bit) {
502                 scode = ecc_syndrome_table[udbh & 0xff];
503                 if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0)
504                         p = syndrome_unknown;
505                 else
506                         p = memmod_str;
507                 printk(KERN_WARNING "CPU[%d]: UDBH Syndrome[%x] "
508                        "Memory Module \"%s\"\n",
509                        smp_processor_id(), scode, p);
510         }
511 
512 }
513 
514 static void spitfire_cee_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, int tl1, struct pt_regs *regs)
515 {
516 
517         printk(KERN_WARNING "CPU[%d]: Correctable ECC Error "
518                "AFSR[%lx] AFAR[%016lx] UDBL[%lx] UDBH[%lx] TL>1[%d]\n",
519                smp_processor_id(), afsr, afar, udbl, udbh, tl1);
520 
521         spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_CE);
522 
523         /* We always log it, even if someone is listening for this
524          * trap.
525          */
526         notify_die(DIE_TRAP, "Correctable ECC Error", regs,
527                    0, TRAP_TYPE_CEE, SIGTRAP);
528 
529         /* The Correctable ECC Error trap does not disable I/D caches.  So
530          * we only have to restore the ESTATE Error Enable register.
531          */
532         spitfire_enable_estate_errors();
533 }
534 
535 static void spitfire_ue_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long tt, int tl1, struct pt_regs *regs)
536 {
537         printk(KERN_WARNING "CPU[%d]: Uncorrectable Error AFSR[%lx] "
538                "AFAR[%lx] UDBL[%lx] UDBH[%ld] TT[%lx] TL>1[%d]\n",
539                smp_processor_id(), afsr, afar, udbl, udbh, tt, tl1);
540 
541         /* XXX add more human friendly logging of the error status
542          * XXX as is implemented for cheetah
543          */
544 
545         spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_UE);
546 
547         /* We always log it, even if someone is listening for this
548          * trap.
549          */
550         notify_die(DIE_TRAP, "Uncorrectable Error", regs,
551                    0, tt, SIGTRAP);
552 
553         if (regs->tstate & TSTATE_PRIV) {
554                 if (tl1)
555                         dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
556                 die_if_kernel("UE", regs);
557         }
558 
559         /* XXX need more intelligent processing here, such as is implemented
560          * XXX for cheetah errors, in fact if the E-cache still holds the
561          * XXX line with bad parity this will loop
562          */
563 
564         spitfire_clean_and_reenable_l1_caches();
565         spitfire_enable_estate_errors();
566 
567         if (test_thread_flag(TIF_32BIT)) {
568                 regs->tpc &= 0xffffffff;
569                 regs->tnpc &= 0xffffffff;
570         }
571         force_sig_fault(SIGBUS, BUS_OBJERR, (void *)0);
572 }
573 
574 void spitfire_access_error(struct pt_regs *regs, unsigned long status_encoded, unsigned long afar)
575 {
576         unsigned long afsr, tt, udbh, udbl;
577         int tl1;
578 
579         afsr = (status_encoded & SFSTAT_AFSR_MASK) >> SFSTAT_AFSR_SHIFT;
580         tt = (status_encoded & SFSTAT_TRAP_TYPE) >> SFSTAT_TRAP_TYPE_SHIFT;
581         tl1 = (status_encoded & SFSTAT_TL_GT_ONE) ? 1 : 0;
582         udbl = (status_encoded & SFSTAT_UDBL_MASK) >> SFSTAT_UDBL_SHIFT;
583         udbh = (status_encoded & SFSTAT_UDBH_MASK) >> SFSTAT_UDBH_SHIFT;
584 
585 #ifdef CONFIG_PCI
586         if (tt == TRAP_TYPE_DAE &&
587             pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
588                 spitfire_clean_and_reenable_l1_caches();
589                 spitfire_enable_estate_errors();
590 
591                 pci_poke_faulted = 1;
592                 regs->tnpc = regs->tpc + 4;
593                 return;
594         }
595 #endif
596 
597         if (afsr & SFAFSR_UE)
598                 spitfire_ue_log(afsr, afar, udbh, udbl, tt, tl1, regs);
599 
600         if (tt == TRAP_TYPE_CEE) {
601                 /* Handle the case where we took a CEE trap, but ACK'd
602                  * only the UE state in the UDB error registers.
603                  */
604                 if (afsr & SFAFSR_UE) {
605                         if (udbh & UDBE_CE) {
606                                 __asm__ __volatile__(
607                                         "stxa   %0, [%1] %2\n\t"
608                                         "membar #Sync"
609                                         : /* no outputs */
610                                         : "r" (udbh & UDBE_CE),
611                                           "r" (0x0), "i" (ASI_UDB_ERROR_W));
612                         }
613                         if (udbl & UDBE_CE) {
614                                 __asm__ __volatile__(
615                                         "stxa   %0, [%1] %2\n\t"
616                                         "membar #Sync"
617                                         : /* no outputs */
618                                         : "r" (udbl & UDBE_CE),
619                                           "r" (0x18), "i" (ASI_UDB_ERROR_W));
620                         }
621                 }
622 
623                 spitfire_cee_log(afsr, afar, udbh, udbl, tl1, regs);
624         }
625 }
626 
627 int cheetah_pcache_forced_on;
628 
629 void cheetah_enable_pcache(void)
630 {
631         unsigned long dcr;
632 
633         printk("CHEETAH: Enabling P-Cache on cpu %d.\n",
634                smp_processor_id());
635 
636         __asm__ __volatile__("ldxa [%%g0] %1, %0"
637                              : "=r" (dcr)
638                              : "i" (ASI_DCU_CONTROL_REG));
639         dcr |= (DCU_PE | DCU_HPE | DCU_SPE | DCU_SL);
640         __asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
641                              "membar #Sync"
642                              : /* no outputs */
643                              : "r" (dcr), "i" (ASI_DCU_CONTROL_REG));
644 }
645 
646 /* Cheetah error trap handling. */
647 static unsigned long ecache_flush_physbase;
648 static unsigned long ecache_flush_linesize;
649 static unsigned long ecache_flush_size;
650 
651 /* This table is ordered in priority of errors and matches the
652  * AFAR overwrite policy as well.
653  */
654 
655 struct afsr_error_table {
656         unsigned long mask;
657         const char *name;
658 };
659 
660 static const char CHAFSR_PERR_msg[] =
661         "System interface protocol error";
662 static const char CHAFSR_IERR_msg[] =
663         "Internal processor error";
664 static const char CHAFSR_ISAP_msg[] =
665         "System request parity error on incoming address";
666 static const char CHAFSR_UCU_msg[] =
667         "Uncorrectable E-cache ECC error for ifetch/data";
668 static const char CHAFSR_UCC_msg[] =
669         "SW Correctable E-cache ECC error for ifetch/data";
670 static const char CHAFSR_UE_msg[] =
671         "Uncorrectable system bus data ECC error for read";
672 static const char CHAFSR_EDU_msg[] =
673         "Uncorrectable E-cache ECC error for stmerge/blkld";
674 static const char CHAFSR_EMU_msg[] =
675         "Uncorrectable system bus MTAG error";
676 static const char CHAFSR_WDU_msg[] =
677         "Uncorrectable E-cache ECC error for writeback";
678 static const char CHAFSR_CPU_msg[] =
679         "Uncorrectable ECC error for copyout";
680 static const char CHAFSR_CE_msg[] =
681         "HW corrected system bus data ECC error for read";
682 static const char CHAFSR_EDC_msg[] =
683         "HW corrected E-cache ECC error for stmerge/blkld";
684 static const char CHAFSR_EMC_msg[] =
685         "HW corrected system bus MTAG ECC error";
686 static const char CHAFSR_WDC_msg[] =
687         "HW corrected E-cache ECC error for writeback";
688 static const char CHAFSR_CPC_msg[] =
689         "HW corrected ECC error for copyout";
690 static const char CHAFSR_TO_msg[] =
691         "Unmapped error from system bus";
692 static const char CHAFSR_BERR_msg[] =
693         "Bus error response from system bus";
694 static const char CHAFSR_IVC_msg[] =
695         "HW corrected system bus data ECC error for ivec read";
696 static const char CHAFSR_IVU_msg[] =
697         "Uncorrectable system bus data ECC error for ivec read";
698 static struct afsr_error_table __cheetah_error_table[] = {
699         {       CHAFSR_PERR,    CHAFSR_PERR_msg         },
700         {       CHAFSR_IERR,    CHAFSR_IERR_msg         },
701         {       CHAFSR_ISAP,    CHAFSR_ISAP_msg         },
702         {       CHAFSR_UCU,     CHAFSR_UCU_msg          },
703         {       CHAFSR_UCC,     CHAFSR_UCC_msg          },
704         {       CHAFSR_UE,      CHAFSR_UE_msg           },
705         {       CHAFSR_EDU,     CHAFSR_EDU_msg          },
706         {       CHAFSR_EMU,     CHAFSR_EMU_msg          },
707         {       CHAFSR_WDU,     CHAFSR_WDU_msg          },
708         {       CHAFSR_CPU,     CHAFSR_CPU_msg          },
709         {       CHAFSR_CE,      CHAFSR_CE_msg           },
710         {       CHAFSR_EDC,     CHAFSR_EDC_msg          },
711         {       CHAFSR_EMC,     CHAFSR_EMC_msg          },
712         {       CHAFSR_WDC,     CHAFSR_WDC_msg          },
713         {       CHAFSR_CPC,     CHAFSR_CPC_msg          },
714         {       CHAFSR_TO,      CHAFSR_TO_msg           },
715         {       CHAFSR_BERR,    CHAFSR_BERR_msg         },
716         /* These two do not update the AFAR. */
717         {       CHAFSR_IVC,     CHAFSR_IVC_msg          },
718         {       CHAFSR_IVU,     CHAFSR_IVU_msg          },
719         {       0,              NULL                    },
720 };
721 static const char CHPAFSR_DTO_msg[] =
722         "System bus unmapped error for prefetch/storequeue-read";
723 static const char CHPAFSR_DBERR_msg[] =
724         "System bus error for prefetch/storequeue-read";
725 static const char CHPAFSR_THCE_msg[] =
726         "Hardware corrected E-cache Tag ECC error";
727 static const char CHPAFSR_TSCE_msg[] =
728         "SW handled correctable E-cache Tag ECC error";
729 static const char CHPAFSR_TUE_msg[] =
730         "Uncorrectable E-cache Tag ECC error";
731 static const char CHPAFSR_DUE_msg[] =
732         "System bus uncorrectable data ECC error due to prefetch/store-fill";
733 static struct afsr_error_table __cheetah_plus_error_table[] = {
734         {       CHAFSR_PERR,    CHAFSR_PERR_msg         },
735         {       CHAFSR_IERR,    CHAFSR_IERR_msg         },
736         {       CHAFSR_ISAP,    CHAFSR_ISAP_msg         },
737         {       CHAFSR_UCU,     CHAFSR_UCU_msg          },
738         {       CHAFSR_UCC,     CHAFSR_UCC_msg          },
739         {       CHAFSR_UE,      CHAFSR_UE_msg           },
740         {       CHAFSR_EDU,     CHAFSR_EDU_msg          },
741         {       CHAFSR_EMU,     CHAFSR_EMU_msg          },
742         {       CHAFSR_WDU,     CHAFSR_WDU_msg          },
743         {       CHAFSR_CPU,     CHAFSR_CPU_msg          },
744         {       CHAFSR_CE,      CHAFSR_CE_msg           },
745         {       CHAFSR_EDC,     CHAFSR_EDC_msg          },
746         {       CHAFSR_EMC,     CHAFSR_EMC_msg          },
747         {       CHAFSR_WDC,     CHAFSR_WDC_msg          },
748         {       CHAFSR_CPC,     CHAFSR_CPC_msg          },
749         {       CHAFSR_TO,      CHAFSR_TO_msg           },
750         {       CHAFSR_BERR,    CHAFSR_BERR_msg         },
751         {       CHPAFSR_DTO,    CHPAFSR_DTO_msg         },
752         {       CHPAFSR_DBERR,  CHPAFSR_DBERR_msg       },
753         {       CHPAFSR_THCE,   CHPAFSR_THCE_msg        },
754         {       CHPAFSR_TSCE,   CHPAFSR_TSCE_msg        },
755         {       CHPAFSR_TUE,    CHPAFSR_TUE_msg         },
756         {       CHPAFSR_DUE,    CHPAFSR_DUE_msg         },
757         /* These two do not update the AFAR. */
758         {       CHAFSR_IVC,     CHAFSR_IVC_msg          },
759         {       CHAFSR_IVU,     CHAFSR_IVU_msg          },
760         {       0,              NULL                    },
761 };
762 static const char JPAFSR_JETO_msg[] =
763         "System interface protocol error, hw timeout caused";
764 static const char JPAFSR_SCE_msg[] =
765         "Parity error on system snoop results";
766 static const char JPAFSR_JEIC_msg[] =
767         "System interface protocol error, illegal command detected";
768 static const char JPAFSR_JEIT_msg[] =
769         "System interface protocol error, illegal ADTYPE detected";
770 static const char JPAFSR_OM_msg[] =
