1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * User-space Probes (UProbes) for sparc 4 * 5 * Copyright (C) 2013 Oracle Inc. 6 * 7 * Authors: 8 * Jose E. Marchesi <jose.marchesi@oracle.com> 9 * Eric Saint Etienne <eric.saint.etienne@oracle.com> 10 */ 11 12 #include <linux/kernel.h> 13 #include <linux/highmem.h> 14 #include <linux/uprobes.h> 15 #include <linux/uaccess.h> 16 #include <linux/sched.h> /* For struct task_struct */ 17 #include <linux/kdebug.h> 18 19 #include <asm/cacheflush.h> 20 21 #include "kernel.h" 22 23 /* Compute the address of the breakpoint instruction and return it. 24 * 25 * Note that uprobe_get_swbp_addr is defined as a weak symbol in 26 * kernel/events/uprobe.c. 27 */ 28 unsigned long uprobe_get_swbp_addr(struct pt_regs *regs) 29 { 30 return instruction_pointer(regs); 31 } 32 33 static void copy_to_page(struct page *page, unsigned long vaddr, 34 const void *src, int len) 35 { 36 void *kaddr = kmap_atomic(page); 37 38 memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len); 39 kunmap_atomic(kaddr); 40 } 41 42 /* Fill in the xol area with the probed instruction followed by the 43 * single-step trap. Some fixups in the copied instruction are 44 * performed at this point. 45 * 46 * Note that uprobe_xol_copy is defined as a weak symbol in 47 * kernel/events/uprobe.c. 48 */ 49 void arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr, 50 void *src, unsigned long len) 51 { 52 const u32 stp_insn = UPROBE_STP_INSN; 53 u32 insn = *(u32 *) src; 54 55 /* Branches annulling their delay slot must be fixed to not do 56 * so. Clearing the annul bit on these instructions we can be 57 * sure the single-step breakpoint in the XOL slot will be 58 * executed. 59 */ 60 61 u32 op = (insn >> 30) & 0x3; 62 u32 op2 = (insn >> 22) & 0x7; 63 64 if (op == 0 && 65 (op2 == 1 || op2 == 2 || op2 == 3 || op2 == 5 || op2 == 6) && 66 (insn & ANNUL_BIT) == ANNUL_BIT) 67 insn &= ~ANNUL_BIT; 68 69 copy_to_page(page, vaddr, &insn, len); 70 copy_to_page(page, vaddr+len, &stp_insn, 4); 71 } 72 73 74 /* Instruction analysis/validity. 75 * 76 * This function returns 0 on success or a -ve number on error. 77 */ 78 int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, 79 struct mm_struct *mm, unsigned long addr) 80 { 81 /* Any unsupported instruction? Then return -EINVAL */ 82 return 0; 83 } 84 85 /* If INSN is a relative control transfer instruction, return the 86 * corrected branch destination value. 87 * 88 * Note that regs->tpc and regs->tnpc still hold the values of the 89 * program counters at the time of the single-step trap due to the 90 * execution of the UPROBE_STP_INSN at utask->xol_vaddr + 4. 91 * 92 */ 93 static unsigned long relbranch_fixup(u32 insn, struct uprobe_task *utask, 94 struct pt_regs *regs) 95 { 96 /* Branch not taken, no mods necessary. */ 97 if (regs->tnpc == regs->tpc + 0x4UL) 98 return utask->autask.saved_tnpc + 0x4UL; 99 100 /* The three cases are call, branch w/prediction, 101 * and traditional branch. 102 */ 103 if ((insn & 0xc0000000) == 0x40000000 || 104 (insn & 0xc1c00000) == 0x00400000 || 105 (insn & 0xc1c00000) == 0x00800000) { 106 unsigned long real_pc = (unsigned long) utask->vaddr; 107 unsigned long ixol_addr = utask->xol_vaddr; 108 109 /* The instruction did all the work for us 110 * already, just apply the offset to the correct 111 * instruction location. 112 */ 113 return (real_pc + (regs->tnpc - ixol_addr)); 114 } 115 116 /* It is jmpl or some other absolute PC modification instruction, 117 * leave NPC as-is. 118 */ 119 return regs->tnpc; 120 } 121 122 /* If INSN is an instruction which writes its PC location 123 * into a destination register, fix that up. 124 */ 125 static int retpc_fixup(struct pt_regs *regs, u32 insn, 126 unsigned long real_pc) 127 { 128 unsigned long *slot = NULL; 129 int rc = 0; 130 131 /* Simplest case is 'call', which always uses %o7 */ 132 if ((insn & 0xc0000000) == 0x40000000) 133 slot = ®s->u_regs[UREG_I7]; 134 135 /* 'jmpl' encodes the register inside of the opcode */ 136 if ((insn & 0xc1f80000) == 0x81c00000) { 137 unsigned long rd = ((insn >> 25) & 0x1f); 138 139 if (rd <= 15) { 140 slot = ®s->u_regs[rd]; 141 } else { 142 unsigned long fp = regs->u_regs[UREG_FP]; 143 /* Hard case, it goes onto the stack. */ 144 flushw_all(); 145 146 rd -= 16; 147 if (test_thread_64bit_stack(fp)) { 148 unsigned long __user *uslot = 149 (unsigned long __user *) (fp + STACK_BIAS) + rd; 150 rc = __put_user(real_pc, uslot); 151 } else { 152 unsigned int __user *uslot = (unsigned int 153 __user *) fp + rd; 154 rc = __put_user((u32) real_pc, uslot); 155 } 156 } 157 } 158 if (slot != NULL) 159 *slot = real_pc; 160 return rc; 161 } 162 163 /* Single-stepping can be avoided for certain instructions: NOPs and 164 * instructions that can be emulated. This function determines 165 * whether the instruction where the uprobe is installed falls in one 166 * of these cases and emulates it. 167 * 168 * This function returns true if the single-stepping can be skipped, 169 * false otherwise. 