~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/sparc/mm/srmmu.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * srmmu.c:  SRMMU specific routines for memory management.
  4  *
  5  * Copyright (C) 1995 David S. Miller  (davem@caip.rutgers.edu)
  6  * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
  7  * Copyright (C) 1996 Eddie C. Dost    (ecd@skynet.be)
  8  * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
  9  * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
 10  */
 11 
 12 #include <linux/seq_file.h>
 13 #include <linux/spinlock.h>
 14 #include <linux/memblock.h>
 15 #include <linux/pagemap.h>
 16 #include <linux/vmalloc.h>
 17 #include <linux/kdebug.h>
 18 #include <linux/export.h>
 19 #include <linux/kernel.h>
 20 #include <linux/init.h>
 21 #include <linux/log2.h>
 22 #include <linux/gfp.h>
 23 #include <linux/fs.h>
 24 #include <linux/mm.h>
 25 
 26 #include <asm/mmu_context.h>
 27 #include <asm/cacheflush.h>
 28 #include <asm/tlbflush.h>
 29 #include <asm/io-unit.h>
 30 #include <asm/pgalloc.h>
 31 #include <asm/pgtable.h>
 32 #include <asm/bitext.h>
 33 #include <asm/vaddrs.h>
 34 #include <asm/cache.h>
 35 #include <asm/traps.h>
 36 #include <asm/oplib.h>
 37 #include <asm/mbus.h>
 38 #include <asm/page.h>
 39 #include <asm/asi.h>
 40 #include <asm/smp.h>
 41 #include <asm/io.h>
 42 
 43 /* Now the cpu specific definitions. */
 44 #include <asm/turbosparc.h>
 45 #include <asm/tsunami.h>
 46 #include <asm/viking.h>
 47 #include <asm/swift.h>
 48 #include <asm/leon.h>
 49 #include <asm/mxcc.h>
 50 #include <asm/ross.h>
 51 
 52 #include "mm_32.h"
 53 
 54 enum mbus_module srmmu_modtype;
 55 static unsigned int hwbug_bitmask;
 56 int vac_cache_size;
 57 EXPORT_SYMBOL(vac_cache_size);
 58 int vac_line_size;
 59 
 60 extern struct resource sparc_iomap;
 61 
 62 extern unsigned long last_valid_pfn;
 63 
 64 static pgd_t *srmmu_swapper_pg_dir;
 65 
 66 const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
 67 EXPORT_SYMBOL(sparc32_cachetlb_ops);
 68 
 69 #ifdef CONFIG_SMP
 70 const struct sparc32_cachetlb_ops *local_ops;
 71 
 72 #define FLUSH_BEGIN(mm)
 73 #define FLUSH_END
 74 #else
 75 #define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
 76 #define FLUSH_END       }
 77 #endif
 78 
 79 int flush_page_for_dma_global = 1;
 80 
 81 char *srmmu_name;
 82 
 83 ctxd_t *srmmu_ctx_table_phys;
 84 static ctxd_t *srmmu_context_table;
 85 
 86 int viking_mxcc_present;
 87 static DEFINE_SPINLOCK(srmmu_context_spinlock);
 88 
 89 static int is_hypersparc;
 90 
 91 static int srmmu_cache_pagetables;
 92 
 93 /* these will be initialized in srmmu_nocache_calcsize() */
 94 static unsigned long srmmu_nocache_size;
 95 static unsigned long srmmu_nocache_end;
 96 
 97 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
 98 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
 99 
100 /* The context table is a nocache user with the biggest alignment needs. */
101 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
102 
103 void *srmmu_nocache_pool;
104 static struct bit_map srmmu_nocache_map;
105 
106 static inline int srmmu_pmd_none(pmd_t pmd)
107 { return !(pmd_val(pmd) & 0xFFFFFFF); }
108 
109 /* XXX should we hyper_flush_whole_icache here - Anton */
110 static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
111 {
112         pte_t pte;
113 
114         pte = __pte((SRMMU_ET_PTD | (__nocache_pa(pgdp) >> 4)));
115         set_pte((pte_t *)ctxp, pte);
116 }
117 
118 /*
119  * Locations of MSI Registers.
120  */
121 #define MSI_MBUS_ARBEN  0xe0001008      /* MBus Arbiter Enable register */
122 
123 /*
124  * Useful bits in the MSI Registers.
125  */
126 #define MSI_ASYNC_MODE  0x80000000      /* Operate the MSI asynchronously */
127 
128 static void msi_set_sync(void)
129 {
130         __asm__ __volatile__ ("lda [%0] %1, %%g3\n\t"
131                               "andn %%g3, %2, %%g3\n\t"
132                               "sta %%g3, [%0] %1\n\t" : :
133                               "r" (MSI_MBUS_ARBEN),
134                               "i" (ASI_M_CTL), "r" (MSI_ASYNC_MODE) : "g3");
135 }
136 
137 void pmd_set(pmd_t *pmdp, pte_t *ptep)
138 {
139         unsigned long ptp = __nocache_pa(ptep) >> 4;
140         set_pte((pte_t *)&pmd_val(*pmdp), __pte(SRMMU_ET_PTD | ptp));
141 }
142 
143 /*
144  * size: bytes to allocate in the nocache area.
145  * align: bytes, number to align at.
146  * Returns the virtual address of the allocated area.
147  */
148 static void *__srmmu_get_nocache(int size, int align)
149 {
150         int offset, minsz = 1 << SRMMU_NOCACHE_BITMAP_SHIFT;
151         unsigned long addr;
152 
153         if (size < minsz) {
154                 printk(KERN_ERR "Size 0x%x too small for nocache request\n",
155                        size);
156                 size = minsz;
157         }
158         if (size & (minsz - 1)) {
159                 printk(KERN_ERR "Size 0x%x unaligned in nocache request\n",
160                        size);
161                 size += minsz - 1;
162         }
163         BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
164 
165         offset = bit_map_string_get(&srmmu_nocache_map,
166                                     size >> SRMMU_NOCACHE_BITMAP_SHIFT,
167                                     align >> SRMMU_NOCACHE_BITMAP_SHIFT);
168         if (offset == -1) {
169                 printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
170                        size, (int) srmmu_nocache_size,
171                        srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
172                 return NULL;
173         }
174 
175         addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
176         return (void *)addr;
177 }
178 
179 void *srmmu_get_nocache(int size, int align)
180 {
181         void *tmp;
182 
183         tmp = __srmmu_get_nocache(size, align);
184 
185         if (tmp)
186                 memset(tmp, 0, size);
187 
188         return tmp;
189 }
190 
191 void srmmu_free_nocache(void *addr, int size)
192 {
193         unsigned long vaddr;
194         int offset;
195 
196         vaddr = (unsigned long)addr;
197         if (vaddr < SRMMU_NOCACHE_VADDR) {
198                 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
199                     vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
200                 BUG();
201         }
202         if (vaddr + size > srmmu_nocache_end) {
203                 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
204                     vaddr, srmmu_nocache_end);
205                 BUG();
206         }
207         if (!is_power_of_2(size)) {
208                 printk("Size 0x%x is not a power of 2\n", size);
209                 BUG();
210         }
211         if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
212                 printk("Size 0x%x is too small\n", size);
213                 BUG();
214         }
215         if (vaddr & (size - 1)) {
216                 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
217                 BUG();
218         }
219 
220         offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
221         size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
222 
223         bit_map_clear(&srmmu_nocache_map, offset, size);
224 }
225 
226 static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
227                                                  unsigned long end);
228 
229 /* Return how much physical memory we have.  */
230 static unsigned long __init probe_memory(void)
231 {
232         unsigned long total = 0;
233         int i;
234 
235         for (i = 0; sp_banks[i].num_bytes; i++)
236                 total += sp_banks[i].num_bytes;
237 
238         return total;
239 }
240 
241 /*
242  * Reserve nocache dynamically proportionally to the amount of
243  * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
244  */
245 static void __init srmmu_nocache_calcsize(void)
246 {
247         unsigned long sysmemavail = probe_memory() / 1024;
248         int srmmu_nocache_npages;
249 
250         srmmu_nocache_npages =
251                 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
252 
253  /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
254         // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
255         if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
256                 srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
257 
258         /* anything above 1280 blows up */
259         if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
260                 srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
261 
262         srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
263         srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
264 }
265 
266 static void __init srmmu_nocache_init(void)