771         "Out of range memory error has occurred";
772 static const char JPAFSR_ETP_msg[] =
773         "Parity error on L2 cache tag SRAM";
774 static const char JPAFSR_UMS_msg[] =
775         "Error due to unsupported store";
776 static const char JPAFSR_RUE_msg[] =
777         "Uncorrectable ECC error from remote cache/memory";
778 static const char JPAFSR_RCE_msg[] =
779         "Correctable ECC error from remote cache/memory";
780 static const char JPAFSR_BP_msg[] =
781         "JBUS parity error on returned read data";
782 static const char JPAFSR_WBP_msg[] =
783         "JBUS parity error on data for writeback or block store";
784 static const char JPAFSR_FRC_msg[] =
785         "Foreign read to DRAM incurring correctable ECC error";
786 static const char JPAFSR_FRU_msg[] =
787         "Foreign read to DRAM incurring uncorrectable ECC error";
788 static struct afsr_error_table __jalapeno_error_table[] = {
789         {       JPAFSR_JETO,    JPAFSR_JETO_msg         },
790         {       JPAFSR_SCE,     JPAFSR_SCE_msg          },
791         {       JPAFSR_JEIC,    JPAFSR_JEIC_msg         },
792         {       JPAFSR_JEIT,    JPAFSR_JEIT_msg         },
793         {       CHAFSR_PERR,    CHAFSR_PERR_msg         },
794         {       CHAFSR_IERR,    CHAFSR_IERR_msg         },
795         {       CHAFSR_ISAP,    CHAFSR_ISAP_msg         },
796         {       CHAFSR_UCU,     CHAFSR_UCU_msg          },
797         {       CHAFSR_UCC,     CHAFSR_UCC_msg          },
798         {       CHAFSR_UE,      CHAFSR_UE_msg           },
799         {       CHAFSR_EDU,     CHAFSR_EDU_msg          },
800         {       JPAFSR_OM,      JPAFSR_OM_msg           },
801         {       CHAFSR_WDU,     CHAFSR_WDU_msg          },
802         {       CHAFSR_CPU,     CHAFSR_CPU_msg          },
803         {       CHAFSR_CE,      CHAFSR_CE_msg           },
804         {       CHAFSR_EDC,     CHAFSR_EDC_msg          },
805         {       JPAFSR_ETP,     JPAFSR_ETP_msg          },
806         {       CHAFSR_WDC,     CHAFSR_WDC_msg          },
807         {       CHAFSR_CPC,     CHAFSR_CPC_msg          },
808         {       CHAFSR_TO,      CHAFSR_TO_msg           },
809         {       CHAFSR_BERR,    CHAFSR_BERR_msg         },
810         {       JPAFSR_UMS,     JPAFSR_UMS_msg          },
811         {       JPAFSR_RUE,     JPAFSR_RUE_msg          },
812         {       JPAFSR_RCE,     JPAFSR_RCE_msg          },
813         {       JPAFSR_BP,      JPAFSR_BP_msg           },
814         {       JPAFSR_WBP,     JPAFSR_WBP_msg          },
815         {       JPAFSR_FRC,     JPAFSR_FRC_msg          },
816         {       JPAFSR_FRU,     JPAFSR_FRU_msg          },
817         /* These two do not update the AFAR. */
818         {       CHAFSR_IVU,     CHAFSR_IVU_msg          },
819         {       0,              NULL                    },
820 };
821 static struct afsr_error_table *cheetah_error_table;
822 static unsigned long cheetah_afsr_errors;
823 
824 struct cheetah_err_info *cheetah_error_log;
825 
826 static inline struct cheetah_err_info *cheetah_get_error_log(unsigned long afsr)
827 {
828         struct cheetah_err_info *p;
829         int cpu = smp_processor_id();
830 
831         if (!cheetah_error_log)
832                 return NULL;
833 
834         p = cheetah_error_log + (cpu * 2);
835         if ((afsr & CHAFSR_TL1) != 0UL)
836                 p++;
837 
838         return p;
839 }
840 
841 extern unsigned int tl0_icpe[], tl1_icpe[];
842 extern unsigned int tl0_dcpe[], tl1_dcpe[];
843 extern unsigned int tl0_fecc[], tl1_fecc[];
844 extern unsigned int tl0_cee[], tl1_cee[];
845 extern unsigned int tl0_iae[], tl1_iae[];
846 extern unsigned int tl0_dae[], tl1_dae[];
847 extern unsigned int cheetah_plus_icpe_trap_vector[], cheetah_plus_icpe_trap_vector_tl1[];
848 extern unsigned int cheetah_plus_dcpe_trap_vector[], cheetah_plus_dcpe_trap_vector_tl1[];
849 extern unsigned int cheetah_fecc_trap_vector[], cheetah_fecc_trap_vector_tl1[];
850 extern unsigned int cheetah_cee_trap_vector[], cheetah_cee_trap_vector_tl1[];
851 extern unsigned int cheetah_deferred_trap_vector[], cheetah_deferred_trap_vector_tl1[];
852 
853 void __init cheetah_ecache_flush_init(void)
854 {
855         unsigned long largest_size, smallest_linesize, order, ver;
856         int i, sz;
857 
858         /* Scan all cpu device tree nodes, note two values:
859          * 1) largest E-cache size
860          * 2) smallest E-cache line size
861          */
862         largest_size = 0UL;
863         smallest_linesize = ~0UL;
864 
865         for (i = 0; i < NR_CPUS; i++) {
866                 unsigned long val;
867 
868                 val = cpu_data(i).ecache_size;
869                 if (!val)
870                         continue;
871 
872                 if (val > largest_size)
873                         largest_size = val;
874 
875                 val = cpu_data(i).ecache_line_size;
876                 if (val < smallest_linesize)
877                         smallest_linesize = val;
878 
879         }
880 
881         if (largest_size == 0UL || smallest_linesize == ~0UL) {
882                 prom_printf("cheetah_ecache_flush_init: Cannot probe cpu E-cache "
883                             "parameters.\n");
884                 prom_halt();
885         }
886 
887         ecache_flush_size = (2 * largest_size);
888         ecache_flush_linesize = smallest_linesize;
889 
890         ecache_flush_physbase = find_ecache_flush_span(ecache_flush_size);
891 
892         if (ecache_flush_physbase == ~0UL) {
893                 prom_printf("cheetah_ecache_flush_init: Cannot find %ld byte "
894                             "contiguous physical memory.\n",
895                             ecache_flush_size);
896                 prom_halt();
897         }
898 
899         /* Now allocate error trap reporting scoreboard. */
900         sz = NR_CPUS * (2 * sizeof(struct cheetah_err_info));
901         for (order = 0; order < NR_PAGE_ORDERS; order++) {
902                 if ((PAGE_SIZE << order) >= sz)
903                         break;
904         }
905         cheetah_error_log = (struct cheetah_err_info *)
906                 __get_free_pages(GFP_KERNEL, order);
907         if (!cheetah_error_log) {
908                 prom_printf("cheetah_ecache_flush_init: Failed to allocate "
909                             "error logging scoreboard (%d bytes).\n", sz);
910                 prom_halt();
911         }
912         memset(cheetah_error_log, 0, PAGE_SIZE << order);
913 
914         /* Mark all AFSRs as invalid so that the trap handler will
915          * log new new information there.
916          */
917         for (i = 0; i < 2 * NR_CPUS; i++)
918                 cheetah_error_log[i].afsr = CHAFSR_INVALID;
919 
920         __asm__ ("rdpr %%ver, %0" : "=r" (ver));
921         if ((ver >> 32) == __JALAPENO_ID ||
922             (ver >> 32) == __SERRANO_ID) {
923                 cheetah_error_table = &__jalapeno_error_table[0];
924                 cheetah_afsr_errors = JPAFSR_ERRORS;
925         } else if ((ver >> 32) == 0x003e0015) {
926                 cheetah_error_table = &__cheetah_plus_error_table[0];
927                 cheetah_afsr_errors = CHPAFSR_ERRORS;
928         } else {
929                 cheetah_error_table = &__cheetah_error_table[0];
930                 cheetah_afsr_errors = CHAFSR_ERRORS;
931         }
932 
933         /* Now patch trap tables. */
934         memcpy(tl0_fecc, cheetah_fecc_trap_vector, (8 * 4));
935         memcpy(tl1_fecc, cheetah_fecc_trap_vector_tl1, (8 * 4));
936         memcpy(tl0_cee, cheetah_cee_trap_vector, (8 * 4));
937         memcpy(tl1_cee, cheetah_cee_trap_vector_tl1, (8 * 4));
938         memcpy(tl0_iae, cheetah_deferred_trap_vector, (8 * 4));
939         memcpy(tl1_iae, cheetah_deferred_trap_vector_tl1, (8 * 4));
940         memcpy(tl0_dae, cheetah_deferred_trap_vector, (8 * 4));
941         memcpy(tl1_dae, cheetah_deferred_trap_vector_tl1, (8 * 4));
942         if (tlb_type == cheetah_plus) {
943                 memcpy(tl0_dcpe, cheetah_plus_dcpe_trap_vector, (8 * 4));
944                 memcpy(tl1_dcpe, cheetah_plus_dcpe_trap_vector_tl1, (8 * 4));
945                 memcpy(tl0_icpe, cheetah_plus_icpe_trap_vector, (8 * 4));
946                 memcpy(tl1_icpe, cheetah_plus_icpe_trap_vector_tl1, (8 * 4));
947         }
948         flushi(PAGE_OFFSET);
949 }
950 
951 static void cheetah_flush_ecache(void)
952 {
953         unsigned long flush_base = ecache_flush_physbase;
954         unsigned long flush_linesize = ecache_flush_linesize;
955         unsigned long flush_size = ecache_flush_size;
956 
957         __asm__ __volatile__("1: subcc  %0, %4, %0\n\t"
958                              "   bne,pt %%xcc, 1b\n\t"
959                              "    ldxa  [%2 + %0] %3, %%g0\n\t"
960                              : "=&r" (flush_size)
961                              : "" (flush_size), "r" (flush_base),
962                                "i" (ASI_PHYS_USE_EC), "r" (flush_linesize));
963 }
964 
965 static void cheetah_flush_ecache_line(unsigned long physaddr)
966 {
967         unsigned long alias;
968 
969         physaddr &= ~(8UL - 1UL);
970         physaddr = (ecache_flush_physbase +
971                     (physaddr & ((ecache_flush_size>>1UL) - 1UL)));
972         alias = physaddr + (ecache_flush_size >> 1UL);
973         __asm__ __volatile__("ldxa [%0] %2, %%g0\n\t"
974                              "ldxa [%1] %2, %%g0\n\t"
975                              "membar #Sync"
976                              : /* no outputs */
977                              : "r" (physaddr), "r" (alias),
978                                "i" (ASI_PHYS_USE_EC));
979 }
980 
981 /* Unfortunately, the diagnostic access to the I-cache tags we need to
982  * use to clear the thing interferes with I-cache coherency transactions.
983  *
984  * So we must only flush the I-cache when it is disabled.
985  */
986 static void __cheetah_flush_icache(void)
987 {
988         unsigned int icache_size, icache_line_size;
989         unsigned long addr;
990 
991         icache_size = local_cpu_data().icache_size;
992         icache_line_size = local_cpu_data().icache_line_size;
993 
994         /* Clear the valid bits in all the tags. */
995         for (addr = 0; addr < icache_size; addr += icache_line_size) {
996                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
997                                      "membar #Sync"
998                                      : /* no outputs */
999                                      : "r" (addr | (2 << 3)),
1000                                        "i" (ASI_IC_TAG));
1001         }
1002 }
1003 
1004 static void cheetah_flush_icache(void)
1005 {
1006         unsigned long dcu_save;
1007 
1008         /* Save current DCU, disable I-cache. */
1009         __asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1010                              "or %0, %2, %%g1\n\t"
1011                              "stxa %%g1, [%%g0] %1\n\t"
1012                              "membar #Sync"
1013                              : "=r" (dcu_save)
1014                              : "i" (ASI_DCU_CONTROL_REG), "i" (DCU_IC)
1015                              : "g1");
1016 
1017         __cheetah_flush_icache();
1018 
1019         /* Restore DCU register */
1020         __asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
1021                              "membar #Sync"
1022                              : /* no outputs */
1023                              : "r" (dcu_save), "i" (ASI_DCU_CONTROL_REG));
1024 }
1025 
1026 static void cheetah_flush_dcache(void)
1027 {
1028         unsigned int dcache_size, dcache_line_size;
1029         unsigned long addr;
1030 
1031         dcache_size = local_cpu_data().dcache_size;
1032         dcache_line_size = local_cpu_data().dcache_line_size;
1033 
1034         for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
1035                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1036                                      "membar #Sync"
1037                                      : /* no outputs */
1038                                      : "r" (addr), "i" (ASI_DCACHE_TAG));
1039         }
1040 }
1041 
1042 /* In order to make the even parity correct we must do two things.
1043  * First, we clear DC_data_parity and set DC_utag to an appropriate value.
1044  * Next, we clear out all 32-bytes of data for that line.  Data of
1045  * all-zero + tag parity value of zero == correct parity.