170 */ 171 bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs) 172 { 173 /* We currently only emulate NOP instructions. 174 */ 175 176 if (auprobe->ixol == (1 << 24)) { 177 regs->tnpc += 4; 178 regs->tpc += 4; 179 return true; 180 } 181 182 return false; 183 } 184 185 /* Prepare to execute out of line. At this point 186 * current->utask->xol_vaddr points to an allocated XOL slot properly 187 * initialized with the original instruction and the single-stepping 188 * trap instruction. 189 * 190 * This function returns 0 on success, any other number on error. 191 */ 192 int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) 193 { 194 struct uprobe_task *utask = current->utask; 195 struct arch_uprobe_task *autask = ¤t->utask->autask; 196 197 /* Save the current program counters so they can be restored 198 * later. 199 */ 200 autask->saved_tpc = regs->tpc; 201 autask->saved_tnpc = regs->tnpc; 202 203 /* Adjust PC and NPC so the first instruction in the XOL slot 204 * will be executed by the user task. 205 */ 206 instruction_pointer_set(regs, utask->xol_vaddr); 207 208 return 0; 209 } 210 211 /* Prepare to resume execution after the single-step. Called after 212 * single-stepping. To avoid the SMP problems that can occur when we 213 * temporarily put back the original opcode to single-step, we 214 * single-stepped a copy of the instruction. 215 * 216 * This function returns 0 on success, any other number on error. 217 */ 218 int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) 219 { 220 struct uprobe_task *utask = current->utask; 221 struct arch_uprobe_task *autask = &utask->autask; 222 u32 insn = auprobe->ixol; 223 int rc = 0; 224 225 if (utask->state == UTASK_SSTEP_ACK) { 226 regs->tnpc = relbranch_fixup(insn, utask, regs); 227 regs->tpc = autask->saved_tnpc; 228 rc = retpc_fixup(regs, insn, (unsigned long) utask->vaddr); 229 } else { 230 regs->tnpc = utask->vaddr+4; 231 regs->tpc = autask->saved_tnpc+4; 232 } 233 return rc; 234 } 235 236 /* Handler for uprobe traps. This is called from the traps table and 237 * triggers the proper die notification. 238 */ 239 asmlinkage void uprobe_trap(struct pt_regs *regs, 240 unsigned long trap_level) 241 { 242 BUG_ON(trap_level != 0x173 && trap_level != 0x174); 243 244 /* We are only interested in user-mode code. Uprobe traps 245 * shall not be present in kernel code. 246 */ 247 if (!user_mode(regs)) { 248 local_irq_enable(); 249 bad_trap(regs, trap_level); 250 return; 251 } 252 253 /* trap_level == 0x173 --> ta 0x73 254 * trap_level == 0x174 --> ta 0x74 255 */ 256 if (notify_die((trap_level == 0x173) ? DIE_BPT : DIE_SSTEP, 257 (trap_level == 0x173) ? "bpt" : "sstep", 258 regs, 0, trap_level, SIGTRAP) != NOTIFY_STOP) 259 bad_trap(regs, trap_level); 260 } 261 262 /* Callback routine for handling die notifications. 263 */ 264 int arch_uprobe_exception_notify(struct notifier_block *self, 265 unsigned long val, void *data) 266 { 267 int ret = NOTIFY_DONE; 268 struct die_args *args = (struct die_args *)data; 269 270 /* We are only interested in userspace traps */ 271 if (args->regs && !user_mode(args->regs)) 272 return NOTIFY_DONE; 273 274 switch (val) { 275 case DIE_BPT: 276 if (uprobe_pre_sstep_notifier(args->regs)) 277 ret = NOTIFY_STOP; 278 break; 279 280 case DIE_SSTEP: 281 if (uprobe_post_sstep_notifier(args->regs)) 282 ret = NOTIFY_STOP; 283 284 default: 285 break; 286 } 287 288 return ret; 289 } 290 291 /* This function gets called when a XOL instruction either gets 292 * trapped or the thread has a fatal signal, so reset the instruction 293 * pointer to its probed address. 294 */ 295 void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) 296 { 297 struct uprobe_task *utask = current->utask; 298 299 instruction_pointer_set(regs, utask->vaddr); 300 } 301 302 /* If xol insn itself traps and generates a signal(Say, 303 * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped 304 * instruction jumps back to its own address. 305 */ 306 bool arch_uprobe_xol_was_trapped(struct task_struct *t) 307 { 308 return false; 309 } 310 311 unsigned long 312 arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, 313 struct pt_regs *regs) 314 { 315 unsigned long orig_ret_vaddr = regs->u_regs[UREG_I7]; 316 317 regs->u_regs[UREG_I7] = trampoline_vaddr-8; 318 319 return orig_ret_vaddr + 8; 320 } 321
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.