267 {
268         void *srmmu_nocache_bitmap;
269         unsigned int bitmap_bits;
270         pgd_t *pgd;
271         p4d_t *p4d;
272         pud_t *pud;
273         pmd_t *pmd;
274         pte_t *pte;
275         unsigned long paddr, vaddr;
276         unsigned long pteval;
277 
278         bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
279 
280         srmmu_nocache_pool = memblock_alloc(srmmu_nocache_size,
281                                             SRMMU_NOCACHE_ALIGN_MAX);
282         if (!srmmu_nocache_pool)
283                 panic("%s: Failed to allocate %lu bytes align=0x%x\n",
284                       __func__, srmmu_nocache_size, SRMMU_NOCACHE_ALIGN_MAX);
285         memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
286 
287         srmmu_nocache_bitmap =
288                 memblock_alloc(BITS_TO_LONGS(bitmap_bits) * sizeof(long),
289                                SMP_CACHE_BYTES);
290         if (!srmmu_nocache_bitmap)
291                 panic("%s: Failed to allocate %zu bytes\n", __func__,
292                       BITS_TO_LONGS(bitmap_bits) * sizeof(long));
293         bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
294 
295         srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
296         memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
297         init_mm.pgd = srmmu_swapper_pg_dir;
298 
299         srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
300 
301         paddr = __pa((unsigned long)srmmu_nocache_pool);
302         vaddr = SRMMU_NOCACHE_VADDR;
303 
304         while (vaddr < srmmu_nocache_end) {
305                 pgd = pgd_offset_k(vaddr);
306                 p4d = p4d_offset(pgd, vaddr);
307                 pud = pud_offset(p4d, vaddr);
308                 pmd = pmd_offset(__nocache_fix(pud), vaddr);
309                 pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
310 
311                 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
312 
313                 if (srmmu_cache_pagetables)
314                         pteval |= SRMMU_CACHE;
315 
316                 set_pte(__nocache_fix(pte), __pte(pteval));
317 
318                 vaddr += PAGE_SIZE;
319                 paddr += PAGE_SIZE;
320         }
321 
322         flush_cache_all();
323         flush_tlb_all();
324 }
325 
326 pgd_t *get_pgd_fast(void)
327 {
328         pgd_t *pgd = NULL;
329 
330         pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
331         if (pgd) {
332                 pgd_t *init = pgd_offset_k(0);
333                 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
334                 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
335                                                 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
336         }
337 
338         return pgd;
339 }
340 
341 /*
342  * Hardware needs alignment to 256 only, but we align to whole page size
343  * to reduce fragmentation problems due to the buddy principle.
344  * XXX Provide actual fragmentation statistics in /proc.
345  *
346  * Alignments up to the page size are the same for physical and virtual
347  * addresses of the nocache area.
348  */
349 pgtable_t pte_alloc_one(struct mm_struct *mm)
350 {
351         pte_t *ptep;
352         struct page *page;
353 
354         if (!(ptep = pte_alloc_one_kernel(mm)))
355                 return NULL;
356         page = pfn_to_page(__nocache_pa((unsigned long)ptep) >> PAGE_SHIFT);
357         spin_lock(&mm->page_table_lock);
358         if (page_ref_inc_return(page) == 2 &&
359                         !pagetable_pte_ctor(page_ptdesc(page))) {
360                 page_ref_dec(page);
361                 ptep = NULL;
362         }
363         spin_unlock(&mm->page_table_lock);
364 
365         return ptep;
366 }
367 
368 void pte_free(struct mm_struct *mm, pgtable_t ptep)
369 {
370         struct page *page;
371 
372         page = pfn_to_page(__nocache_pa((unsigned long)ptep) >> PAGE_SHIFT);
373         spin_lock(&mm->page_table_lock);
374         if (page_ref_dec_return(page) == 1)
375                 pagetable_pte_dtor(page_ptdesc(page));
376         spin_unlock(&mm->page_table_lock);
377 
378         srmmu_free_nocache(ptep, SRMMU_PTE_TABLE_SIZE);
379 }
380 
381 /* context handling - a dynamically sized pool is used */
382 #define NO_CONTEXT      -1
383 
384 struct ctx_list {
385         struct ctx_list *next;
386         struct ctx_list *prev;
387         unsigned int ctx_number;
388         struct mm_struct *ctx_mm;
389 };
390 
391 static struct ctx_list *ctx_list_pool;
392 static struct ctx_list ctx_free;
393 static struct ctx_list ctx_used;
394 
395 /* At boot time we determine the number of contexts */
396 static int num_contexts;
397 
398 static inline void remove_from_ctx_list(struct ctx_list *entry)
399 {
400         entry->next->prev = entry->prev;
401         entry->prev->next = entry->next;
402 }
403 
404 static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry)
405 {
406         entry->next = head;
407         (entry->prev = head->prev)->next = entry;
408         head->prev = entry;
409 }
410 #define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
411 #define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
412 
413 
414 static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
415 {
416         struct ctx_list *ctxp;
417 
418         ctxp = ctx_free.next;
419         if (ctxp != &ctx_free) {
420                 remove_from_ctx_list(ctxp);
421                 add_to_used_ctxlist(ctxp);
422                 mm->context = ctxp->ctx_number;
423                 ctxp->ctx_mm = mm;
424                 return;
425         }
426         ctxp = ctx_used.next;
427         if (ctxp->ctx_mm == old_mm)
428                 ctxp = ctxp->next;
429         if (ctxp == &ctx_used)
430                 panic("out of mmu contexts");
431         flush_cache_mm(ctxp->ctx_mm);
432         flush_tlb_mm(ctxp->ctx_mm);
433         remove_from_ctx_list(ctxp);
434         add_to_used_ctxlist(ctxp);
435         ctxp->ctx_mm->context = NO_CONTEXT;
436         ctxp->ctx_mm = mm;
437         mm->context = ctxp->ctx_number;
438 }
439 
440 static inline void free_context(int context)
441 {
442         struct ctx_list *ctx_old;
443 
444         ctx_old = ctx_list_pool + context;
445         remove_from_ctx_list(ctx_old);
446         add_to_free_ctxlist(ctx_old);
447 }
448 
449 static void __init sparc_context_init(int numctx)
450 {
451         int ctx;
452         unsigned long size;
453 
454         size = numctx * sizeof(struct ctx_list);
455         ctx_list_pool = memblock_alloc(size, SMP_CACHE_BYTES);
456         if (!ctx_list_pool)
457                 panic("%s: Failed to allocate %lu bytes\n", __func__, size);
458 
459         for (ctx = 0; ctx < numctx; ctx++) {
460                 struct ctx_list *clist;
461 
462                 clist = (ctx_list_pool + ctx);
463                 clist->ctx_number = ctx;
464                 clist->ctx_mm = NULL;
465         }
466         ctx_free.next = ctx_free.prev = &ctx_free;
467         ctx_used.next = ctx_used.prev = &ctx_used;
468         for (ctx = 0; ctx < numctx; ctx++)
469                 add_to_free_ctxlist(ctx_list_pool + ctx);
470 }
471 
472 void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
473                struct task_struct *tsk)
474 {
475         unsigned long flags;
476 
477         if (mm->context == NO_CONTEXT) {
478                 spin_lock_irqsave(&srmmu_context_spinlock, flags);
479                 alloc_context(old_mm, mm);
480                 spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
481                 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
482         }
483 
484         if (sparc_cpu_model == sparc_leon)
485                 leon_switch_mm();
486 
487         if (is_hypersparc)
488                 hyper_flush_whole_icache();
489 
490         srmmu_set_context(mm->context);
491 }
492 
493 /* Low level IO area allocation on the SRMMU. */
494 static inline void srmmu_mapioaddr(unsigned long physaddr,
495                                    unsigned long virt_addr, int bus_type)
496 {
497         pgd_t *pgdp;
498         p4d_t *p4dp;
499         pud_t *pudp;
500         pmd_t *pmdp;
501         pte_t *ptep;
502         unsigned long tmp;
503 
504         physaddr &= PAGE_MASK;
505         pgdp = pgd_offset_k(virt_addr);
506         p4dp = p4d_offset(pgdp, virt_addr);
507         pudp = pud_offset(p4dp, virt_addr);
508         pmdp = pmd_offset(pudp, virt_addr);
509         ptep = pte_offset_kernel(pmdp, virt_addr);
510         tmp = (physaddr >> 4) | SRMMU_ET_PTE;
511 
512         /* I need to test whether this is consistent over all
513          * sun4m's.  The bus_type represents the upper 4 bits of
514          * 36-bit physical address on the I/O space lines...