1046  */
1047 static void cheetah_plus_zap_dcache_parity(void)
1048 {
1049         unsigned int dcache_size, dcache_line_size;
1050         unsigned long addr;
1051 
1052         dcache_size = local_cpu_data().dcache_size;
1053         dcache_line_size = local_cpu_data().dcache_line_size;
1054 
1055         for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
1056                 unsigned long tag = (addr >> 14);
1057                 unsigned long line;
1058 
1059                 __asm__ __volatile__("membar    #Sync\n\t"
1060                                      "stxa      %0, [%1] %2\n\t"
1061                                      "membar    #Sync"
1062                                      : /* no outputs */
1063                                      : "r" (tag), "r" (addr),
1064                                        "i" (ASI_DCACHE_UTAG));
1065                 for (line = addr; line < addr + dcache_line_size; line += 8)
1066                         __asm__ __volatile__("membar    #Sync\n\t"
1067                                              "stxa      %%g0, [%0] %1\n\t"
1068                                              "membar    #Sync"
1069                                              : /* no outputs */
1070                                              : "r" (line),
1071                                                "i" (ASI_DCACHE_DATA));
1072         }
1073 }
1074 
1075 /* Conversion tables used to frob Cheetah AFSR syndrome values into
1076  * something palatable to the memory controller driver get_unumber
1077  * routine.
1078  */
1079 #define MT0     137
1080 #define MT1     138
1081 #define MT2     139
1082 #define NONE    254
1083 #define MTC0    140
1084 #define MTC1    141
1085 #define MTC2    142
1086 #define MTC3    143
1087 #define C0      128
1088 #define C1      129
1089 #define C2      130
1090 #define C3      131
1091 #define C4      132
1092 #define C5      133
1093 #define C6      134
1094 #define C7      135
1095 #define C8      136
1096 #define M2      144
1097 #define M3      145
1098 #define M4      146
1099 #define M       147
1100 static unsigned char cheetah_ecc_syntab[] = {
1101 /*00*/NONE, C0, C1, M2, C2, M2, M3, 47, C3, M2, M2, 53, M2, 41, 29, M,
1102 /*01*/C4, M, M, 50, M2, 38, 25, M2, M2, 33, 24, M2, 11, M, M2, 16,
1103 /*02*/C5, M, M, 46, M2, 37, 19, M2, M, 31, 32, M, 7, M2, M2, 10,
1104 /*03*/M2, 40, 13, M2, 59, M, M2, 66, M, M2, M2, 0, M2, 67, 71, M,
1105 /*04*/C6, M, M, 43, M, 36, 18, M, M2, 49, 15, M, 63, M2, M2, 6,
1106 /*05*/M2, 44, 28, M2, M, M2, M2, 52, 68, M2, M2, 62, M2, M3, M3, M4,
1107 /*06*/M2, 26, 106, M2, 64, M, M2, 2, 120, M, M2, M3, M, M3, M3, M4,
1108 /*07*/116, M2, M2, M3, M2, M3, M, M4, M2, 58, 54, M2, M, M4, M4, M3,
1109 /*08*/C7, M2, M, 42, M, 35, 17, M2, M, 45, 14, M2, 21, M2, M2, 5,
1110 /*09*/M, 27, M, M, 99, M, M, 3, 114, M2, M2, 20, M2, M3, M3, M,
1111 /*0a*/M2, 23, 113, M2, 112, M2, M, 51, 95, M, M2, M3, M2, M3, M3, M2,
1112 /*0b*/103, M, M2, M3, M2, M3, M3, M4, M2, 48, M, M, 73, M2, M, M3,
1113 /*0c*/M2, 22, 110, M2, 109, M2, M, 9, 108, M2, M, M3, M2, M3, M3, M,
1114 /*0d*/102, M2, M, M, M2, M3, M3, M, M2, M3, M3, M2, M, M4, M, M3,
1115 /*0e*/98, M, M2, M3, M2, M, M3, M4, M2, M3, M3, M4, M3, M, M, M,
1116 /*0f*/M2, M3, M3, M, M3, M, M, M, 56, M4, M, M3, M4, M, M, M,
1117 /*10*/C8, M, M2, 39, M, 34, 105, M2, M, 30, 104, M, 101, M, M, 4,
1118 /*11*/M, M, 100, M, 83, M, M2, 12, 87, M, M, 57, M2, M, M3, M,
1119 /*12*/M2, 97, 82, M2, 78, M2, M2, 1, 96, M, M, M, M, M, M3, M2,
1120 /*13*/94, M, M2, M3, M2, M, M3, M, M2, M, 79, M, 69, M, M4, M,
1121 /*14*/M2, 93, 92, M, 91, M, M2, 8, 90, M2, M2, M, M, M, M, M4,
1122 /*15*/89, M, M, M3, M2, M3, M3, M, M, M, M3, M2, M3, M2, M, M3,
1123 /*16*/86, M, M2, M3, M2, M, M3, M, M2, M, M3, M, M3, M, M, M3,
1124 /*17*/M, M, M3, M2, M3, M2, M4, M, 60, M, M2, M3, M4, M, M, M2,
1125 /*18*/M2, 88, 85, M2, 84, M, M2, 55, 81, M2, M2, M3, M2, M3, M3, M4,
1126 /*19*/77, M, M, M, M2, M3, M, M, M2, M3, M3, M4, M3, M2, M, M,
1127 /*1a*/74, M, M2, M3, M, M, M3, M, M, M, M3, M, M3, M, M4, M3,
1128 /*1b*/M2, 70, 107, M4, 65, M2, M2, M, 127, M, M, M, M2, M3, M3, M,
1129 /*1c*/80, M2, M2, 72, M, 119, 118, M, M2, 126, 76, M, 125, M, M4, M3,
1130 /*1d*/M2, 115, 124, M, 75, M, M, M3, 61, M, M4, M, M4, M, M, M,
1131 /*1e*/M, 123, 122, M4, 121, M4, M, M3, 117, M2, M2, M3, M4, M3, M, M,
1132 /*1f*/111, M, M, M, M4, M3, M3, M, M, M, M3, M, M3, M2, M, M
1133 };
1134 static unsigned char cheetah_mtag_syntab[] = {
1135        NONE, MTC0,
1136        MTC1, NONE,
1137        MTC2, NONE,
1138        NONE, MT0,
1139        MTC3, NONE,
1140        NONE, MT1,
1141        NONE, MT2,
1142        NONE, NONE
1143 };
1144 
1145 /* Return the highest priority error conditon mentioned. */
1146 static inline unsigned long cheetah_get_hipri(unsigned long afsr)
1147 {
1148         unsigned long tmp = 0;
1149         int i;
1150 
1151         for (i = 0; cheetah_error_table[i].mask; i++) {
1152                 if ((tmp = (afsr & cheetah_error_table[i].mask)) != 0UL)
1153                         return tmp;
1154         }
1155         return tmp;
1156 }
1157 
1158 static const char *cheetah_get_string(unsigned long bit)
1159 {
1160         int i;
1161 
1162         for (i = 0; cheetah_error_table[i].mask; i++) {
1163                 if ((bit & cheetah_error_table[i].mask) != 0UL)
1164                         return cheetah_error_table[i].name;
1165         }
1166         return "???";
1167 }
1168 
1169 static void cheetah_log_errors(struct pt_regs *regs, struct cheetah_err_info *info,
1170                                unsigned long afsr, unsigned long afar, int recoverable)
1171 {
1172         unsigned long hipri;
1173         char unum[256];
1174 
1175         printk("%s" "ERROR(%d): Cheetah error trap taken afsr[%016lx] afar[%016lx] TL1(%d)\n",
1176                (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1177                afsr, afar,
1178                (afsr & CHAFSR_TL1) ? 1 : 0);
1179         printk("%s" "ERROR(%d): TPC[%lx] TNPC[%lx] O7[%lx] TSTATE[%lx]\n",
1180                (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1181                regs->tpc, regs->tnpc, regs->u_regs[UREG_I7], regs->tstate);
1182         printk("%s" "ERROR(%d): ",
1183                (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id());
1184         printk("TPC<%pS>\n", (void *) regs->tpc);
1185         printk("%s" "ERROR(%d): M_SYND(%lx),  E_SYND(%lx)%s%s\n",
1186                (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1187                (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT,
1188                (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT,
1189                (afsr & CHAFSR_ME) ? ", Multiple Errors" : "",
1190                (afsr & CHAFSR_PRIV) ? ", Privileged" : "");
1191         hipri = cheetah_get_hipri(afsr);
1192         printk("%s" "ERROR(%d): Highest priority error (%016lx) \"%s\"\n",
1193                (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1194                hipri, cheetah_get_string(hipri));
1195 
1196         /* Try to get unumber if relevant. */
1197 #define ESYND_ERRORS    (CHAFSR_IVC | CHAFSR_IVU | \
1198                          CHAFSR_CPC | CHAFSR_CPU | \
1199                          CHAFSR_UE  | CHAFSR_CE  | \
1200                          CHAFSR_EDC | CHAFSR_EDU  | \
1201                          CHAFSR_UCC | CHAFSR_UCU  | \
1202                          CHAFSR_WDU | CHAFSR_WDC)
1203 #define MSYND_ERRORS    (CHAFSR_EMC | CHAFSR_EMU)
1204         if (afsr & ESYND_ERRORS) {
1205                 int syndrome;
1206                 int ret;
1207 
1208                 syndrome = (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT;
1209                 syndrome = cheetah_ecc_syntab[syndrome];
1210                 ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum));
1211                 if (ret != -1)
1212                         printk("%s" "ERROR(%d): AFAR E-syndrome [%s]\n",
1213                                (recoverable ? KERN_WARNING : KERN_CRIT),
1214                                smp_processor_id(), unum);
1215         } else if (afsr & MSYND_ERRORS) {
1216                 int syndrome;
1217                 int ret;
1218 
1219                 syndrome = (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT;
1220                 syndrome = cheetah_mtag_syntab[syndrome];
1221                 ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum));
1222                 if (ret != -1)
1223                         printk("%s" "ERROR(%d): AFAR M-syndrome [%s]\n",
1224                                (recoverable ? KERN_WARNING : KERN_CRIT),
1225                                smp_processor_id(), unum);
1226         }
1227 
1228         /* Now dump the cache snapshots. */
1229         printk("%s" "ERROR(%d): D-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx]\n",
1230                (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1231                (int) info->dcache_index,
1232                info->dcache_tag,
1233                info->dcache_utag,
1234                info->dcache_stag);
1235         printk("%s" "ERROR(%d): D-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n",
1236                (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1237                info->dcache_data[0],
1238                info->dcache_data[1],
1239                info->dcache_data[2],
1240                info->dcache_data[3]);
1241         printk("%s" "ERROR(%d): I-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx] "
1242                "u[%016llx] l[%016llx]\n",
1243                (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1244                (int) info->icache_index,
1245                info->icache_tag,
1246                info->icache_utag,
1247                info->icache_stag,
1248                info->icache_upper,
1249                info->icache_lower);
1250         printk("%s" "ERROR(%d): I-cache INSN0[%016llx] INSN1[%016llx] INSN2[%016llx] INSN3[%016llx]\n",
1251                (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1252                info->icache_data[0],
1253                info->icache_data[1],
1254                info->icache_data[2],
1255                info->icache_data[3]);
1256         printk("%s" "ERROR(%d): I-cache INSN4[%016llx] INSN5[%016llx] INSN6[%016llx] INSN7[%016llx]\n",
1257                (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1258                info->icache_data[4],
1259                info->icache_data[5],
1260                info->icache_data[6],
1261                info->icache_data[7]);
1262         printk("%s" "ERROR(%d): E-cache idx[%x] tag[%016llx]\n",
1263                (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1264                (int) info->ecache_index, info->ecache_tag);
1265         printk("%s" "ERROR(%d): E-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n",
1266                (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1267                info->ecache_data[0],
1268                info->ecache_data[1],
1269                info->ecache_data[2],
1270                info->ecache_data[3]);
1271 
1272         afsr = (afsr & ~hipri) & cheetah_afsr_errors;
1273         while (afsr != 0UL) {
1274                 unsigned long bit = cheetah_get_hipri(afsr);
1275 
1276                 printk("%s" "ERROR: Multiple-error (%016lx) \"%s\"\n",
1277                        (recoverable ? KERN_WARNING : KERN_CRIT),
1278                        bit, cheetah_get_string(bit));
1279 
1280                 afsr &= ~bit;
1281         }
1282 
1283         if (!recoverable)
1284                 printk(KERN_CRIT "ERROR: This condition is not recoverable.\n");
1285 }
1286 
1287 static int cheetah_recheck_errors(struct cheetah_err_info *logp)
1288 {
1289         unsigned long afsr, afar;
1290         int ret = 0;
1291 
1292         __asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1293                              : "=r" (afsr)
1294                              : "i" (ASI_AFSR));
1295         if ((afsr & cheetah_afsr_errors) != 0) {
1296                 if (logp != NULL) {
1297                         __asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1298                                              : "=r" (afar)
1299                                              : "i" (ASI_AFAR));
1300                         logp->afsr = afsr;
1301                         logp->afar = afar;
1302                 }
1303                 ret = 1;
1304         }
1305         __asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
1306                              "membar #Sync\n\t"
1307                              : : "r" (afsr), "i" (ASI_AFSR));
1308 
1309         return ret;
1310 }
1311 
1312 void cheetah_fecc_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1313 {
1314         struct cheetah_err_info local_snapshot, *p;
1315         int recoverable;
1316 
1317         /* Flush E-cache */
1318         cheetah_flush_ecache();
1319 
1320         p = cheetah_get_error_log(afsr);
1321         if (!p) {
1322                 prom_printf("ERROR: Early Fast-ECC error afsr[%016lx] afar[%016lx]\n",
1323                             afsr, afar);
1324                 prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1325                             smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1326                 prom_halt();
1327         }
1328 
1329         /* Grab snapshot of logged error. */
1330         memcpy(&local_snapshot, p, sizeof(local_snapshot));
1331 
1332         /* If the current trap snapshot does not match what the
1333          * trap handler passed along into our args, big trouble.
1334          * In such a case, mark the local copy as invalid.
1335          *
1336          * Else, it matches and we mark the afsr in the non-local
1337          * copy as invalid so we may log new error traps there.
1338          */
1339         if (p->afsr != afsr || p->afar != afar)
1340                 local_snapshot.afsr = CHAFSR_INVALID;
1341         else
1342                 p->afsr = CHAFSR_INVALID;
1343 
1344         cheetah_flush_icache();
1345         cheetah_flush_dcache();
1346 
1347         /* Re-enable I-cache/D-cache */
1348         __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1349                              "or %%g1, %1, %%g1\n\t"
1350                              "stxa %%g1, [%%g0] %0\n\t"
1351                              "membar #Sync"
1352                              : /* no outputs */
1353                              : "i" (ASI_DCU_CONTROL_REG),
1354                                "i" (DCU_DC | DCU_IC)
1355                              : "g1");
1356 
1357         /* Re-enable error reporting */
1358         __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1359                              "or %%g1, %1, %%g1\n\t"
1360                              "stxa %%g1, [%%g0] %0\n\t"
1361                              "membar #Sync"
1362                              : /* no outputs */
1363                              : "i" (ASI_ESTATE_ERROR_EN),
1364                                "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1365                              : "g1");
1366 
1367         /* Decide if we can continue after handling this trap and
1368          * logging the error.
1369          */
1370         recoverable = 1;
1371         if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1372                 recoverable = 0;
1373 
1374         /* Re-check AFSR/AFAR.  What we are looking for here is whether a new
1375          * error was logged while we had error reporting traps disabled.
1376          */
1377         if (cheetah_recheck_errors(&local_snapshot)) {
1378                 unsigned long new_afsr = local_snapshot.afsr;
1379 
1380                 /* If we got a new asynchronous error, die... */
1381                 if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
1382                                 CHAFSR_WDU | CHAFSR_CPU |
1383                                 CHAFSR_IVU | CHAFSR_UE |
1384                                 CHAFSR_BERR | CHAFSR_TO))
1385                         recoverable = 0;
1386         }
1387 
1388         /* Log errors. */
1389         cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1390 
1391         if (!recoverable)
1392                 panic("Irrecoverable Fast-ECC error trap.\n");
1393 
1394         /* Flush E-cache to kick the error trap handlers out. */
1395         cheetah_flush_ecache();
1396 }
1397 
1398 /* Try to fix a correctable error by pushing the line out from
1399  * the E-cache.  Recheck error reporting registers to see if the
1400  * problem is intermittent.
1401  */
1402 static int cheetah_fix_ce(unsigned long physaddr)
1403 {
1404         unsigned long orig_estate;
1405         unsigned long alias1, alias2;
1406         int ret;
1407 
1408         /* Make sure correctable error traps are disabled. */
1409         __asm__ __volatile__("ldxa      [%%g0] %2, %0\n\t"
1410                              "andn      %0, %1, %%g1\n\t"
1411                              "stxa      %%g1, [%%g0] %2\n\t"
1412                              "membar    #Sync"
1413                              : "=&r" (orig_estate)
1414                              : "i" (ESTATE_ERROR_CEEN),
1415                                "i" (ASI_ESTATE_ERROR_EN)
1416                              : "g1");
1417 
1418         /* We calculate alias addresses that will force the
1419          * cache line in question out of the E-cache.  Then
1420          * we bring it back in with an atomic instruction so
1421          * that we get it in some modified/exclusive state,
1422          * then we displace it again to try and get proper ECC
1423          * pushed back into the system.
1424          */
1425         physaddr &= ~(8UL - 1UL);
1426         alias1 = (ecache_flush_physbase +
1427                   (physaddr & ((ecache_flush_size >> 1) - 1)));
1428         alias2 = alias1 + (ecache_flush_size >> 1);
1429         __asm__ __volatile__("ldxa      [%0] %3, %%g0\n\t"
1430                              "ldxa      [%1] %3, %%g0\n\t"
1431                              "casxa     [%2] %3, %%g0, %%g0\n\t"
1432                              "ldxa      [%0] %3, %%g0\n\t"
1433                              "ldxa      [%1] %3, %%g0\n\t"
1434                              "membar    #Sync"
1435                              : /* no outputs */
1436                              : "r" (alias1), "r" (alias2),
1437                                "r" (physaddr), "i" (ASI_PHYS_USE_EC));
1438 
1439         /* Did that trigger another error? */
1440         if (cheetah_recheck_errors(NULL)) {
1441                 /* Try one more time. */
1442                 __asm__ __volatile__("ldxa [%0] %1, %%g0\n\t"
1443                                      "membar #Sync"
1444                                      : : "r" (physaddr), "i" (ASI_PHYS_USE_EC));
1445                 if (cheetah_recheck_errors(NULL))
1446                         ret = 2;
1447                 else
1448                         ret = 1;
1449         } else {
1450                 /* No new error, intermittent problem. */
1451                 ret = 0;
1452         }
1453 
1454         /* Restore error enables. */
1455         __asm__ __volatile__("stxa      %0, [%%g0] %1\n\t"
1456                              "membar    #Sync"
1457                              : : "r" (orig_estate), "i" (ASI_ESTATE_ERROR_EN));
1458 
1459         return ret;
1460 }
1461 
1462 /* Return non-zero if PADDR is a valid physical memory address. */
1463 static int cheetah_check_main_memory(unsigned long paddr)
1464 {
1465         unsigned long vaddr = PAGE_OFFSET + paddr;
1466 
1467         if (vaddr > (unsigned long) high_memory)
1468                 return 0;
1469 
1470         return kern_addr_valid(vaddr);
1471 }
1472 
1473 void cheetah_cee_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1474 {
1475         struct cheetah_err_info local_snapshot, *p;
1476         int recoverable, is_memory;
1477 
1478         p = cheetah_get_error_log(afsr);
1479         if (!p) {
1480                 prom_printf("ERROR: Early CEE error afsr[%016lx] afar[%016lx]\n",
1481                             afsr, afar);
1482                 prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1483                             smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1484                 prom_halt();
1485         }
1486 
1487         /* Grab snapshot of logged error. */
1488         memcpy(&local_snapshot, p, sizeof(local_snapshot));
1489 
1490         /* If the current trap snapshot does not match what the
1491          * trap handler passed along into our args, big trouble.
1492          * In such a case, mark the local copy as invalid.
1493          *
1494          * Else, it matches and we mark the afsr in the non-local
1495          * copy as invalid so we may log new error traps there.
1496          */
1497         if (p->afsr != afsr || p->afar != afar)
1498                 local_snapshot.afsr = CHAFSR_INVALID;
1499         else
1500                 p->afsr = CHAFSR_INVALID;
1501 
1502         is_memory = cheetah_check_main_memory(afar);
1503 
1504         if (is_memory && (afsr & CHAFSR_CE) != 0UL) {
1505                 /* XXX Might want to log the results of this operation
1506                  * XXX somewhere... -DaveM
1507                  */
1508                 cheetah_fix_ce(afar);
1509         }
1510 
1511         {
1512                 int flush_all, flush_line;
1513 
1514                 flush_all = flush_line = 0;
1515                 if ((afsr & CHAFSR_EDC) != 0UL) {
1516                         if ((afsr & cheetah_afsr_errors) == CHAFSR_EDC)
1517                                 flush_line = 1;
1518                         else
1519                                 flush_all = 1;
1520                 } else if ((afsr & CHAFSR_CPC) != 0UL) {
1521                         if ((afsr & cheetah_afsr_errors) == CHAFSR_CPC)
1522                                 flush_line = 1;
1523                         else
1524                                 flush_all = 1;
1525                 }
1526 
1527                 /* Trap handler only disabled I-cache, flush it. */
1528                 cheetah_flush_icache();
1529 
1530                 /* Re-enable I-cache */
1531                 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1532                                      "or %%g1, %1, %%g1\n\t"
1533                                      "stxa %%g1, [%%g0] %0\n\t"
1534                                      "membar #Sync"
1535                                      : /* no outputs */
1536                                      : "i" (ASI_DCU_CONTROL_REG),
1537                                      "i" (DCU_IC)
1538                                      : "g1");
1539 
1540                 if (flush_all)
1541                         cheetah_flush_ecache();
1542                 else if (flush_line)
1543                         cheetah_flush_ecache_line(afar);
1544         }
1545 
1546         /* Re-enable error reporting */
1547         __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1548                              "or %%g1, %1, %%g1\n\t"
1549                              "stxa %%g1, [%%g0] %0\n\t"
1550                              "membar #Sync"
1551                              : /* no outputs */
1552                              : "i" (ASI_ESTATE_ERROR_EN),
1553                                "i" (ESTATE_ERROR_CEEN)
1554                              : "g1");
1555 
1556         /* Decide if we can continue after handling this trap and
1557          * logging the error.
1558          */
1559         recoverable = 1;
1560         if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1561                 recoverable = 0;
1562 
1563         /* Re-check AFSR/AFAR */
1564         (void) cheetah_recheck_errors(&local_snapshot);
1565 
1566         /* Log errors. */
1567         cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1568 
1569         if (!recoverable)
1570                 panic("Irrecoverable Correctable-ECC error trap.\n");
1571 }
1572 
1573 void cheetah_deferred_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1574 {
1575         struct cheetah_err_info local_snapshot, *p;
1576         int recoverable, is_memory;
1577 
1578 #ifdef CONFIG_PCI
1579         /* Check for the special PCI poke sequence. */
1580         if (pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
1581                 cheetah_flush_icache();
1582                 cheetah_flush_dcache();
1583 
1584                 /* Re-enable I-cache/D-cache */
1585                 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1586                                      "or %%g1, %1, %%g1\n\t"
1587                                      "stxa %%g1, [%%g0] %0\n\t"
1588                                      "membar #Sync"
1589                                      : /* no outputs */
1590                                      : "i" (ASI_DCU_CONTROL_REG),
1591                                        "i" (DCU_DC | DCU_IC)
1592                                      : "g1");
1593 
1594                 /* Re-enable error reporting */
1595                 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1596                                      "or %%g1, %1, %%g1\n\t"
1597                                      "stxa %%g1, [%%g0] %0\n\t"
1598                                      "membar #Sync"
1599                                      : /* no outputs */
1600                                      : "i" (ASI_ESTATE_ERROR_EN),
1601                                        "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1602                                      : "g1");
1603 
1604                 (void) cheetah_recheck_errors(NULL);
1605 
1606                 pci_poke_faulted = 1;
1607                 regs->tpc += 4;
1608                 regs->tnpc = regs->tpc + 4;
1609                 return;
1610         }
1611 #endif
1612 
1613         p = cheetah_get_error_log(afsr);
1614         if (!p) {
1615                 prom_printf("ERROR: Early deferred error afsr[%016lx] afar[%016lx]\n",
1616                             afsr, afar);
1617                 prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1618                             smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1619                 prom_halt();
1620         }
1621 
1622         /* Grab snapshot of logged error. */
1623         memcpy(&local_snapshot, p, sizeof(local_snapshot));
1624 
1625         /* If the current trap snapshot does not match what the
1626          * trap handler passed along into our args, big trouble.
1627          * In such a case, mark the local copy as invalid.
1628          *
1629          * Else, it matches and we mark the afsr in the non-local
1630          * copy as invalid so we may log new error traps there.
1631          */
1632         if (p->afsr != afsr || p->afar != afar)
1633                 local_snapshot.afsr = CHAFSR_INVALID;
1634         else
1635                 p->afsr = CHAFSR_INVALID;
1636 
1637         is_memory = cheetah_check_main_memory(afar);
1638 
1639         {
1640                 int flush_all, flush_line;
1641 
1642                 flush_all = flush_line = 0;
1643                 if ((afsr & CHAFSR_EDU) != 0UL) {
1644                         if ((afsr & cheetah_afsr_errors) == CHAFSR_EDU)
1645                                 flush_line = 1;
1646                         else
1647                                 flush_all = 1;
1648                 } else if ((afsr & CHAFSR_BERR) != 0UL) {
1649                         if ((afsr & cheetah_afsr_errors) == CHAFSR_BERR)
1650                                 flush_line = 1;
1651                         else
1652                                 flush_all = 1;
1653                 }
1654 
1655                 cheetah_flush_icache();
1656                 cheetah_flush_dcache();
1657 
1658                 /* Re-enable I/D caches */
1659                 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1660                                      "or %%g1, %1, %%g1\n\t"
1661                                      "stxa %%g1, [%%g0] %0\n\t"
1662                                      "membar #Sync"
1663                                      : /* no outputs */
1664                                      : "i" (ASI_DCU_CONTROL_REG),
1665                                      "i" (DCU_IC | DCU_DC)
1666                                      : "g1");
1667 
1668                 if (flush_all)
1669                         cheetah_flush_ecache();
1670                 else if (flush_line)
1671                         cheetah_flush_ecache_line(afar);
1672         }
1673 
1674         /* Re-enable error reporting */
1675         __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1676                              "or %%g1, %1, %%g1\n\t"
1677                              "stxa %%g1, [%%g0] %0\n\t"
1678                              "membar #Sync"
1679                              : /* no outputs */
1680                              : "i" (ASI_ESTATE_ERROR_EN),
1681                              "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1682                              : "g1");
1683 
1684         /* Decide if we can continue after handling this trap and
1685          * logging the error.