515          */
516         tmp |= (bus_type << 28);
517         tmp |= SRMMU_PRIV;
518         __flush_page_to_ram(virt_addr);
519         set_pte(ptep, __pte(tmp));
520 }
521 
522 void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
523                       unsigned long xva, unsigned int len)
524 {
525         while (len != 0) {
526                 len -= PAGE_SIZE;
527                 srmmu_mapioaddr(xpa, xva, bus);
528                 xva += PAGE_SIZE;
529                 xpa += PAGE_SIZE;
530         }
531         flush_tlb_all();
532 }
533 
534 static inline void srmmu_unmapioaddr(unsigned long virt_addr)
535 {
536         pgd_t *pgdp;
537         p4d_t *p4dp;
538         pud_t *pudp;
539         pmd_t *pmdp;
540         pte_t *ptep;
541 
542 
543         pgdp = pgd_offset_k(virt_addr);
544         p4dp = p4d_offset(pgdp, virt_addr);
545         pudp = pud_offset(p4dp, virt_addr);
546         pmdp = pmd_offset(pudp, virt_addr);
547         ptep = pte_offset_kernel(pmdp, virt_addr);
548 
549         /* No need to flush uncacheable page. */
550         __pte_clear(ptep);
551 }
552 
553 void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
554 {
555         while (len != 0) {
556                 len -= PAGE_SIZE;
557                 srmmu_unmapioaddr(virt_addr);
558                 virt_addr += PAGE_SIZE;
559         }
560         flush_tlb_all();
561 }
562 
563 /* tsunami.S */
564 extern void tsunami_flush_cache_all(void);
565 extern void tsunami_flush_cache_mm(struct mm_struct *mm);
566 extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
567 extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
568 extern void tsunami_flush_page_to_ram(unsigned long page);
569 extern void tsunami_flush_page_for_dma(unsigned long page);
570 extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
571 extern void tsunami_flush_tlb_all(void);
572 extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
573 extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
574 extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
575 extern void tsunami_setup_blockops(void);
576 
577 /* swift.S */
578 extern void swift_flush_cache_all(void);
579 extern void swift_flush_cache_mm(struct mm_struct *mm);
580 extern void swift_flush_cache_range(struct vm_area_struct *vma,
581                                     unsigned long start, unsigned long end);
582 extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
583 extern void swift_flush_page_to_ram(unsigned long page);
584 extern void swift_flush_page_for_dma(unsigned long page);
585 extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
586 extern void swift_flush_tlb_all(void);
587 extern void swift_flush_tlb_mm(struct mm_struct *mm);
588 extern void swift_flush_tlb_range(struct vm_area_struct *vma,
589                                   unsigned long start, unsigned long end);
590 extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
591 
592 #if 0  /* P3: deadwood to debug precise flushes on Swift. */
593 void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
594 {
595         int cctx, ctx1;
596 
597         page &= PAGE_MASK;
598         if ((ctx1 = vma->vm_mm->context) != -1) {
599                 cctx = srmmu_get_context();
600 /* Is context # ever different from current context? P3 */
601                 if (cctx != ctx1) {
602                         printk("flush ctx %02x curr %02x\n", ctx1, cctx);
603                         srmmu_set_context(ctx1);
604                         swift_flush_page(page);
605                         __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
606                                         "r" (page), "i" (ASI_M_FLUSH_PROBE));
607                         srmmu_set_context(cctx);
608                 } else {
609                          /* Rm. prot. bits from virt. c. */
610                         /* swift_flush_cache_all(); */
611                         /* swift_flush_cache_page(vma, page); */
612                         swift_flush_page(page);
613 
614                         __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
615                                 "r" (page), "i" (ASI_M_FLUSH_PROBE));
616                         /* same as above: srmmu_flush_tlb_page() */
617                 }
618         }
619 }
620 #endif
621 
622 /*
623  * The following are all MBUS based SRMMU modules, and therefore could
624  * be found in a multiprocessor configuration.  On the whole, these
625  * chips seems to be much more touchy about DVMA and page tables
626  * with respect to cache coherency.
627  */
628 
629 /* viking.S */
630 extern void viking_flush_cache_all(void);
631 extern void viking_flush_cache_mm(struct mm_struct *mm);
632 extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
633                                      unsigned long end);
634 extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
635 extern void viking_flush_page_to_ram(unsigned long page);
636 extern void viking_flush_page_for_dma(unsigned long page);
637 extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
638 extern void viking_flush_page(unsigned long page);
639 extern void viking_mxcc_flush_page(unsigned long page);
640 extern void viking_flush_tlb_all(void);
641 extern void viking_flush_tlb_mm(struct mm_struct *mm);
642 extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
643                                    unsigned long end);
644 extern void viking_flush_tlb_page(struct vm_area_struct *vma,
645                                   unsigned long page);
646 extern void sun4dsmp_flush_tlb_all(void);
647 extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
648 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
649                                    unsigned long end);
650 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
651                                   unsigned long page);
652 
653 /* hypersparc.S */
654 extern void hypersparc_flush_cache_all(void);
655 extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
656 extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
657 extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
658 extern void hypersparc_flush_page_to_ram(unsigned long page);
659 extern void hypersparc_flush_page_for_dma(unsigned long page);
660 extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
661 extern void hypersparc_flush_tlb_all(void);
662 extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
663 extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
664 extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
665 extern void hypersparc_setup_blockops(void);
666 
667 /*
668  * NOTE: All of this startup code assumes the low 16mb (approx.) of
669  *       kernel mappings are done with one single contiguous chunk of
670  *       ram.  On small ram machines (classics mainly) we only get
671  *       around 8mb mapped for us.