1686          */
1687         recoverable = 1;
1688         if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1689                 recoverable = 0;
1690 
1691         /* Re-check AFSR/AFAR.  What we are looking for here is whether a new
1692          * error was logged while we had error reporting traps disabled.
1693          */
1694         if (cheetah_recheck_errors(&local_snapshot)) {
1695                 unsigned long new_afsr = local_snapshot.afsr;
1696 
1697                 /* If we got a new asynchronous error, die... */
1698                 if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
1699                                 CHAFSR_WDU | CHAFSR_CPU |
1700                                 CHAFSR_IVU | CHAFSR_UE |
1701                                 CHAFSR_BERR | CHAFSR_TO))
1702                         recoverable = 0;
1703         }
1704 
1705         /* Log errors. */
1706         cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1707 
1708         /* "Recoverable" here means we try to yank the page from ever
1709          * being newly used again.  This depends upon a few things:
1710          * 1) Must be main memory, and AFAR must be valid.
1711          * 2) If we trapped from user, OK.
1712          * 3) Else, if we trapped from kernel we must find exception
1713          *    table entry (ie. we have to have been accessing user
1714          *    space).
1715          *
1716          * If AFAR is not in main memory, or we trapped from kernel
1717          * and cannot find an exception table entry, it is unacceptable
1718          * to try and continue.
1719          */
1720         if (recoverable && is_memory) {
1721                 if ((regs->tstate & TSTATE_PRIV) == 0UL) {
1722                         /* OK, usermode access. */
1723                         recoverable = 1;
1724                 } else {
1725                         const struct exception_table_entry *entry;
1726 
1727                         entry = search_exception_tables(regs->tpc);
1728                         if (entry) {
1729                                 /* OK, kernel access to userspace. */
1730                                 recoverable = 1;
1731 
1732                         } else {
1733                                 /* BAD, privileged state is corrupted. */
1734                                 recoverable = 0;
1735                         }
1736 
1737                         if (recoverable) {
1738                                 if (pfn_valid(afar >> PAGE_SHIFT))
1739                                         get_page(pfn_to_page(afar >> PAGE_SHIFT));
1740                                 else
1741                                         recoverable = 0;
1742 
1743                                 /* Only perform fixup if we still have a
1744                                  * recoverable condition.
1745                                  */
1746                                 if (recoverable) {
1747                                         regs->tpc = entry->fixup;
1748                                         regs->tnpc = regs->tpc + 4;
1749                                 }
1750                         }
1751                 }
1752         } else {
1753                 recoverable = 0;
1754         }
1755 
1756         if (!recoverable)
1757                 panic("Irrecoverable deferred error trap.\n");
1758 }
1759 
1760 /* Handle a D/I cache parity error trap.  TYPE is encoded as:
1761  *
1762  * Bit0:        0=dcache,1=icache
1763  * Bit1:        0=recoverable,1=unrecoverable
1764  *
1765  * The hardware has disabled both the I-cache and D-cache in
1766  * the %dcr register.  
1767  */
1768 void cheetah_plus_parity_error(int type, struct pt_regs *regs)
1769 {
1770         if (type & 0x1)
1771                 __cheetah_flush_icache();
1772         else
1773                 cheetah_plus_zap_dcache_parity();
1774         cheetah_flush_dcache();
1775 
1776         /* Re-enable I-cache/D-cache */
1777         __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1778                              "or %%g1, %1, %%g1\n\t"
1779                              "stxa %%g1, [%%g0] %0\n\t"
1780                              "membar #Sync"
1781                              : /* no outputs */
1782                              : "i" (ASI_DCU_CONTROL_REG),
1783                                "i" (DCU_DC | DCU_IC)
1784                              : "g1");
1785 
1786         if (type & 0x2) {
1787                 printk(KERN_EMERG "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
1788                        smp_processor_id(),
1789                        (type & 0x1) ? 'I' : 'D',
1790                        regs->tpc);
1791                 printk(KERN_EMERG "TPC<%pS>\n", (void *) regs->tpc);
1792                 panic("Irrecoverable Cheetah+ parity error.");
1793         }
1794 
1795         printk(KERN_WARNING "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
1796                smp_processor_id(),
1797                (type & 0x1) ? 'I' : 'D',
1798                regs->tpc);
1799         printk(KERN_WARNING "TPC<%pS>\n", (void *) regs->tpc);
1800 }
1801 
1802 struct sun4v_error_entry {
1803         /* Unique error handle */
1804 /*0x00*/u64             err_handle;
1805 
1806         /* %stick value at the time of the error */
1807 /*0x08*/u64             err_stick;
1808 
1809 /*0x10*/u8              reserved_1[3];
1810 
1811         /* Error type */
1812 /*0x13*/u8              err_type;
1813 #define SUN4V_ERR_TYPE_UNDEFINED        0
1814 #define SUN4V_ERR_TYPE_UNCORRECTED_RES  1
1815 #define SUN4V_ERR_TYPE_PRECISE_NONRES   2
1816 #define SUN4V_ERR_TYPE_DEFERRED_NONRES  3
1817 #define SUN4V_ERR_TYPE_SHUTDOWN_RQST    4
1818 #define SUN4V_ERR_TYPE_DUMP_CORE        5
1819 #define SUN4V_ERR_TYPE_SP_STATE_CHANGE  6
1820 #define SUN4V_ERR_TYPE_NUM              7
1821 
1822         /* Error attributes */
1823 /*0x14*/u32             err_attrs;
1824 #define SUN4V_ERR_ATTRS_PROCESSOR       0x00000001
1825 #define SUN4V_ERR_ATTRS_MEMORY          0x00000002
1826 #define SUN4V_ERR_ATTRS_PIO             0x00000004
1827 #define SUN4V_ERR_ATTRS_INT_REGISTERS   0x00000008
1828 #define SUN4V_ERR_ATTRS_FPU_REGISTERS   0x00000010
1829 #define SUN4V_ERR_ATTRS_SHUTDOWN_RQST   0x00000020
1830 #define SUN4V_ERR_ATTRS_ASR             0x00000040
1831 #define SUN4V_ERR_ATTRS_ASI             0x00000080
1832 #define SUN4V_ERR_ATTRS_PRIV_REG        0x00000100
1833 #define SUN4V_ERR_ATTRS_SPSTATE_MSK     0x00000600
1834 #define SUN4V_ERR_ATTRS_MCD             0x00000800
1835 #define SUN4V_ERR_ATTRS_SPSTATE_SHFT    9
1836 #define SUN4V_ERR_ATTRS_MODE_MSK        0x03000000
1837 #define SUN4V_ERR_ATTRS_MODE_SHFT       24
1838 #define SUN4V_ERR_ATTRS_RES_QUEUE_FULL  0x80000000
1839 
1840 #define SUN4V_ERR_SPSTATE_FAULTED       0
1841 #define SUN4V_ERR_SPSTATE_AVAILABLE     1
1842 #define SUN4V_ERR_SPSTATE_NOT_PRESENT   2
1843 
1844 #define SUN4V_ERR_MODE_USER             1
1845 #define SUN4V_ERR_MODE_PRIV             2
1846 
1847         /* Real address of the memory region or PIO transaction */
1848 /*0x18*/u64             err_raddr;
1849 
1850         /* Size of the operation triggering the error, in bytes */
1851 /*0x20*/u32             err_size;
1852 
1853         /* ID of the CPU */
1854 /*0x24*/u16             err_cpu;
1855 
1856         /* Grace periof for shutdown, in seconds */
1857 /*0x26*/u16             err_secs;
1858 
1859         /* Value of the %asi register */
1860 /*0x28*/u8              err_asi;
1861 
1862 /*0x29*/u8              reserved_2;
1863 
1864         /* Value of the ASR register number */
1865 /*0x2a*/u16             err_asr;
1866 #define SUN4V_ERR_ASR_VALID             0x8000
1867 
1868 /*0x2c*/u32             reserved_3;
1869 /*0x30*/u64             reserved_4;
1870 /*0x38*/u64             reserved_5;
1871 };
1872 
1873 static atomic_t sun4v_resum_oflow_cnt = ATOMIC_INIT(0);
1874 static atomic_t sun4v_nonresum_oflow_cnt = ATOMIC_INIT(0);
1875 
1876 static const char *sun4v_err_type_to_str(u8 type)
1877 {
1878         static const char *types[SUN4V_ERR_TYPE_NUM] = {
1879                 "undefined",
1880                 "uncorrected resumable",
1881                 "precise nonresumable",
1882                 "deferred nonresumable",
1883                 "shutdown request",
1884                 "dump core",
1885                 "SP state change",
1886         };
1887 
1888         if (type < SUN4V_ERR_TYPE_NUM)
1889                 return types[type];
1890 
1891         return "unknown";
1892 }
1893 
1894 static void sun4v_emit_err_attr_strings(u32 attrs)
1895 {
1896         static const char *attr_names[] = {
1897                 "processor",
1898                 "memory",
1899                 "PIO",
1900                 "int-registers",
1901                 "fpu-registers",
1902                 "shutdown-request",
1903                 "ASR",
1904                 "ASI",
1905                 "priv-reg",
1906         };
1907         static const char *sp_states[] = {
1908                 "sp-faulted",
1909                 "sp-available",
1910                 "sp-not-present",
1911                 "sp-state-reserved",
1912         };
1913         static const char *modes[] = {
1914                 "mode-reserved0",
1915                 "user",
1916                 "priv",
1917                 "mode-reserved1",
1918         };
1919         u32 sp_state, mode;
1920         int i;
1921 
1922         for (i = 0; i < ARRAY_SIZE(attr_names); i++) {
1923                 if (attrs & (1U << i)) {
1924                         const char *s = attr_names[i];
1925 
1926                         pr_cont("%s ", s);
1927                 }
1928         }
1929 
1930         sp_state = ((attrs & SUN4V_ERR_ATTRS_SPSTATE_MSK) >>
1931                     SUN4V_ERR_ATTRS_SPSTATE_SHFT);
1932         pr_cont("%s ", sp_states[sp_state]);
1933 
1934         mode = ((attrs & SUN4V_ERR_ATTRS_MODE_MSK) >>
1935                 SUN4V_ERR_ATTRS_MODE_SHFT);
1936         pr_cont("%s ", modes[mode]);
1937 
1938         if (attrs & SUN4V_ERR_ATTRS_RES_QUEUE_FULL)
1939                 pr_cont("res-queue-full ");
1940 }
1941 
1942 /* When the report contains a real-address of "-1" it means that the
1943  * hardware did not provide the address.  So we compute the effective
1944  * address of the load or store instruction at regs->tpc and report
1945  * that.  Usually when this happens it's a PIO and in such a case we
1946  * are using physical addresses with bypass ASIs anyways, so what we
1947  * report here is exactly what we want.
1948  */
1949 static void sun4v_report_real_raddr(const char *pfx, struct pt_regs *regs)
1950 {
1951         unsigned int insn;
1952         u64 addr;
1953 
1954         if (!(regs->tstate & TSTATE_PRIV))
1955                 return;
1956 
1957         insn = *(unsigned int *) regs->tpc;
1958 
1959         addr = compute_effective_address(regs, insn, 0);
1960 
1961         printk("%s: insn effective address [0x%016llx]\n",
1962                pfx, addr);
1963 }
1964 
1965 static void sun4v_log_error(struct pt_regs *regs, struct sun4v_error_entry *ent,
1966                             int cpu, const char *pfx, atomic_t *ocnt)
1967 {
1968         u64 *raw_ptr = (u64 *) ent;
1969         u32 attrs;
1970         int cnt;
1971 
1972         printk("%s: Reporting on cpu %d\n", pfx, cpu);
1973         printk("%s: TPC [0x%016lx] <%pS>\n",
1974                pfx, regs->tpc, (void *) regs->tpc);
1975 
1976         printk("%s: RAW [%016llx:%016llx:%016llx:%016llx\n",
1977                pfx, raw_ptr[0], raw_ptr[1], raw_ptr[2], raw_ptr[3]);
1978         printk("%s:      %016llx:%016llx:%016llx:%016llx]\n",
1979                pfx, raw_ptr[4], raw_ptr[5], raw_ptr[6], raw_ptr[7]);
1980 
1981         printk("%s: handle [0x%016llx] stick [0x%016llx]\n",
1982                pfx, ent->err_handle, ent->err_stick);
1983 
1984         printk("%s: type [%s]\n", pfx, sun4v_err_type_to_str(ent->err_type));
1985 
1986         attrs = ent->err_attrs;
1987         printk("%s: attrs [0x%08x] < ", pfx, attrs);
1988         sun4v_emit_err_attr_strings(attrs);
1989         pr_cont(">\n");
1990 
1991         /* Various fields in the error report are only valid if
1992          * certain attribute bits are set.
1993          */
1994         if (attrs & (SUN4V_ERR_ATTRS_MEMORY |
1995                      SUN4V_ERR_ATTRS_PIO |
1996                      SUN4V_ERR_ATTRS_ASI)) {
1997                 printk("%s: raddr [0x%016llx]\n", pfx, ent->err_raddr);
1998 
1999                 if (ent->err_raddr == ~(u64)0)
2000                         sun4v_report_real_raddr(pfx, regs);
2001         }
2002 
2003         if (attrs & (SUN4V_ERR_ATTRS_MEMORY | SUN4V_ERR_ATTRS_ASI))
2004                 printk("%s: size [0x%x]\n", pfx, ent->err_size);
2005 
2006         if (attrs & (SUN4V_ERR_ATTRS_PROCESSOR |
2007                      SUN4V_ERR_ATTRS_INT_REGISTERS |
2008                      SUN4V_ERR_ATTRS_FPU_REGISTERS |
2009                      SUN4V_ERR_ATTRS_PRIV_REG))
2010                 printk("%s: cpu[%u]\n", pfx, ent->err_cpu);
2011 
2012         if (attrs & SUN4V_ERR_ATTRS_ASI)
2013                 printk("%s: asi [0x%02x]\n", pfx, ent->err_asi);
2014 
2015         if ((attrs & (SUN4V_ERR_ATTRS_INT_REGISTERS |
2016                       SUN4V_ERR_ATTRS_FPU_REGISTERS |
2017                       SUN4V_ERR_ATTRS_PRIV_REG)) &&
2018             (ent->err_asr & SUN4V_ERR_ASR_VALID) != 0)
2019                 printk("%s: reg [0x%04x]\n",
2020                        pfx, ent->err_asr & ~SUN4V_ERR_ASR_VALID);
2021 
2022         show_regs(regs);
2023 
2024         if ((cnt = atomic_read(ocnt)) != 0) {
2025                 atomic_set(ocnt, 0);
2026                 wmb();
2027                 printk("%s: Queue overflowed %d times.\n",
2028                        pfx, cnt);
2029         }
2030 }
2031 
2032 /* Handle memory corruption detected error which is vectored in
2033  * through resumable error trap.
2034  */
2035 static void do_mcd_err(struct pt_regs *regs, struct sun4v_error_entry ent)
2036 {
2037         if (notify_die(DIE_TRAP, "MCD error", regs, 0, 0x34,
2038                        SIGSEGV) == NOTIFY_STOP)
2039                 return;
2040 
2041         if (regs->tstate & TSTATE_PRIV) {
2042                 /* MCD exception could happen because the task was
2043                  * running a system call with MCD enabled and passed a
2044                  * non-versioned pointer or pointer with bad version
2045                  * tag to the system call. In such cases, hypervisor
2046                  * places the address of offending instruction in the
2047                  * resumable error report. This is a deferred error,
2048                  * so the read/write that caused the trap was potentially
2049                  * retired long time back and we may have no choice
2050                  * but to send SIGSEGV to the process.
2051                  */
2052                 const struct exception_table_entry *entry;
2053 
2054                 entry = search_exception_tables(regs->tpc);
2055                 if (entry) {
2056                         /* Looks like a bad syscall parameter */
2057 #ifdef DEBUG_EXCEPTIONS
2058                         pr_emerg("Exception: PC<%016lx> faddr<UNKNOWN>\n",
2059                                  regs->tpc);
2060                         pr_emerg("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
2061                                  ent.err_raddr, entry->fixup);
2062 #endif
2063                         regs->tpc = entry->fixup;
2064                         regs->tnpc = regs->tpc + 4;
2065                         return;
2066                 }
2067         }
2068 
2069         /* Send SIGSEGV to the userspace process with the right signal
2070          * code
2071          */
2072         force_sig_fault(SIGSEGV, SEGV_ADIDERR, (void __user *)ent.err_raddr);
2073 }
2074 
2075 /* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate.
2076  * Log the event and clear the first word of the entry.
2077  */
2078 void sun4v_resum_error(struct pt_regs *regs, unsigned long offset)
2079 {
2080         enum ctx_state prev_state = exception_enter();
2081         struct sun4v_error_entry *ent, local_copy;
2082         struct trap_per_cpu *tb;
2083         unsigned long paddr;
2084         int cpu;
2085 
2086         cpu = get_cpu();
2087 
2088         tb = &trap_block[cpu];
2089         paddr = tb->resum_kernel_buf_pa + offset;
2090         ent = __va(paddr);
2091 
2092         memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
2093 
2094         /* We have a local copy now, so release the entry.  */
2095         ent->err_handle = 0;
2096         wmb();
2097 
2098         put_cpu();
2099 
2100         if (local_copy.err_type == SUN4V_ERR_TYPE_SHUTDOWN_RQST) {
2101                 /* We should really take the seconds field of
2102                  * the error report and use it for the shutdown
2103                  * invocation, but for now do the same thing we
2104                  * do for a DS shutdown request.
2105                  */
2106                 pr_info("Shutdown request, %u seconds...\n",
2107                         local_copy.err_secs);
2108                 orderly_poweroff(true);
2109                 goto out;
2110         }
2111 
2112         /* If this is a memory corruption detected error vectored in
2113          * by HV through resumable error trap, call the handler
2114          */
2115         if (local_copy.err_attrs & SUN4V_ERR_ATTRS_MCD) {
2116                 do_mcd_err(regs, local_copy);
2117                 return;
2118         }
2119 
2120         sun4v_log_error(regs, &local_copy, cpu,
2121                         KERN_ERR "RESUMABLE ERROR",
2122                         &sun4v_resum_oflow_cnt);
2123 out:
2124         exception_exit(prev_state);
2125 }
2126 
2127 /* If we try to printk() we'll probably make matters worse, by trying
2128  * to retake locks this cpu already holds or causing more errors. So
2129  * just bump a counter, and we'll report these counter bumps above.
2130  */
2131 void sun4v_resum_overflow(struct pt_regs *regs)
2132 {
2133         atomic_inc(&sun4v_resum_oflow_cnt);
2134 }
2135 
2136 /* Given a set of registers, get the virtual addressi that was being accessed
2137  * by the faulting instructions at tpc.
2138  */
2139 static unsigned long sun4v_get_vaddr(struct pt_regs *regs)
2140 {
2141         unsigned int insn;
2142 
2143         if (!copy_from_user(&insn, (void __user *)regs->tpc, 4)) {
2144                 return compute_effective_address(regs, insn,
2145                                                  (insn >> 25) & 0x1f);
2146         }
2147         return 0;
2148 }
2149 
2150 /* Attempt to handle non-resumable errors generated from userspace.
2151  * Returns true if the signal was handled, false otherwise.
2152  */
2153 static bool sun4v_nonresum_error_user_handled(struct pt_regs *regs,
2154                                               struct sun4v_error_entry *ent)
2155 {
2156         unsigned int attrs = ent->err_attrs;
2157 
2158         if (attrs & SUN4V_ERR_ATTRS_MEMORY) {
2159                 unsigned long addr = ent->err_raddr;
2160 
2161                 if (addr == ~(u64)0) {
2162                         /* This seems highly unlikely to ever occur */
2163                         pr_emerg("SUN4V NON-RECOVERABLE ERROR: Memory error detected in unknown location!\n");
2164                 } else {
2165                         unsigned long page_cnt = DIV_ROUND_UP(ent->err_size,
2166                                                               PAGE_SIZE);
2167 
2168                         /* Break the unfortunate news. */
2169                         pr_emerg("SUN4V NON-RECOVERABLE ERROR: Memory failed at %016lX\n",
2170                                  addr);
2171                         pr_emerg("SUN4V NON-RECOVERABLE ERROR:   Claiming %lu ages.\n",
2172                                  page_cnt);
2173 
2174                         while (page_cnt-- > 0) {
2175                                 if (pfn_valid(addr >> PAGE_SHIFT))
2176                                         get_page(pfn_to_page(addr >> PAGE_SHIFT));
2177                                 addr += PAGE_SIZE;
2178                         }
2179                 }
2180                 force_sig(SIGKILL);
2181 
2182                 return true;
2183         }
2184         if (attrs & SUN4V_ERR_ATTRS_PIO) {
2185                 force_sig_fault(SIGBUS, BUS_ADRERR,
2186                                 (void __user *)sun4v_get_vaddr(regs));
2187                 return true;
2188         }
2189 
2190         /* Default to doing nothing */
2191         return false;
2192 }
2193 
2194 /* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate.
2195  * Log the event, clear the first word of the entry, and die.
2196  */
2197 void sun4v_nonresum_error(struct pt_regs *regs, unsigned long offset)
2198 {
2199         struct sun4v_error_entry *ent, local_copy;
2200         struct trap_per_cpu *tb;
2201         unsigned long paddr;
2202         int cpu;
2203 
2204         cpu = get_cpu();
2205 
2206         tb = &trap_block[cpu];
2207         paddr = tb->nonresum_kernel_buf_pa + offset;
2208         ent = __va(paddr);
2209 
2210         memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
2211 
2212         /* We have a local copy now, so release the entry.  */
2213         ent->err_handle = 0;
2214         wmb();
2215 
2216         put_cpu();
2217 
2218         if (!(regs->tstate & TSTATE_PRIV) &&
2219             sun4v_nonresum_error_user_handled(regs, &local_copy)) {
2220                 /* DON'T PANIC: This userspace error was handled. */
2221                 return;
2222         }
2223 
2224 #ifdef CONFIG_PCI
2225         /* Check for the special PCI poke sequence. */
2226         if (pci_poke_in_progress && pci_poke_cpu == cpu) {
2227                 pci_poke_faulted = 1;
2228                 regs->tpc += 4;
2229                 regs->tnpc = regs->tpc + 4;
2230                 return;
2231         }
2232 #endif
2233 
2234         sun4v_log_error(regs, &local_copy, cpu,
2235                         KERN_EMERG "NON-RESUMABLE ERROR",
2236                         &sun4v_nonresum_oflow_cnt);
2237 
2238         panic("Non-resumable error.");
2239 }
2240 
2241 /* If we try to printk() we'll probably make matters worse, by trying
2242  * to retake locks this cpu already holds or causing more errors. So
2243  * just bump a counter, and we'll report these counter bumps above.
2244  */
2245 void sun4v_nonresum_overflow(struct pt_regs *regs)
2246 {
2247         /* XXX Actually even this can make not that much sense.  Perhaps
2248          * XXX we should just pull the plug and panic directly from here?