672  */
673 
674 static void __init early_pgtable_allocfail(char *type)
675 {
676         prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
677         prom_halt();
678 }
679 
680 static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
681                                                         unsigned long end)
682 {
683         pgd_t *pgdp;
684         p4d_t *p4dp;
685         pud_t *pudp;
686         pmd_t *pmdp;
687         pte_t *ptep;
688 
689         while (start < end) {
690                 pgdp = pgd_offset_k(start);
691                 p4dp = p4d_offset(pgdp, start);
692                 pudp = pud_offset(p4dp, start);
693                 if (pud_none(*__nocache_fix(pudp))) {
694                         pmdp = __srmmu_get_nocache(
695                             SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
696                         if (pmdp == NULL)
697                                 early_pgtable_allocfail("pmd");
698                         memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
699                         pud_set(__nocache_fix(pudp), pmdp);
700                 }
701                 pmdp = pmd_offset(__nocache_fix(pudp), start);
702                 if (srmmu_pmd_none(*__nocache_fix(pmdp))) {
703                         ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
704                         if (ptep == NULL)
705                                 early_pgtable_allocfail("pte");
706                         memset(__nocache_fix(ptep), 0, PTE_SIZE);
707                         pmd_set(__nocache_fix(pmdp), ptep);
708                 }
709                 if (start > (0xffffffffUL - PMD_SIZE))
710                         break;
711                 start = (start + PMD_SIZE) & PMD_MASK;
712         }
713 }
714 
715 static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
716                                                   unsigned long end)
717 {
718         pgd_t *pgdp;
719         p4d_t *p4dp;
720         pud_t *pudp;
721         pmd_t *pmdp;
722         pte_t *ptep;
723 
724         while (start < end) {
725                 pgdp = pgd_offset_k(start);
726                 p4dp = p4d_offset(pgdp, start);
727                 pudp = pud_offset(p4dp, start);
728                 if (pud_none(*pudp)) {
729                         pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
730                         if (pmdp == NULL)
731                                 early_pgtable_allocfail("pmd");
732                         memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
733                         pud_set((pud_t *)pgdp, pmdp);
734                 }
735                 pmdp = pmd_offset(pudp, start);
736                 if (srmmu_pmd_none(*pmdp)) {
737                         ptep = __srmmu_get_nocache(PTE_SIZE,
738                                                              PTE_SIZE);
739                         if (ptep == NULL)
740                                 early_pgtable_allocfail("pte");
741                         memset(ptep, 0, PTE_SIZE);
742                         pmd_set(pmdp, ptep);
743                 }
744                 if (start > (0xffffffffUL - PMD_SIZE))
745                         break;
746                 start = (start + PMD_SIZE) & PMD_MASK;
747         }
748 }
749 
750 /* These flush types are not available on all chips... */
751 static inline unsigned long srmmu_probe(unsigned long vaddr)
752 {
753         unsigned long retval;
754 
755         if (sparc_cpu_model != sparc_leon) {
756 
757                 vaddr &= PAGE_MASK;
758                 __asm__ __volatile__("lda [%1] %2, %0\n\t" :
759                                      "=r" (retval) :
760                                      "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
761         } else {
762                 retval = leon_swprobe(vaddr, NULL);
763         }
764         return retval;
765 }
766 
767 /*
768  * This is much cleaner than poking around physical address space
769  * looking at the prom's page table directly which is what most
770  * other OS's do.  Yuck... this is much better.
771  */
772 static void __init srmmu_inherit_prom_mappings(unsigned long start,
773                                                unsigned long end)
774 {
775         unsigned long probed;
776         unsigned long addr;
777         pgd_t *pgdp;
778         p4d_t *p4dp;
779         pud_t *pudp;
780         pmd_t *pmdp;
781         pte_t *ptep;
782         int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
783 
784         while (start <= end) {
785                 if (start == 0)
786                         break; /* probably wrap around */
787                 if (start == 0xfef00000)
788                         start = KADB_DEBUGGER_BEGVM;
789                 probed = srmmu_probe(start);
790                 if (!probed) {
791                         /* continue probing until we find an entry */
792                         start += PAGE_SIZE;
793                         continue;
794                 }
795 
796                 /* A red snapper, see what it really is. */
797                 what = 0;
798                 addr = start - PAGE_SIZE;
799 
800                 if (!(start & ~(PMD_MASK))) {
801                         if (srmmu_probe(addr + PMD_SIZE) == probed)
802                                 what = 1;
803                 }
804 
805                 if (!(start & ~(PGDIR_MASK))) {
806                         if (srmmu_probe(addr + PGDIR_SIZE) == probed)
807                                 what = 2;
808                 }
809 
810                 pgdp = pgd_offset_k(start);
811                 p4dp = p4d_offset(pgdp, start);
812                 pudp = pud_offset(p4dp, start);
813                 if (what == 2) {
814                         *__nocache_fix(pgdp) = __pgd(probed);
815                         start += PGDIR_SIZE;
816                         continue;
817                 }
818                 if (pud_none(*__nocache_fix(pudp))) {
819                         pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
820                                                    SRMMU_PMD_TABLE_SIZE);
821                         if (pmdp == NULL)
822                                 early_pgtable_allocfail("pmd");
823                         memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
824                         pud_set(__nocache_fix(pudp), pmdp);
825                 }
826                 pmdp = pmd_offset(__nocache_fix(pudp), start);
827                 if (what == 1) {
828                         *(pmd_t *)__nocache_fix(pmdp) = __pmd(probed);
829                         start += PMD_SIZE;
830                         continue;
831                 }
832                 if (srmmu_pmd_none(*__nocache_fix(pmdp))) {
833                         ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
834                         if (ptep == NULL)
835                                 early_pgtable_allocfail("pte");
836                         memset(__nocache_fix(ptep), 0, PTE_SIZE);
837                         pmd_set(__nocache_fix(pmdp), ptep);
838                 }
839                 ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
840                 *__nocache_fix(ptep) = __pte(probed);
841                 start += PAGE_SIZE;
842         }
843 }
844 
845 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
846 
847 /* Create a third-level SRMMU 16MB page mapping. */
848 static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
849 {
850         pgd_t *pgdp = pgd_offset_k(vaddr);
851         unsigned long big_pte;
852 
853         big_pte = KERNEL_PTE(phys_base >> 4);
854         *__nocache_fix(pgdp) = __pgd(big_pte);
855 }
856 
857 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
858 static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
859 {
860         unsigned long pstart = (sp_banks[sp_entry].base_addr & PGDIR_MASK);
861         unsigned long vstart = (vbase & PGDIR_MASK);
862         unsigned long vend = PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
863         /* Map "low" memory only */
864         const unsigned long min_vaddr = PAGE_OFFSET;
865         const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
866 
867         if (vstart < min_vaddr || vstart >= max_vaddr)
868                 return vstart;
869 
870         if (vend > max_vaddr || vend < min_vaddr)
871                 vend = max_vaddr;
872 
873         while (vstart < vend) {
874                 do_large_mapping(vstart, pstart);
875                 vstart += PGDIR_SIZE; pstart += PGDIR_SIZE;
876         }
877         return vstart;
878 }
879 
880 static void __init map_kernel(void)
881 {
882         int i;
883 
884         if (phys_base > 0) {
885                 do_large_mapping(PAGE_OFFSET, phys_base);
886         }
887 
888         for (i = 0; sp_banks[i].num_bytes != 0; i++) {
889                 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
890         }
891 }
892 
893 void (*poke_srmmu)(void) = NULL;
894 
895 void __init srmmu_paging_init(void)
896 {
897         int i;
898         phandle cpunode;
899         char node_str[128];
900         pgd_t *pgd;
901         p4d_t *p4d;
902         pud_t *pud;
903         pmd_t *pmd;
904         pte_t *pte;