2249          */
2250         atomic_inc(&sun4v_nonresum_oflow_cnt);
2251 }
2252 
2253 static void sun4v_tlb_error(struct pt_regs *regs)
2254 {
2255         die_if_kernel("TLB/TSB error", regs);
2256 }
2257 
2258 unsigned long sun4v_err_itlb_vaddr;
2259 unsigned long sun4v_err_itlb_ctx;
2260 unsigned long sun4v_err_itlb_pte;
2261 unsigned long sun4v_err_itlb_error;
2262 
2263 void sun4v_itlb_error_report(struct pt_regs *regs, int tl)
2264 {
2265         dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2266 
2267         printk(KERN_EMERG "SUN4V-ITLB: Error at TPC[%lx], tl %d\n",
2268                regs->tpc, tl);
2269         printk(KERN_EMERG "SUN4V-ITLB: TPC<%pS>\n", (void *) regs->tpc);
2270         printk(KERN_EMERG "SUN4V-ITLB: O7[%lx]\n", regs->u_regs[UREG_I7]);
2271         printk(KERN_EMERG "SUN4V-ITLB: O7<%pS>\n",
2272                (void *) regs->u_regs[UREG_I7]);
2273         printk(KERN_EMERG "SUN4V-ITLB: vaddr[%lx] ctx[%lx] "
2274                "pte[%lx] error[%lx]\n",
2275                sun4v_err_itlb_vaddr, sun4v_err_itlb_ctx,
2276                sun4v_err_itlb_pte, sun4v_err_itlb_error);
2277 
2278         sun4v_tlb_error(regs);
2279 }
2280 
2281 unsigned long sun4v_err_dtlb_vaddr;
2282 unsigned long sun4v_err_dtlb_ctx;
2283 unsigned long sun4v_err_dtlb_pte;
2284 unsigned long sun4v_err_dtlb_error;
2285 
2286 void sun4v_dtlb_error_report(struct pt_regs *regs, int tl)
2287 {
2288         dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2289 
2290         printk(KERN_EMERG "SUN4V-DTLB: Error at TPC[%lx], tl %d\n",
2291                regs->tpc, tl);
2292         printk(KERN_EMERG "SUN4V-DTLB: TPC<%pS>\n", (void *) regs->tpc);
2293         printk(KERN_EMERG "SUN4V-DTLB: O7[%lx]\n", regs->u_regs[UREG_I7]);
2294         printk(KERN_EMERG "SUN4V-DTLB: O7<%pS>\n",
2295                (void *) regs->u_regs[UREG_I7]);
2296         printk(KERN_EMERG "SUN4V-DTLB: vaddr[%lx] ctx[%lx] "
2297                "pte[%lx] error[%lx]\n",
2298                sun4v_err_dtlb_vaddr, sun4v_err_dtlb_ctx,
2299                sun4v_err_dtlb_pte, sun4v_err_dtlb_error);
2300 
2301         sun4v_tlb_error(regs);
2302 }
2303 
2304 void hypervisor_tlbop_error(unsigned long err, unsigned long op)
2305 {
2306         printk(KERN_CRIT "SUN4V: TLB hv call error %lu for op %lu\n",
2307                err, op);
2308 }
2309 
2310 void hypervisor_tlbop_error_xcall(unsigned long err, unsigned long op)
2311 {
2312         printk(KERN_CRIT "SUN4V: XCALL TLB hv call error %lu for op %lu\n",
2313                err, op);
2314 }
2315 
2316 static void do_fpe_common(struct pt_regs *regs)
2317 {
2318         if (regs->tstate & TSTATE_PRIV) {
2319                 regs->tpc = regs->tnpc;
2320                 regs->tnpc += 4;
2321         } else {
2322                 unsigned long fsr = current_thread_info()->xfsr[0];
2323                 int code;
2324 
2325                 if (test_thread_flag(TIF_32BIT)) {
2326                         regs->tpc &= 0xffffffff;
2327                         regs->tnpc &= 0xffffffff;
2328                 }
2329                 code = FPE_FLTUNK;
2330                 if ((fsr & 0x1c000) == (1 << 14)) {
2331                         if (fsr & 0x10)
2332                                 code = FPE_FLTINV;
2333                         else if (fsr & 0x08)
2334                                 code = FPE_FLTOVF;
2335                         else if (fsr & 0x04)
2336                                 code = FPE_FLTUND;
2337                         else if (fsr & 0x02)
2338                                 code = FPE_FLTDIV;
2339                         else if (fsr & 0x01)
2340                                 code = FPE_FLTRES;
2341                 }
2342                 force_sig_fault(SIGFPE, code, (void __user *)regs->tpc);
2343         }
2344 }
2345 
2346 void do_fpieee(struct pt_regs *regs)
2347 {
2348         enum ctx_state prev_state = exception_enter();
2349 
2350         if (notify_die(DIE_TRAP, "fpu exception ieee", regs,
2351                        0, 0x24, SIGFPE) == NOTIFY_STOP)
2352                 goto out;
2353 
2354         do_fpe_common(regs);
2355 out:
2356         exception_exit(prev_state);
2357 }
2358 
2359 void do_fpother(struct pt_regs *regs)
2360 {
2361         enum ctx_state prev_state = exception_enter();
2362         struct fpustate *f = FPUSTATE;
2363         int ret = 0;
2364 
2365         if (notify_die(DIE_TRAP, "fpu exception other", regs,
2366                        0, 0x25, SIGFPE) == NOTIFY_STOP)
2367                 goto out;
2368 
2369         switch ((current_thread_info()->xfsr[0] & 0x1c000)) {
2370         case (2 << 14): /* unfinished_FPop */
2371         case (3 << 14): /* unimplemented_FPop */
2372                 ret = do_mathemu(regs, f, false);
2373                 break;
2374         }
2375         if (ret)
2376                 goto out;
2377         do_fpe_common(regs);
2378 out:
2379         exception_exit(prev_state);
2380 }
2381 
2382 void do_tof(struct pt_regs *regs)
2383 {
2384         enum ctx_state prev_state = exception_enter();
2385 
2386         if (notify_die(DIE_TRAP, "tagged arithmetic overflow", regs,
2387                        0, 0x26, SIGEMT) == NOTIFY_STOP)
2388                 goto out;
2389 
2390         if (regs->tstate & TSTATE_PRIV)
2391                 die_if_kernel("Penguin overflow trap from kernel mode", regs);
2392         if (test_thread_flag(TIF_32BIT)) {
2393                 regs->tpc &= 0xffffffff;
2394                 regs->tnpc &= 0xffffffff;
2395         }
2396         force_sig_fault(SIGEMT, EMT_TAGOVF, (void __user *)regs->tpc);
2397 out:
2398         exception_exit(prev_state);
2399 }
2400 
2401 void do_div0(struct pt_regs *regs)
2402 {
2403         enum ctx_state prev_state = exception_enter();
2404 
2405         if (notify_die(DIE_TRAP, "integer division by zero", regs,
2406                        0, 0x28, SIGFPE) == NOTIFY_STOP)
2407                 goto out;
2408 
2409         if (regs->tstate & TSTATE_PRIV)
2410                 die_if_kernel("TL0: Kernel divide by zero.", regs);
2411         if (test_thread_flag(TIF_32BIT)) {
2412                 regs->tpc &= 0xffffffff;
2413                 regs->tnpc &= 0xffffffff;
2414         }
2415         force_sig_fault(SIGFPE, FPE_INTDIV, (void __user *)regs->tpc);
2416 out:
2417         exception_exit(prev_state);
2418 }
2419 
2420 static void instruction_dump(unsigned int *pc)
2421 {
2422         int i;
2423 
2424         if ((((unsigned long) pc) & 3))
2425                 return;
2426 
2427         printk("Instruction DUMP:");
2428         for (i = -3; i < 6; i++)
2429                 printk("%c%08x%c",i?' ':'<',pc[i],i?' ':'>');
2430         printk("\n");
2431 }
2432 
2433 static void user_instruction_dump(unsigned int __user *pc)
2434 {
2435         int i;
2436         unsigned int buf[9];
2437         
2438         if ((((unsigned long) pc) & 3))
2439                 return;
2440                 
2441         if (copy_from_user(buf, pc - 3, sizeof(buf)))
2442                 return;
2443 
2444         printk("Instruction DUMP:");
2445         for (i = 0; i < 9; i++)
2446                 printk("%c%08x%c",i==3?' ':'<',buf[i],i==3?' ':'>');
2447         printk("\n");
2448 }
2449 
2450 void show_stack(struct task_struct *tsk, unsigned long *_ksp, const char *loglvl)
2451 {
2452         unsigned long fp, ksp;
2453         struct thread_info *tp;
2454         int count = 0;
2455 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2456         int graph = 0;
2457 #endif
2458 
2459         ksp = (unsigned long) _ksp;
2460         if (!tsk)
2461                 tsk = current;
2462         tp = task_thread_info(tsk);
2463         if (ksp == 0UL) {
2464                 if (tsk == current)
2465                         asm("mov %%fp, %0" : "=r" (ksp));
2466                 else
2467                         ksp = tp->ksp;
2468         }
2469         if (tp == current_thread_info())
2470                 flushw_all();
2471 
2472         fp = ksp + STACK_BIAS;
2473 
2474         printk("%sCall Trace:\n", loglvl);
2475         do {
2476                 struct sparc_stackf *sf;
2477                 struct pt_regs *regs;
2478                 unsigned long pc;
2479 
2480                 if (!kstack_valid(tp, fp))
2481                         break;
2482                 sf = (struct sparc_stackf *) fp;
2483                 regs = (struct pt_regs *) (sf + 1);
2484 
2485                 if (kstack_is_trap_frame(tp, regs)) {
2486                         if (!(regs->tstate & TSTATE_PRIV))
2487                                 break;
2488                         pc = regs->tpc;
2489                         fp = regs->u_regs[UREG_I6] + STACK_BIAS;
2490                 } else {
2491                         pc = sf->callers_pc;
2492                         fp = (unsigned long)sf->fp + STACK_BIAS;
2493                 }
2494 
2495                 print_ip_sym(loglvl, pc);
2496 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2497                 if ((pc + 8UL) == (unsigned long) &return_to_handler) {
2498                         struct ftrace_ret_stack *ret_stack;
2499                         ret_stack = ftrace_graph_get_ret_stack(tsk, graph);
2500                         if (ret_stack) {
2501                                 pc = ret_stack->ret;
2502                                 print_ip_sym(loglvl, pc);
2503                                 graph++;
2504                         }
2505                 }
2506 #endif
2507         } while (++count < 16);
2508 }
2509 
2510 static inline struct reg_window *kernel_stack_up(struct reg_window *rw)
2511 {
2512         unsigned long fp = rw->ins[6];
2513 
2514         if (!fp)
2515                 return NULL;
2516 
2517         return (struct reg_window *) (fp + STACK_BIAS);
2518 }
2519 
2520 void __noreturn die_if_kernel(char *str, struct pt_regs *regs)
2521 {
2522         static int die_counter;
2523         int count = 0;
2524         
2525         /* Amuse the user. */
2526         printk(
2527 "              \\|/ ____ \\|/\n"
2528 "              \"@'/ .. \\`@\"\n"
2529 "              /_| \\__/ |_\\\n"
2530 "                 \\__U_/\n");
2531 
2532         printk("%s(%d): %s [#%d]\n", current->comm, task_pid_nr(current), str, ++die_counter);
2533         notify_die(DIE_OOPS, str, regs, 0, 255, SIGSEGV);
2534         __asm__ __volatile__("flushw");
2535         show_regs(regs);
2536         add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
2537         if (regs->tstate & TSTATE_PRIV) {
2538                 struct thread_info *tp = current_thread_info();
2539                 struct reg_window *rw = (struct reg_window *)
2540                         (regs->u_regs[UREG_FP] + STACK_BIAS);
2541 
2542                 /* Stop the back trace when we hit userland or we
2543                  * find some badly aligned kernel stack.
2544                  */
2545                 while (rw &&
2546                        count++ < 30 &&
2547                        kstack_valid(tp, (unsigned long) rw)) {
2548                         printk("Caller[%016lx]: %pS\n", rw->ins[7],
2549                                (void *) rw->ins[7]);
2550 
2551                         rw = kernel_stack_up(rw);
2552                 }
2553                 instruction_dump ((unsigned int *) regs->tpc);
2554         } else {
2555                 if (test_thread_flag(TIF_32BIT)) {
2556                         regs->tpc &= 0xffffffff;
2557                         regs->tnpc &= 0xffffffff;
2558                 }
2559                 user_instruction_dump ((unsigned int __user *) regs->tpc);
2560         }
2561         if (panic_on_oops)
2562                 panic("Fatal exception");
2563         make_task_dead((regs->tstate & TSTATE_PRIV)? SIGKILL : SIGSEGV);
2564 }
2565 EXPORT_SYMBOL(die_if_kernel);
2566 
2567 #define VIS_OPCODE_MASK ((0x3 << 30) | (0x3f << 19))
2568 #define VIS_OPCODE_VAL  ((0x2 << 30) | (0x36 << 19))
2569 
2570 void do_illegal_instruction(struct pt_regs *regs)
2571 {
2572         enum ctx_state prev_state = exception_enter();
2573         unsigned long pc = regs->tpc;
2574         unsigned long tstate = regs->tstate;
2575         u32 insn;
2576 
2577         if (notify_die(DIE_TRAP, "illegal instruction", regs,
2578                        0, 0x10, SIGILL) == NOTIFY_STOP)
2579                 goto out;
2580 
2581         if (tstate & TSTATE_PRIV)
2582                 die_if_kernel("Kernel illegal instruction", regs);
2583         if (test_thread_flag(TIF_32BIT))
2584                 pc = (u32)pc;
2585         if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
2586                 if ((insn & 0xc1ffc000) == 0x81700000) /* POPC */ {
2587                         if (handle_popc(insn, regs))
2588                                 goto out;
2589                 } else if ((insn & 0xc1580000) == 0xc1100000) /* LDQ/STQ */ {
2590                         if (handle_ldf_stq(insn, regs))
2591                                 goto out;
2592                 } else if (tlb_type == hypervisor) {
2593                         if ((insn & VIS_OPCODE_MASK) == VIS_OPCODE_VAL) {
2594                                 if (!vis_emul(regs, insn))
2595                                         goto out;
2596                         } else {
2597                                 struct fpustate *f = FPUSTATE;
2598 
2599                                 /* On UltraSPARC T2 and later, FPU insns which
2600                                  * are not implemented in HW signal an illegal
2601                                  * instruction trap and do not set the FP Trap
2602                                  * Trap in the %fsr to unimplemented_FPop.
2603                                  */
2604                                 if (do_mathemu(regs, f, true))
2605                                         goto out;
2606                         }
2607                 }
2608         }
2609         force_sig_fault(SIGILL, ILL_ILLOPC, (void __user *)pc);
2610 out:
2611         exception_exit(prev_state);
2612 }
2613 
2614 void mem_address_unaligned(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
2615 {
2616         enum ctx_state prev_state = exception_enter();
2617 
2618         if (notify_die(DIE_TRAP, "memory address unaligned", regs,
2619                        0, 0x34, SIGSEGV) == NOTIFY_STOP)
2620                 goto out;
2621 
2622         if (regs->tstate & TSTATE_PRIV) {
2623                 kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
2624                 goto out;
2625         }
2626         if (is_no_fault_exception(regs))
2627                 return;
2628 
2629         force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *)sfar);
2630 out:
2631         exception_exit(prev_state);
2632 }
2633 
2634 void sun4v_do_mna(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
2635 {
2636         if (notify_die(DIE_TRAP, "memory address unaligned", regs,
2637                        0, 0x34, SIGSEGV) == NOTIFY_STOP)
2638                 return;
2639 
2640         if (regs->tstate & TSTATE_PRIV) {
2641                 kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
2642                 return;
2643         }
2644         if (is_no_fault_exception(regs))
2645                 return;
2646 
2647         force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *) addr);
2648 }
2649 
2650 /* sun4v_mem_corrupt_detect_precise() - Handle precise exception on an ADI
2651  * tag mismatch.