905         unsigned long pages_avail;
906 
907         init_mm.context = (unsigned long) NO_CONTEXT;
908         sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
909 
910         if (sparc_cpu_model == sun4d)
911                 num_contexts = 65536; /* We know it is Viking */
912         else {
913                 /* Find the number of contexts on the srmmu. */
914                 cpunode = prom_getchild(prom_root_node);
915                 num_contexts = 0;
916                 while (cpunode != 0) {
917                         prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
918                         if (!strcmp(node_str, "cpu")) {
919                                 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
920                                 break;
921                         }
922                         cpunode = prom_getsibling(cpunode);
923                 }
924         }
925 
926         if (!num_contexts) {
927                 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
928                 prom_halt();
929         }
930 
931         pages_avail = 0;
932         last_valid_pfn = bootmem_init(&pages_avail);
933 
934         srmmu_nocache_calcsize();
935         srmmu_nocache_init();
936         srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
937         map_kernel();
938 
939         /* ctx table has to be physically aligned to its size */
940         srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
941         srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa(srmmu_context_table);
942 
943         for (i = 0; i < num_contexts; i++)
944                 srmmu_ctxd_set(__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
945 
946         flush_cache_all();
947         srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
948 #ifdef CONFIG_SMP
949         /* Stop from hanging here... */
950         local_ops->tlb_all();
951 #else
952         flush_tlb_all();
953 #endif
954         poke_srmmu();
955 
956         srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
957         srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
958 
959         srmmu_allocate_ptable_skeleton(
960                 __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
961         srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
962 
963         pgd = pgd_offset_k(PKMAP_BASE);
964         p4d = p4d_offset(pgd, PKMAP_BASE);
965         pud = pud_offset(p4d, PKMAP_BASE);
966         pmd = pmd_offset(pud, PKMAP_BASE);
967         pte = pte_offset_kernel(pmd, PKMAP_BASE);
968         pkmap_page_table = pte;
969 
970         flush_cache_all();
971         flush_tlb_all();
972 
973         sparc_context_init(num_contexts);
974 
975         {
976                 unsigned long max_zone_pfn[MAX_NR_ZONES] = { 0 };
977 
978                 max_zone_pfn[ZONE_DMA] = max_low_pfn;
979                 max_zone_pfn[ZONE_NORMAL] = max_low_pfn;
980                 max_zone_pfn[ZONE_HIGHMEM] = highend_pfn;
981 
982                 free_area_init(max_zone_pfn);
983         }
984 }
985 
986 void mmu_info(struct seq_file *m)
987 {
988         seq_printf(m,
989                    "MMU type\t: %s\n"
990                    "contexts\t: %d\n"
991                    "nocache total\t: %ld\n"
992                    "nocache used\t: %d\n",
993                    srmmu_name,
994                    num_contexts,
995                    srmmu_nocache_size,
996                    srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
997 }
998 
999 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
1000 {
1001         mm->context = NO_CONTEXT;
1002         return 0;
1003 }
1004 
1005 void destroy_context(struct mm_struct *mm)
1006 {
1007         unsigned long flags;
1008 
1009         if (mm->context != NO_CONTEXT) {
1010                 flush_cache_mm(mm);
1011                 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1012                 flush_tlb_mm(mm);
1013                 spin_lock_irqsave(&srmmu_context_spinlock, flags);
1014                 free_context(mm->context);
1015                 spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
1016                 mm->context = NO_CONTEXT;
1017         }
1018 }
1019 
1020 /* Init various srmmu chip types. */
1021 static void __init srmmu_is_bad(void)
1022 {
1023         prom_printf("Could not determine SRMMU chip type.\n");
1024         prom_halt();
1025 }
1026 
1027 static void __init init_vac_layout(void)
1028 {
1029         phandle nd;
1030         int cache_lines;
1031         char node_str[128];
1032 #ifdef CONFIG_SMP
1033         int cpu = 0;
1034         unsigned long max_size = 0;
1035         unsigned long min_line_size = 0x10000000;
1036 #endif
1037 
1038         nd = prom_getchild(prom_root_node);
1039         while ((nd = prom_getsibling(nd)) != 0) {
1040                 prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1041                 if (!strcmp(node_str, "cpu")) {
1042                         vac_line_size = prom_getint(nd, "cache-line-size");
1043                         if (vac_line_size == -1) {
1044                                 prom_printf("can't determine cache-line-size, halting.\n");
1045                                 prom_halt();
1046                         }
1047                         cache_lines = prom_getint(nd, "cache-nlines");
1048                         if (cache_lines == -1) {
1049                                 prom_printf("can't determine cache-nlines, halting.\n");
1050                                 prom_halt();
1051                         }
1052 
1053                         vac_cache_size = cache_lines * vac_line_size;
1054 #ifdef CONFIG_SMP
1055                         if (vac_cache_size > max_size)
1056                                 max_size = vac_cache_size;
1057                         if (vac_line_size < min_line_size)
1058                                 min_line_size = vac_line_size;
1059                         //FIXME: cpus not contiguous!!
1060                         cpu++;
1061                         if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1062                                 break;
1063 #else
1064                         break;
1065 #endif
1066                 }
1067         }
1068         if (nd == 0) {
1069                 prom_printf("No CPU nodes found, halting.\n");
1070                 prom_halt();
1071         }
1072 #ifdef CONFIG_SMP
1073         vac_cache_size = max_size;
1074         vac_line_size = min_line_size;
1075 #endif
1076         printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1077                (int)vac_cache_size, (int)vac_line_size);
1078 }
1079 
1080 static void poke_hypersparc(void)
1081 {
1082         volatile unsigned long clear;
1083         unsigned long mreg = srmmu_get_mmureg();
1084 
1085         hyper_flush_unconditional_combined();
1086 
1087         mreg &= ~(HYPERSPARC_CWENABLE);
1088         mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1089         mreg |= (HYPERSPARC_CMODE);
1090 
1091         srmmu_set_mmureg(mreg);
1092 
1093 #if 0 /* XXX I think this is bad news... -DaveM */
1094         hyper_clear_all_tags();
1095 #endif
1096 
1097         put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1098         hyper_flush_whole_icache();
1099         clear = srmmu_get_faddr();
1100         clear = srmmu_get_fstatus();
1101 }
1102 
1103 static const struct sparc32_cachetlb_ops hypersparc_ops = {
1104         .cache_all      = hypersparc_flush_cache_all,
1105         .cache_mm       = hypersparc_flush_cache_mm,
1106         .cache_page     = hypersparc_flush_cache_page,
1107         .cache_range    = hypersparc_flush_cache_range,
1108         .tlb_all        = hypersparc_flush_tlb_all,
1109         .tlb_mm         = hypersparc_flush_tlb_mm,
1110         .tlb_page       = hypersparc_flush_tlb_page,
1111         .tlb_range      = hypersparc_flush_tlb_range,
1112         .page_to_ram    = hypersparc_flush_page_to_ram,
1113         .sig_insns      = hypersparc_flush_sig_insns,
1114         .page_for_dma   = hypersparc_flush_page_for_dma,
1115 };
1116 
1117 static void __init init_hypersparc(void)
1118 {
1119         srmmu_name = "ROSS HyperSparc";
1120         srmmu_modtype = HyperSparc;
1121 
1122         init_vac_layout();
1123 
1124         is_hypersparc = 1;
1125         sparc32_cachetlb_ops = &hypersparc_ops;
1126 
1127         poke_srmmu = poke_hypersparc;
1128 
1129         hypersparc_setup_blockops();
1130 }
1131 
1132 static void poke_swift(void)
1133 {
1134         unsigned long mreg;
1135 
1136         /* Clear any crap from the cache or else... */
1137         swift_flush_cache_all();
1138 
1139         /* Enable I & D caches */
1140         mreg = srmmu_get_mmureg();
1141         mreg |= (SWIFT_IE | SWIFT_DE);
1142         /*
1143          * The Swift branch folding logic is completely broken.  At
1144          * trap time, if things are just right, if can mistakenly
1145          * think that a trap is coming from kernel mode when in fact
1146          * it is coming from user mode (it mis-executes the branch in
1147          * the trap code).  So you see things like crashme completely
1148          * hosing your machine which is completely unacceptable.  Turn
1149          * this shit off... nice job Fujitsu.