2652  *
2653  * ADI version tag mismatch on a load from memory always results in a
2654  * precise exception. Tag mismatch on a store to memory will result in
2655  * precise exception if MCDPER or PMCDPER is set to 1.
2656  */
2657 void sun4v_mem_corrupt_detect_precise(struct pt_regs *regs, unsigned long addr,
2658                                       unsigned long context)
2659 {
2660         if (notify_die(DIE_TRAP, "memory corruption precise exception", regs,
2661                        0, 0x8, SIGSEGV) == NOTIFY_STOP)
2662                 return;
2663 
2664         if (regs->tstate & TSTATE_PRIV) {
2665                 /* MCD exception could happen because the task was running
2666                  * a system call with MCD enabled and passed a non-versioned
2667                  * pointer or pointer with bad version tag to  the system
2668                  * call.
2669                  */
2670                 const struct exception_table_entry *entry;
2671 
2672                 entry = search_exception_tables(regs->tpc);
2673                 if (entry) {
2674                         /* Looks like a bad syscall parameter */
2675 #ifdef DEBUG_EXCEPTIONS
2676                         pr_emerg("Exception: PC<%016lx> faddr<UNKNOWN>\n",
2677                                  regs->tpc);
2678                         pr_emerg("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
2679                                  regs->tpc, entry->fixup);
2680 #endif
2681                         regs->tpc = entry->fixup;
2682                         regs->tnpc = regs->tpc + 4;
2683                         return;
2684                 }
2685                 pr_emerg("%s: ADDR[%016lx] CTX[%lx], going.\n",
2686                          __func__, addr, context);
2687                 die_if_kernel("MCD precise", regs);
2688         }
2689 
2690         if (test_thread_flag(TIF_32BIT)) {
2691                 regs->tpc &= 0xffffffff;
2692                 regs->tnpc &= 0xffffffff;
2693         }
2694         force_sig_fault(SIGSEGV, SEGV_ADIPERR, (void __user *)addr);
2695 }
2696 
2697 void do_privop(struct pt_regs *regs)
2698 {
2699         enum ctx_state prev_state = exception_enter();
2700 
2701         if (notify_die(DIE_TRAP, "privileged operation", regs,
2702                        0, 0x11, SIGILL) == NOTIFY_STOP)
2703                 goto out;
2704 
2705         if (test_thread_flag(TIF_32BIT)) {
2706                 regs->tpc &= 0xffffffff;
2707                 regs->tnpc &= 0xffffffff;
2708         }
2709         force_sig_fault(SIGILL, ILL_PRVOPC, (void __user *)regs->tpc);
2710 out:
2711         exception_exit(prev_state);
2712 }
2713 
2714 void do_privact(struct pt_regs *regs)
2715 {
2716         do_privop(regs);
2717 }
2718 
2719 /* Trap level 1 stuff or other traps we should never see... */
2720 void do_cee(struct pt_regs *regs)
2721 {
2722         exception_enter();
2723         die_if_kernel("TL0: Cache Error Exception", regs);
2724 }
2725 
2726 void do_div0_tl1(struct pt_regs *regs)
2727 {
2728         exception_enter();
2729         dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2730         die_if_kernel("TL1: DIV0 Exception", regs);
2731 }
2732 
2733 void do_fpieee_tl1(struct pt_regs *regs)
2734 {
2735         exception_enter();
2736         dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2737         die_if_kernel("TL1: FPU IEEE Exception", regs);
2738 }
2739 
2740 void do_fpother_tl1(struct pt_regs *regs)
2741 {
2742         exception_enter();
2743         dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2744         die_if_kernel("TL1: FPU Other Exception", regs);
2745 }
2746 
2747 void do_ill_tl1(struct pt_regs *regs)
2748 {
2749         exception_enter();
2750         dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2751         die_if_kernel("TL1: Illegal Instruction Exception", regs);
2752 }
2753 
2754 void do_irq_tl1(struct pt_regs *regs)
2755 {
2756         exception_enter();
2757         dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2758         die_if_kernel("TL1: IRQ Exception", regs);
2759 }
2760 
2761 void do_lddfmna_tl1(struct pt_regs *regs)
2762 {
2763         exception_enter();
2764         dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2765         die_if_kernel("TL1: LDDF Exception", regs);
2766 }
2767 
2768 void do_stdfmna_tl1(struct pt_regs *regs)
2769 {
2770         exception_enter();
2771         dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2772         die_if_kernel("TL1: STDF Exception", regs);
2773 }
2774 
2775 void do_paw(struct pt_regs *regs)
2776 {
2777         exception_enter();
2778         die_if_kernel("TL0: Phys Watchpoint Exception", regs);
2779 }
2780 
2781 void do_paw_tl1(struct pt_regs *regs)
2782 {
2783         exception_enter();
2784         dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2785         die_if_kernel("TL1: Phys Watchpoint Exception", regs);
2786 }
2787 
2788 void do_vaw(struct pt_regs *regs)
2789 {
2790         exception_enter();
2791         die_if_kernel("TL0: Virt Watchpoint Exception", regs);
2792 }
2793 
2794 void do_vaw_tl1(struct pt_regs *regs)
2795 {
2796         exception_enter();
2797         dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2798         die_if_kernel("TL1: Virt Watchpoint Exception", regs);
2799 }
2800 
2801 void do_tof_tl1(struct pt_regs *regs)
2802 {
2803         exception_enter();
2804         dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2805         die_if_kernel("TL1: Tag Overflow Exception", regs);
2806 }
2807 
2808 void do_getpsr(struct pt_regs *regs)
2809 {
2810         regs->u_regs[UREG_I0] = tstate_to_psr(regs->tstate);
2811         regs->tpc   = regs->tnpc;
2812         regs->tnpc += 4;
2813         if (test_thread_flag(TIF_32BIT)) {
2814                 regs->tpc &= 0xffffffff;
2815                 regs->tnpc &= 0xffffffff;
2816         }
2817 }
2818 
2819 u64 cpu_mondo_counter[NR_CPUS] = {0};
2820 struct trap_per_cpu trap_block[NR_CPUS];
2821 EXPORT_SYMBOL(trap_block);
2822 
2823 /* This can get invoked before sched_init() so play it super safe
2824  * and use hard_smp_processor_id().
2825  */
2826 void notrace init_cur_cpu_trap(struct thread_info *t)
2827 {
2828         int cpu = hard_smp_processor_id();
2829         struct trap_per_cpu *p = &trap_block[cpu];
2830 
2831         p->thread = t;
2832         p->pgd_paddr = 0;
2833 }
2834 
2835 extern void thread_info_offsets_are_bolixed_dave(void);
2836 extern void trap_per_cpu_offsets_are_bolixed_dave(void);
2837 extern void tsb_config_offsets_are_bolixed_dave(void);
2838 
2839 /* Only invoked on boot processor. */
2840 void __init trap_init(void)
2841 {
2842         /* Compile time sanity check. */
2843         BUILD_BUG_ON(TI_TASK != offsetof(struct thread_info, task) ||
2844                      TI_FLAGS != offsetof(struct thread_info, flags) ||
2845                      TI_CPU != offsetof(struct thread_info, cpu) ||
2846                      TI_FPSAVED != offsetof(struct thread_info, fpsaved) ||
2847                      TI_KSP != offsetof(struct thread_info, ksp) ||
2848                      TI_FAULT_ADDR != offsetof(struct thread_info,
2849                                                fault_address) ||
2850                      TI_KREGS != offsetof(struct thread_info, kregs) ||
2851                      TI_UTRAPS != offsetof(struct thread_info, utraps) ||
2852                      TI_REG_WINDOW != offsetof(struct thread_info,
2853                                                reg_window) ||
2854                      TI_RWIN_SPTRS != offsetof(struct thread_info,
2855                                                rwbuf_stkptrs) ||
2856                      TI_GSR != offsetof(struct thread_info, gsr) ||
2857                      TI_XFSR != offsetof(struct thread_info, xfsr) ||
2858                      TI_PRE_COUNT != offsetof(struct thread_info,
2859                                               preempt_count) ||
2860                      TI_NEW_CHILD != offsetof(struct thread_info, new_child) ||
2861                      TI_KUNA_REGS != offsetof(struct thread_info,
2862                                               kern_una_regs) ||
2863                      TI_KUNA_INSN != offsetof(struct thread_info,
2864                                               kern_una_insn) ||
2865                      TI_FPREGS != offsetof(struct thread_info, fpregs) ||
2866                      (TI_FPREGS & (64 - 1)));
2867 
2868         BUILD_BUG_ON(TRAP_PER_CPU_THREAD != offsetof(struct trap_per_cpu,
2869                                                      thread) ||
2870                      (TRAP_PER_CPU_PGD_PADDR !=
2871                       offsetof(struct trap_per_cpu, pgd_paddr)) ||
2872                      (TRAP_PER_CPU_CPU_MONDO_PA !=
2873                       offsetof(struct trap_per_cpu, cpu_mondo_pa)) ||
2874                      (TRAP_PER_CPU_DEV_MONDO_PA !=
2875                       offsetof(struct trap_per_cpu, dev_mondo_pa)) ||
2876                      (TRAP_PER_CPU_RESUM_MONDO_PA !=
2877                       offsetof(struct trap_per_cpu, resum_mondo_pa)) ||
2878                      (TRAP_PER_CPU_RESUM_KBUF_PA !=
2879                       offsetof(struct trap_per_cpu, resum_kernel_buf_pa)) ||
2880                      (TRAP_PER_CPU_NONRESUM_MONDO_PA !=
2881                       offsetof(struct trap_per_cpu, nonresum_mondo_pa)) ||
2882                      (TRAP_PER_CPU_NONRESUM_KBUF_PA !=
2883                       offsetof(struct trap_per_cpu, nonresum_kernel_buf_pa)) ||
2884                      (TRAP_PER_CPU_FAULT_INFO !=
2885                       offsetof(struct trap_per_cpu, fault_info)) ||
2886                      (TRAP_PER_CPU_CPU_MONDO_BLOCK_PA !=
2887                       offsetof(struct trap_per_cpu, cpu_mondo_block_pa)) ||
2888                      (TRAP_PER_CPU_CPU_LIST_PA !=
2889                       offsetof(struct trap_per_cpu, cpu_list_pa)) ||
2890                      (TRAP_PER_CPU_TSB_HUGE !=
2891                       offsetof(struct trap_per_cpu, tsb_huge)) ||
2892                      (TRAP_PER_CPU_TSB_HUGE_TEMP !=
2893                       offsetof(struct trap_per_cpu, tsb_huge_temp)) ||
2894                      (TRAP_PER_CPU_IRQ_WORKLIST_PA !=
2895                       offsetof(struct trap_per_cpu, irq_worklist_pa)) ||
2896                      (TRAP_PER_CPU_CPU_MONDO_QMASK !=
2897                       offsetof(struct trap_per_cpu, cpu_mondo_qmask)) ||
2898                      (TRAP_PER_CPU_DEV_MONDO_QMASK !=
2899                       offsetof(struct trap_per_cpu, dev_mondo_qmask)) ||
2900                      (TRAP_PER_CPU_RESUM_QMASK !=
2901                       offsetof(struct trap_per_cpu, resum_qmask)) ||
2902                      (TRAP_PER_CPU_NONRESUM_QMASK !=
2903                       offsetof(struct trap_per_cpu, nonresum_qmask)) ||
2904                      (TRAP_PER_CPU_PER_CPU_BASE !=
2905                       offsetof(struct trap_per_cpu, __per_cpu_base)));
2906 
2907         BUILD_BUG_ON((TSB_CONFIG_TSB !=
2908                       offsetof(struct tsb_config, tsb)) ||
2909                      (TSB_CONFIG_RSS_LIMIT !=
2910                       offsetof(struct tsb_config, tsb_rss_limit)) ||
2911                      (TSB_CONFIG_NENTRIES !=
2912                       offsetof(struct tsb_config, tsb_nentries)) ||
2913                      (TSB_CONFIG_REG_VAL !=
2914                       offsetof(struct tsb_config, tsb_reg_val)) ||
2915                      (TSB_CONFIG_MAP_VADDR !=
2916                       offsetof(struct tsb_config, tsb_map_vaddr)) ||
2917                      (TSB_CONFIG_MAP_PTE !=
2918                       offsetof(struct tsb_config, tsb_map_pte)));
2919 
2920         /* Attach to the address space of init_task.  On SMP we
2921          * do this in smp.c:smp_callin for other cpus.
2922          */
2923         mmgrab(&init_mm);
2924         current->active_mm = &init_mm;
2925 }
2926 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php