1150          */
1151         mreg &= ~(SWIFT_BF);
1152         srmmu_set_mmureg(mreg);
1153 }
1154 
1155 static const struct sparc32_cachetlb_ops swift_ops = {
1156         .cache_all      = swift_flush_cache_all,
1157         .cache_mm       = swift_flush_cache_mm,
1158         .cache_page     = swift_flush_cache_page,
1159         .cache_range    = swift_flush_cache_range,
1160         .tlb_all        = swift_flush_tlb_all,
1161         .tlb_mm         = swift_flush_tlb_mm,
1162         .tlb_page       = swift_flush_tlb_page,
1163         .tlb_range      = swift_flush_tlb_range,
1164         .page_to_ram    = swift_flush_page_to_ram,
1165         .sig_insns      = swift_flush_sig_insns,
1166         .page_for_dma   = swift_flush_page_for_dma,
1167 };
1168 
1169 #define SWIFT_MASKID_ADDR  0x10003018
1170 static void __init init_swift(void)
1171 {
1172         unsigned long swift_rev;
1173 
1174         __asm__ __volatile__("lda [%1] %2, %0\n\t"
1175                              "srl %0, 0x18, %0\n\t" :
1176                              "=r" (swift_rev) :
1177                              "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1178         srmmu_name = "Fujitsu Swift";
1179         switch (swift_rev) {
1180         case 0x11:
1181         case 0x20:
1182         case 0x23:
1183         case 0x30:
1184                 srmmu_modtype = Swift_lots_o_bugs;
1185                 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1186                 /*
1187                  * Gee george, I wonder why Sun is so hush hush about
1188                  * this hardware bug... really braindamage stuff going
1189                  * on here.  However I think we can find a way to avoid
1190                  * all of the workaround overhead under Linux.  Basically,
1191                  * any page fault can cause kernel pages to become user
1192                  * accessible (the mmu gets confused and clears some of
1193                  * the ACC bits in kernel ptes).  Aha, sounds pretty
1194                  * horrible eh?  But wait, after extensive testing it appears
1195                  * that if you use pgd_t level large kernel pte's (like the
1196                  * 4MB pages on the Pentium) the bug does not get tripped
1197                  * at all.  This avoids almost all of the major overhead.
1198                  * Welcome to a world where your vendor tells you to,
1199                  * "apply this kernel patch" instead of "sorry for the
1200                  * broken hardware, send it back and we'll give you
1201                  * properly functioning parts"
1202                  */
1203                 break;
1204         case 0x25:
1205         case 0x31:
1206                 srmmu_modtype = Swift_bad_c;
1207                 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1208                 /*
1209                  * You see Sun allude to this hardware bug but never
1210                  * admit things directly, they'll say things like,
1211                  * "the Swift chip cache problems" or similar.
1212                  */
1213                 break;
1214         default:
1215                 srmmu_modtype = Swift_ok;
1216                 break;
1217         }
1218 
1219         sparc32_cachetlb_ops = &swift_ops;
1220         flush_page_for_dma_global = 0;
1221 
1222         /*
1223          * Are you now convinced that the Swift is one of the
1224          * biggest VLSI abortions of all time?  Bravo Fujitsu!
1225          * Fujitsu, the !#?!%$'d up processor people.  I bet if
1226          * you examined the microcode of the Swift you'd find
1227          * XXX's all over the place.
1228          */
1229         poke_srmmu = poke_swift;
1230 }
1231 
1232 static void turbosparc_flush_cache_all(void)
1233 {
1234         flush_user_windows();
1235         turbosparc_idflash_clear();
1236 }
1237 
1238 static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1239 {
1240         FLUSH_BEGIN(mm)
1241         flush_user_windows();
1242         turbosparc_idflash_clear();
1243         FLUSH_END
1244 }
1245 
1246 static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1247 {
1248         FLUSH_BEGIN(vma->vm_mm)
1249         flush_user_windows();
1250         turbosparc_idflash_clear();
1251         FLUSH_END
1252 }
1253 
1254 static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1255 {
1256         FLUSH_BEGIN(vma->vm_mm)
1257         flush_user_windows();
1258         if (vma->vm_flags & VM_EXEC)
1259                 turbosparc_flush_icache();
1260         turbosparc_flush_dcache();
1261         FLUSH_END
1262 }
1263 
1264 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
1265 static void turbosparc_flush_page_to_ram(unsigned long page)
1266 {
1267 #ifdef TURBOSPARC_WRITEBACK
1268         volatile unsigned long clear;
1269 
1270         if (srmmu_probe(page))
1271                 turbosparc_flush_page_cache(page);
1272         clear = srmmu_get_fstatus();
1273 #endif
1274 }
1275 
1276 static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1277 {
1278 }
1279 
1280 static void turbosparc_flush_page_for_dma(unsigned long page)
1281 {
1282         turbosparc_flush_dcache();
1283 }
1284 
1285 static void turbosparc_flush_tlb_all(void)
1286 {
1287         srmmu_flush_whole_tlb();
1288 }
1289 
1290 static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1291 {
1292         FLUSH_BEGIN(mm)
1293         srmmu_flush_whole_tlb();
1294         FLUSH_END
1295 }
1296 
1297 static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1298 {
1299         FLUSH_BEGIN(vma->vm_mm)
1300         srmmu_flush_whole_tlb();
1301         FLUSH_END
1302 }
1303 
1304 static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1305 {
1306         FLUSH_BEGIN(vma->vm_mm)
1307         srmmu_flush_whole_tlb();
1308         FLUSH_END
1309 }
1310 
1311 
1312 static void poke_turbosparc(void)
1313 {
1314         unsigned long mreg = srmmu_get_mmureg();
1315         unsigned long ccreg;
1316 
1317         /* Clear any crap from the cache or else... */
1318         turbosparc_flush_cache_all();
1319         /* Temporarily disable I & D caches */
1320         mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
1321         mreg &= ~(TURBOSPARC_PCENABLE);         /* Don't check parity */
1322         srmmu_set_mmureg(mreg);
1323 
1324         ccreg = turbosparc_get_ccreg();
1325 
1326 #ifdef TURBOSPARC_WRITEBACK
1327         ccreg |= (TURBOSPARC_SNENABLE);         /* Do DVMA snooping in Dcache */
1328         ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1329                         /* Write-back D-cache, emulate VLSI
1330                          * abortion number three, not number one */
1331 #else
1332         /* For now let's play safe, optimize later */
1333         ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1334                         /* Do DVMA snooping in Dcache, Write-thru D-cache */
1335         ccreg &= ~(TURBOSPARC_uS2);
1336                         /* Emulate VLSI abortion number three, not number one */
1337 #endif
1338 
1339         switch (ccreg & 7) {
1340         case 0: /* No SE cache */
1341         case 7: /* Test mode */
1342                 break;
1343         default:
1344                 ccreg |= (TURBOSPARC_SCENABLE);
1345         }
1346         turbosparc_set_ccreg(ccreg);
1347 
1348         mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1349         mreg |= (TURBOSPARC_ICSNOOP);           /* Icache snooping on */
1350         srmmu_set_mmureg(mreg);
1351 }
1352 
1353 static const struct sparc32_cachetlb_ops turbosparc_ops = {
1354         .cache_all      = turbosparc_flush_cache_all,
1355         .cache_mm       = turbosparc_flush_cache_mm,
1356         .cache_page     = turbosparc_flush_cache_page,
1357         .cache_range    = turbosparc_flush_cache_range,
1358         .tlb_all        = turbosparc_flush_tlb_all,
1359         .tlb_mm         = turbosparc_flush_tlb_mm,
1360         .tlb_page       = turbosparc_flush_tlb_page,
1361         .tlb_range      = turbosparc_flush_tlb_range,
1362         .page_to_ram    = turbosparc_flush_page_to_ram,
1363         .sig_insns      = turbosparc_flush_sig_insns,
1364         .page_for_dma   = turbosparc_flush_page_for_dma,
1365 };
1366 
1367 static void __init init_turbosparc(void)
1368 {
1369         srmmu_name = "Fujitsu TurboSparc";
1370         srmmu_modtype = TurboSparc;
1371         sparc32_cachetlb_ops = &turbosparc_ops;
1372         poke_srmmu = poke_turbosparc;
1373 }
1374 
1375 static void poke_tsunami(void)
1376 {
1377         unsigned long mreg = srmmu_get_mmureg();
1378 
1379         tsunami_flush_icache();
1380         tsunami_flush_dcache();
1381         mreg &= ~TSUNAMI_ITD;
1382         mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1383         srmmu_set_mmureg(mreg);
1384 }
1385 
1386 static const struct sparc32_cachetlb_ops tsunami_ops = {
1387         .cache_all      = tsunami_flush_cache_all,
1388         .cache_mm       = tsunami_flush_cache_mm,
1389         .cache_page     = tsunami_flush_cache_page,
1390         .cache_range    = tsunami_flush_cache_range,
1391         .tlb_all        = tsunami_flush_tlb_all,
1392         .tlb_mm         = tsunami_flush_tlb_mm,
1393         .tlb_page       = tsunami_flush_tlb_page,
1394         .tlb_range      = tsunami_flush_tlb_range,
1395         .page_to_ram    = tsunami_flush_page_to_ram,
1396         .sig_insns      = tsunami_flush_sig_insns,
1397         .page_for_dma   = tsunami_flush_page_for_dma,
1398 };
1399 
1400 static void __init init_tsunami(void)
1401 {
1402         /*
1403          * Tsunami's pretty sane, Sun and TI actually got it
1404          * somewhat right this time.  Fujitsu should have
1405          * taken some lessons from them.
1406          */
1407 
1408         srmmu_name = "TI Tsunami";
1409         srmmu_modtype = Tsunami;
1410         sparc32_cachetlb_ops = &tsunami_ops;
1411         poke_srmmu = poke_tsunami;
1412 
1413         tsunami_setup_blockops();
1414 }
1415 
1416 static void poke_viking(void)
1417 {
1418         unsigned long mreg = srmmu_get_mmureg();
1419         static int smp_catch;
1420 
1421         if (viking_mxcc_present) {
1422                 unsigned long mxcc_control = mxcc_get_creg();
1423 
1424                 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1425                 mxcc_control &= ~(MXCC_CTL_RRC);
1426                 mxcc_set_creg(mxcc_control);
1427 
1428                 /*
1429                  * We don't need memory parity checks.
1430                  * XXX This is a mess, have to dig out later. ecd.
1431                 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1432                  */
1433 
1434                 /* We do cache ptables on MXCC. */
1435                 mreg |= VIKING_TCENABLE;
1436         } else {
1437                 unsigned long bpreg;
1438 
1439                 mreg &= ~(VIKING_TCENABLE);
1440                 if (smp_catch++) {
1441                         /* Must disable mixed-cmd mode here for other cpu's. */
1442                         bpreg = viking_get_bpreg();
1443                         bpreg &= ~(VIKING_ACTION_MIX);
1444                         viking_set_bpreg(bpreg);
1445 
1446                         /* Just in case PROM does something funny. */
1447                         msi_set_sync();
1448                 }
1449         }
1450 
1451         mreg |= VIKING_SPENABLE;
1452         mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1453         mreg |= VIKING_SBENABLE;
1454         mreg &= ~(VIKING_ACENABLE);
1455         srmmu_set_mmureg(mreg);
1456 }
1457 
1458 static struct sparc32_cachetlb_ops viking_ops __ro_after_init = {
1459         .cache_all      = viking_flush_cache_all,
1460         .cache_mm       = viking_flush_cache_mm,
1461         .cache_page     = viking_flush_cache_page,
1462         .cache_range    = viking_flush_cache_range,
1463         .tlb_all        = viking_flush_tlb_all,
1464         .tlb_mm         = viking_flush_tlb_mm,
1465         .tlb_page       = viking_flush_tlb_page,
1466         .tlb_range      = viking_flush_tlb_range,
1467         .page_to_ram    = viking_flush_page_to_ram,
1468         .sig_insns      = viking_flush_sig_insns,
1469         .page_for_dma   = viking_flush_page_for_dma,
1470 };
1471 
1472 #ifdef CONFIG_SMP
1473 /* On sun4d the cpu broadcasts local TLB flushes, so we can just
1474  * perform the local TLB flush and all the other cpus will see it.
1475  * But, unfortunately, there is a bug in the sun4d XBUS backplane
1476  * that requires that we add some synchronization to these flushes.
1477  *
1478  * The bug is that the fifo which keeps track of all the pending TLB
1479  * broadcasts in the system is an entry or two too small, so if we
1480  * have too many going at once we'll overflow that fifo and lose a TLB
1481  * flush resulting in corruption.
1482  *
1483  * Our workaround is to take a global spinlock around the TLB flushes,
1484  * which guarentees we won't ever have too many pending.  It's a big
1485  * hammer, but a semaphore like system to make sure we only have N TLB
1486  * flushes going at once will require SMP locking anyways so there's
1487  * no real value in trying any harder than this.
1488  */
1489 static struct sparc32_cachetlb_ops viking_sun4d_smp_ops __ro_after_init = {
1490         .cache_all      = viking_flush_cache_all,
1491         .cache_mm       = viking_flush_cache_mm,
1492         .cache_page     = viking_flush_cache_page,
1493         .cache_range    = viking_flush_cache_range,
1494         .tlb_all        = sun4dsmp_flush_tlb_all,
1495         .tlb_mm         = sun4dsmp_flush_tlb_mm,
1496         .tlb_page       = sun4dsmp_flush_tlb_page,
1497         .tlb_range      = sun4dsmp_flush_tlb_range,
1498         .page_to_ram    = viking_flush_page_to_ram,
1499         .sig_insns      = viking_flush_sig_insns,
1500         .page_for_dma   = viking_flush_page_for_dma,
1501 };
1502 #endif
1503 
1504 static void __init init_viking(void)
1505 {
1506         unsigned long mreg = srmmu_get_mmureg();
1507 
1508         /* Ahhh, the viking.  SRMMU VLSI abortion number two... */
1509         if (mreg & VIKING_MMODE) {
1510                 srmmu_name = "TI Viking";
1511                 viking_mxcc_present = 0;
1512                 msi_set_sync();
1513 
1514                 /*
1515                  * We need this to make sure old viking takes no hits
1516                  * on its cache for dma snoops to workaround the
1517                  * "load from non-cacheable memory" interrupt bug.
1518                  * This is only necessary because of the new way in
1519                  * which we use the IOMMU.
1520                  */
1521                 viking_ops.page_for_dma = viking_flush_page;
1522 #ifdef CONFIG_SMP
1523                 viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1524 #endif
1525                 flush_page_for_dma_global = 0;
1526         } else {
1527                 srmmu_name = "TI Viking/MXCC";
1528                 viking_mxcc_present = 1;
1529                 srmmu_cache_pagetables = 1;
1530         }
1531 
1532         sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1533                 &viking_ops;
1534 #ifdef CONFIG_SMP
1535         if (sparc_cpu_model == sun4d)
1536                 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1537                         &viking_sun4d_smp_ops;
1538 #endif
1539 
1540         poke_srmmu = poke_viking;
1541 }
1542 
1543 /* Probe for the srmmu chip version. */
1544 static void __init get_srmmu_type(void)
1545 {
1546         unsigned long mreg, psr;
1547         unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1548 
1549         srmmu_modtype = SRMMU_INVAL_MOD;
1550         hwbug_bitmask = 0;
1551 
1552         mreg = srmmu_get_mmureg(); psr = get_psr();
1553         mod_typ = (mreg & 0xf0000000) >> 28;
1554         mod_rev = (mreg & 0x0f000000) >> 24;
1555         psr_typ = (psr >> 28) & 0xf;
1556         psr_vers = (psr >> 24) & 0xf;
1557 
1558         /* First, check for sparc-leon. */
1559         if (sparc_cpu_model == sparc_leon) {
1560                 init_leon();
1561                 return;
1562         }
1563 
1564         /* Second, check for HyperSparc or Cypress. */
1565         if (mod_typ == 1) {
1566                 switch (mod_rev) {
1567                 case 7:
1568                         /* UP or MP Hypersparc */
1569                         init_hypersparc();
1570                         break;
1571                 case 0:
1572                 case 2:
1573                 case 10:
1574                 case 11:
1575                 case 12:
1576                 case 13:
1577                 case 14:
1578                 case 15:
1579                 default:
1580                         prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1581                         prom_halt();
1582                         break;
1583                 }
1584                 return;
1585         }
1586 
1587         /* Now Fujitsu TurboSparc. It might happen that it is
1588          * in Swift emulation mode, so we will check later...
1589          */
1590         if (psr_typ == 0 && psr_vers == 5) {
1591                 init_turbosparc();
1592                 return;
1593         }
1594 
1595         /* Next check for Fujitsu Swift. */
1596         if (psr_typ == 0 && psr_vers == 4) {
1597                 phandle cpunode;
1598                 char node_str[128];
1599 
1600                 /* Look if it is not a TurboSparc emulating Swift... */
1601                 cpunode = prom_getchild(prom_root_node);
1602                 while ((cpunode = prom_getsibling(cpunode)) != 0) {
1603                         prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1604                         if (!strcmp(node_str, "cpu")) {
1605                                 if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1606                                     prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1607                                         init_turbosparc();
1608                                         return;
1609                                 }
1610                                 break;
1611                         }
1612                 }
1613 
1614                 init_swift();
1615                 return;
1616         }
1617 
1618         /* Now the Viking family of srmmu. */
1619         if (psr_typ == 4 &&
1620            ((psr_vers == 0) ||
1621             ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1622                 init_viking();
1623                 return;
1624         }
1625 
1626         /* Finally the Tsunami. */
1627         if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1628                 init_tsunami();
1629                 return;
1630         }
1631 
1632         /* Oh well */
1633         srmmu_is_bad();
1634 }
1635 
1636 #ifdef CONFIG_SMP
1637 /* Local cross-calls. */
1638 static void smp_flush_page_for_dma(unsigned long page)
1639 {
1640         xc1(local_ops->page_for_dma, page);
1641         local_ops->page_for_dma(page);
1642 }
1643 
1644 static void smp_flush_cache_all(void)
1645 {
1646         xc0(local_ops->cache_all);
1647         local_ops->cache_all();
1648 }
1649 
1650 static void smp_flush_tlb_all(void)
1651 {
1652         xc0(local_ops->tlb_all);
1653         local_ops->tlb_all();
1654 }
1655 
1656 static bool any_other_mm_cpus(struct mm_struct *mm)
1657 {
1658         return cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids;
1659 }
1660 
1661 static void smp_flush_cache_mm(struct mm_struct *mm)
1662 {
1663         if (mm->context != NO_CONTEXT) {
1664                 if (any_other_mm_cpus(mm))
1665                         xc1(local_ops->cache_mm, (unsigned long)mm);
1666                 local_ops->cache_mm(mm);
1667         }
1668 }
1669 
1670 static void smp_flush_tlb_mm(struct mm_struct *mm)
1671 {
1672         if (mm->context != NO_CONTEXT) {
1673                 if (any_other_mm_cpus(mm)) {
1674                         xc1(local_ops->tlb_mm, (unsigned long)mm);
1675                         if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1676                                 cpumask_copy(mm_cpumask(mm),
1677                                              cpumask_of(smp_processor_id()));
1678                 }
1679                 local_ops->tlb_mm(mm);
1680         }
1681 }
1682 
1683 static void smp_flush_cache_range(struct vm_area_struct *vma,
1684                                   unsigned long start,
1685                                   unsigned long end)
1686 {
1687         struct mm_struct *mm = vma->vm_mm;
1688 
1689         if (mm->context != NO_CONTEXT) {
1690                 if (any_other_mm_cpus(mm))
1691                         xc3(local_ops->cache_range, (unsigned long)vma, start,
1692                             end);
1693                 local_ops->cache_range(vma, start, end);
1694         }
1695 }
1696 
1697 static void smp_flush_tlb_range(struct vm_area_struct *vma,
1698                                 unsigned long start,
1699                                 unsigned long end)
1700 {
1701         struct mm_struct *mm = vma->vm_mm;
1702 
1703         if (mm->context != NO_CONTEXT) {
1704                 if (any_other_mm_cpus(mm))
1705                         xc3(local_ops->tlb_range, (unsigned long)vma, start,
1706                             end);
1707                 local_ops->tlb_range(vma, start, end);
1708         }
1709 }
1710 
1711 static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1712 {
1713         struct mm_struct *mm = vma->vm_mm;
1714 
1715         if (mm->context != NO_CONTEXT) {
1716                 if (any_other_mm_cpus(mm))
1717                         xc2(local_ops->cache_page, (unsigned long)vma, page);
1718                 local_ops->cache_page(vma, page);
1719         }
1720 }
1721 
1722 static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1723 {
1724         struct mm_struct *mm = vma->vm_mm;
1725 
1726         if (mm->context != NO_CONTEXT) {
1727                 if (any_other_mm_cpus(mm))
1728                         xc2(local_ops->tlb_page, (unsigned long)vma, page);
1729                 local_ops->tlb_page(vma, page);
1730         }
1731 }
1732 
1733 static void smp_flush_page_to_ram(unsigned long page)
1734 {
1735         /* Current theory is that those who call this are the one's
1736          * who have just dirtied their cache with the pages contents
1737          * in kernel space, therefore we only run this on local cpu.
1738          *
1739          * XXX This experiment failed, research further... -DaveM
1740          */
1741 #if 1
1742         xc1(local_ops->page_to_ram, page);
1743 #endif
1744         local_ops->page_to_ram(page);
1745 }
1746 
1747 static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1748 {
1749         if (any_other_mm_cpus(mm))
1750                 xc2(local_ops->sig_insns, (unsigned long)mm, insn_addr);
1751         local_ops->sig_insns(mm, insn_addr);
1752 }
1753 
1754 static struct sparc32_cachetlb_ops smp_cachetlb_ops __ro_after_init = {
1755         .cache_all      = smp_flush_cache_all,
1756         .cache_mm       = smp_flush_cache_mm,
1757         .cache_page     = smp_flush_cache_page,
1758         .cache_range    = smp_flush_cache_range,
1759         .tlb_all        = smp_flush_tlb_all,
1760         .tlb_mm         = smp_flush_tlb_mm,
1761         .tlb_page       = smp_flush_tlb_page,
1762         .tlb_range      = smp_flush_tlb_range,
1763         .page_to_ram    = smp_flush_page_to_ram,
1764         .sig_insns      = smp_flush_sig_insns,
1765         .page_for_dma   = smp_flush_page_for_dma,
1766 };
1767 #endif
1768 
1769 /* Load up routines and constants for sun4m and sun4d mmu */
1770 void __init load_mmu(void)
1771 {
1772         /* Functions */
1773         get_srmmu_type();
1774 
1775 #ifdef CONFIG_SMP
1776         /* El switcheroo... */
1777         local_ops = sparc32_cachetlb_ops;
1778 
1779         if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1780                 smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1781                 smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1782                 smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1783                 smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1784         }
1785 
1786         if (poke_srmmu == poke_viking) {
1787                 /* Avoid unnecessary cross calls. */
1788                 smp_cachetlb_ops.cache_all = local_ops->cache_all;
1789                 smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1790                 smp_cachetlb_ops.cache_range = local_ops->cache_range;
1791                 smp_cachetlb_ops.cache_page = local_ops->cache_page;
1792 
1793                 smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1794                 smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1795                 smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
1796         }
1797 
1798         /* It really is const after this point. */
1799         sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1800                 &smp_cachetlb_ops;
1801 #endif
1802 
1803         if (sparc_cpu_model != sun4d)
1804                 ld_mmu_iommu();
1805 #ifdef CONFIG_SMP
1806         if (sparc_cpu_model == sun4d)
1807                 sun4d_init_smp();
1808         else if (sparc_cpu_model == sparc_leon)
1809                 leon_init_smp();
1810         else
1811                 sun4m_init_smp();
1812 #endif
1813 }
1814 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php